
Section 9.4: Linear Systems in Normal Form

We will now introduce some terminology and notation for systems which parallel the
definitions for individual DE’s from earlier chapters. A linear system of n DE’s is in
normal form if it can be written as

(1) x′(t) = A(t)x(t) + f(t),

where x(t) =

 x1(t)
...

xn(t)

 , f(t) =

 f1(t)
...

fn(t)

, and A is an n × n matrix. If f(t) = 0, the

system is called homogeneous; otherwise, it is called nonhomogeneous. If the elements
of the coefficient matrix A are all constants, the system has constant coefficients. Recall
from Section 9.1 that we can rewrite an n-th order linear DE

y(n)(t) + pn−1(t)y
(n−1)(t) + · · ·+ p0(t)y(t) = g(t)

in the form of equation (1) where f(t) =


0
...
0

g(t)

 and

A(t) =


0 1 0 · · · 0 0
0 0 1 0 0
...

...
...

...
...

0 0 0 · · · 0 1
−p0(t) −p1(t) −p2(t) · · · −pn−2(t) −pn−1(t)

 .

As one might hope, the theory for systems in normal form is very similar to the theory of
linear DE’s in Chapters 4 and 6. As before, the notion of linear independence is important
for writing general solutions.

Definition. The vector functions x1, . . . ,xm are said to be linearly dependent on an
interval I if there exist constants c1, . . . , cm not all zero such that

c1x1(t) + · · ·+ cmxm(t) = 0

for all t ∈ I. Otherwise, they are said to be linearly independent on I.

Example 1. Show that the functions x1(t) =

 et

0
et

 ,x2(t) =

 3et

0
3et

, and x3(t) = t
1
0

 are linearly dependent on (−∞,∞).

Solution. Since x2(t) is a scalar multiple of x1(t), we see that

3x1(t)− x2(t) + 0 · x3(t) = 0
1



2

for all t. Therefore, x1,x2,x3 are linearly dependent. ♦

To prove linear independence, the technique is to assume some linear combination
equals 0, and deduce that every coefficient must be zero, as illustrated in the following
example.

Example 2. Show that the functions x1(t) =

 e2t

0
e2t

 ,x2(t) =

 e2t

e2t

−e2t

, and x3(t) = et

2et

et

 are linearly independent on (−∞,∞).

Solution. Assume there are constants c1, c2, c3 such that c1x1(t) + c2x2(t) + c3x3(t) = 0
for every t. Substituting t = 0, we obtain the system of linear equations

c1 + c2 + c3 = 0,

c2 + 2c3 = 0,

c1 − c2 + c3 = 0,

which has solution c1 = c2 = c3 = 0. Thus, x1,x2,x3 are linearly independent. ♦

We can define a determinant which is related to the scalar case, which can be useful
for determining linear independence.

Definition. The Wronskian of n vector functions x1(t) = col(x1,1, . . . , xn,1), . . . ,xn(t) =
col(x1,n, . . . , xn,n) is the real-valued function

W [x1, . . . ,xn](t) =

∣∣∣∣∣∣∣∣
x1,1(t) x1,2(t) · · · x1,n(t)
x2,1(t) x2,2(t) · · · x2,n(t)

...
...

...
xn,1(t) xn,2(t) · · · xn,n(t)

∣∣∣∣∣∣∣∣ .
Similarly to previous discussions, a set of vector solutions x1,x2, . . . ,xn to a homoge-

neous system x′ = Ax are linearly independent on I if and only if their Wronskian is
nonzero for at least one point in I. The general solution for a homogeneous system is
described in the following theorem.

Theorem 1. Let x1, . . . ,xn be linearly independent solutions to the homogeneous system

(2) x′(t) = A(t)x(t)

on the interval I, where A(t) is an n×n matrix function continuous on I. Then a general
solution to (2) on I is

x(t) = c1x1(t) + · · ·+ cnxn(t),

for constants c1, . . . , cn.
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The set of linearly independent solutions {x1, . . . ,xn} is called a fundamental solu-
tion set for (2); if we let each of these vectors form the column of a matrix, we obtain
the fundamental matrix

X(t) =


x1,1(t) x1,2(t) · · · x1,n(t)
x2,1(t) x2,2(t) · · · x2,n(t)

...
...

...
xn,1(t) xn,2(t) · · · xn,n(t)

 .

Example 3. Verify that the set

S =


 e2t

e2t

e2t

 ,

 −e−t0
e−t

 ,

 0
e−t

−e−t


is a fundamental solution set for the system

(3) x′(t) =

 0 1 1
1 0 1
1 1 0

x(t)

on the interval (−∞,∞) and find a fundamental matrix and a general solution for (3).

Solution. Substituting the vectors from S into (3), we obtain 0 1 1
1 0 1
1 1 0

 e2t

e2t

e2t

 =

 2e2t

2e2t

2e2t

 = x′(t),

 0 1 1
1 0 1
1 1 0

 −e−t0
e−t

 =

 e−t

0
−e−t

 = x′(t),

 0 1 1
1 0 1
1 1 0

 0
e−t

−e−t

 =

 0
−e−t
e−t

 = x′(t).

Thus, each vector is a solution. S will be a fundamental solution set if the vectors are
linearly independent, or equivalently, if their Wronskian is never zero:

W (t) =

∣∣∣∣∣∣
e2t −e−t 0
e2t 0 e−t

e2t e−t −e−t

∣∣∣∣∣∣ = e2t
∣∣∣∣ 0 e−t

e−t −e−t
∣∣∣∣+ e−t

∣∣∣∣e2t e−t

e2t −e−t
∣∣∣∣ = −3.

The fundamental matrix is the one we used to compute the Wronskian; that is,

X(t) =

 e2t −e−t 0
e2t 0 e−t

e2t e−t −e−t

 .
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Finally, a general solution to (3) is

x(t) = c1

 e2t

e2t

e2t

+ c2

 −e−t0
e−t

+ c3

 0
e−t

−e−t

 . ♦

Remark. Instead of showing that each column x in S satisfies x′ = Ax, it is equivalent to
show that the fundamental matrix X satisfies X′ = AX.

We also maintain the superposition principle from linear DE’s. If x1 and x2 are solutions
to the nonhomogeneous systems with nonhomogeneities g1 and g2, respectively, then
c1x1 + c2x2 is a solution to the system with nonhomogeneity c1g1 + c2g2. This allows us
to write general solutions for nonhomogeneous systems.

Theorem 2. Let xp be a particular solution to the nonhomogeneous system

(4) x′(t) = A(t)x(t) + f(t)

on the interval I, and let {x1, . . . ,xn} be a fundamental solution set on I for the cor-
responding homogeneous system x′(t) = A(t)x(t). Then a general solution to (4) on I
is

x(t) = xp(t) + c1x1(t) + · · ·+ cnxn(t)

where c1, . . . , cn are constants.

In later sections, we shall explore how to find fundamental solution sets for homogeneous
systems and particular solutions for nonhomogeneous systems.

Homework: pp. 523-524 #1-25 odd.


