Section 9.4: Linear Systems in Normal Form

We will now introduce some terminology and notation for systems which parallel the
definitions for individual DE’s from earlier chapters. A linear system of n DE’s is in
normal form if it can be written as

(1) X'(t) = A(t)x(t) + £(2),
(1) fi(?)

where x(t) = : () = : , and A is an n x n matrix. If f(¢) = 0, the
Tn(t) fn(t)

system is called homogeneous; otherwise, it is called nonhomogeneous. If the elements
of the coefficient matrix A are all constants, the system has constant coefficients. Recall
from Section 9.1 that we can rewrite an n-th order linear DE

y (1) + Paoa (B)y ") + -+ po(y(t) = g(t)

0
in the form of equation (1) where f(t) = 0 and
9(t)
0 1 0 0 0
0 0 1 0 0
A(t) = ; ; : : :
0 0 0 oo 0 1
—po(t) —pi(t) —pa(t) -+ —pu2(t) —pu-a(t)

As one might hope, the theory for systems in normal form is very similar to the theory of
linear DE’s in Chapters 4 and 6. As before, the notion of linear independence is important
for writing general solutions.

Definition. The vector functions xi,...,X,, are said to be linearly dependent on an
interval [ if there exist constants ¢y, ..., ¢, not all zero such that

axy(t) + -+ X (t) =0
for all t € I. Otherwise, they are said to be linearly independent on I.

e 3et
Example 1. Show that the functions x;(¢t) = | 0 | ,xa(t) = 0 |, and x3(t) =
e 3et
t
1 | are linearly dependent on (—oo, 00).
0

Solution. Since x5(t) is a scalar multiple of x;(¢), we see that

3x1(t) — x2(t) + 0-x3(t) =0
1



2
for all t. Therefore, X, X5, x5 are linearly dependent. O
To prove linear independence, the technique is to assume some linear combination

equals 0, and deduce that every coefficient must be zero, as illustrated in the following
example.

2t 21
e e
Example 2. Show that the functions x;(t) = | 0 | ,xo(t) = | €* |, and x3(¢) =
o2t 2
ot
2¢' | are linearly independent on (—o0, c0).
t
e

Solution. Assume there are constants ¢y, ¢o, ¢ such that c1x;(t) + coXa(t) + c3x3(t) =0
for every t. Substituting ¢ = 0, we obtain the system of linear equations

ci1+C+c3 = 0,

Cy + 203 = 07
il —C+cC3 = 0,
which has solution ¢; = ¢g = ¢3 = 0. Thus, x1, X9, X3 are linearly independent. O

We can define a determinant which is related to the scalar case, which can be useful
for determining linear independence.

Definition. The Wronskian of n vector functions x;(t) = col(z11,...,Zn1),...,X,(t) =
col(z1p, ..., %pny) is the real-valued function
z11(t) wi2(t) - w1a(t)
Wha, .. ) = [0 @l o)
Can(t) Ton(t) o Tan(t)
Similarly to previous discussions, a set of vector solutions x1,Xs,...,X, to a homoge-

neous system x’ = Ax are linearly independent on [ if and only if their Wronskian is
nonzero for at least one point in I. The general solution for a homogeneous system is
described in the following theorem.

Theorem 1. Let xq,...,x, be linearly independent solutions to the homogeneous system
(2) x'(t) = A(t)x(t)

on the interval I, where A(t) is an n X n matriz function continuous on I. Then a general
solution to (2) on I is
x(t) = ax1(t) + -+ - + cnXn(t),

for constants cq, ..., c,.
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The set of linearly independent solutions {xy,...,x,} is called a fundamental solu-
tion set for (2); if we let each of these vectors form the column of a matrix, we obtain
the fundamental matrix

[ 211(t) w12(t) -0 21p(0)
X(t) To1(t) wa2(t) - w2.()
L wn,l(t) xn,Q(t) T xn,n(t)
Example 3. Verify that the set
[ o2t —et 0
S — 62t ) 0 b eit
] o2t ot et

is a fundamental solution set for the system
0
(3) X(t)=|1
1

on the interval (—oo, 00) and find a fundamental matrix and a general solution for (3).

Solution. Substituting the vectors from S into (3), we obtain

01 1] [e*] [ 2e2t
101 e | = | 2% | =X(b),
110 | et | I 2e?t
[0 1 1] [ —et] [ et ]
10 1 0 - 0 | =x(),
110 | et | I —et |
01 11 0o ] 0
101 et = | —et | =xX(1)
110 | —et | I et |

Thus, each vector is a solution. S will be a fundamental solution set if the vectors are
linearly independent, or equivalently, if their Wronskian is never zero:
ot

e 0 o2t

e2t ot

0 et

et —et

+et

The fundamental matrix is the one we used to compute the Wronskian; that is,

et —et

Xty=1]e*t 0 et
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Finally, a general solution to (3) is

e?t —et 0
X(t) =C €2t + Co 0 + c3 €7t . <>
2t —t —t
€ (& —€

Remark. Instead of showing that each column x in S satisfies x’ = Ax, it is equivalent to
show that the fundamental matrix X satisfies X’ = AX.

We also maintain the superposition principle from linear DE’s. If x; and x5, are solutions
to the nonhomogeneous systems with nonhomogeneities g; and gs, respectively, then
c1X1 + coXs is a solution to the system with nonhomogeneity c;g; + cogs. This allows us
to write general solutions for nonhomogeneous systems.

Theorem 2. Let x,, be a particular solution to the nonhomogeneous system
(4) X'(t) = A(t)x(t) + £(t)
on the interval I, and let {x1,...,x,} be a fundamental solution set on I for the cor-

responding homogeneous system x'(t) = A(t)x(t). Then a general solution to (4) on I
18

x(t) = xp(t) + e1x1(t) + - - - + Xy (1)
where ¢y, ..., c, are constants.

In later sections, we shall explore how to find fundamental solution sets for homogeneous
systems and particular solutions for nonhomogeneous systems.

Homework: pp. 523-524 #1-25 odd.



