
Section 9.5: Homogeneous Linear Systems with Constant Coefficients

Eigenvalues and Eigenvectors

We now show how to obtain a general solution for the homogeneous system

(1) x′(t) = Ax(t)

where A is a constant n× n matrix. Recall from the previous section that this amounts
to finding n linearly independent solutions to (1). In Chapter 4, we used the fact that
homogeneous linear equations with constant coefficients had solutions of the form ert;
extending this idea, we guess that the system (1) will have solutions of the form x(t) = uert

for some constant r and constant vector u. Indeed, substituting this vector into (1) gives

rertu = Aertu = ertAu.

Rearranging terms after canceling the exponential yields

(2) (A− rI)u = 0,

where I denotes the identity matrix.
Therefore, x(t) = ertu is a solution to (1) if and only if r and u satisfy equation

(2). This equation is trivially satisfied when u = 0, but this is not part of any linearly
independent set (why?), so we require also that u 6= 0. There is a special name for such
r and u.

Definition. Let A be an n× n constant matrix. The eigenvalues of A are those (real or
complex) numbers r for which (A− rI)u = 0 has at least one nontrivial solution u. The
corresponding nontrivial solutions u are called the eigenvectors of A associated with r.

A basic fact of linear algebra (mentioned in Section 9.3) is that (2) will have a nontrivial
solution if and only if the determinant |A− rI| = 0. Since the determinant of this matrix
is a polynomial in r of degree n, call it p(r), to find the eigenvalues of a matrix A we must
find the zeros of the characteristic polynomial p(r). This is similar to the auxiliary
equation for scalar DE’s.

Example 1. Find the eigenvalues and eigenvectors of the matrix A =

[
2 −3
1 −2

]
.

Solution. We find the characteristic polynomial for A:

|A− rI| =
∣∣∣∣ 2− r −3

1 −2− r

∣∣∣∣ = (2− r)(−2− r) + 3 = r2 − 1 = 0.

Therefore, the eigenvalues of A are r1 = 1, r2 = −1. For the eigenvectors corresponding
to r1 = 1, we solve the equation (A− I)u = 0:[

1 −3
1 −3

] [
u1

u2

]
=

[
0
0

]
.

This is the equation u1 = 3u2, so if we set u2 = s, then u1 = s

[
3
1

]
.
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For r2 = −1, we solve (A + I)u = 0:[
3 −3
1 −1

] [
u1

u2

]
=

[
0
0

]
.

This is the equation u1 = u2, so if we set u2 = s, then u2 = s

[
1
1

]
. ♦

Remark. The set of eigenvectors for r1 forms a subspace of R2 when the zero vector is
adjoined (and likewise for the set of eigenvectors for r2). These subspaces are called
eigenspaces.

Example 2. Find the eigenvalues and eigenvectors of the matrix A =

 1 2 −1
1 0 1
4 −4 5

.

Solution. We find the characteristic polynomial:

|A− rI| =

∣∣∣∣∣∣
1− r 2 −1

1 −r 1
4 −4 5− r

∣∣∣∣∣∣ = (r − 1)(r − 2)(r − 3) = 0.

Therefore, the eigenvalues of A are r1 = 1, r2 = 2, r3 = 3. To find eigenvectors for r1 = 1,
solve (A− I)u = 0:  0 2 −1

1 −1 1
4 −4 4

 u1

u2

u3

 =

 0
0
0

 .

Since the third row is a multiple of the second row, this is equivalent to the system

u1 − u2 + u3 = 0,

2u2 − u3 = 0.

If we assign an arbitrary value s to u2, solving the second equation gives u3 = 2s, and
substituting these into the first equation gives u1 = −s. Therefore, the eigenvectors for

r1 are u1 = s

 −1
1
2

.

For r2 = 2, we solve  −1 2 −1
1 −2 1
4 −4 3

 u1

u2

u3

 =

 0
0
0

 .

Now the first and second equations are multiples, so an equivalent system is

u1 − 2u2 + u3 = 0,

4u1 − 4u2 + 3u3 = 0.

Again letting u2 = s gives u3 = 4s, u1 = −2s, so the eigenvectors for r2 are u2 = s

 −2
1
4

.
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Finally, for r3 = 3 we solve −2 2 −1
1 −3 1
4 −4 2

 u1

u2

u3

 =

 0
0
0

 .

The first and third equations are multiples, so an equivalent system is

u1 − 3u2 + u3 = 0,

2u1 − 2u2 + u3 = 0.

Letting u2 = s gives u3 = 4s, u1 = −s, so the eigenvectors for r3 are u3 = s

 −1
1
4

. ♦

The Case of n Linearly Independent Eigenvectors

How does this calculation help us with the general solution to our DE? If our matrix
has n linearly independent eigenvectors, then we will have enough solutions to write the
general solution, as stated in the following theorem.

Theorem 1. Suppose the n×n constant matrix A has n linearly independent eigenvectors
u1,u2, . . . ,un. Let ri be the eigenvalue corresponding to ui. Then {er1tu1, e

r2tu2, . . . , e
rntun}

is a fundamental solution set on (−∞,∞) for the homogeneous system x′ = Ax, which
has general solution

(3) x(t) = c1e
r1tu1 + c2e

r2tu2 + · · ·+ cne
rntun,

where c1, . . . , cn are arbitrary constants.

Example 3. Find a general solution of x′(t) = Ax(t), where A =

[
2 −3
1 −2

]
.

Solution. In Example 1, we found that this matrix has eigenvalues r1 = 1, r2 = −1 with

eigenvectors u1 =

[
3
1

]
,u2 =

[
1
1

]
where we have taken s = 1. Since u1 and u2 are

linearly independent, a general solution is

x(t) = c1e
t

[
3
1

]
+ c2e

−t
[

1
1

]
. ♦

The next theorem is very useful for confirming linear independence of eigenvectors.

Theorem 2. If r1, . . . , rm are distinct eigenvalues for the matrix A and ui is an eigen-
vector associated with ri, then u1, . . . ,um are linearly independent.

Proof. We only prove the case m = 2; the more general result follows by induction.
Suppose by way of contradiction that u1 and u2 are linearly dependent; that is, for some
constant c we have

(4) u1 = cu2.
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Multiplying (4) through by A, we have

(5) Au1 = cAu2 ⇒ r1u1 = cr2u2.

Multiplying (4) by r2 and subtracting this from (5) gives

(r1 − r2)u1 = 0.

Since u1 6= 0, this implies r1 = r2, but this contradicts the assumption that the eigenvalues
were distinct. �

This means that if all our eigenvectors come from distinct eigenvalues, linear indepen-
dence is guaranteed, and we automatically have a fundamental solution set.

Corollary 3. If the n×n constant matrix A has n distinct eigenvalues r1, . . . , rn and ui

is the eigenvector associated with ri, then {er1tu1, . . . , e
rntun} is a fundamental solution

set for the homogeneous system x′ = Ax.

Example 4. Solve the IVP x′(t) =

 1 2 −1
1 0 1
4 −4 5

x(t), x(0) =

 −1
0
0

 .

Solution. In Example 2, we showed that the coefficient matrix had three distinct eigen-

values r1 = 1, r2 = 2, r3 = 3 with corresponding eigenvectors u1 =

 −1
1
2

 ,u2 = −2
1
4

 ,u3 =

 −1
1
4

 (by taking s = 1). Since the eigenvalues are distinct, the lin-

ear independence of the eigenvectors is assured, so a general solution is

x(t) = c1e
t

 −1
1
2

+ c2e
2t

 −2
1
4

+ c3e
3t

 −1
1
4


=

 −et −2e2t −e3t
et e2t e3t

2et 4e2t 4e3t

 c1
c2
c3

 .

To satisfy the initial condition, substitute t = 0 to get −1 −2 −1
1 1 1
2 4 4

 c1
c2
c3

 =

 −1
0
0

 ,

which implies c1 = 0, c2 = 1, c3 = −1. Therefore, the solution is

x(t) = e2t

 −2
1
4

− e3t

 −1
1
4

 . ♦
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Definition. A real symmetric matrix A is a matrix with real entries that satisfies AT =
A.

Recall that taking the transpose of a matrix simply interchanges its rows and columns;
therefore, the entries of a symmetric matrix are symmetric about its main diagonal (hence
the name). We mention this definition because it turns out that if A is an n × n real
symmetric matrix, then there always exist n linearly independent eigenvectors, even if
they do not all come from distinct eigenvalues.

Example 5. Find a general solution of x′(t) = Ax(t), where A =

 1 −2 2
−2 1 2

2 2 1

.

Solution. Since A is symmetric, we are guaranteed to have three linearly independent
eigenvectors. We find the characteristic polynomial:

|A− rI| =

∣∣∣∣∣∣
1− r −2 2
−2 1− r 2
2 2 1− r

∣∣∣∣∣∣ = −(r − 3)2(r + 3) = 0.

Therefore, the eigenvalues are r1 = 3, r2 = −3. Since r1 has multiplicity two as a root of
the characteristic polynomial, we must find two linearly independent eigenvectors associ-
ated with r1 = 3. We solve −2 −2 2

−2 −2 2
2 2 −2

 u1

u2

u3

 =

 0
0
0

 ,

which is equivalent to the single equation u1 = u3 − u2. Assigning arbitrary values to
both u2 and u3, say u2 = v, u3 = s, then u1 = s− v and the eigenvector is

u =

 s− v
v
s

 = s

 1
0
1

+ v

 −1
1
0

 .

By taking (s, v) = (1, 0) and (s, v) = (0, 1) we get two linearly independent eigenvectors

u1 =

 1
0
1

 and u2 =

 −1
1
0

.

For r2 = −3, we solve  4 −2 2
−2 4 2

2 2 4

 u1

u2

u3

 =

 0
0
0

 .
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Letting u3 take the value 1, we get the eigenvector u3 =

 −1
−1

1

. Then a general solution

is given by

x(t) = c1e
3t

 1
0
1

+ c2e
3t

 −1
1
0

+ c3e
−3t

 −1
−1

1

 . ♦

Note that if a matrix A is not symmetric, it is possible for A to have a repeated
eigenvalue which does not generate multiple linearly independent eigenvectors (consider

for example A =

[
1 −1
4 −3

]
); we defer the theory for finding a general solution in this

case to Section 9.8.

Remark. If an n× n matrix A has n linearly independent eigenvectors, we say that A is
diagonalizable; this is because it can be written as A = UDU−1 where U is the matrix
whose columns are the eigenvectors of A and D is a diagonal matrix whose diagonal
entries are the eigenvalues of A.

Homework: pp. 534-535 #1-7 odd, 11-15 odd, 19-23 odd, 31, 33.


