Section 9.5: Homogeneous Linear Systems with Constant Coefficients

Eigenvalues and Eigenvectors

We now show how to obtain a general solution for the homogeneous system
\[
\mathbf{x}'(t) = A\mathbf{x}(t)
\]
where \(A \) is a constant \(n \times n \) matrix. Recall from the previous section that this amounts to finding \(n \) linearly independent solutions to (1). In Chapter 4, we used the fact that homogeneous linear equations with constant coefficients had solutions of the form \(e^{rt} \); extending this idea, we guess that the system (1) will have solutions of the form \(\mathbf{x}(t) = \mathbf{u}e^{rt} \) for some constant \(r \) and constant vector \(\mathbf{u} \). Indeed, substituting this vector into (1) gives
\[
re^{rt}\mathbf{u} = A e^{rt}\mathbf{u} = e^{rt}A\mathbf{u}.
\]
Rearranging terms after canceling the exponential yields
\[
(A - rI)\mathbf{u} = 0,
\]
where \(I \) denotes the identity matrix.

Therefore, \(\mathbf{x}(t) = e^{rt}\mathbf{u} \) is a solution to (1) if and only if \(r \) and \(\mathbf{u} \) satisfy equation (2). This equation is trivially satisfied when \(\mathbf{u} = 0 \), but this is not part of any linearly independent set (why?), so we require also that \(\mathbf{u} \neq 0 \). There is a special name for such \(r \) and \(\mathbf{u} \).

Definition. Let \(A \) be an \(n \times n \) constant matrix. The **eigenvalues** of \(A \) are those (real or complex) numbers \(r \) for which \((A - rI)\mathbf{u} = 0 \) has at least one nontrivial solution \(\mathbf{u} \). The corresponding nontrivial solutions \(\mathbf{u} \) are called the **eigenvectors** of \(A \) associated with \(r \).

A basic fact of linear algebra (mentioned in Section 9.3) is that (2) will have a nontrivial solution if and only if the determinant \(|A - rI| = 0 \). Since the determinant of this matrix is a polynomial in \(r \) of degree \(n \), call it \(p(r) \), to find the eigenvalues of a matrix \(A \) we must find the zeros of the **characteristic polynomial** \(p(r) \). This is similar to the auxiliary equation for scalar DE’s.

Example 1. Find the eigenvalues and eigenvectors of the matrix \(A = \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix} \).

Solution. We find the characteristic polynomial for \(A \):
\[
|A - rI| = \begin{vmatrix} 2 - r & -3 \\ 1 & -2 - r \end{vmatrix} = (2 - r)(-2 - r) + 3 = r^2 - 1 = 0.
\]
Therefore, the eigenvalues of \(A \) are \(r_1 = 1, r_2 = -1 \). For the eigenvectors corresponding to \(r_1 = 1 \), we solve the equation \((A - I)\mathbf{u} = 0 \):
\[
\begin{bmatrix} 1 & -3 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
\]
This is the equation \(u_1 = 3u_2 \), so if we set \(u_2 = s \), then \(\mathbf{u}_1 = s \begin{bmatrix} 3 \\ 1 \end{bmatrix} \).
For $r_2 = -1$, we solve $(A + I)u = 0$:

$$
\begin{bmatrix}
3 & -3 \\
1 & -1
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix} =
\begin{bmatrix}
0 \\
0
\end{bmatrix}.
$$

This is the equation $u_1 = u_2$, so if we set $u_2 = s$, then $u_2 = s \begin{bmatrix}1 \\ 1 \end{bmatrix}$.

Remark. The set of eigenvectors for r_1 forms a subspace of \mathbb{R}^2 when the zero vector is adjoined (and likewise for the set of eigenvectors for r_2). These subspaces are called eigenspaces.

Example 2. Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix}1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$.

Solution. We find the characteristic polynomial:

$$
|A - rI| = \begin{vmatrix}
1 - r & 2 & -1 \\
1 & -r & 1 \\
4 & -4 & 5 - r
\end{vmatrix} = (r - 1)(r - 2)(r - 3) = 0.
$$

Therefore, the eigenvalues of A are $r_1 = 1$, $r_2 = 2$, $r_3 = 3$. To find eigenvectors for $r_1 = 1$, solve $(A - I)u = 0$:

$$
\begin{bmatrix}
0 & 2 & -1 \\
1 & -1 & 1 \\
4 & -4 & 4
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}.
$$

Since the third row is a multiple of the second row, this is equivalent to the system

$$
u_1 - u_2 + u_3 = 0, $$
$$2u_2 - u_3 = 0.
$$

If we assign an arbitrary value s to u_2, solving the second equation gives $u_3 = 2s$, and substituting these into the first equation gives $u_1 = -s$. Therefore, the eigenvectors for r_1 are $u_1 = s \begin{bmatrix}-1 \\ 1 \\ 2 \end{bmatrix}$.

For $r_2 = 2$, we solve

$$
\begin{bmatrix}
-1 & 2 & -1 \\
1 & -2 & 1 \\
4 & -4 & 3
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}.
$$

Now the first and second equations are multiples, so an equivalent system is

$$
u_1 - 2u_2 + u_3 = 0, $$
$$4u_1 - 4u_2 + 3u_3 = 0.
$$

Again letting $u_2 = s$ gives $u_3 = 4s$, $u_1 = -2s$, so the eigenvectors for r_2 are $u_2 = s \begin{bmatrix}-2 \\ 1 \\ 4 \end{bmatrix}$.

Finally, for $r_3 = 3$ we solve
\[
\begin{bmatrix}
-2 & 2 & -1 \\
1 & -3 & 1 \\
4 & -4 & 2 \\
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
\end{bmatrix}.
\]
The first and third equations are multiples, so an equivalent system is
\[
u_1 - 3u_2 + u_3 = 0, \\
2u_1 - 2u_2 + u_3 = 0.
\]
Letting $u_2 = s$ gives $u_3 = 4s, u_1 = -s$, so the eigenvectors for r_3 are $u_3 = s \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix}$. ♦

The Case of n Linearly Independent Eigenvectors

How does this calculation help us with the general solution to our DE? If our matrix has n linearly independent eigenvectors, then we will have enough solutions to write the general solution, as stated in the following theorem.

Theorem 1. Suppose the $n \times n$ constant matrix A has n linearly independent eigenvectors u_1, u_2, \ldots, u_n. Let r_i be the eigenvalue corresponding to u_i. Then $\{e^{r_1t}u_1, e^{r_2t}u_2, \ldots, e^{r_nt}u_n\}$ is a fundamental solution set on $(-\infty, \infty)$ for the homogeneous system $x' = Ax$, which has general solution
\[
x(t) = c_1e^{r_1t}u_1 + c_2e^{r_2t}u_2 + \cdots + c_ne^{r_nt}u_n,
\]
where c_1, \ldots, c_n are arbitrary constants.

Example 3. Find a general solution of $x'(t) = Ax(t)$, where $A = \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix}$.

Solution. In Example 1, we found that this matrix has eigenvalues $r_1 = 1, r_2 = -1$ with eigenvectors $u_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, u_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ where we have taken $s = 1$. Since u_1 and u_2 are linearly independent, a general solution is
\[
x(t) = c_1e^t \begin{bmatrix} 3 \\ 1 \end{bmatrix} + c_2e^{-t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}.
\]

The next theorem is very useful for confirming linear independence of eigenvectors.

Theorem 2. If r_1, \ldots, r_m are distinct eigenvalues for the matrix A and u_i is an eigenvector associated with r_i, then u_1, \ldots, u_m are linearly independent.

Proof. We only prove the case $m = 2$; the more general result follows by induction. Suppose by way of contradiction that u_1 and u_2 are linearly dependent; that is, for some constant c we have
\[
u_1 = cu_2.
\]
Multiplying (4) through by A, we have
\[Au_1 = cAu_2 \Rightarrow r_1 u_1 = cr_2 u_2. \]

Multiplying (4) by r_2 and subtracting this from (5) gives
\[(r_1 - r_2)u_1 = 0. \]

Since $u_1 \neq 0$, this implies $r_1 = r_2$, but this contradicts the assumption that the eigenvalues were distinct. \qed

This means that if all our eigenvectors come from distinct eigenvalues, linear independence is guaranteed, and we automatically have a fundamental solution set.

Corollary 3. If the $n \times n$ constant matrix A has n distinct eigenvalues r_1, \ldots, r_n and u_i is the eigenvector associated with r_i, then $\{e^{r_1 t}u_1, \ldots, e^{r_n t}u_n\}$ is a fundamental solution set for the homogeneous system $x' = Ax$.

Example 4. Solve the IVP $x'(t) = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{pmatrix} x(t)$, $x(0) = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$.

Solution. In Example 2, we showed that the coefficient matrix had three distinct eigenvalues $r_1 = 1, r_2 = 2, r_3 = 3$ with corresponding eigenvectors $u_1 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, u_2 = \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix}, u_3 = \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix}$ (by taking $s = 1$). Since the eigenvalues are distinct, the linear independence of the eigenvectors is assured, so a general solution is
\[
\begin{align*}
x(t) &= c_1 e^t \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} + c_3 e^{3t} \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix} \\
&= e^t \begin{pmatrix} -1 & -2 & -1 \\ 1 & 1 & 1 \\ 2 & 4 & 4 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}.
\end{align*}
\]

To satisfy the initial condition, substitute $t = 0$ to get
\[
\begin{pmatrix} -1 & -2 & -1 \\ 1 & 1 & 1 \\ 2 & 4 & 4 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix},
\]
which implies $c_1 = 0, c_2 = 1, c_3 = -1$. Therefore, the solution is
\[
x(t) = e^{2t} \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} - e^{3t} \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix}. \quad \diamondsuit
\]
Definition. A real symmetric matrix A is a matrix with real entries that satisfies $A^T = A$.

Recall that taking the transpose of a matrix simply interchanges its rows and columns; therefore, the entries of a symmetric matrix are symmetric about its main diagonal (hence the name). We mention this definition because it turns out that if A is an $n \times n$ real symmetric matrix, then there **always** exist n linearly independent eigenvectors, even if they do not all come from distinct eigenvalues.

Example 5. Find a general solution of $x'(t) = Ax(t)$, where $A = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$.

Solution. Since A is symmetric, we are guaranteed to have three linearly independent eigenvectors. We find the characteristic polynomial:

$$|A - rI| = \begin{vmatrix} 1 - r & -2 & 2 \\ -2 & 1 - r & 2 \\ 2 & 2 & 1 - r \end{vmatrix} = -(r - 3)^2(r + 3) = 0.$$

Therefore, the eigenvalues are $r_1 = 3, r_2 = -3$. Since r_1 has multiplicity two as a root of the characteristic polynomial, we must find two linearly independent eigenvectors associated with $r_1 = 3$. We solve

$$\begin{bmatrix} -2 & -2 & 2 \\ -2 & -2 & 2 \\ 2 & 2 & -2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

which is equivalent to the single equation $u_1 = u_3 - u_2$. Assigning arbitrary values to both u_2 and u_3, say $u_2 = v, u_3 = s$, then $u_1 = s - v$ and the eigenvector is

$$u = \begin{bmatrix} s - v \\ v \\ s \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + v \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}.$$

By taking $(s, v) = (1, 0)$ and $(s, v) = (0, 1)$ we get two linearly independent eigenvectors $u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $u_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$.

For $r_2 = -3$, we solve

$$\begin{bmatrix} 4 & -2 & 2 \\ -2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$
Letting u_3 take the value 1, we get the eigenvector $u_3 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$. Then a general solution is given by

$$x(t) = c_1e^{3t} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + c_2e^{3t} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + c_3e^{-3t} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}.$$

Note that if a matrix A is not symmetric, it is possible for A to have a repeated eigenvalue which does not generate multiple linearly independent eigenvectors (consider for example $A = \begin{bmatrix} 1 & -1 \\ 4 & -3 \end{bmatrix}$); we defer the theory for finding a general solution in this case to Section 9.8.

Remark. If an $n \times n$ matrix A has n linearly independent eigenvectors, we say that A is **diagonalizable**; this is because it can be written as $A = UDU^{-1}$ where U is the matrix whose columns are the eigenvectors of A and D is a diagonal matrix whose diagonal entries are the eigenvalues of A.