Section 9.5: Homogeneous Linear Systems with Constant Coeflicients

Eigenvalues and Eigenvectors

We now show how to obtain a general solution for the homogeneous system
1) x/(t) = Ax(t)

where A is a constant n x n matrix. Recall from the previous section that this amounts
to finding n linearly independent solutions to (1). In Chapter 4, we used the fact that
homogeneous linear equations with constant coefficients had solutions of the form e;
extending this idea, we guess that the system (1) will have solutions of the form x(¢) = ue"
for some constant r and constant vector u. Indeed, substituting this vector into (1) gives

re"'u = Ae"'u = ¢ Au.

Rearranging terms after canceling the exponential yields

(2) (A —rIHu=0,
where I denotes the identity matrix.
Therefore, x(t) = e™u is a solution to (1) if and only if r and u satisfy equation

(2). This equation is trivially satisfied when u = 0, but this is not part of any linearly
independent set (why?), so we require also that u # 0. There is a special name for such
r and u.

Definition. Let A be an n X n constant matrix. The eigenvalues of A are those (real or
complex) numbers r for which (A — rI)u = 0 has at least one nontrivial solution u. The
corresponding nontrivial solutions u are called the eigenvectors of A associated with r.

A basic fact of linear algebra (mentioned in Section 9.3) is that (2) will have a nontrivial
solution if and only if the determinant |A —rI| = 0. Since the determinant of this matrix
is a polynomial in r of degree n, call it p(r), to find the eigenvalues of a matrix A we must
find the zeros of the characteristic polynomial p(r). This is similar to the auxiliary
equation for scalar DE’s.

Example 1. Find the eigenvalues and eigenvectors of the matrix A = [ ? :g } :

Solution. We find the characteristic polynomial for A:

2—r =3
1 —2—r

Therefore, the eigenvalues of A are r; = 1,79 = —1. For the eigenvectors corresponding
to r; = 1, we solve the equation (A —I)u = 0:

L]l

This is the equation u; = 3us, so if we set us = s, then u; = s [

A — 71| = =2-7r)(-2-1)+3=r"-1=0.
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For ry = —1, we solve (A + I)u = 0:
3 =3 up | |0
1 -1 U9 o 0"
This is the equation u; = us, so if we set us = s, then uy = s { i ] ) O

Remark. The set of eigenvectors for r; forms a subspace of R? when the zero vector is

adjoined (and likewise for the set of eigenvectors for ry). These subspaces are called
eigenspaces.
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Example 2. Find the eigenvalues and eigenvectors of the matrix A= | 1 0 1
4

Solution. We find the characteristic polynomial:
1—r 2 -1
|A —7rI| = I —r 1 |=@r-1)r—-2)(r—3)=0.
4 —4 5—r
Therefore, the eigenvalues of A are ry = 1,75 = 2,73 = 3. To find eigenvectors for r, = 1,
solve (A —I)u = 0:

0 2 -1 U1 0
1 -1 1 ups | =10
4 —4 4 U3 0
Since the third row is a multiple of the second row, this is equivalent to the system
up —ug +uz = 0,
2UQ — Uz = 0.
If we assign an arbitrary value s to us, solving the second equation gives uz = 2s, and
substituting these into the first equation gives u; = —s. Therefore, the eigenvectors for
-1
ryare u; = S 1
2
For ro = 2, we solve
-1 2 -1 Uy 0
1 =2 1 uy | =10
4 —4 3 Us 0

Now the first and second equations are multiples, so an equivalent system is
Uy — 2UQ + us = O,
4U1 — 4U2 + 3U3 = 0.

Again letting us = s gives uz = 4s,u; = —2s, so the eigenvectors for ry are us = s 1



Finally, for r3 = 3 we solve

-2 2 -1 Uuq 0
1 -3 1 uy | =10
4 -4 2 U3 0

The first and third equations are multiples, so an equivalent system is
uy — 3UQ +us = 0,
2u1 — 2u2 +us = 0.

Letting uy = s gives ug = 4s,u; = —s, so the eigenvectors for r3 are ug = s 11. ¢

The Case of n Linearly Independent Eigenvectors

How does this calculation help us with the general solution to our DE? If our matrix
has n linearly independent eigenvectors, then we will have enough solutions to write the
general solution, as stated in the following theorem.

Theorem 1. Suppose the nxn constant matriz A hasn linearly independent eigenvectors
Uy, Uy, ..., u,. Letr; be the eigenvalue corresponding to w;. Then {e"*uy, e"'uy, ..., e'u, }
is a fundamental solution set on (—oo,00) for the homogeneous system x' = Ax, which
has general solution

(3) X(If) = Clerltul —+ C2eT2tu2 et cne“tun,

where ¢, ..., c, are arbitrary constants.

Example 3. Find a general solution of x'(¢) = Ax(t), where A = [ 2 =3 } .

1 =2

Solution. In Example 1, we found that this matrix has eigenvalues ry = 1,79 = —1 with
eigenvectors u; = i1’> , Uy = [ } ] where we have taken s = 1. Since u; and uy are
linearly independent, a general solution is

X(t)2016t|::j:|+026_t|:1:|. O

The next theorem is very useful for confirming linear independence of eigenvectors.

Theorem 2. Ifry,...,r, are distinct eigenvalues for the matriz A and w; is an eigen-
vector associated with r;, then uy, ..., u,, are linearly independent.
Proof. We only prove the case m = 2; the more general result follows by induction.

Suppose by way of contradiction that u; and uy are linearly dependent; that is, for some
constant ¢ we have

(4) u; = Cuy.
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Multiplying (4) through by A, we have

(5) Au; = cAuy, = rju; = craus.

Multiplying (4) by 72 and subtracting this from (5) gives
(ri —ry)u; = 0.

Since u; # 0, this implies r; = 79, but this contradicts the assumption that the eigenvalues
were distinct. O

This means that if all our eigenvectors come from distinct eigenvalues, linear indepen-
dence is guaranteed, and we automatically have a fundamental solution set.

Corollary 3. If the n x n constant matriz A has n distinct eigenvalues r1,...,r, and u;
is the eigenvector associated with r;, then {€™uy,... e™,} is a fundamental solution
set for the homogeneous system x' = Ax.
1 2 -1 -1
Example 4. Solve the IVP X'(t) = | 1 0 1 [x(¢), x(0)= 0
4 —4 5 0
Solution. In Example 2, we showed that the coefficient matrix had three distinct eigen-
-1
values 11 = 1,79 = 2,r3 = 3 with corresponding eigenvectors u; = 1|, ,uy =
2
-2 -1
1] ,u3 = 1 | (by taking s = 1). Since the eigenvalues are distinct, the lin-
4 4
ear independence of the eigenvectors is assured, so a general solution is
—1 —2 -1
x(t) = ce 1| + coe* 1| +cze™ 1
2 4 4
et 92t g3t e
_ et o2t 3t Co
et 4e?t 4e¥ 3
To satisfy the initial condition, substitute ¢ = 0 to get
-1 -2 -1 c1 -1
1 1 1 Co = 0 y
2 4 4 3 0
which implies ¢; = 0,¢; = 1,3 = —1. Therefore, the solution is
-2 -1
x(t) = e* 1| —e* 1. O

4 4
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Definition. A real symmetric matrix A is a matrix with real entries that satisfies AT =
A.

Recall that taking the transpose of a matrix simply interchanges its rows and columns;
therefore, the entries of a symmetric matrix are symmetric about its main diagonal (hence
the name). We mention this definition because it turns out that if A is an n x n real
symmetric matrix, then there always exist n linearly independent eigenvectors, even if
they do not all come from distinct eigenvalues.

Example 5. Find a general solution of x'(t) = Ax(t), where A = | —

N N =
N — DN
N DN

Solution. Since A is symmetric, we are guaranteed to have three linearly independent
eigenvectors. We find the characteristic polynomial:

l—r -2 2
A—7rIl=| -2 1-r 2 |=—(r-=3>%*r+3)=0.
2 21—

Therefore, the eigenvalues are r; = 3,79 = —3. Since r; has multiplicity two as a root of
the characteristic polynomial, we must find two linearly independent eigenvectors associ-
ated with 1 = 3. We solve

2 -2 2 Uy 0
2 -2 2 us | =101,
2 2 -2 us 0

which is equivalent to the single equation u; = u3z — us. Assigning arbitrary values to
both us and usg, say us = v,us = s, then u; = s — v and the eigenvector is

S—v 1 -1
u = v = S 0 +'U 1
S 1 0

By taking (s,v) = (1,0) and (s,v) = (0,1) we get two linearly independent eigenvectors

1 —1
u=| 0| and uy = 1
1 0
For ro = —3, we solve
4 -2 2 Uy 0
2 2 4 Us 0



-1
Letting us take the value 1, we get the eigenvector u3 = | —1 |. Then a general solution
1
is given by
1 -1 —1
x(t) =c1e® | 0 | + e 1| +ecge®| -1 1. O
1 0 1

Note that if a matrix A is not symmetric, it is possible for A to have a repeated
eigenvalue which does not generate multiple linearly independent eigenvectors (consider
1 -1
4 -3

for example A = : ]), we defer the theory for finding a general solution in this

case to Section 9.8.

Remark. 1f an n x n matrix A has n linearly independent eigenvectors, we say that A is
diagonalizable; this is because it can be written as A = UDU™! where U is the matrix
whose columns are the eigenvectors of A and D is a diagonal matrix whose diagonal
entries are the eigenvalues of A.

Homework: pp. 534-535 #1-7 odd, 11-15 odd, 19-23 odd, 31, 33.



