Section 9.8: The Matrix Exponential Function

Definition and Properties of Matrix Exponential

In the final section, we introduce a new notation which allows the formulas for solving
normal systems with constant coefficients to be expressed identically to those for solving
first-order equations with constant coefficients. For example, a general solution to z’(t) =
ax(t) where a is a constant is x(t) = ce®. Similarly, a general solution to the normal
system x’'(t) = Ax(t) where A is a constant n x n matrix is x(¢) = ce®’. However, to see
this we will need to define what the exponential notation means for a matrix. To do this,
we generalize the Taylor series expansion of e”.

Definition. If A is a constant n x n matrix, the matrix exponential e® is given by

n
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where the right-hand side indicates the n x n matrix whose elements are power series with
coefficients given by the entries in the matrices.

The exponential is easiest to compute when A is diagonal. For the matrix

-1 0
A= [ 0 2 }, we calculate

AQZH 2},A3:{_(1) 2}7...,1&":[(_1)" 0 }

Then we get

n=0 0 > 2"
n=0

In general, if A is an n xn diagonal matrix with entries r1,rs, ..., 7, on the main diagonal,
then e®? is the diagonal matrix with entries e™, e, ... ¢! on the main diagonal. We
will show later in the section how to calculate the matrix exponential for another class of
matrices.

[t turns out that the series (1) converges for all ¢ and shares many properties with the
scalar exponential e®.

Theorem 1. Let A and B be n X n constant matrices, and r,s,t € R. Then
(1) eA0 =€l =1

(2) 6A(tJrs) — pAtpAs

(3) (6At)—1 — oAt



(4) eATBY = cAteBl jf AB = BA

(5) et = 1.

Matrix Exponential and Fundamental Matrices

Item (3) in Theorem 1 tells us that for any matrix A, eA? has an inverse for all ¢, and
it is found by simply replacing ¢ with —t. Another noteworthy property of the matrix
exponential comes from differentiating the series (1) term by term:
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Therefore, %(eAt) = Ae?t, 50 e?t is a solution to the matrix DE X’ = AX. Moreover,

the fact that e®! is invertible implies that its columns are linearly independent solutions
to the system x’ = Ax. This leads to the following.

Theorem 2. If A is an n xn constant matrix, then the columns of the matrix exponential
et form a fundamental solution set for the system x'(t) = Ax(t). Therefore, eA is a

fundamental matriz for the system, and a general solution is x(t) = ceAt.

If we have already calculated a fundamental matrix for the system, this simplifies greatly
the computation of the matrix exponential.

Theorem 3. Let X(t) and Y(t) be two fundamental matrices for the same system x' =
Ax. Then there exists a constant matriz C such that Y (t) = X(t)C for all t. In partic-
ular,

(2) Al =X ()X (0)7

In the case that A has n linearly independent eigenvectors u;, then Theorem 3 tells us
that

At

e — [eTltul ergtuz L 6T"t

w,|[u; uy -,
But what if the matrix does not have n linearly independent eigenvectors? So far, we
do not have any way of finding a fundamental matrix for such a system. We now try to

remedy this problem.



Nilpotent Matrices and Generalized Eigenvectors

Definition. A matrix A is nilpotent if A* = 0 for some positive integer k.

We introduce this class of matrices because the calculation of their exponential is sim-
plified - it only has a finite number of terms:

k—1 tk_l

0+0+ - =T+ At+-- +AF! .
Fo TOTor + A4+ )

A =T+At+--.+AF!

Additionally, a theorem from linear algebra (Cayley-Hamilton Theorem) tells us that if
A has only one eigenvalue r; (that is, the characteristic polynomial has the form p(r) =
(r —rq)"™), then A — rI is nilpotent and (A — rI)” = 0, allowing us to write

tn—l

At — emIte(A—rlI)t — et T+ (A _ TlI)t N (A _ TlI)n_lm )
n— 1)

Example 1. Find the fundamental matrix eA? for the system x’ = Ax, where

2 1 1
A= 1 2 1
-2 =2 -1

Solution. We find the characteristic polynomial for A:

2—r 1 1
p(r) =|A —rlI| = 1 2-r 1 =—(r —1)°
2 -2 17

Therefore, r = 1 is the only eigenvalue of A, so (A —I)3 =0 and

t
(3) eAl = eleADE — ot {I +(A-D)t+ (A - 1)25} :
We calculate
1 1 1
A-1= 1 1 1| and(A-1)>=0.
-2 =2 =2
Substitution into (3) gives us
et + tet te! tet
A =eT+te'(A 1) = te! el +te te! : O

—2tet  —2tet et — 2te!

We would like to calculate fundamental matrices for any system with a constant coef-
ficient matrix, not just when the matrix is nilpotent. The key to this is to generalize the
concept of an eigenvector.



4
Definition. Let A be a square matrix. If a nonzero vector u satisfies the equation
(4) (A—rI)™u=0

for some scalar r and positive integer m, we call u a generalized eigenvector associated
with r.

Why are generalized eigenvectors useful? For one thing, they allow us to calculate eA*u
with a finite number of terms without having to find eA*:

eAtu — erIte(AfrI)t

u
7Sm—l tm
= ert [Iu + t(A — 7“:[)1,1 R W(A — rI)mflu + %(A — rI)mu —+ ..
tmfl
= ¢t {u +t(A—rHu+---+ m(A — D)™ tu| .

Additionally, by Theorem 2 e®*u is a solution to the system x’ = Ax, so if we can find
n generalized eigenvectors u; for the n x n matrix A which are linearly independent, the
corresponding solutions x;(t) = eA'u; will be a fundamental solution set and thus we’ll

have a fundamental matrix. Then by Theorem 3 we can write the matrix exponential:
(5) A = X(1)X(0)7! = [eMuy eMuy - eMuylfug uy --- w,]Th

It is not hard to see that since any regular eigenvector is also a generalized eigenvector,
if A has a full set of n linearly independent eigenvectors, then the above representation (5)
is exactly the one we get from the methods of previous sections. Returning to our earlier
question, what about when A is defective - when it has fewer than n linearly independent
eigenvectors? The following theorem from linear algebra tells us that the new method
works even in this case.

Theorem 4. (Primary Decomposition Theorem) Let A be a constant n x n matriz with
characteristic polynomaial

) = (=)™ = 7)™ (= )™

where the r;’s are the distinct eigenvalues of A. Then for each i there exist m; linearly
independent generalized eigenvectors satisfying

(A — riI)m"u =0.

Moreover, mi+mao+- - -+my = n and the full collection of these n generalized eigenvectors
18 linearly independent.

We summarize below the procedure for finding a fundamental solution set for the system
x" = Ax for any constant square matrix A.

(1) Calculate the characteristic polynomial p(r) = |A — rI| and express it in the form
p(r) = (r—ry)™(r—re)™ .- (r—rg)™, where r1,rq,...,r; are the distinct zeros.

(2) For each eigenvalue r;, find m; linearly independent generalized eigenvectors by
solving the system (A — r;,I)™u = 0.



(3) Form n linearly independent solutions by finding

2

t
x(t) =€ lu+t(A —rIu+ 5(A —rI)’u+---

for each generalized eigenvector u found in part (2); for the eigenvalue 7;, the
series terminates after at most m; terms.

(4) Assemble the fundamental matrix X (¢) from the n solutions and obtain the expo-
nential eA! using (5).

Example 2. Find the fundamental matrix eA? for the system x’ = Ax, where

100
A=1130
011

Solution. Start by finding the characteristic polynomial:

1—r 0 0
p(r) =|A—rlI| = 1 3—-r 0 =—(r—1)*r —3).
0 1 1—r

So the eigenvalues are r = 1 with multiplicity 2 and r = 3 with multiplicity 1.
For r = 1, we find 2 linearly independent generalized eigenvectors satisfying (A —I)?u = 0:

000 Uy 0
(A-TPu= |2 4 0 up | =10
1 20 U3 0
implies that u; = —2us, so by setting uy = s, u3 = v we obtain the eigenvectors
—2s —2 0
v 0 1

For each of these, we calculate a solution vector:

x,(t) = e'fu + t{A — I)U:1]

[ —2 000 —2

= ¢t 1|+ttt 1 2 0 1

0] |0 10 0

—2 ] [0 ] —2¢t ]

= ¢t 1| +tt| 0| = et

0| 1] tet_
[0 00 0[O 0
Xg(t)zet[UQ—i-t(A—I)UQ]:e 0 —|—t€t 1 20 0 = 0
|1 010 [1 et




For r = 3, we find a generalized eigenvector satisfyin

g
-2 0 0 U1
1 0 0 U9 =
0
2
1

01 -2 us

0 0
x3(t) = e¥'uz = ¥ | 2 23
1 €3t
0 —2 0
Combining these solution vectors gives the fundamental matrix X(¢t) = | 0 €' 2¢%
et tet e3t
We set t = 0 and compute the inverse matrix:
0 -2 0 -3 —3 1
-1 t
X0)=1]0 1 2| and X(0)"" = ~3 0 0
1 01 i 3 0
Finally, by equation (2) we have
0 —2' 0 —% -3 1
e = X(H)X(0)t=1] 0 e 2 - 0 0
el tet et i 30
et 0 0
= —2el + 1 e3 01]. ¢

1t T 1g 1.3t 1t 4 1.3t _t
7€ Qte + z€ 5€ + 3€ e

As a closing remark, we note that use of the matrix exponential as a fundamental matrix
simplifies many computations. For one example, the variation of parameters formula in
Section 9.7 can be rewritten as

t
x(t) = eAli-to)x, —i—/ A9 (5)ds,

to
which more closely resembles the formula for the scalar case.

Homework: p. 557, #1-11 odd, 17-21 odd.



