

- A. Sign your bubble sheet on the back at the bottom in ink.
- **B.** In pencil, write and encode in the spaces indicated:
 - 1) Name (last name, first initial, middle initial)
 - 2) UF ID number
 - 3) Section number
- C. Under "special codes" code in the test ID numbers 1, 1.
 - 23 4 56 78 9 0 23 4 56 7 9 0 8
- **D.** At the top right of your answer sheet, for "Test Form Code", encode A. • B C D E
- E. 1) This test consists of 15 multiple choice questions, worth 5 points each, plus two sheets (three pages) of free response questions worth 35 points. The test is counted out of 110 points, and there are 10 bonus points available.
 - 2) The time allowed is 90 minutes.
 - 3) You may write on the test.
 - 4) Raise your hand if you need more scratch paper or if you have a problem with your test. DO NOT LEAVE YOUR SEAT UNLESS YOU ARE FINISHED WITH THE TEST.

F. KEEP YOUR BUBBLE SHEET COVERED AT ALL TIMES.

- **G.** When you are finished:
 - 1) Before turning in your test **check carefully for transcribing errors**. Any mistakes you leave in are there to stay.
 - 2) You must turn in your scantron and tearoff sheets to your discussion leader or exam proctor. Be prepared to show your picture I.D. with a legible signature.
 - 3) The answers will be posted in Sakai (e-Learning) within one day after the exam. Your instructor will return your tearoff sheet with your exam score in class. Your score will also be posted in e-Learning within one week of the exam.

NOTE: Be sure to bubble the answers to questions 1-15 on your scantron.

Questions 1 - 15 are worth 5 points each.

1. Find the decomposition $\mathbf{u} = \mathbf{u}_{\parallel} + \mathbf{u}_{\perp}$ for the vector $\mathbf{u} = \langle 4, -1, 0 \rangle$ with respect to the vector $\mathbf{v} = \langle 0, 1, 1 \rangle$.

- a. $\mathbf{u}_{\parallel} = \left\langle 0, -\frac{1}{2}, \frac{1}{2} \right\rangle$ b. $\mathbf{u}_{\parallel} = \left\langle 0, \frac{1}{2}, \frac{1}{2} \right\rangle$ c. $\mathbf{u}_{\parallel} = \left\langle 0, -\frac{1}{2}, -\frac{1}{2} \right\rangle$ d. $\mathbf{u}_{\parallel} = \left\langle 0, -\frac{3}{2}, -\frac{3}{2} \right\rangle$ e. $\mathbf{u}_{\parallel} = \left\langle 0, -\frac{1}{2}, -\frac{1}{2} \right\rangle$ $\mathbf{u}_{\perp} = \left\langle 4, -\frac{1}{2}, \frac{1}{2} \right\rangle$ $\mathbf{u}_{\perp} = \left\langle 4, -\frac{1}{2}, \frac{1}{2} \right\rangle$ $\mathbf{u}_{\perp} = \left\langle 4, \frac{1}{2}, \frac{3}{2} \right\rangle$ $\mathbf{u}_{\perp} = \left\langle 4, \frac{1}{2}, \frac{3}{2} \right\rangle$
- 2. Three planar forces act on a particle as depicted below.

The magnitude of the forces \mathbf{F}_1 , \mathbf{F}_2 , and \mathbf{F}_3 are 3, $3\sqrt{2}$, and $6\sqrt{3}$ newtons respectively. What is the net force acting on the particle?

- a. $\langle 12, 6 3\sqrt{3} \rangle$ b. $\langle -6, 3 3\sqrt{3} \rangle$ c. $\langle 6, -3\sqrt{3} \rangle$
- d. $\langle -6, -3\sqrt{3} \rangle$ e. $\langle 12, -3\sqrt{3} \rangle$

3. If **u** and **v** are vectors and θ is the angle between **u** and **v**, which of the following statements are true?

P.
$$\theta = \cos^{-1}\left(\frac{|\mathbf{u} \cdot \mathbf{v}|}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

- Q. If $\mathbf{u} \cdot \mathbf{v} < 0$, then θ is an obtuse angle.
- R. $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = 0$
- S. If $\mathbf{u} = \lambda \mathbf{v}$ for some non zero scalar λ , then $\theta = 0$.
- a. Q onlyb. Q and R onlyc. R onlyd. P and Q onlye. Q, R, and S only

4. The equation of the plane containing the point (2, 0, -1) and the vectors (1, 2, 3) and (4, -1, -2) is given by

a. 7x - 14y + 9z = 5d. -x - 14y + 9z = 7 -x - 14y + 9z = 7b. 7x + 14y + 9z = 5c. -x + 14y - 9z = 7e. x + 14y - 9z = 11

5. The normal vector to the plane 3x - 8y + 5z = 0 is orthogonal to which of the following vectors?

a. $\langle -1, -1, 1 \rangle$ b. $\langle 1, 1, 1 \rangle$ c. $\langle 6, -16, 10 \rangle$ d. $\langle 4, 1, -4 \rangle$

e. None of the above

6. If $\lambda \in \mathbb{R}$ is a scalar, which of the following statements are true?

P. $\|(\mathbf{i} \times \mathbf{j}) \times \mathbf{j}\| = 1$ Q. $(-\mathbf{j}) \times \mathbf{k} = \mathbf{i}$ R. \mathbf{k} is orthogonal to $\mathbf{j} \times \mathbf{i}$ S. $\|\lambda \mathbf{i} \times (\mathbf{j} + \mathbf{k})\| = \lambda$ a. P onlyb. P and S onlyc. P, Q, and S onlyd. Q, R, and S onlye. Q and S only

7. A force $\mathbf{F} = \langle -3, 1, -2 \rangle$ newtons is applied to a particle, moving it from the point P = (1, 3, 0) to Q = (-1, 1, 4), where the distances are given in meters. Find the work done by the force \mathbf{F} .

a. 0 Nm	b. 4 Nm	c4 Nm
d. 12 Nm	e12 Nm	

- 8. Let $\mathbf{r}(t) = \langle \cos^2(t), \sin^2(t) \rangle$. Find the unit tangent vector $\hat{\mathbf{T}}(t)$.
- a. $\langle -2\sin(t)\cos(t), 2\sin(t)\cos(t) \rangle$ b. $\langle \cos(t), \sin(t) \rangle$ c. $\left\langle -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle$ d. $\left\langle \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right\rangle$ e. None of the above
- **9.** Find the location at t = 4 of a particle whose path satisfies

$$\mathbf{r}'(t) = \langle 2t^{-1/2}, 6, 8t \rangle$$

and $\mathbf{r}(1) = \langle 4, 9, 2 \rangle$.

a. $\langle 8, 27, 62 \rangle$ b. $\langle 8, 62, 25 \rangle$ c. $\langle 8, 27, 60 \rangle$ d. $\langle 27, 8, 62 \rangle$ e. None of the above

10. Let $\mathbf{r}(t) = \langle 3\cos(t), 5\sin(t), 4\cos(t) \rangle$. Which of the following statements is true?

a.	$\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are parallel.	b.	$\ \mathbf{r}(t)\ $ is not a constant.
c.	$\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are not orthogonal	d.	$\ \mathbf{r}(t)\ $ is a constant and $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are orthogonal
e.	None of the above		

11. Find a parametrization of the tangent line to $\mathbf{r}(t) = \langle 1 - t^2, 5t, 2t^3 \rangle$ at the point t = 2.

a.
$$\mathbf{L}(t) = \langle 3 - 4t, -10 - 5t, 16 - 12t \rangle$$

b. $\mathbf{L}(t) = \langle -3 + 4t, 10 - 5t, 16 + 24t \rangle$
c. $\mathbf{L}(t) = \langle 3 + 4t, -5 - 2t, -16 - 24t \rangle$
d. $\mathbf{L}(t) = \langle 3 - 4t, -10 - 5t, -16 - 24t \rangle$
e. $\mathbf{L}(t) = \langle -3 - 4t, 10 + 5t, 16 + 24t \rangle$

12. The position of a particle is described by the vector function $\mathbf{r}(t) = \langle e^{t-2}, 12, 4t^{-2} \rangle$, where the distances are measured in meters. Calculate the speed of the particle at t = 2 seconds.

a.
$$2 \text{ ms}^{-1}$$
 b. $\sqrt{2} \text{ ms}^{-1}$ c. $2\sqrt{2} \text{ ms}^{-1}$

d. 4 ms⁻¹ e. $\frac{\sqrt{2}}{2}$ ms⁻¹

13. Find the length of the curve $\mathbf{r}(t) = \langle -3t, 3, 4t + 6 \rangle$ over the interval $0 \le t \le 9$.

- a. 50 b. 45 c. 40
- d. 35 e. None of the above

14. Let \mathcal{C} be the curve whose equation is given by $\mathbf{r}(t) = \langle \sqrt{2}t, e^t, e^{-t} \rangle$. Compute $\hat{\mathbf{B}}(0)$, the unit binormal vector to \mathcal{C} at t = 0.

a.
$$\left\langle -\frac{\sqrt{2}}{2}, \frac{1}{2}, -\frac{1}{2} \right\rangle$$
 b. $\left\langle \frac{\sqrt{2}}{2}, \frac{1}{2}, -\frac{1}{2} \right\rangle$ c. $\left\langle \frac{-1}{2}, \frac{\sqrt{2}}{2}, \frac{1}{2} \right\rangle$
d. $\left\langle \frac{\sqrt{2}}{2}, -\frac{1}{2}, \frac{1}{2} \right\rangle$ e. $\left\langle \frac{\sqrt{2}}{2}, \frac{1}{2}, \frac{1}{2} \right\rangle$

15. Compute the principal unit normal vector $\hat{\mathbf{N}}(t)$ for $\mathbf{r}(t) = \langle t, \cos(t), \sin(t) \rangle$.

- a. $\langle 1, -\cos(t), \sin(t) \rangle$ b. $\langle -1, \sin(t), -\cos(t) \rangle$
- c. $\langle 0, -\cos(t), \sin(t) \rangle$ d. $\langle 1, \cos(t), -\sin(t) \rangle$
- e. $\langle 0, -\cos(t), -\sin(t) \rangle$

MAC 2313 Exam 1A, Part II Free Response

Name: ______ UF ID #: _____

 Signature:

 Section #:

SHOW ALL WORK TO RECEIVE FULL CREDIT

1. (a) (2 points) Find the vector equation $\mathbf{r}_1(t)$ of the line passing through the points (0, 1, 1)and (1, 1, 2).

(b) (2 points) Find the vector equation $\mathbf{r}_2(s)$ of the line passing through the point (2,0,3) and parallel to the line passing through points (1, 3, 2) and (0, -1, -2).

(c) (4 points) Do the lines $\mathbf{r}_1(t)$ and $\mathbf{r}_2(s)$ intersect? If so, find the point of intersection.

2. (8 points) Find the equation of the line of intersection of the planes x - y + z = 4 and x + y - 3z = 2.

3.

(a) (1 point) Identify the quadric surface represented by the equation

$$x^2 + \frac{y^2}{16} + z^2 = 1$$

(b) (2 points) Describe the trace obtained by intersecting the above surface with the plane y = 5.

4. (4 points) Define the vector function $\mathbf{r}(t)$ by

$$\mathbf{r}(t) = \begin{cases} \left\langle \frac{\sin(2t)}{t}, t^2, e^t \right\rangle & \text{when } t \neq 0 \\ \left\langle 1, 0, 1 \right\rangle & \text{when } t = 0 \end{cases}$$

Is $\mathbf{r}(t)$ continuous for all t? Justify your answer.

5. (6 points) Calculate the curvature of the curve $\mathbf{r}(t) = \langle t, \sin(2t) \rangle$ at $t = \frac{\pi}{2}$.

6. (6 points) Find the components of acceleration $\mathbf{a}_{\mathbf{N}}$ and $\mathbf{a}_{\mathbf{T}}$ for the position vector $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \rangle$.