Exam 2 Solutions

① Let G + H be groups. An isomorphism from G to H is a map $\phi: G \to H$ such that ϕ is a bijection, and for every $g_1, g_2 \in G$, we have $\phi(g_1g_2) = \phi(g_1) \phi(g_2)$.

The groups U(3) and \mathbb{Z}_2 are isomorphic.

The groups Z8 and D4 both have order 8, but are not isomorphic since Z8 is cyclic and D4 is not cyclic. (Many other examples are possible.)

2 Let G be a group and H & G. A left coset of H in G is the set aH = {ah | h & H} for some a & G.

If $a,b \in G$, a necessary and sufficient condition for aH = bH is one of the following: $a \in bH$, $b \in aH$, $b^{-1}a \in H$, $a^{-1}b \in H$.

 $\Rightarrow \sigma = (1,8,4,5,10)(2,7,12,9)(3,11)$

Then | 0 | = lcm (5, 4, 2) = [20].

Since $\sigma = (1,10)(1,5)(1,4)(1,8)(2,9)(2,12)(2,7)(3,11)$ can be written as a product of an even number (8) of transpositions, σ is even.

Let G be a group. Prove that $\phi(g) = g^{-1}$ is an automorphism iff G is abelian. Proof Suppose first that ϕ is an automorphism. Let $a,b \in G$. Then $\phi(ab) = (ab)^{-1} = b^{-1}a^{-1} \quad \text{and} \quad \phi(a) \phi(b) = a^{-1}b^{-1}. \text{ Since } \phi \text{ preserves the }$ group operation, $\phi(ab) = \phi(a) \phi(b) \Rightarrow b^{-1}a^{-1} = a^{-1}b^{-1} \Rightarrow (b^{-1}a^{-1})^{-1} = (a^{-1}b^{-1})^{-1}$

=) ab = ba. Thus, G is abelian.

Suppose now that G is abelian. Let $X,y \in G$ and suppose $\phi(x) = \phi(y)$. Then $x^{-1} = y^{-1} \Rightarrow (x^{-1})^{-1} = (y^{-1})^{-1} \Rightarrow x = y$, so ϕ is injective. If $X \in G$, then $x^{-1} \in G$ and $\phi(x^{-1}) = (x^{-1})^{-1} = x$, so ϕ is surjective. Finally, let $X,y \in G$. Then $\phi(xy) = \phi(yx) = (yx)^{-1} = x^{-1}y^{-1} = \phi(x)\phi(y)$, so ϕ preserves the group operation. Thus, ϕ is an automorphism. \square

- 5 Does the group A_7 have any elements of order 6? Yes. Consider $\sigma = (12)(34)(567)$. We have $|\sigma| = lcm(2, 2, 3) = 6$. Also, $\sigma = (12)(34)(56)(67)$ is the product of an even number (4) of transpositions, so $\sigma \in A_7$.
 - 6 Let G be a group, |G| = 30, and $H \le G$. If H is not cyclic and |G:H| is even, what is |H|?

By Lagrange's Thrm, we Know that IHI divides IGI, so the possibilities for IHI are $\{1,2,3,5,6,10,15,30\}$. If H had prime order, then by a corollary to Lagrange's Thrm it would be cyclic. Therefore, IHI is not prime. For the same reason, IHI $\neq 1$, so the remaining possibilities are $\{6,10,15,30\}$. Lastly, by Lagrange's Thrm again we Know $|G:H| = \frac{|G|}{|H|} = \frac{30}{|H|}$. Calculating $\{6:H|$ for the remaining options yields $\frac{30}{6} = 5$, $\frac{30}{10} = 3$, $\frac{30}{15} = 2$, and $\frac{30}{30} = 1$. Only one of these numbers is even, so we must have $|H| = \overline{|15|}$.