

- A. Sign your bubble sheet on the back at the bottom in ink.
- B. In pencil, write and encode in the spaces indicated:
 - 1) Name (last name, first initial, middle initial)
 - 2) UF ID number
 - 3) Section number
- C. Under "special codes" code in the test ID numbers 2, 1.
 - 3 4 56 7 8 9 0 1 5• 23 4 6 7 8 9 0
- **D.** At the top right of your answer sheet, for "Test Form Code", encode A. • B C D E
- E. 1) This test consists of 15 multiple choice questions, worth 5 points each, plus two sheets (four pages) of free response questions worth 35 points. The test is counted out of 110 points, and there are 10 bonus points available.
 - 2) The time allowed is 90 minutes.
 - 3) You may write on the test.
 - 4) Raise your hand if you need more scratch paper or if you have a problem with your test. DO NOT LEAVE YOUR SEAT UNLESS YOU ARE FINISHED WITH THE TEST.

F. KEEP YOUR BUBBLE SHEET COVERED AT ALL TIMES.

- **G.** When you are finished:
 - 1) Before turning in your test **check carefully for transcribing errors**. Any mistakes you leave in are there to stay.
 - 2) You must turn in your scantron and tearoff sheets to your discussion leader or exam proctor. Be prepared to show your picture I.D. with a legible signature.
 - 3) The answers will be posted in Sakai (e-Learning) within one day after the exam. Your instructor will return your tearoff sheet with your exam score in class. Your score will also be posted in e-Learning within one week of the exam.

NOTE: Be sure to bubble the answers to questions 1-15 on your scantron.

Questions 1 - 15 are worth 5 points each.

1. Calculate the limit:

$$\lim_{(x,y)\to(2,1)}\frac{xy-y^2}{e^{y^2+2x+1}}$$

a. e b. e^{-2} c. e^{-6} d. e^{-8} e. The limit does not exist

2. Let (a, b) be a point in the domain of the real-valued function f(x, y) and let $L \in \mathbb{R}$. Which of the following are true?

P. If f(x,y) is continuous at (a,b), then $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$.

Q. If there are two different paths along which $\lim_{(x,y)\to(a,b)} f(x,y) = L$, then $\lim_{(x,y)\to(a,b)} f(x,y)$ exists and equals L.

R. If there are infinitely many paths along which $\lim_{(x,y)\to(a,b)} f(x,y) = L$, then $\lim_{(x,y)\to(a,b)} f(x,y)$ exists and equals L.

S. If f is continuous at (a, b) and both partial derivatives $f_x(a, b)$ and $f_y(a, b)$ exist, then f is differentiable at (a, b).

- a. P only b. P, Q, and R c. P and R
- d. P, R, and S e. R and S

3. If $g(x, y, z) = xy^2 + 5yz$, then $\nabla g(4, -2, 1)$ is parallel to which of the following vectors?

a. $(8, 22, 20)$	b. $\langle -8, 22, 20 \rangle$	c. $(8, 2, -1)$
d. $\langle 8, 2, 1 \rangle$	e. $(5, 0, -2)$	

4. If f(x, y) is a differentiable function, and $\mathbf{r}(t)$ is a parametrization of the level curve at f(a, b) such that $\mathbf{r}(t_0)$ represents the point (a, b, f(a, b)), which of the following statements are true?

P. If $\nabla f(a, b) \neq \mathbf{0}$, then $\nabla f(a, b)$ is orthogonal to $\mathbf{r}'(t_0)$.

Q. If $\mathbf{u} = \langle u_1, u_2 \rangle$ is any vector, the directional derivative in the direction of \mathbf{u} is given by $D_{\mathbf{u}}f(a,b) = \nabla f(a,b) \cdot \langle u_1, u_2 \rangle$.

R. The equation of the tangent plane to f at (a, b) is given by

$$L(x,y) = f(a,b) + \nabla f(a,b) \cdot \langle x - a, y - b \rangle$$

S. The directional derivative of f at (a, b) in the direction given by $\mathbf{u} = \langle f_y(a, b), -f_x(a, b) \rangle$ is zero.

- a. P onlyb. P and S onlyc. P, Q, and S onlyd. P, R, and S onlye. Q and S only
- **5.** What is the domain of the function $f(x, y) = \ln(|x y|)$?
- a. $\{(x,y)|x > y\}$ b. \mathbb{R}^2 c. $\{(x,y)|x \neq y\}$ d. $\{(x,y)|x - y < 0\}$ e. None of the above

6. Given the function $f(x, y) = \tan\left(\frac{x}{y}\right)$, find f_x and f_y .

a. $f_x = \frac{\sec^2\left(\frac{x}{y}\right)}{y}$	and	$f_y = \frac{-x\cos^2\left(\frac{x}{y}\right)}{y^2}$
b. $f_x = \frac{-\sec^2\left(\frac{x}{y}\right)}{y}$	and	$f_y = \frac{-x}{y^2 \cos^2\left(\frac{x}{y}\right)}$
c. $f_x = \frac{y}{\cos^2\left(\frac{x}{y}\right)}$	and	$f_y = \frac{-x}{y^2 \cos^2\left(\frac{x}{y}\right)}$ $f_y = \frac{x}{y^2 \cos^2\left(\frac{x}{y}\right)}$
c. $f_x = \frac{y}{\cos^2\left(\frac{x}{y}\right)}$ d. $f_x = \frac{\sec^2\left(\frac{x}{y}\right)}{y}$	and	$f_y = \frac{-x}{y^2 \cos^2\left(\frac{x}{y}\right)}$

e. None of the above

7. Use implicit differentiation to calculate the partial derivative $\frac{\partial z}{\partial y}$ of the function

 $e^{xy} + \sin(xz) + y = 0$

a.
$$\frac{\partial z}{\partial y} = \frac{xe^{xy} + 1}{x\cos(xz)}$$
 b. $\frac{\partial z}{\partial y} = -\frac{xe^{xy} + 1}{x\cos(xz)}$ c. $\frac{\partial z}{\partial y} = -\frac{xe^{xy} - 1}{x\cos(xz)}$
d. $\frac{\partial z}{\partial y} = \frac{e^{xy} - 1}{x\cos(xz)}$ e. $\frac{\partial z}{\partial y} = -\frac{e^{xy} + 1}{x\sin(xz)}$

8. Find the directional derivative of $f(x, y) = x^2 y - e^x y^3$ at the point (0, 2) in the direction of the vector $\langle -2, 3 \rangle$.

a. -20 b. -52 c. $-4\sqrt{5}$ d. $-4\sqrt{13}$ e. $\frac{-20}{\sqrt{13}}$

9. Let f(x, y) be defined on an open set D of \mathbb{R}^2 which contains the point (a, b). Which of the following statements are true?

P. $\frac{\partial f}{\partial x}\Big|_{(a,b)}$ is the slope of the tangent line to the curve f(x,b) at the point (a,b).

- Q. $\frac{\partial^3 f}{\partial x^2 \partial y} = f_{xxy}$ R. $f_{xy} = f_{yx}$
- a. P only b. R only c. P and Q
- d. P and R e. P, Q, and R

10. For which value of t does the tangent plane to the graph of the function $z = x^2y + \frac{1}{1+y^2}$ at the point $(1, 1, \frac{3}{2})$ contain the point (2, 2, t)?

a. 8.2 b. $1 + \frac{7\sqrt{2}}{4}$ c. 4 d. 5 e. None of the above

11. Calculate the limit:

$$\lim_{(x,y)\to(2,-2)}\frac{x^4-y^4}{x+y}$$

a. 0 b. 16 c. 32 d. 64 e. The limit does not exist

12. Let
$$f(x, y, z) = x^3 + yz^2$$
, where $x = u^2 + v$, $y = u + v^2$ and $z = uv$.
Find $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ at $(u, v) = (-1, -1)$.

a.
$$\frac{\partial f}{\partial u} \Big|_{\substack{(u,v)=(-1,-1)\\(u,v)=(-1,-1)}} = 1 \quad \text{and} \quad \frac{\partial f}{\partial v} \Big|_{\substack{(u,v)=(-1,-1)\\(u,v)=(-1,-1)}} = -2$$

b.
$$\frac{\partial f}{\partial u} \Big|_{\substack{(u,v)=(-1,-1)\\(u,v)=(-1,-1)}} = -1 \quad \text{and} \quad \frac{\partial f}{\partial v} \Big|_{\substack{(u,v)=(-1,-1)\\(u,v)=(-1,-1)}} = 0$$

d.
$$\frac{\partial f}{\partial u} \Big|_{\substack{(u,v)=(-1,-1)\\(u,v)=(-1,-1)}} = 1 \quad \text{and} \quad \frac{\partial f}{\partial v} \Big|_{\substack{(u,v)=(-1,-1)\\(u,v)=(-1,-1)}} = 2$$

e. None of the above

13. If
$$f(x, y, z) = e^{1 - x \cos(y)} + z e^{\frac{-1}{1 + y^2}}$$
, then $\frac{\partial f}{\partial x}(1, 0, \pi)$ is equal to:

a.
$$-1$$
 b. $\frac{-1}{e}$ c. 0 d. $\frac{\pi}{e}$ e. 1

14. Use differentials to approximate the change in z = 4x - 2y + 3xy as (x, y) changes from (2, -1) to (2.1, -1.1).

a. 0.3 b. -0.3 c. 0.5 d. -0.5 e. 0.6

15. Find the equation of the tangent plane of the one sheet hyperboloid $9x^2 + 4y^2 - z^2 = 25$ at the point (1, 4, 0).

a. 9x + 16y = 55b. 18x + 32y = -146c. 18x - 32y = 146d. -18x + 32y = 73e. 18x + 32y = 146

MAC 2313 Exam 2A, Part II Free Response

Name: ______ UF ID #: _____

 Signature:

 Section #:

SHOW ALL WORK TO RECEIVE FULL CREDIT

1. (a) (2 points) Find the domain of the function $f(x,y) = \ln(9 - 9x^2 - y^2)$.

(b) (2 points) Find the range of f(x, y) (be sure to justify your answer).

(c) (3 points) Identify the level curves of f(x, y).

2. (7 points) If $f(x, y) = \ln(x + y) + 2x^3y^2$, find a vector which points in the direction of no change in the function at the point (2, -1).

3. (7 points) A particle traveling with a position function $\mathbf{r}(t) = \langle 3\cos(\pi t), 3\sin(\pi t), t \rangle$ experiences a force of magnitude $F(x, y, z) = \frac{100}{x^2 + y^2 + z^2}$. Find the rate of change of F with respect to time when t = 1.

- 4. Let $f(x, y, z) = 2\cos x + yz^2$ and $\mathbf{u} = \langle -2, 0, 1 \rangle$.
 - (a) (1 point) Find ∇f .

(b) (3 points) Find $D_{\mathbf{u}}f\left(\frac{\pi}{2}, 1, -1\right)$.

(c) (3 points) At the point $\left(\frac{\pi}{2}, 1, -1\right)$, is there any direction in which the rate of increase of f is 4? Defend your answer.

5. (7 points) Let $f(x, y, z) = e^{\frac{x}{y}} \cos z$. Use the linear approximation at the point (0, 1, 0) to estimate $e^{\frac{.003}{1.001}} \cos(.002)$.