
LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3
UNIT 4

The final unit of material in multivariable calculus introduces many unfamiliar and
non-intuitive concepts in a short amount of time. This document attempts to succinctly
describe this material and enable the student to draw connections and links between
concepts. There are two main issues with this material: first, understanding how to
compute the various integrals introduced and what they represent; second, knowing what
shortcuts can be used in these computations and the proper situation in which to employ
their effectiveness.

1. Parametrizations and the Computation and Interpretation of Line
and Surface Integrals

There are two basic types of integrals we compute: line integrals and surface integrals.
This distinction describes the object over which we are integrating, i.e. the domain of
integration. In the case of line integrals, we integrate over some curve in R2 or R3; the
most popular curves are line segments and circles, but they can be more complicated. One
will either be given or must write for oneself a parametrization, which will depend on a
single variable. In the case of surface integrals, we integrate over a surface in R3; popular
surfaces include cylinders, spheres, and planes, but again could be more complicated.
Once more, a parametrization must be provided to you or derived; however, note that
when moving up to surfaces, the parametrization will depend on two variables, rather than
just one. After parameterizing a surface, one must find the corresponding normal vector,
which is orthogonal to the surface and whose orientation is consistent with directions in
the problem or a standard convention (i.e. outward from a closed surface). Below we give
the standard parametrizations (and corresponding normal vectors, when applicable) for
the most common curves and surfaces. (Note that if the problem restricts these objects,
such as taking only the upper half of a circle or sphere, bounds for the parameters must
be adjusted accordingly.)

Example 1. To parameterize a line segment from (x1, y1, z1) to (x2, y2, z2), we write

r(t) = 〈(x2 − x1)t+ x1, (y2 − y1)t+ y1, (z2 − z1)t+ z1〉, 0 ≤ t ≤ 1.

If two of the three coordinates, say y and z, remain fixed, an easy and simple alternate
parametrization is

r(t) = 〈t, y, z〉, x1 ≤ t ≤ x2.

Example 2. For a circle of radius R centered at the origin, r(t) = 〈R cos t, R sin t〉 for
0 ≤ t ≤ 2π.
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Example 3. For a cylinder of radius R with central axis the z-axis,

r(θ, z) = 〈R cos θ, R sin θ, z〉, 0 ≤ θ ≤ 2π,−∞ < z <∞.

Often the z value will be restricted over a certain interval. If the central axis is not the
z-axis, a similar parametrization works where the central axis is left free and the other
two variables operate with polar-type coordinates. The (outward-pointing) normal vector
in this case is n = 〈R cos θ, R sin θ, 0〉, ||n|| = R.

Example 4. For a plane ax+ by+ cz = d, we write r(x, y) = 〈x, y, (d−ax− by)/c〉; most
often we only consider the portion in the first octant (where all variables are positive),
so the bounds for parameters x and y can be found by looking at the projection into the
x, y-plane ax+ by = d. Whenever z is written as a function of x and y like it is here, we
have the (upward-pointing) normal vector n = 〈−kx,−ky, 1〉, ||n|| =

√
1 + k2x + k2y.

Example 5. For a sphere of radius R centered at the origin,

r(θ, φ) = 〈R cos θ sinφ,R sin θ sinφ,R cosφ〉, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.

It can be shown that in this case the outward-pointing normal vector is
n = R2 sinφ〈cos θ sinφ, sin θ sinφ, cosφ〉 and ||n|| = R2 sinφ.

Now that we are able to write parametrizations, let us observe a second distinction
between these integrals: the object we are integrating (i.e. the integrand). For both
line and surface integrals, we may integrate either a scalar-valued function f(x, y, z) or a
vector field F = 〈f, g, h〉. For each of these possibilities, the formulas for computing the
line and surface integral are very similar.

Definition 1. The line integral of f(x, y) over a curve C parameterized by r(t) is calcu-
lated as follows: ∫

C
f ds =

∫ β

α

f(r(t))||r′(t)|| dt.

Definition 2. The surface integral of f(x, y, z) over the surface S parameterized by r(u, v)
with domain D is calculated as follows:∫∫

S
f dS =

∫∫
D

f(r(u, v))||n|| dudv,

where n = ru × rv.

Note that when integrating a function, we need to find a magnitude. Also, the main
difference in these formulas, other than the parametrization, is that r′(t) is replaced by
the normal vector n. The same holds for the integrals of a vector field.

Definition 3. The line integral of F = 〈f, g, h〉 over a curve C parameterized by r(t) is
calculated by ∫

C
F dr =

∫ β

α

F(r(t)) · r′(t) dt.
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Definition 4. The surface integral of F over the surface S parameterized by r(u, v) with
domain D is calculated by ∫∫

S
F dS =

∫∫
D

F(r(u, v)) · n dudv,

where n = ru × rv.

The main difference when integrating a vector field (as compared to a scalar line/surface
integral) is that we no longer have to find a magnitude, but rather a dot product.

Finally, many students ask “what am I actually calculating when I find these integrals?”,
so let us briefly comment on their interpretation. For the line integral of a function f(x, y),
observe that f takes on various z-values as x and y range over the points on the curve.
This creates a sort of “wall” or “sheet” if we drop perpendiculars from the z-values down
to the x, y-plane (or up to the x, y-plane if the z-value is negative). The line integral
calculates the (signed) area of this sheet. The surface integral of a function is similar,
except that the function must take three inputs f(x, y, z), so the output lives in R4 and
our visual fails us. However, we do know that if we take the function to be identically 1,
we get the surface area of the surface over which we are integrating.

In the case of the line integral of a vector field, we are finding how much the vector field
points in the direction of the curve C. If the vector field is a force field, the integral gives
the work done by the field in moving an object along the curve. For the surface integral
of a vector field, we are finding how much the vector field points in a direction parallel
to the normal vector of the surface, that is, how much the vector field passes through the
surface; this is also called the flux.

2. Shortcuts and When to Use Them

The first thing to notice is that there are no shortcuts when integrating a scalar function;
these must all be done “straight up”, as it were. However, there are several methods for
simplifying integrals of vector fields. The first one applies to line integrals of vector fields.
The computation is simpler when the vector field is conservative, as the following theorem
says.

Theorem 6. (Fundamental Theorem of Conservative Vector Fields) Let F be a continu-
ous, conservative vector field with F = ∇φ in an open connected region D (in R2 or R3).

If C is a smooth oriented curve from P to Q in the region D, then

∫
C
F dr = φ(Q)−φ(P ).

So when faced with computing such a line integral, it is wise to first check whether the
vector field F = 〈F1, F2, F3〉 is conservative. For most vector fields (those with simply
connected, open domains) this amounts to satisfying the following three cross-partial
conditions:

∂F1

∂y
=
∂F2

∂x
,
∂F2

∂z
=
∂F3

∂y
,
∂F3

∂x
=
∂F1

∂z
.

Having done this, how does one find the potential function φ such that ∇φ = F? My
method is to integrate each component with respect to the corresponding variable, and
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select each term that appears, not counting repeats. This technique is illustrated in the
following example.

Example 7. Suppose we want to find the potential function for the vector field F =
〈y + z, x+ z, x+ y〉. We perform three partial integrations:∫

(y + z)dx = xy + xz + f(y, z)∫
(x+ z)dy = xy + yz + g(x, z)∫
(x+ y)dz = xz + yz + h(x, y)

Therefore, the terms that appear (not counting repetition) are φ(x, y, z) = xy + xz + yz.

The remaining shortcuts should be applied with more discernment. The next also
applies to line integrals of vector fields.

Theorem 8. (Green’s Theorem) Let D be a simply connected region of R2 whose bound-
ary curve C is simple, closed, smooth (or piecewise smooth), and oriented counterclock-
wise. Let F = 〈f, g〉 be continuously differentiable in D. Then∮

C
F dr =

∫∫
D

(gx − fy) dA.

Essentially, Green’s Theorem says that the circulation of a vector field can be evaluated
by a double integral. This is especially useful when the boundary curve has multiple
pieces which would require multiple parametrizations if calculated as a straightforward
circulation. When should I use Green’s Theorem? Look for line integrals of a two-
dimensional vector field over a closed curve, where the region bounded by the curve can
be easily represented as a double integral (rectangle, triangle, circle). Don’t sweat the
CCW orientation too much: if the orientation is clockwise, just negate your answer by
reversing the orientation of the curve.

The final two shortcuts are related to surface integrals.

Theorem 9. (Stokes’ Theorem) Let S be a smooth, oriented surface in R3 with normal
vector n and smooth, closed boundary curve ∂S = C whose orientation is consistent with
S. Let F = 〈f, g, h〉 be continuously differentiable on S. Then∮

C
F dr =

∫∫
S

curl(F) dS.

Stokes’ Theorem relates the circulation of a vector field around the boundary of a surface
to the surface integral of that surface over a related, but different vector field, namely
the curl of the original vector field. The difficulty with knowing when to apply Stokes’
Theorem is that it is not clear which side will be easier to evaluate, as this depends on the
given situation. If we are asked to find the surface integral of a vector field which is the
curl of another vector field, this is a clear situation to apply Stokes’ Theorem to calculate
the circulation of the original vector field (without taking curl) around the boundary of
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the surface. However, if the vector field is not given as the curl of another vector field, it
is best not to use the theorem since in general it is quite difficult to find the “anti-curl”.
It is sometimes desirable to go the other direction, applying the Theorem to circulations
to convert them to surface integrals. Although surface integrals are usually more difficult
to compute than circulations, if the closed curve needs multiple parameterizations (such
as a square) and the vector field is not conservative, or if the curve is the boundary of a
well-known, easily parameterized surface, then it will actually be easier to compute the
surface integral instead, although in this direction we must also compute the curl of the
vector field, which is an extra step. When should I use Stokes’ Theorem? Look for
surface integrals of the curl of a vector field to convert to a circulation, or circulations of a
vector field where the curve itself requires multiple parametrizations, but is the boundary
of a surface with a well-known parametrization (plane, sphere, or any function that can
be explicitly solved for z).

Finally, we have the incredibly useful Divergence Theorem.

Theorem 10. (Divergence Theorem) Let F be a continuously differentiable vector field
in a simply connected region D in R3 which is enclosed by an oriented surface S. Then∫∫

S
F dS =

∫∫∫
D

div(F) dV.

This theorem simplifies the surface integral of a vector field into a triple integral of a
related scalar-valued function, namely div(F). As with Green’s Theorem, this is especially
useful when the surface consists of many parts which would require multiple parametriza-
tions if done in the usual way. When should I use the Divergence Theorem? Look
for the flux of a vector field through a closed surface where the interior of the surface can
be easily represented as a triple integral (box, sphere, cylinder).


