Problems 1-22 are worth 5 points each.

1. Calculate area of the region enclosed by the line segment connecting (0,0) to (2,0); the part of the parabola $y = 4 - x^2$ from (2,0) to (0,4); and the segment connecting (0,4) to (0,0).

A.8/3

B.16/3

C.32/3

D.64/3

E. None of the above

2. Which of the integrals is NOT equal to the area of the region enclosed by the simple closed curve C?

A. $\int_{\mathcal{C}} x \, dy$

 $(B.) \int_C y \, dx$ $(C.) \int_C \frac{1}{2} x \, dy - \frac{1}{2} y \, dx$ $(D.) \int_C y \, dx + 2x \, dy$

- E. All of the integrals above are equal to the area
- 3. Evaluate the line integral

 $\int_C (\cos x - y) \ dx - x \ dy$

where C is the rectangle oriented counter-clockwise, with the vertices (1,1), (3,1), (1,4) and (3,4).

A.-12

B. - 6

 $C_{\cdot}-4$

D. - 3

(E) None of the above

4. How many of the following vector fields are unit vector fields (i.e. fields whose vector is of length one for all points.)?

I. F = $\langle 1, 1, 1 \rangle$

II.
$$G = \left\langle \frac{x^2}{x^2 + y^2}, \frac{y^2}{x^2 + y^2} \right\rangle$$

III. $\mathbf{H} = \langle \sin x, \cos y \rangle$

IV.
$$\mathbf{J} = \langle xy, \sqrt{1 - x^2y^2} \rangle$$

A. 0

B) 1

C. 2

D. 3

E. 4

- **5.** Find a potential function for the vector field $\mathbf{F} = \langle 2xy + 5, x^2 4z, -4y \rangle$
 - A. $V(x, y, z) = x^2y 5xz 4zy$ B. $V(x, y, z) = x^2y^2 4zy$

 - C. $V(x, y, z) = x^2y + 5x 4z^2y$ D. $V(x, y, z) = x^2y + 5x 4zy$
 - E. None of the above
- **6.** The <u>vortex field</u> in $\mathbb{R}^2 \setminus \{(0,0)\}$ is the vector field defined by

$$\mathbf{F} = \langle F_1, F_2 \rangle = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$$

Which of the following statements are true about **F**?

- P. F satisfies the cross partial condition. (i.e. $\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}$).
- Q. F is a conservative vector field. (Hint: Consider the domain.)
- R. Let \mathcal{C} be the unit circle in counterclockwise direction, parametrized by the vector function $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$. Then $\oint_{\mathcal{L}} \mathbf{F} \cdot \mathbf{T} ds = 0$.
- (A) Ponly B. P and Q only C. P and R only D. R only E. P, Q and R
- 7. A particle moves along a curve $\mathbf{r}(t) = \left\langle t^2, \sin\left(\frac{\pi t}{4}\right), e^{t^2-2t} \right\rangle$ where $0 \leq t \leq 2$ in the presence of a force field $\mathbf{F} = \langle 2xyz, x^2z, x^2y \rangle$. Find the work done by the force field in moving the particle from (0,0,1) to (4,1,1).
 - (A.)16

B. 4

C. -8

- D. -12
- E. 18

8. Find $\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} ds$ for the vector field $\mathbf{F} = \langle -y, x-1, -4z+z^3 \rangle$ where \mathcal{C} is the top half of the circle with center (1,0,0) and radius 1 on xy-plane oriented counter-clockwise. (Note: \mathcal{C} can be parametrized by $\mathbf{r}(t) = \langle 1 + \cos t, \sin t, 0 \rangle$ where $0 \leq t \leq \pi$.)

A. -4π

D. 4π

E. 9π

9. $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$ is zero if

(A.) \mathbf{F} is tangent to S at every point

B. F is normal to S at every point

C. the normal component of F is non-zero at every point

D. S is closed

E. None of the above

10. Compute $\int \int_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = \langle y^2, 2, -x \rangle$ and S is the portion of the plane x + y + z = 1in the octant $x, y, z \ge 0$ with upward pointing normal.

A. 11

B. 0 C. 1 D. $\frac{11}{12}$

11. Let $\vec{V} = z\vec{k}$ be the velocity field of a fluid (in meters/sec) in \mathbb{R}^3 . Calculate the flow rate (in cubic meters/sec) through the upper hemisphere $(z \ge 0)$ of the sphere $x^2 + y^2 + z^2 = 1$.

A. $\frac{\pi}{3}$ B. 2π C. 0 D. $\frac{2\pi}{3}$

E. 1

12. Let C be a smooth curve in R^3 with parametrization $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ for $\alpha \leq t \leq \beta$, let f(x,y,z) be a continuous function, and let $\mathbf{F} = \langle f,g,h \rangle$ be a continuous vector field. Which of the following statements are true?

P. $\int_{\mathcal{C}} f ds = \int_{\mathcal{C}}^{\beta} f(x(t), y(t), z(t)) \cdot \mathbf{r}'(t) dt$

Q. $\int_{a} \mathbf{F} \cdot d\mathbf{r} = \int_{a} f dx + g dy + h dz$

R. $\int_{-\mathcal{C}} \mathbf{F} \cdot \mathbf{T} ds = \int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} ds$ (where $-\mathcal{C}$ denotes \mathcal{C} with the opposite orientation)

S. $\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} ds$ represents the work done by the force field **F** in moving an object along the curve \mathcal{C} .

A. P and R

B. Q and R

C. P and S

D. Q and S

E. P. Q. and S

13. Evaluate $\oint_{\mathcal{C}} \sin(x) dx + z \cos(y) dy + \sin(y) dz$ where \mathcal{C} is the ellipse $4x^2 + 9y^2 = 36$ oriented counterclockwise.

A. 2π

B. $2(\pi - 1)$

 C_{-8}

(D.)0

E. $2 - 2\pi$

14. Evaluate the integral $\int \int_S f dS$ where f(x,y,z) = xy and S is the cone $z = 2\sqrt{x^2 + y^2}$,

15. Calculate $\int \int_S f(x,y,z) dS$ where $f(x,y,z) = z^2$ and S is the part of the plane x+y+z=0 contained in the cylinder $x^2+y^2=1$.

A. 0 B. $\frac{\pi}{2}$ C. $\frac{\pi\sqrt{3}}{2}$ D. π E. 2π

16. If $f(x,y,z) = 4x + z^2$ and \mathcal{C} has parametrization $\mathbf{r}(t) = \left\langle \frac{1}{2}t^2, \frac{4}{3}t^{3/2}, 2t \right\rangle$ for $0 \le t \le 2$, then $\int_{\mathcal{C}} f ds$ equals:

A. $\frac{11}{2}$ B) 56 C. $\frac{112}{2}$ D. 80

E. None of the above

17. If f(x,y) = 2x and C is the part of the parabola $y = x^2$ starting at (0,0) and ending at $(\sqrt{2},2)$, then the line integral of f along C equals:

A. $-\frac{1}{12}$ B. $\frac{39}{4}$ C. $\frac{13}{3}$ D. 13 E. None of the above

18. Evaluate $\int_{\mathcal{C}} 2y dx + x dy$ where \mathcal{C} is the top half of the circle $x^2 + y^2 = 4$ oriented clockwise and the line segment from (2,0) to (4,2).

A. 0

B. 2π C. 10 D. $10 + 2\pi$ E. $10 - 2\pi$

19. Calculate the work done by the field $\mathbf{F} = \langle x+y, x-y, y+z \rangle$ in moving an object along the line segment from the point (1,0,2) to the point (3,-2,6).

A. -22

B. -8

C. 0

(D.)8

20. Use Green's Theorem to evaluate

$$\int_C (\frac{1}{2}y + e^x) \ dx + (\frac{3}{2}x + \sec y) \ dy.$$

C is the boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$. The orientation is chosen to be the counter-clockwise orientation.

(A)1/3 B.1/4 C.4 D.3

E. Green's Theorem does not apply because the region is not simply-connected

21. Find the work done by the force field $\mathbf{F} = -G\hat{\mathbf{j}}$, where G is a constant, in moving an object from (10,4) to (2,1).

A.G B.2G C.3G D.5G E. None of the above

22. Which of the following regions is not a simply connected region?

