(5 pts) 1. How many of the following are necessarily true?

i. The vector field $\mathbf{F} = \langle -2x + 3y, 3x - 5y \rangle$ is conservative.

ii. The vector field $\mathbf{F} = 5(x^2 + y^2)^{-3/2} \langle x, y \rangle$ is radial.

iii. All constant vector fields in \mathbb{R}^3 are conservative.

iv. Gravitational fields in \mathbb{R}^3 are conservative and radial.

A. 0 B. 1 C. 2 D. 3 E. 4

(5 pts) 2. How many of the following are necessarily true?

i. The potential function for a conservative vector field is unique.

ii. The divergence of a constant vector field in \mathbb{R}^3 is equal to the zero vector.

iii. The divergence of a conservative vector field in \mathbb{R}^3 is a constant.

iv. The curl of a conservative vector field in \mathbb{R}^3 is equal to the zero vector.

A. 0 B. 1 C. 2 D. 3 E. 4

(5 pts) 3. Let C be the curve given parametrically by $\mathbf{r}(t) = \langle t + 3, 4 - 2t \rangle$, $t : 1 \rightarrow 2$; if $f(x, y) = 2x + 4y$, the value of $\int_C f(x, y) \, ds$ is:

A. 0 B. $13\sqrt{5}$ C. $4\sqrt{5}$ D. $26\sqrt{5}$ E. $22\sqrt{5}$
(5 pts) 4. Let \(C \) be the curve given parametrically by \(\mathbf{r}(t) = (3t, 1 - 2t^2, 4), \ t : 0 \to 2 \); the value of \(\int_C y \, dx + x^2 \, dy + z \, dz \) is:

A. 0
B. -40
C. -86
D. -154
E. -210

(5 pts) 5. Let \(C \) be the upper half of the unit circle oriented clockwise and let \(\mathbf{F} = (2y + 1, -2x - 1) \), the value of \(\int_C \mathbf{F} \cdot d\mathbf{r} \) is:

A. 0
B. -2 - \pi
C. 2 + 2\pi
D. -2 - 2\pi
E. 2 + \pi

(5 pts) 6. Let \(D = \{ (x, y) \mid |x| < 1, |y| < 2 \} \); how many of the following are true?

i. \(D \) is simply connected.

ii. \(D \) is connected.

iii. \(D \) is open.

iv. The boundary curve(s) for \(D \) is closed but not simple.

A. 0
B. 1
C. 2
D. 3
E. 4

(5 pts) 7. Let \(C \) be a simple, smooth curve with initial point \((1, 0, 1)\) and terminal point \((0, 0, -1)\); if \(\mathbf{F} = (6yz^2e^{2xy}, 6xz^2e^{2xy}, 6ze^{2xy} + 1) \), the value of \(\int_C \mathbf{F} \cdot d\mathbf{r} \) is:

A. 0
B. -2
C. -4
D. 3
E. none of the above
8. How many of the following are necessarily true?

i. The line integral of a conservative vector field is independent of the path connecting an initial point P to a terminal point Q.

ii. The curl of a constant vector field in R^3 is equal to the scalar zero.

iii. A vector field $\mathbf{F} = \langle f(x, y), g(x, y) \rangle$ is conservative if $f_x = g_y$.

iv. The circulation of a conservative vector field along a smooth, oriented curve is equal to zero.

A. 0 B. 1 C. 2 D. 3 E. 4

9. The part of the unit sphere with $x \leq 0$ and $z \leq 0$ is parameterized by $\mathbf{r}(\theta, \phi) = \langle \cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi \rangle$; the domain for this parameterization is equal to:

A. $D = \{(\theta, \phi) \mid 0 \leq \theta \leq 2\pi, 0 \leq \phi \leq \pi \}$
B. $D = \{(\theta, \phi) \mid \pi/2 \leq \theta \leq \pi, 0 \leq \phi \leq \pi/2 \}$
C. $D = \{(\theta, \phi) \mid \pi \leq \theta \leq 2\pi, 0 \leq \phi \leq \pi/2 \}$
D. $D = \{(\theta, \phi) \mid \pi/2 \leq \theta \leq 3\pi/2, \pi/2 \leq \phi \leq \pi \}$
E. $D = \{(\theta, \phi) \mid \pi \leq \theta \leq 2\pi, \pi/2 \leq \phi \leq \pi \}$

10. Let $f(x, y, z) = z + y^2$ and let S be the surface parameterized by $\mathbf{r}(u, v) = \langle 2u, -3v, u + v \rangle$ with $0 \leq u \leq 1, 0 \leq v \leq 2$. The integral $\int\int_S f(x, y, z) \, dS$ is equal to:

A. 0 B. 160 C. 189 D. 84 E. 62
11. Let S be the surface parameterized by $\mathbf{r}(u, v) = \langle 2v, u^2 + v^2, u \rangle$ with $0 \leq u \leq 2$, $0 \leq v \leq 2$. A vector normal to the tangent plane of the surface at $u = 1$, $v = 1$ is:

A. $\langle -2, 2, -4 \rangle$
B. $\langle 1, -2, 2 \rangle$
C. $\langle 1, 2, -4 \rangle$
D. $\langle -2, 1, -4 \rangle$
E. $\langle 2, 2, -4 \rangle$

12. Let $f(x, y, z) = xye^z$ and let S be the part of the paraboloid $z = x^2 + y^2 + 8$ where $x^2 + y^2 \leq 5$. The integral $\iint_S f(x, y, z) \, dS$ is equal to:

A. $\int_{-\sqrt{5}}^{\sqrt{5}} \int_{-\sqrt{5} - x^2}^{\sqrt{5} - x^2} xye^2 \, dy \, dx$
B. $\int_{-\sqrt{5}}^{\sqrt{5}} \int_{-\sqrt{5} - x^2}^{\sqrt{5} - x^2} xye^2 + y^2 + 8 \, dy \, dx$

C. $\int_{-\sqrt{5}}^{\sqrt{5}} \int_{-\sqrt{5} - x^2}^{\sqrt{5} - x^2} xye^2 + y^2 + 8 \sqrt{4x^2 + 4y^2 + 1} \, dy \, dx$
D. $\int_{-\sqrt{5}}^{\sqrt{5}} \int_{-\sqrt{5} - x^2}^{\sqrt{5} - x^2} xye^2 + y^2 + 8 \sqrt{2x + 2y + 1} \, dy \, dx$

E. none of the above

13. Let $\mathbf{F} = \langle z, x, y \rangle$ and let S be the surface parameterized by $\mathbf{r}(u, v) = \langle \cos u, \sin u, 2v + 3 \rangle$ with domain $R = \{(u, v) \mid 0 \leq u \leq 2\pi, 0 \leq v \leq 2\}$ and oriented so that normal vectors to the surface are pointing away from the z-axis; the integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$ is given by:

A. $\int_0^{2\pi} \int_0^2 6v \cos u + 6 \sin u \, dv \, du$
B. $\int_0^{2\pi} \int_0^2 6 \sin u + 6v + v \sin u \cos u \, dv \, du$

C. $\int_0^{2\pi} \int_0^2 4v \cos u + 6 \cos u + 2 \sin u \cos u \, dv \, du$
D. $\int_0^{2\pi} \int_0^2 6 \cos u + \sin u \cos u \, dv \, du$

E. $\int_0^{2\pi} \int_0^2 12v \cos u \sin u \, dv \, du$
(5 pts) 14. Let $F = \langle x, y, z \rangle$ and let S be the part of the plane $x + y + z = 1$ defined above the triangular region in the x, y-plane with vertices $(0, 0)$, $(1, 0)$, and $(0, 1)$ and oriented so that the z component of the normal vector is positive; the flux of F across S is given by:

A. $\int_0^1 \int_0^{1-x} 1 \, dy \, dx$
B. $\int_0^1 \int_0^{1-x+1} 1 \, dy \, dx$
C. $\int_0^1 \int_0^{1-x+1} x + y \, dy \, dx$
D. $\int_0^1 \int_0^{1-x+1} 1 - x - y \, dy \, dx$
E. none of the above

(5 pts) 15. Let C be the closed curve in the x, y-plane given by the triangle with vertices $(-1, 0)$, $(0, 2)$, and $(1, 0)$ and oriented counter-clockwise. If $F = \langle 4y - 1, 3 - 2x \rangle$, then the circulation of F around C is equal to:

A. 0
B. -6
C. 12
D. -12
E. 6

(5 pts) 16. Let $F = \langle 2xy + 4z^2, x^2 + 2z, 2y + 8xz \rangle$; the divergence of F at the point $(x, y, z) = (1, 1, 1)$ is equal to:

A. 0
B. 4
C. 10
D. 12
E. 6

(5 pts) Bonus 17. The vector field in problem 16 is conservative.

A. True
B. False
18. Let \(F = \langle xz, xy, yz \rangle \); the curl of \(F \) at the point \((x, y, z) = (0, 0, 0)\) is equal to:

A. \(\langle -1, -1, -1 \rangle \)
B. \(\langle 1, 1, 1 \rangle \)
C. \(\langle 1, -1, 1 \rangle \)
D. \(\langle 0, 0, 0 \rangle \)
E. \(\langle 1, 1, 1 \rangle \)

19. The vector field in problem 18 is conservative.

A. True
B. False

20. Let \(S \) be a closed surface bounded by a cylinder of radius one centered on the \(z \)-axis, \(z = 0 \), and \(z = 2 \) and let \(F = \langle -6y, 2x, z^2 \rangle \), then the flux across the surface is equal to:

A. 0
B. \(\pi \)
C. 4\(\pi \)
D. 3\(\pi \)
E. 2\(\pi \)

21. Let \(S \) be the part of the paraboloid \(z = 9 - x^2 - y^2 \) with \(z \geq 0 \) and oriented so that the \(z \) component of the normal vector is positive; if \(F = \langle -y + z, x, e^{x^2+y^2} \rangle \), then the integral \(\int_S (\nabla \times F) \cdot \hat{n} \, dS \) is equal to:

A. 0
B. 6\(\pi \)
C. 3\(\pi \)
D. 2\(\pi \)
E. 18\(\pi \)

22. Which of the following are true:

I. The Divergence Theorem is given by \(\int \int \int_D F \cdot \hat{n} \, dV = \int \int_S \nabla \cdot F \, dS \).

II. Stoke’s Theorem is given by \(\int_C F \cdot T \, ds = \int \int_S (\nabla \times F) \cdot \hat{n} \, dS \).

III. If \(F \) is conservative and \(S \) is a smooth bounded surface, then \(\int \int_S (\nabla \times F) \cdot \hat{n} \, dS = 0 \).

IV. The flux of a constant vector field out of a solid is always greater than zero. (Hint: consider the Divergence Theorem)

A. only II and III
B. only I and III
C. only I, II, and IV
D. only I, II, and III
E. I, II, III, and IV