MAC2313 Final B

(5 pts) 1. Let ϕ be a twice differentiable potential function, \mathbf{F} a twice differentiable vector field in \mathbb{R}^3 , and \mathbb{C} a simple, smooth, closed, curve; how many of the following are true?

i. $\nabla \cdot \nabla \phi$ is equal to the scalar zero.

ii.
$$\oint_C \nabla \phi \cdot d\mathbf{r} = 0$$
.

iii. $\nabla \cdot (\nabla \times \mathbf{F})$ is equal to the zero vector.

iv. $\nabla \times (\nabla \phi)$ is equal to the zero vector.

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

(5 pts) 2. Given a differentiable vector field \mathbf{F} in \mathbb{R}^3 and a smooth surface S; the Divergence . Theorem is only applicable if the surface is closed.

A. true

B. false

(5 pts) 3. Let D be the box formed by the planes x=0, y=0, z=0, x=1, y=2, and z=3 and let $\mathbf{F}=\langle 6\mathbf{y}, 9\mathbf{y}^2, \mathbf{z}^3 \rangle$; the flux of \mathbf{F} across the surface of the solid is equal to:

- A. 0
- B. 144
- C. 162
- D. 224
- E. 306

(5 pts) 4. Let $\mathbf{F} = \langle \sin(2x), 3yz, 2x + 3z \rangle$, the divergence of \mathbf{F} at the point $(\pi, 2, -1)$ is equal to:

- A. 0
- B. 2
- C. 4
- D. 6
- E. none of the above

(5 pts) 5. Let $\mathbf{F} = \langle \sin(2x), 3yz, 2x + 3z \rangle$, the curl of \mathbf{F} at the point $(\pi, 2, 1)$ is equal to:

A. (0,0,0)

B. (6, -2, 0) C. (-3, -2, 0) D. (-3, 2, 0) E. (-6, -2, 0)

(5 pts) 6. Let S be a smooth oriented surface with a smooth boundary curve C who's orientation is consistent with the surface; if **F** is a differentiable vector field, then $\iint_S (\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} dS = \oint_C \mathbf{F} \cdot \mathbf{T} ds$.

A. true

B. false

(5 pts) 7. If f(x,y,z) = (3x-2y)z and C is the directed line segment with initial point (1,0,-1)and terminal point (0,2,0), then $\int_C f(x,y,z) ds$ is equal to:

A. 0

B. $-2\sqrt{6}/3$ C. $-\sqrt{6}/3$ D. $-5\sqrt{6}/3$

E. none of the above

(5 pts) 8. If $\mathbf{F} = \langle 2x, 4y \rangle$ and C is the part of the parabola $y = x^2$ with initial point (0,0) and terminal point (3,9), then the vector line integral of F along C has a value of:

A. 0

B. 33

C. 66

D. 99

E. none of the above

(5 pts) 9. If $\mathbf{F} = \langle 4xy, 2y - 2 \rangle$ and C is given parametrically by $\mathbf{r}(t) = \langle 5\cos t, 3\sin t \rangle$, $t: 0 \to (\pi/2)$, then $\int_C \mathbf{F} \cdot d\mathbf{r}$ is equal to:

A. -200

B. -173

C. -100

D. -97

E. 0

(5 pts) 10. Let D be the annular region in the x, y-plane which lies between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$; which of the following are true:

I. D is connected.

II. D is simply connected.

III. The curve $x^2 + y^2 = 4$ is closed and simple.

IV. The curve $x^2 + y^2 = 1$ is closed but not simple.

A. only III B. only IV C. only III and IV D. only I and III E. only I and IV

(5 pts) 11. Let $\mathbf{F} = \langle \mathbf{f}(\mathbf{x}, \mathbf{y}), \mathbf{g}(\mathbf{x}, \mathbf{y}) \rangle$ with f and g differentiable and let R be a simply connected region in the x, y-plane with a smooth counterclockwise oriented boundary curve C, then $\int \int_R f_x - g_y \ dA = \int_C \mathbf{F} \cdot \mathbf{T} \ ds$.

A. true B. false

(5 pts) 12. Let C be curve given by the triangle with vertices (1,1), (5,1) and (5,3) with a counterclockwise orientation and let $\mathbf{F} = \langle \mathbf{y} + 2, -3\mathbf{x} + 7 \rangle$; the circulation of \mathbf{F} around C is equal to:

A. 0 B. 32 C. 16 D. -32 E. -16

(5 pts) 13. Let $\mathbf{F} = \langle f(x, y, z), g(x, y, z), h(x, y, z) \rangle$; \mathbf{F} is called irrotational if $\nabla \cdot \mathbf{F} = 0$.

A. true B. false

(5 pts) 14. Let S be the upper half of a unit sphere oriented so that the z component of the unit normal vector is positive and let $\mathbf{F} = \langle \mathbf{y}, \mathbf{z}, \mathbf{x} \rangle$. What is the value of $\int \int_S (\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} \, dS$? (Hint: do not calculate this directly.)

A. 0

B. -2π

C. $-\pi$

D. 2π

E. π

(5 pts) 15. The vector field $\mathbf{F} = \langle 2xy - 3yz^2, x^2 - 3z^2, 6xyz \rangle$ is conservative.

A. true

B. false

(5 pts) 16. How many of the following vector fields are incompressible?

i.
$$\mathbf{F} = \langle \mathbf{x}, \mathbf{y}, \mathbf{z} \rangle$$

ii.
$$\mathbf{F} = \langle \mathbf{x}^2, 0, \mathbf{x} \mathbf{e}^{\mathbf{y}} \rangle$$

iii.
$$\mathbf{F} = \langle \mathbf{z}, \mathbf{x}, \mathbf{y} \rangle$$

iv.
$$F = \langle 4y \cos^2 x, -2y^2 \sin x \cos x, \sqrt{x^2 + y^2} \rangle$$

A. 0

B. 1

C. 2

D. 3

E. 4

(5 pts) 17. Let S be the part of the parabaloid $z = 1 - x^2 - y^2$ with $z \ge 0$ and oriented so that the z component of the normal vector is positive. If $\mathbf{F} = \langle \mathbf{x}, \mathbf{y}, \mathbf{1} \rangle$, the flux of \mathbf{F} across S is equal to:

A. 0

B. 1

C. $\pi/2$

D. π

E. 2π

(5 pts) 18. If f(x,y,z)=4 and S is the part of the plane 3x+3y+z=9 which lies in the first octant, then $\iint_S f(x, y, z) dS$ is equal to:

A. 0

B. $3\sqrt{19}$

C. $9\sqrt{19}$

D. $18\sqrt{19}$

E. $27\sqrt{19}$

(5 pts) 19. Let the surface S be the graph of the function $z = 2x^2 - 3y$, a normal vector to S at the point (1, -1, 5) is given by:

A. $\langle -4, 3, 1 \rangle$ B. $\langle -4, -3, 1 \rangle$ C. $\langle 4, -3, 1 \rangle$ D. $\langle 4, 3, 1 \rangle$ E. none of the above

(5 pts) 20. Lets S be the part of a cylinder parametrized by $\mathbf{r}(\theta, \mathbf{z}) = \langle 3\cos\theta, 3\sin\theta, \mathbf{z} \rangle$, $R = \{ (\theta, z) \mid 0 \le \theta \le 2\pi, \ 0 \le z \le 1 \}$ and oriented so that the normal vector points away from the z axis. If $\mathbf{F} = \langle xz, yz, x+y \rangle$, then the integral $\iint_S \mathbf{F} \cdot \hat{\mathbf{n}} dS$ is equal to:

A. 0

Β. 9π

C. 18π

D. 24π

E. 36π

(5 pts) Bonus 21. Lets S be the part of a cylinder parametrized by $\mathbf{r}(\theta, \mathbf{z}) = \langle 3\cos\theta, 3\sin\theta, \mathbf{z} \rangle$, $R = \{ (\theta, z) \mid 0 \le \theta \le 2\pi, \ 0 \le z \le 2 \}.$ The integral $\iint_S x^2 + y \ dS$ is equal to:

A.
$$\int_0^{2\pi} \int_0^2 (27\cos^2\theta + 9\sin\theta) \ dz \ d\theta$$
 B. $\int_0^{2\pi} \int_0^2 \sqrt{3}(9\cos^2\theta + 3\sin\theta) \ dz \ d\theta$

C.
$$\int_0^{2\pi} \int_0^2 (9\cos^2\theta + 3\sin\theta)(3\sin\theta\cos\theta) \, dz \, d\theta$$
 D. $\int_0^{2\pi} \int_0^2 (9\cos^2\theta + 3\sin\theta)\sqrt{3\cos\theta + 3\sin\theta} \, dz \, d\theta$

E. none of the above

(5 pts) Bonus 22. Let D be the tetrahedron formed by the planes x = 0, y = 0, z = 0, and x + y + z = 1 and let $\mathbf{F} = 18z\mathbf{k}$; the flux of \mathbf{F} across the surface of the solid is equal to:

A. 0

B. 2 C. 3 D. 6

E. 12