Practice Problems - Lecture 20

Problem 2. Use the definition of inverses to determine whether *f* and *g* are inverses: (a) $f(x) = 3x + 9, g(x) = \frac{1}{3}x - 3;$ (b) $f(x) = -4x + 2, g(x) = -\frac{1}{4}x - 2;$ (c) $f(x) = \frac{x - 3}{x + 4}, g(x) = \frac{4x + 3}{1 - x}.$

Problem 3. Find the inverse of the function, if possible:
(a)
$$\left\{ (3, -1), (5, 0), (0, 5), \left(4, \frac{2}{3}\right) \right\}$$
; (b) $\{ (6, -8), (3, -4), (0, -8), (5, -4) \}$.

Problem 4. The following functions are all one-to-one. Write an equation for the inverse function $y = f^{-1}(x)$:

(a)
$$f(x) = 4x - 5;$$

(b) $f(x) = -x^3 - 2;$
(c) $f(x) = \frac{1}{x+2}, x \neq -2;$
(d) $f(x) = \frac{x+2}{x-2}, x \neq 2.$

 $\mathbf{2}$

Problem 6. The standard cipher associates each letter of the alphabet to its number in alphabetical order: 1 goes with A, 2 goes with B, etc. (we assign 0 to the empty space). A message is encoded by converting the letters into numbers using the standard cipher, and then plugging each number of the message into the function f(x) = 3x - 2. The output is as follows:

 $37 \ 1 \ 58 \ 22 \ -2 \ 25 \ 55 \ -2 \ 16 \ 61 \ 40$

To decode the message, find the inverse function of f, substitute each output number into this inverse, and translate back to letters using the standard cipher. What is the message? Answers:

1. (a) Yes; (b) No; (c) Yes; (d) No; (e) No; (f) Yes.

2. (a) Yes; (b) No; (c) Yes. 3. (a) $\left\{ (-1,3), (0,5), (5,0), \left(\frac{2}{3}, 4\right) \right\}$; (b) No inverse (y-values -8 and -4 are both repeated).

4. (a)
$$f^{-1}(x) = \frac{1}{4}x + \frac{5}{4};$$

(b) $f^{-1}(x) = \sqrt[3]{-x-2};$
(c) $f^{-1}(x) = \frac{1}{x} - 2, x \neq 0;$
(d) $f^{-1}(x) = \frac{2x+2}{x-1}, x \neq 1$

