(5 pts) 1. Let $\mathbf{u} = \langle -3, 4, -1 \rangle$ and $\mathbf{w} = \langle -2, y, 3 \rangle$; for which value of y are the two vectors orthogonal?

A. 1/4 B. -9/4 C. 9/4 D. -1/4 E. -3/4

(5 pts) 2. Let $\mathbf{u} = 2\mathbf{j} - 3\mathbf{k}$ and $\mathbf{w} = \mathbf{i} - \mathbf{k}$; then $\mathbf{u} \times \mathbf{w}$ is given by:

A. $\langle -2, -3, -1 \rangle$ B. $\langle -2, -3, 1 \rangle$ C. $\langle -2, -3, -2 \rangle$ D. $\langle 0, -3, -2 \rangle$ E. none of the above

(5 pts) 3. If \mathbf{u}, \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^3 and c is a scalar, then which of the following is <u>not</u> true:

- A. $\mathbf{v} \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{u}$
- B. $(c\mathbf{v}) \cdot \mathbf{u} = c(\mathbf{v} \cdot \mathbf{u})$
- C. $\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||$
- D. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{u} + \mathbf{w} \cdot \mathbf{v}$
- E. $\mathbf{0} \cdot \mathbf{w} = 0$

(5 pts) 4. The area of a triangle with vertices (1, 3), (2, 5), and (3, 1) is:

A. 3 B. 6 C. 9 D. 10 E. 12

(5 pts) 5. Which of the following is the equation of a plane containing the point (2, 4, 0) and parallel to the plane $\langle x + 3, y - 4, z + 2 \rangle \cdot \langle 1, -1, 3 \rangle = 0$?

A. x - y + 3z = -2 B. x - y + 3z = 6 C. -x + y - 3z = 4 D. x - y + 3z = -4

E. none of the above

(5 pts) 6. If \mathbf{u}, \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^3 and c is a scalar, then which of the following is true:

A. $\mathbf{u} \times \mathbf{v}$ is the area of the parallelogram formed by \mathbf{u} and \mathbf{v}

B. $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = \mathbf{w} \times \mathbf{u} + \mathbf{w} \times \mathbf{v}$

C. $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$

D. if $\mathbf{u} = c\mathbf{v}$, then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$

E. $||\mathbf{0} \times \mathbf{v}|| > 0$

(5 pts) 7. The intersection of the ellipsoid $x^2 + 3y^2 + 5z^2 = 10$ with the plane z = 1 is a circle.

A. true B. false

(5 pts) 8. The domain of the function $\mathbf{r}(t) = \langle \ln(2-t), e^{-2t}, t/(t^2+1) \rangle$ is:

A. $(2, \infty)$ B. $(-\infty, 2]$ C. $(-\infty, -2) \cup (2, \infty)$

D. $(-\infty, -1) \cup (-1, 0) \cup (0, 1) \cup (1, 2)$ E. none of the above

I. the plane -x - 4y + 2z = 3 is orthogonal to the plane -2x + y + z = 6

II. the plane -12x + 6y - 3z = 2 is parallel to the plane -4x + 2y - z = 0

III. the plane z = -3 is parallel to the x, y coordinate plane

IV. the point (1, 2, 0) lies in the plane x - 3y - 2z = -7

A. only III B. only I C. only I and II D. only I, II, and III E. I, II, III, and IV

(5 pts) 10. Given $\mathbf{r}'(t) = \langle 6t^2, 15e^{3t}, 8\cos(2t) \rangle$, which of the following is an antiderivative $\mathbf{r}(t)$ such that $\mathbf{r}(0) = \langle 6, 0, 6 \rangle$?

A. $\langle 2t^3 + 6, 5e^{3t} - 5, 4\sin(2t) + 6 \rangle$ B. $\langle 3t^2 + 3, 5e^{3t} - 5, 4\sin(2t) + 2 \rangle$ C $\langle 3t^2 + 6, 15e^{3t} - 15, 8\sin(2t) - 2 \rangle$ D. $\langle 2t^3 + 6, 15e^{3t} - 15, 8\sin(2t) + 6 \rangle$ E. $\langle 2t^3 + 6, 5e^{3t} - 5, 4\sin(2t) + 2 \rangle$

(5 pts) 11. The length of the curve $\mathbf{r}(t) = \langle 2t, \ln t, t^2 \rangle, t \in [e, e^2]$ is:

A. $e^4 + 2$ B. $2e^4$ C. $e^4 - e^2$ D. $e^4 - e^2 + 2$ E. $e^4 - e^2 + 1$

(5 pts) 12. The curvature of $\mathbf{r}(t) = \langle 2\cos t, 5, 2\sin t \rangle$ is constant for all t.

A. true B. false

(5 pts) 13. Which of the following are true?

I. $\mathbf{B} \cdot \mathbf{N} = 0$

II. $\mathbf{B} \times \mathbf{T} = \mathbf{0}$

III. $\kappa = |d\mathbf{T}/\mathrm{ds}|$

IV. $ds/dt = |\mathbf{r}'(t)|$

A. only I B. only IV C. only I and II D. only I and IV E. only I, III, and IV

(5 pts) 14. Bonus. Which of the following surfaces have an x, z trace given by $x^2 + z^2 = 9$?

A. $y = x^2 + z^2 + 9$ B. $x^2 + 4y^2 + z^2 = 3^2$ C. $y = x^2 - z^2 - 9$ D. $y = x^2 - z^2 + 9$ E. $3x^2 + y^2 + z^2 = 27$

(5 pts) 15. Bonus. The projection of **i** onto **j** is given by:

A. 0 B. k C. -k D. j E. none of the above

Name:	UF-ID:	Section:

(7 pts) 1. If $\mathbf{N} = \langle 1/3, 2/3, 2/3 \rangle$, $\mathbf{T} = \langle 2/\sqrt{5}, -1/\sqrt{5}, 0 \rangle$, and $\mathbf{a} = \langle 4, 3, 4 \rangle$, find a_N and a_T .

(7 pts) 2. Calculate κ at the point t = 0 for the curve generated by $\mathbf{r}(t) = \langle 3, t^2, 4t \rangle$

(7 pts) 3. For the curve generated by $\mathbf{r}(t) = \langle \cos 2t, 3t, \sin 2t \rangle$, calculate the principal unit normal vector.

(7 pts) 4. Evaluate $\int_1^3 (2t+3)\mathbf{i} + (3/t)\mathbf{j} + (e^{2t-6})\mathbf{k} dt$.

(7 pts) 5. Calculate the angle between the planes 2x - 4y = 5 and 3y + z = 2.