(5 pts) 1. The equation of the tangent plane to surface $25x^2 + 4y^2 + 4z^2 = 100$ at the point (0, 4, 3) is:

A. 32y + 24z = 200B. 8x + 24y + 32z = 200C. 8x + 32y + 24z = 200D. 24y + 32z = 200E. none of the above

(5 pts) 2. If w is a function of the variables x, y, and z and each of the variables x, y, and z is a function of the variables s and t, then which of the following is true?

A.
$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial s} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial s}$$

B. $\frac{dw}{ds} = \frac{\partial w}{\partial x}\frac{dx}{ds} + \frac{\partial w}{\partial y}\frac{dy}{ds} + \frac{\partial w}{\partial z}\frac{dz}{ds}$
C. $\frac{dw}{ds} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial s} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial s}$
B. $\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x}\frac{dx}{ds} + \frac{\partial w}{\partial y}\frac{dy}{ds} + \frac{\partial w}{\partial z}\frac{dz}{ds}$

E. none of the above

(5 pts) 3. The derivative
$$\frac{\partial^2}{\partial x \partial y}$$
 $(y + y^2 e^x)$ is equal to:
A. ye^x B. $2ye^x$ C. $x + y + ye^x$ D. $2x + 2y + 2ye^x$ E. $1 + 2ye^x$
(5 pts) 4. If $\mathbf{u} = \left\langle 2/\sqrt{13}, 3/\sqrt{13} \right\rangle$ and $f(x, y) = x^2 + y$, then $D_{\mathbf{u}}f(1, 0)$ is equal to:
A. $2/\sqrt{13}$ B. $3/\sqrt{13}$ C. $5/\sqrt{13}$ D. $6/\sqrt{13}$ E. $7/\sqrt{13}$

(5 pts) 5. Which of the following are critical points of the function $f(x, y) = x^2 + 2y^2 - 4xy - 6x$?

I. (3,3)

II. (-3, -3)

III. (0, 0)

IV. (1, 1)

A. only I B. only II C. only III and IV D. only I and II E. only I, III, and IV

(5 pts) 6. The equation of the tangent plane to the surface z = cos(xy) at the point $(2, \pi, 1)$ is given by:

- A. $L(x, y) = \pi x + 2y$ B. $L(x, y) = \pi x + 2y 2\pi$ C. $L(x, y) = \pi x + 2y + 2\pi$
- D. $L(x, y) = \pi x + 2y + 4\pi$ E. none of the above

(5 pts) 7. Given the function $g(x, y, z) = \sqrt{16 - x^2 - y^2 - z^2}$, which of the following are true?

- I. D = { $(x, y, z) \mid 16 \ge x^2 + y^2 + z^2$ }
- II. R = [0, 16]

III. The level surfaces are spheres.

IV. The graph of the function g(x, y, z) lies in \mathbb{R}^4 .

A. only I B. only III C. only II and IV D. only I and II E. only I, III, and IV

(5 pts) 8. If $f(x,y) = (2xy + 3y^2)^3$, then $f_x(-1,1)$ is equal to:

A. -4 B. 4 C. 6 D. 8 E. 12

(5 pts) 9. Let (a, b) be a point in the domain of the real-valued function f(x, y) and let $L \in R$; which of the following are true?

I. If f(x, y) is continuous at (a, b), then $\lim_{(x,y)\to(a,b)} f(x, y)$ exists.

II. If $\lim_{(x,y)\to(a,b)} f(x,y)$ exists, then f(x,y) is continuous at (a,b).

III. If f(x, y) is continuous at (a, b), then $\lim_{(x,y)\to(a,b)} f(x, y) = f(a, b)$.

IV. If $\lim_{(x,y)\to(a,b)} f(x,y) = L$, then $\lim_{(x,y)\to(a,b)} \sqrt{f(x,y)} = \sqrt{L}$.

A. only I B. only II C. only I and II D. only II and IV E. I and III

(5 pts) 10. For $f(x, y) = x^3 + y^3 - 12xy$, the critical point (4, 4) is:

A. a local max B. a local min C. a saddle point D. a boundary point

E. the second derivative test fails at this point

(5 pts) 11. To find the point on the surface $z = x^2 - y^2$ closest to the point (1,2,3), which of the following functions should be optimized?

A. $\sqrt{x^2 + y^2 + z^2}$ B. $\sqrt{(x+1)^2 + (y+2)^2 + (z+3)^2}$ C. $\sqrt{x^2 + y^2 + (x^2 - y^2)^2}$ D. $(x-1)^2 + (y-2)^2 + (x^2 - y^2 - 3)^2$ E. none of the above (5 pts) 12. Which of the following is a vector orthogonal to the tangent line to the curve $x^2 - 4xy - y^2 = 4$ at the point (5, 1)?

A. $\langle -6, 2 \rangle$ B. $\langle 1, 3 \rangle$ C. $\langle -1, 3 \rangle$ D. $\langle 6, -22 \rangle$ E. $\langle -11, 3 \rangle$

(5 pts) 13. Let $f(x, y, z) = x^2 + yz + \cos(\pi z)$, x = t, $y = \cos t$, and $z = e^t$. Calculate the value of derivative of the f(x, y, z) with respect to t when t = 0.

A. 0 B. 1 C. -1 D. $1 + \pi$ E. $1 - \pi$

(5 pts) 14. Bonus. Let f(x, y) function which is differentiable at the point (a, b) and let **u** be a nonzero vector in \mathbb{R}^2 . Which of the following are true?

I. The equation of the tangent plane to the surface at (a, b, f(a, b)) is given by $L(x, y) = f_y(a, b)(x - a) + f_x(a, b)(y - b).$

II. $D_{\mathbf{u}}f(a,b) = \langle f_x(a,b), f_y(a,b) \rangle \cdot \mathbf{u}$

III. The max rate of change of f(x, y) at (a, b) is in the direction of $\nabla f(a, b)$.

IV. If $\nabla f(a, b) = \mathbf{0}$, then (a, b) is a critical point of f(x, y).

A. I and III B. II and III C. I and IV D. III and IV E. II and IV

Name: UF-ID: Section:

(6 pts) 1. Calculate the following limit:

$$\lim_{(x,y)\to(2,2)} \frac{x^2+y^2}{x-y}.$$

(6 pts) 2. Given $f(x,y) = 2x^2 + y^2$, use the value of the function at the point (2,1) and differentials to approximate f(1.95, 1.1).

(7 pts) 3. Use the technique of implicit differentiation discussed in class to calculate $\frac{dy}{dx}$ given $\sqrt{x^2y^2 + 3y^4} = 2e^3$.

(6 pts) 4. Given $f(x,y) = x \sin y + x^2$, at the point $(1,\pi)$ find a vector which points in the direction of no rate of change of the function.

(10 pts) 5. Given $f(x, y) = (x^2 - 1)(y^2 - 4)$, $f_x(x, y) = 2x(y^2 - 4)$, and $f_y(x, y) = 2y(x^2 - 1)$, find the max and min values of f(x, y) on the rectangular region bounded by the lines x = 1, x = -1, y = 2, and y = -2.