Quiz 1

You must give complete, mathematically correct proofs to receive full credit!!

Problem 1. (4 points) Determine whether the following element of D_3 is a rotation or a reflection, and justify your reasoning:

$$R_{120}R_{240}DVR_0D'R_{120}V.$$

Whether an element of D_n is a reflection or rotation depends only on the number of reflections: an even number will return the figure to its starting side while an odd number will flip it to the back side. Since the given element involves 4 reflections and 4 is even, the element must be a rotation.

Problem 2. (6 points) Let $S = \mathbb{Z} \setminus \{0\}$ and define the relation $a \sim b$ if $ab > 0$. Decide whether or not \sim is an equivalence relation on S. If it is, give a proof of this and describe the equivalence classes. If not, state which properties are satisfied and which properties fail to hold.

Yes, it is an equivalence relation.

Proof: Let $a \in S = \mathbb{Z} \setminus \{0\}$. Then $a^2 > 0$ implies $a \sim a$, so \sim is reflexive. Suppose that $a \sim b$. Then $ab > 0$ implies $ba > 0$, so $b \sim a$ and \sim is symmetric. Finally, suppose that $a \sim b$ and $b \sim c$ for $a, b, c \in S$. Then $ab > 0$ and $bc > 0$. Since $ab > 0$, a and b must have the same sign, and similarly b and c must have the same sign. Therefore, a and c must have the same sign, so $ac > 0$ and $a \sim c$, showing that \sim is transitive. Thus, \sim is an equivalence relation.

As implied in the proof, the equivalence classes are determined by the sign of the integer, so there are two distinct equivalence classes:

$$\mathcal{T} = \{1, 2, 3, \ldots\} = \mathbb{Z}^+ \quad \text{and} \quad \overline{-1} = \{-1, -2, -3, \ldots\} = \mathbb{Z}^-.$$