Name: Key May 12, 2017 MAS 4301.8385 Cyr

Quiz 1

You must give complete, mathematically correct proofs to receive full credit!!

Problem 1. (4 points) Determine whether the following element of D_3 is a rotation or a reflection, and justify your reasoning:

$R_{120}R_{240}DVR_0D'R_{120}V.$

Whether an element of Dn is a reflection or rotation depends only on the number of reflections: an even number will return the figure to its starting side while an odd number will flip it to the back side. Since the given element involves 4 reflections and 4 is even, the element must be a rotation.

Problem 2. (6 points) Let $S = \mathbb{Z} \setminus \{0\}$ and define the relation $a \sim b$ if ab > 0. Decide whether or not \sim is an equivalence relation on S. If it is, give a proof of this and describe the equivalence classes. If not, state which properties are satisfied and which properties fail to hold.

Yes, it is an equivalence relation.

Proof Let $a \in S = \mathbb{Z} \setminus \{0\}$. Then $a^2 > 0$ implies $a \wedge a$, so n is reflexive. Suppose that $a \wedge b$. Then ab > 0 implies ba > 0, so $b \wedge a$ and $a \wedge b$ is symmetric. Finally, suppose that $a \wedge b$ and $b \wedge c$ for $a, b, c \in S$. Then ab > 0 and bc > 0. Since ab > 0, a and b must have the same sign, and similarly b and c must have the same sign. Therefore, a and c must have the same sign. Therefore, a and $a \wedge c$, showing that $a \wedge b$ is transitive. Thus, $a \wedge b$ is an equivalence relation. \mathbb{Z}

As implied in the proof, the equivalence classes are determined by the sign of the integer, so there are two distinct equivalence classes: $T = \{1, 2, 3, ... \} = \mathbb{Z}^+$ and $\overline{-1} = \{-1, -2, -3, ... \} = \mathbb{Z}^-$.