Name: Key August 4, 2015 MAC 2313.8326 Cyr

Quiz 12 You must show all work to receive full credit!!

Problem 1. (5 pts) Use Green's Theorem to evaluate $\oint_{\mathcal{C}} xy^2 dy$, where \mathcal{C} is the unit circle centered at the origin, oriented counterclockwise. $\overrightarrow{F} = \langle f, g \rangle = \langle o, \times g^2 \rangle$

Problem 2. (3 pts) Let \mathcal{C} be a simple, closed curve enclosing a region D such that the conditions of Green's Theorem are satisfied. Justify or disprove the claim that the area of D can be calculated by evaluating $\oint_{\mathcal{C}} (y \tan^2 x) dx + (\tan x + e^{y^3}) dy$.

$$\vec{F} = \langle f, g \rangle = \langle y \tan^2 x, \tan x + e y^3 \rangle \Rightarrow g_x - f_y = \sec^2 x - \tan^2 x.$$

Since $\sec^2 x = \tan^2 x + 1 \Rightarrow \sec^2 x - \tan^2 x = 1$, $g_x - f_y = 1$. Thus, by Green's Theorem, $\oint_C \vec{F} \cdot d\vec{r} = \iint_D 1 dA = Area (D)$.

Problem 3. (2 pts) Is the following statement true or false? Every conservative vector field is irrotational.

True
$$[1f \vec{F} = \langle f, g \rangle]$$
 is conservative, then $fy = gx$, which is the definition of an irrotational vector field.]