Name: Key April 16, 2015 MAC 2313.3118 Cyr

Quiz 13

You must show all work to receive full credit!!

Problem 1. (3 pts) Let $V(x, y, z) = xy \sin(yz)$ and $\mathbf{F} = \nabla V$. Evaluate $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$, where \mathbf{c} is any path from (0, 0, 0) to $(2, \frac{1}{2}, \pi)$.

Since F has potential function V, it is conservative, so

$$\int_{\vec{c}} \vec{F} \cdot d\vec{s} = V(2, \frac{1}{2}, \pi) - V(0, 0, 0)$$

$$= (2)(\frac{1}{2})\sin \frac{\pi}{2} - 0$$

$$= 1$$

Problem 2. (7 pts) Calculate $\iint_{\mathcal{S}} zdS$ where the surface \mathcal{S} is the portion of the cylinder $y=9-z^2$ where $0\leq x\leq 3, 0\leq z\leq 3$. (Hint: write a parametrization for \mathcal{S} which depends on the variables x and z.)

A parametrization for S is $G(x,z) = (x, 9-z^2, z)$, for $0 \le x \le 3$, $0 \le z \le 3$.

Then
$$\vec{T}_{x} = \langle 1,0,0 \rangle$$
, $\vec{T}_{z} = \langle 0,-2z,1 \rangle$, and $\vec{n} = \begin{vmatrix} i & j & k \\ 1 & 0 & 0 \\ 0 & -2z & 1 \end{vmatrix}$

Since we are finding a scalar surface integral, we calculate 11711 = \square 1+422.

Then
$$\iint_{S} 2dS = \int_{0}^{3} \int_{0}^{3} 2\sqrt{1+42^{2}} dx dz = 3 \int_{0}^{3} 2\sqrt{1+42^{2}} dz$$
 $u = 1+42^{2}$

$$= \frac{3}{8} \int_{1}^{37} u^{1/2} du = \frac{1}{4} u^{3/2} \Big|_{1}^{37}$$
 $du = 82dz$

$$= \frac{37\sqrt{37} - 1}{4}$$