Name: Key May 19, 2017 MAS 4301.8385 Cvr

Quiz 2

You must give complete, mathematically correct proofs to receive full credit!!

Problem 1. (5 points) Let $G = \left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \mid a \in \mathbb{R} \right\}$. Prove that G is a group under matrix multiplication.

Let
$$A, B \in G$$
. Then $AB = \begin{bmatrix} 1 & a \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a+b \\ 0 & 1 \end{bmatrix} \in G$, so the operation is closed.

Matrix multiplication is associative. The identity element in G is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Since $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$.

Given
$$A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \in G$$
, $A^{-1} = \begin{bmatrix} 1 & -a \\ 0 & 1 \end{bmatrix}$ since $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$.

Since $A^{-1} \in G$, G is a group.

Problem 2. (5 points) Let G be a group of functions from \mathbb{R} to \mathbb{R} , where the operation is addition of functions. Prove that $H = \{ f \in G \mid f(1) = 0 \}$ is a subgroup of G.

The identity in G is $e(x) \equiv 0$ $\forall x \in \mathbb{R}$, $e \in H$ since $e(1) \equiv 0$. Let $f,g \in H$. Then $(f+g)(1) \equiv f(1) + g(1) \equiv 0 + 0 \equiv 0$, so $f+g \in H$. Let $f \in H$. Its inverse in G is -f, and $(-f)(1) \equiv -f(1) \equiv -0 \equiv 0$, so $-f \in H$. Thus, H is a subgroup by the Subgroup Test.