Name: Key January 22, 2015 MAC 2313.3122 Cyr

Quiz 2

You must show all work to receive full credit!!

Problem 1. (6 pts) Let $\mathbf{u} = \langle 1, 0, 1 \rangle, \mathbf{v} = \langle 2, -1, 0 \rangle$.

(a) Find $\mathbf{u} \times \mathbf{v}$.

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 1 \\ 2 & -1 & 0 \end{vmatrix} = \left[(0)(0) - (-1)(1) \right] \hat{i} - \left[(1)(0) - (2)(1) \right] \hat{j} + \left[(1)(-1) - (2)(0) \right] \hat{k}$$

$$= \hat{i} + 2\hat{j} - \hat{k} = \left[\langle 1, 2, -1 \rangle \right]$$

(b) Use your work from part (a) to find the equation of the plane containing the vectors \mathbf{u} and \mathbf{v} and passing through the point (2,0,1). (Write your answer in scalar form.)

Since I and I lie in the plane, IXI is a normal vector.

So
$$\langle 1,2,-1 \rangle \cdot \langle x,y,z \rangle = \langle 1,2,-1 \rangle \cdot \langle 2,0,1 \rangle = (1.2) + (2.0) + (-1.1)$$

$$\Rightarrow X + 2y - 2 = 1$$

Problem 2. (4 pts) Find the intersection of the line $\mathbf{r}(t) = \langle 2, -1, -1 \rangle + t \langle 1, 2, -4 \rangle$ and the plane 2x + y = 3.

$$\vec{r}(t) = \langle 2 + t, -1 + 2t, -1 - 4t \rangle$$

Substituting into the plane equation yields

$$2(a+t) + (-1+at) = 3 \Rightarrow 4+at-1+at=3 \Rightarrow 4t+3=3$$

 $\Rightarrow 4t=0 \Rightarrow t=0$

Then
$$\vec{r}(0) = \langle 2, -1, -1 \rangle$$
, so they intersect at the point $[(2, -1, -1)]$