Name: Key June 30, 2017 MAS 4301.8385 Cyr

Quiz 5

You must give complete, mathematically correct proofs to receive full credit!!

Problem 1. (5 points) How many elements of order 9 does $\mathbb{Z}_3 \oplus \mathbb{Z}_9$ have? Justify your answer.

The element $(\bar{a}, \bar{b}) \in \mathbb{Z}_3 \oplus \mathbb{Z}_q$ has order 9 if $lcm(|\bar{a}|, |\bar{b}|) = 9$. By Lagrange's Thrm, $|\bar{a}| \in \{1, 3\}$ and $|\bar{b}| \in \{1, 3, 9\}$. There are two cases which give $lcm(|\bar{a}|, |\bar{b}|) = 9$:

Case 1: $|\bar{\alpha}|=1$, $|\bar{b}|=9$. Then $\bar{\alpha}=\bar{0}\in\mathbb{Z}_3$, and there are $\phi(9)=6$ elements of order 9 in \mathbb{Z}_9 , so this case yields 1.6=6 elements.

Case 2: $|\bar{a}| = 3$, $|\bar{b}| = 9$. There are still 6 choices for \bar{b} , but now there are $\phi(3) = 2$ choices for \bar{a} , so this case yields $2 \cdot 6 = 12$ elements.

Thus, Z3 D Zq has (18) elements of order 9.

Problem 2. (5 points) Is $\mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_6 \cong \mathbb{Z}_{60} \oplus \mathbb{Z}_6 \oplus \mathbb{Z}_2$? Justify your answer.

Using the fact that $\mathbb{Z}_m \oplus \mathbb{Z}_n = \mathbb{Z}_{mn}$ iff $\gcd(m,n)=1$ and rearranging the factors as needed, we have

 $\begin{array}{c} \mathbb{Z}_{10} \, \oplus \, \mathbb{Z}_{12} \, \oplus \, \mathbb{Z}_{6} \, \cong \, (\mathbb{Z}_{2} \, \oplus \, \mathbb{Z}_{5}) \, \oplus \, (\mathbb{Z}_{3} \, \oplus \, \mathbb{Z}_{4}) \, \oplus \, (\mathbb{Z}_{2} \, \oplus \, \mathbb{Z}_{3}) \\ & \stackrel{\cong}{=} \, (\mathbb{Z}_{3} \, \oplus \, \mathbb{Z}_{4} \, \oplus \, \mathbb{Z}_{5}) \, \oplus \, (\mathbb{Z}_{2} \, \oplus \, \mathbb{Z}_{3}) \, \oplus \, \mathbb{Z}_{2} \\ & \stackrel{\cong}{=} \, \mathbb{Z}_{60} \, \oplus \, \mathbb{Z}_{6} \, \oplus \, \mathbb{Z}_{2} \, . \quad \text{So yes, they are isomorphic.} \end{array}$