Name: Key February 11, 2016 MAC 2313.9256 Cyr

Quiz 5 You must show all work to receive full credit!!

Problem 1. (6 pts) Let $f(x,y) = \frac{xy}{x-y}$. Evaluate $\frac{\partial f}{\partial y}\Big|_{(2,3)}$ and $\frac{\partial^2 f}{\partial x \partial y}\Big|_{(4,3)}$. $\frac{2f}{2y} = \frac{(x-y) \cdot x - (xy) \cdot (-1)}{(x-y)^2} = \frac{x^2 - xy + xy}{(x-y)^2} = \frac{x^2}{(x-y)^2}$ $\Rightarrow \frac{2f}{2y}\Big|_{(2,3)} = \frac{2^{2}}{(2-3)^{2}} = \frac{4}{(-1)^{2}} = \boxed{4}$ $\frac{3^{2}f}{3x3y} = \frac{3}{3x} \left[\frac{3f}{3y} \right] = \frac{(x-y)^{2} \cdot 2x - x^{2} \cdot 2(x-y)}{(x-y)^{4}} = \frac{2x(x-y)[(x-y)^{-x}]}{(x-y)^{4}}$ $= \frac{-2xy}{(x-y)^3} \Rightarrow \frac{3^2f}{2x3y}\Big|_{(4,2)} = \frac{-2(4)(2)}{(4-2)^3} = \frac{-16}{8} = \boxed{-2}$

Problem 2. (4 pts) Let $g(x,y) = \frac{x^2y^2}{x^2 + y^2}$. (a) Evaluate $\lim_{(x,y)\to(0,0)} g(x,y)$ along the x-axis.

Along X-axis,
$$y=0$$
, so $\lim_{X\to 0} \frac{x^2 \cdot 0^2}{X^2 + 0^2} = \lim_{X\to 0} \frac{0}{X^2}$

$$= \lim_{X\to 0} 0 = 0$$

(b) Evaluate $\lim_{(x,y)\to(0,0)} g(x,y)$ along the line y=x.

$$\lim_{X \to 0} \frac{\chi^2, \chi^2}{\chi^2 + \chi^2} = \lim_{X \to 0} \frac{\chi^4}{2\chi^2} = \lim_{X \to 0} \frac{1}{2}\chi^2 = \boxed{0}$$

(c) Can you conclude that $\lim_{(x,y)\to(0,0)} g(x,y)$ exists? Explain why or why not.

No : even though the limit along two paths is equal, there could be another path which has a different limit.