Name: Key September 29, 2016 MAC 2313.6717 Cyr

Quiz 5

You must show all work to receive full credit!!

Problem 1. (4 points) Given $f(x, y, z) = xy^2e^{-xz}$, find the partial derivatives f_x , f_y , and f_z .

$$f_{x} = y^{2} e^{-Xz} - xy^{2} z e^{-Xz}$$

$$f_{y} = 2xye^{-Xz}$$

$$f_{z} = -x^{2}y^{2} e^{-Xz}$$

Problem 2. (a) (1 point) Evaluate $\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz}{x^2+y^2+z^2}$ along the x-axis.

$$y=z=0$$
, so $\lim_{X\to 0} \frac{0}{x^2} = 0$

(b) (2 points) Evaluate $\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz}{x^2+y^2+z^2}$ along the line x=y=z.

$$\lim_{X \to 0} \frac{\chi^2 + \chi^2}{\chi^2 + \chi^2 + \chi^2} = \lim_{X \to 0} \frac{2\chi^2}{3\chi^2} = \lim_{X \to 0} \frac{2}{3} = \frac{2}{3}$$

(c) (1 point) What can you conclude about $\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz}{x^2+y^2+z^2}$?

Problem 3. (2 points) True or false: $f_x(a, b)$ represents the slope of the tangent line to the curve z = f(x, b) at the point x = a.