Name: Key July 7, 2017 MAS 4301.8385 Cyr

Quiz 6

You must give complete, mathematically correct proofs to receive full credit!!

Problem 1. (5 points) Let G be a nonabelian group of order p^3 for some prime p, and suppose that $\mathbf{Z}(G)$ is nontrivial. Prove that $|\mathbf{Z}(G)| = p$.

Proof By Lagrange's Thrm, $|Z(G)| \in \{1, p, p^2, p^3\}$. Since Z(G) is nontrivial, $|Z(G)| \neq 1$, and since G is nonabelian, $Z(G) \neq G \Rightarrow |Z(G)| \neq p^3$. Suppose that $|Z(G)| = p^2$. Then $|G/Z(G)| = \frac{p^3}{p^2} = p$ and by a Corollary of Lagrange's Thrm, G/Z(G) is cyclic. Thus, G is abelian by the G/Z Thrm, but this is a contradiction. Therefore, |Z(G)| = p.

Problem 2. (5 points) Let $\phi: G \to H$ be a group homomorphism and let $N \subseteq H$. Prove that $\phi^{-1}(N) \subseteq G$.

Proof Let
$$y \in \phi^{-1}(N)$$
 and $x \in G$; we WTS that $xyx^{-1} \in \phi^{-1}(N)$.
Now $\exists n \in N \text{ s.t. } \phi(y) = n$. We then have
$$\phi(xyx^{-1}) = \phi(x) \phi(y) \phi(x^{-1}) = \phi(x) n \phi(x)^{-1} \in N \text{ since } N \unlhd H.$$
Thus, $xyx^{-1} \in \phi^{-1}(N)$, so $\phi^{-1}(N) \unlhd G$ by the Normal Subgroup Test. \square