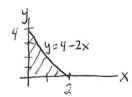

Name: Key March 17, 2016 MAC 2313.8443 Cyr

Quiz 9

You must show all work to receive full credit!!


Problem 1. (2 pts) Rewrite the integral by changing the order of integration: $\int_0^2 \int_{y^2}^{2y} f(x,y) dxdy$.

(You may find it helpful to sketch the domain of integration.)

Problem 2. (3 pts) Set up the triple integral that would be used to calculate the volume of the region in the first octant $(x \ge 0, y \ge 0, z \ge 0)$ satisfying $2x + y + z \le 4$. DO NOT EVALUATE. (You may find it helpful to sketch the domain of integration.)

In the x,y-plane (z=0), we have 2x+y=4 => y=4-2x.

Problem 3. (5 pts) Evaluate by using polar coordinates: $\iint_{\mathcal{D}} x \, dA$, where $\mathcal{D} = \{1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$. (You may find it helpful to sketch the domain of integration.)

$$\int_{0}^{\pi/2} \int_{1}^{2} r \cos \theta \cdot r dr d\theta = \int_{0}^{\pi/2} \int_{1}^{2} r^{2} \cos \theta dr d\theta$$

$$= \int_{0}^{\pi/2} \frac{r^{3}}{3} \Big|_{1}^{2} \cos \theta d\theta = \frac{7}{3} \int_{0}^{\pi/2} \cos \theta d\theta$$

$$= \frac{7}{3} \sin \theta \Big|_{0}^{\pi/2} = \frac{7}{3} (1-0) = \boxed{\frac{7}{3}}$$