1. If \(f(x) \) has a domain of \([-1, 1]\) and a range of \([-2, 2]\), then what is the domain and range of the following?

\[
3f(2x - 1) - 2
\]

2. Is the following function even, odd, or neither?

\[
f(x) = x^3 - 5x - 1
\]

3. Let \(f \) be the following piecewise function:

\[
f(x) : \\
\begin{cases}
(x - 2) & x < -1 \\
(-x)^2 & -1 \leq x \leq 4 \\
-\sqrt{x} + 1 & x > 4
\end{cases}
\]

(a) Find: \(f(-1) + f(-2) \)
(b) Sketch a graph by using transformations.

University of Florida Honor Code:

On my honor, I have neither given nor received unauthorized aid in doing this assignment.

Signature
1) domain: change \(\frac{-1}{2} \div \frac{1}{2} = \frac{-1}{2} \)
\[\left[-1, 1 \right] \]
\[\frac{1}{2} \frac{1}{2} \]
\[\left[-\frac{1}{2}, \frac{1}{2} \right] \]
\[+1 \quad +1 \Rightarrow \left[\frac{1}{2}, \frac{3}{2} \right] \]
range: change \(x \times 3 \)
\[\left[-2, 2 \right] \]
\[x^3 \quad x^3 \]
\[\left[-6, 6 \right] \]
\[-2 \quad -2 \]
\[\left[-8, 4 \right] \Rightarrow \]

2) even: \(f(x) = f(-x) \)
\[x^3 - 5x - 1 \neq -x^3 + 5x - 1 \]
not even
odd: \(f(-x) = -f(x) \)
\[-x^3 + 5x - 1 \neq -x^3 + 5x + 1 \]
not odd
neither
3) a) \[f(-1) = (-(-1))^3 = 1 \]
\[f(-2) = (-2-2) = -4 \]
\[1 - 4 = -3 \]

b) \[(4, 15) \]