Quiz 2 Solutions

MAC 1147.3077, Fall 2015
Thursday, September 10, 2015
Show all relevant work to support your answer. A correct answer without supporting work will not earn the points. Problems 3 and 4 are on the back.

1. (1 point) What is your favorite food? (Hint: There is no wrong answer)
2. \qquad
3. (4 points) Solve the following inequalities using interval notation:
(a) $|4-6 x| \geq 4$

Solution: The inequality translates to $(4-6 x) \geq 4 \cup-(4-6 x) \geq 4$. Solving $(4-6 x) \geq 4$ for x, we get $x \leq 0$. As for the second inequality, we get $x \geq \frac{4}{3}$. Hence, the solution is $(-\infty, 0] \cup\left[\frac{4}{3}, \infty\right)$.
(b) $2 x-1>x-2(3+2 x)$

Solution: After simplifying the right side, we get $2 x-1>-3 x-6$. Hence, we see $5 x>-5$, or $x>-1$.
3. (2 points) Solve the following equation for $p: \frac{p-4}{6}-\frac{2 p}{3}=\frac{1-3 p}{2}$.
A. $\frac{5}{6}$
B. $\frac{4}{3}$
C. $\frac{-5}{2}$
D. $\frac{7}{6}$
E. $\frac{-1}{3}$

Solution: The "classic" example of an odd function is $y=x^{3}$. Hence, envisioning the shape of x^{3} with the point $(3,7)$, we must have the point $(-3,-7)$ also on the graph.
4. (3 points) Solve the following equation for x : $x^{2}-8 x=-15$.

Solution: Add 15 to both sides to get $x^{2}-8 x+15=0$. Then the polynomial factors as $(x-3)(x-5)$ and so the solutions are $x=3,5$.

