Quiz 6 Solutions

MAC 1147.3077, Fall 2015
Thursday, October 22, 2015
Show all relevant work to support your answer. A correct answer without supporting work will not earn the points. Problems 3 and 4 are on the back.

1. (1 point) What is your TA's first name? (Hint: There is no wrong answer)

1. Charles

2. (4 points) Use the one-to-one property to solve the equations for x :
(a) $e^{x^{2}+6}=e^{5 x}$

Solution: Using the one-to-one property in your textbook, we get $x^{2}+6=5 x$, or rewritten as $x^{2}-5 x+6=0$. Factoring this polynomial, we obtain $x=2,3$ as our solutions.
(b) $\ln \left(x^{2}-x\right)=\ln (6)$.

Solution: Using the one-to-one property in your textbook, we get $x^{2}-x=6$, or rewritten as $x^{2}-x-6=0$. Factoring this polynomial, we obtain $x=3,-2$ as our solutions.

Problems 3 and 4 are on the back.
3. (2 points) Use properties of logarithms to expand the following expression:

$$
\ln \left(x y z^{2}\right)
$$

Solution: Expanding using properties of logs from the book, we get:

$$
\ln \left(x y z^{2}\right)=\ln x+\ln y+2 \ln z
$$

4. (3 points) Solve the system of non-linear equations by using the method of substitution:

$$
\left\{\begin{array}{l}
x-2 y=0 \\
3 x-y^{2}=0
\end{array}\right.
$$

Solution: Solving the first equation for x, we see $x=2 y$. Thus, substituting $x=2 y$ into the second equation, we get $3(2 y)-y^{2}=0$, or rewritten as $0=y^{2}-6 y$. Then we factor out y so that $0=y(y-6)$, and hence $y=0,6$. Substituting each of these y values into the first equation, we obtain $(0,0),(12,6)$ as the solutions.

