Name: C. Walker

Quiz 7 Solutions MAC 1147.3077, Fall 2015 Thursday, October 29, 2015

Show all relevant work to support your answer. A correct answer without supporting work will not earn the points. **Problems 3 and 4 are on the back.**

- 1. (1 point) What is your most memorable moment of the course so far? (Hint: There is no wrong answer)
 - 1. <u>responses for questions</u>

2. (4 points) Solve the following equations for x:

(a)
$$e^{2x} - 4e^x - 5 = 0$$

Solution: We want the given equation to be a polynomial so it is easy to solve for x. Thus, we make the substitutions $u=e^x$ and $u^2=e^{2x}$ into the given equation. Then we get $u^2-4u-5=0$ as our new equation. Now factor to get (u-5)(u+1)=0, and so u=5,-1. Since we started with the variable x, our solution must contain x. So now substitute each u into $u=e^x$, so that $5=e^x$ and $-1=e^x$. Solving each equation using the natural log, we get $x=\ln 5, \ln -1$. Finally since $\ln x$ isn't defined for $x \le 0$, our only solution is $x=\ln 5$.

(b) $4\log(x-6) = 11$

Solution: First, divide both sides of the given equation by 4 so that $\log(x-6)$ is alone. Thus we have $\log(x-6) = \frac{11}{4}$. Now exponentiate (using base 5) both sides to get $x-6=5^{11/4}$. After adding 6 to both sides, our solution is $x=5^{11/4}+6$.

3. (2 points) Find the supplement of 85°.

Solution: By definition, supplementary angles must add up to π , or 180°. Then, the supplement of 85° is $180^{\circ} - 85^{\circ} = 95^{\circ}$.

4. (3 points) Complete the table assuming interest is compounded continuously:

Initial Investment	Annual Percent Rate	Time to Double	Amount After 10 years
\$750	10.5%	$\frac{\ln 2}{0.105}$	$$750e^{1.05}$

Solution: First, we compute the time to double. Since interest is compounded continuously, we must use the formula $A=Pe^{rt}$, where A is the balance in the account after some time t (in years), P is the initial investment (principle), and r is the annual percent rate. Plugging in what we are given in the chart and letting A=2P=1500, we see $1500=750e^{0.105t}$. Dividing both sides by 750, we get $2=e^{0.105t}$. Taking the natural log of both sides, we get $0.105t=\ln 2$ or simplified as $t=\frac{\ln 2}{0.105}\approxeq 6.60$ years.

Finally we solve for the amount after 10 years. Using the equation $A = Pe^{rt}$ and plugging in the initial values from the chart with t = 10, we have

$$A = 750e^{(0.105)(10)} = 750e^{1.05} \approx $2143.24.$$