Quiz 3 Solutions

MAC 1147.3079, Fall 2015
Thursday, September 24, 2015
Show all relevant work to support your answer. A correct answer without supporting work will not earn the points. Problems 3 and 4 are on the back.

1. (1 point) What is your favorite joke? (Hint: There is no wrong answer)
2. \qquad
3. (4 points) If $f(x)=\sqrt{x-1}$ and $g(x)=x^{2}+2$, determine the following:
(a) the parent function of f.

Solution: The parent function of f is \sqrt{x}.
(b) $(g \circ f)(x)$ and its domain.

Solution: First, we find $(g \circ f)(x)=(\sqrt{x-1})^{2}+2=x+1$. Now, to find the domain of $(g \circ f)$, we intersect the domains of f with $x+1$. Since the domain of f is $[1, \infty)$ and the domain of $x+1$ is $(-\infty, \infty)$, the solution is $[1, \infty)$.
3. (2 points) Suppose that $f(3)=7$ for some function f. If f is an odd function, then which one of the points below is also on the graph of f ?
A. $(-3,-7)$
B. $(7,3)$
C. $(-3,7)$
D. $(3,-7)$

Solution: The "classic" example of an odd function is $y=x$. Hence, envisioning the shape of x with the point $(3,7)$, we must have the point $(-3,-7)$ also on the graph.
4. (3 points) If $g(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \leq-1 \\ -1 & \text { if }-1<x \leq 0 \\ \frac{1}{x} & \text { if } x>0\end{array}\right.$ find $g(-2)+g(0)+g(1)$.

Solution: Being careful with the domains of the piecewise solution, we see

$$
g(-2)+g(0)+g(1)=(-2)^{2}+(-1)+\frac{1}{1}=4-1+1=4 .
$$

