Quiz 3 Solutions MAC 1147.3079, Fall 2015 Thursday, September 24, 2015

Show all relevant work to support your answer. A correct answer without supporting work will not earn the points. Problems 3 and 4 are on the back.

1. (1 point) What is your favorite joke? (Hint: There is no wrong answer)

1. _____

- 2. (4 points) If $f(x) = \sqrt{x-1}$ and $g(x) = x^2 + 2$, determine the following:
 - (a) the parent function of f.

Solution: The parent function of f is \sqrt{x} .

(b) $(g \circ f)(x)$ and its domain.

Solution: First, we find $(g \circ f)(x) = (\sqrt{x-1})^2 + 2 = x+1$. Now, to find the domain of $(g \circ f)$, we intersect the domains of f with x + 1. Since the domain of f is $[1, \infty)$ and the domain of x + 1 is $(-\infty, \infty)$, the solution is $[1, \infty)$.

- 3. (2 points) Suppose that f(3) = 7 for some function f. If f is an odd function, then which one of the points below is also on the graph of f?
 - A. (-3, -7)
 B. (7, 3)
 C. (-3, 7)
 D. (3, -7)

Solution: The "classic" example of an odd function is y = x. Hence, envisioning the shape of x with the point (3, 7), we must have the point (-3, -7) also on the graph.

4. (3 points) If
$$g(x) = \begin{cases} x^2 & \text{if } x \le -1 \\ -1 & \text{if } -1 < x \le 0 \\ \frac{1}{x} & \text{if } x > 0 \end{cases}$$
 find $g(-2) + g(0) + g(1)$.

Solution: Being careful with the domains of the piecewise solution, we see

$$g(-2) + g(0) + g(1) = (-2)^2 + (-1) + \frac{1}{1} = 4 - 1 + 1 = 4.$$