Name: C. Walker

Quiz 7 Solutions

MAC 1147.3079, Fall 2015
Thursday, October 29, 2015
Show all relevant work to support your answer. A correct answer without supporting work will not earn the points. Problems 3 and 4 are on the back.

1. (1 point) What is your most memorable moment of the course so far? (Hint: There is no wrong answer)

1. responses for questions

2. (4 points) Solve the following equations for x :
(a) $e^{2 x}-4 e^{x}-5=0$

Solution: We want the given equation to be a polynomial so it is easy to solve for x. Thus, we make the substitutions $u=e^{x}$ and $u^{2}=e^{2 x}$ into the given equation. Then we get $u^{2}-4 u-5=0$ as our new equation. Now factor to get $(u-5)(u+1)=0$, and so $u=5,-1$. Since we started with the variable x, our solution must contain x. So now substitute each u into $u=e^{x}$, so that $5=e^{x}$ and $-1=e^{x}$. Solving each equation using the natural \log, we get $x=\ln 5, \ln -1$. Finally since $\ln x$ isn't defined for $x \leq 0$, our only solution is $x=\ln 5$.
(b) $2+3 \ln x=12$

Solution: First, we want to get $\ln x$ alone in the given equation. So subtract 2 from both sides, and then divide both sides of the equation by 3 . Then we have $\ln x=\frac{10}{3}$. Now exponentiate both sides to get $x=e^{10 / 3}$ as our solution.
3. (2 points) Find the complement of $\frac{\pi}{3}$.

Solution: By definition, complementary angles must add up to $\frac{\pi}{2}$, or 90°. Then, the complement of $\frac{\pi}{3}$ is $\frac{\pi}{2}-\frac{\pi}{3}=\frac{3 \pi}{6}-\frac{2 \pi}{6}=\frac{\pi}{6}$.
4. (3 points) Complete the table assuming interest is compounded continuously:

Initial Investment	Annual Percent Rate	Time to Double	Amount After 10 years
$\$ 750$	10.5%	$\frac{\ln 2}{0.105}$	$\$ 750 e^{1.05}$

Solution: First, we compute the time to double. Since interest is compounded continuously, we must use the formula $A=P e^{r t}$, where A is the balance in the account after some time t (in years), P is the initial investment (principle), and r is the annual percent rate. Plugging in what we are given in the chart and letting $A=2 P=1500$, we see $1500=750 e^{0.105 t}$. Dividing both sides by 750 , we get $2=e^{0.105 t}$. Taking the natural \log of both sides, we get $0.105 t=\ln 2$ or simplified as $t=\frac{\ln 2}{0.105} \approx 6.60$ years .

Finally we solve for the amount after 10 years. Using the equation $A=P e^{r t}$ and plugging in the initial values from the chart with $t=10$, we have

$$
A=750 e^{(0.105)(10)}=750 e^{1.05} \approx \$ 2143.24
$$

