Name: \qquad

Quiz 3 Solutions

MAC 1147.3881, Fall 2016
Thursday, September 15, 2016
Show all relevant work to support your answer. A correct answer without supporting work will not earn the points. Problems 3 and 4 are on the back.

1. (1 point) What is your favorite food? (Hint: There is no wrong answer)

$$
1 .
$$

1. \qquad
2. (4 points) Given the points $(3,5)$ and $(7,8)$, compute the following:
(a) the slope of the line passing through the points

Solution: The slope is $\frac{8-5}{7-3}=\frac{3}{4}$.
(b) the equation of the line passing through the points

Solution: Using the equation $y-y_{1}=m\left(x-x_{1}\right)$ with $m=\frac{3}{4}$ and $\left(x_{1}, y_{1}\right)=$ $(3,5)$, we get $y-5=\frac{3}{4}(x-3)$. Simplifying the equation, we get $y=\frac{3}{4} x+\frac{11}{4}$ as the solution. Note that we could have used $\left(x_{1}, y_{1}\right)=(7,8)$.
3. (2 points) Use algebraic tests to check for symmetry with respect to both axis and the origin: $f(x)=\frac{1}{x^{2}+1}$.

Solution: For y-axis symmetry, we notice $f(-x)=\frac{1}{(-x)^{2}+1}=\frac{1}{x^{2}+1}=f(x)$. Hence $f(x)$ is symmetric with respect to the y -axis.

For x -axis symmetry, we notice $-f(x)=-\frac{1}{x^{2}+1} \neq f(x)$. Hence $f(x)$ is not symmetric to the x -axis.

For origin symmetry, we compute $-f(-x)=-\frac{1}{(-x)^{2}+1}=-\frac{1}{x^{2}+1} \neq f(x)$. Then $f(x)$ is not symmetric to the origin.
4. (3 points) Let $f(x)= \begin{cases}4-5 x & \text { if } x \leq-2 \\ 0 & \text { if }-2<x<2 \\ x^{2}+1 & \text { if } x \geq 2\end{cases}$

Compute $f(-3)+f(4)+f(-1)$.

Solution: Observe that $f(-3)=4-5(-3)=19, f(4)=4^{2}+1=17$, and $f(-1)=0$. Hence $f(-3)+f(4)+f(-1)=19+17+0=36$.

