Quiz 6 Solutions

MAC 1147.3881, Fall 2015
Thursday, October 22, 2015
Show all relevant work to support your answer. A correct answer without supporting work will not earn the points. Problems 3 and 4 are on the back.

1. (1 point) What is your TA's first name? (Hint: There is no wrong answer)

1. Charles

2. (4 points) Use the one-to-one property to solve the equations for x :
(a) $2^{x-3}=16$

Solution: By rewriting 16 as 2^{4}, we can use the one-to-one property in the textbook to get $x-3=4$. Thus, $x=7$ is the desired solution.
(b) $\log (5 x+3)=\log (12)$.

Solution: Using the one-to-one property in your textbook, we obtain $5 x+3=12$. Thus, $x=\frac{9}{5}$ is the solution.

Problems 3 and 4 are on the back.
3. (2 points) Use properties of logarithms to condense the following to a single quantity:

$$
3 \log _{3}(x)+4 \log _{3}(y)-4 \log _{3}(z)
$$

Solution: Condensing using properties of logs from the textbook, we get:

$$
3 \log _{3}(x)+4 \log _{3}(y)-4 \log _{3}(z)=\log _{3} \frac{x^{3} y^{4}}{z^{4}}
$$

4. (3 points) Solve the system of linear equations by using the method of elimination:

$$
\begin{cases}x+5 y & =10 \\ 3 x-10 y & =-5\end{cases}
$$

Solution: To begin, multiply the first equation by (-3), to get

$$
\begin{cases}-3 x-15 y & =-30 \\ 3 x-10 y & =-5\end{cases}
$$

Now add the two new equations together to get $-25 y=-35$, or $y=\frac{7}{5}$. Substituting this y value into either of the original equations, we see $x=3$, and so $\left(3, \frac{7}{5}\right)$ is the solution.

