Quiz 7 Solutions MAC 1147.3881, Fall 2015 Thursday, October 29, 2015

Show all relevant work to support your answer. A correct answer without supporting work will not earn the points. Problems 3 and 4 are on the back.

1. (1 point) What is your most memorable moment of the course so far? (Hint: There is no wrong answer)

1. responses for questions

- 2. (4 points) Solve the following equations for x:
 - (a) $e^{2x} 4e^x 5 = 0$

Solution: We want the given equation to be a polynomial so it is easy to solve for x. Thus, we make the substitutions $u = e^x$ and $u^2 = e^{2x}$ into the given equation. Then we get $u^2 - 4u - 5 = 0$ as our new equation. Now factor to get (u-5)(u+1) = 0, and so u = 5, -1. Since we started with the variable x, our solution must contain x. So now substitute each u into $u = e^x$, so that $5 = e^x$ and $-1 = e^x$. Solving each equation using the natural log, we get $x = \ln 5, \ln -1$. Finally since $\ln x$ isn't defined for $x \le 0$, our only solution is $x = \ln 5$.

(b) $\ln\sqrt{x-8} = 5$

Solution: First, note that $\sqrt{x-8} = (x-8)^{\frac{1}{2}}$. Hence by properties of logs, we have $\frac{1}{2}\ln(x-8) = 5$. Multiply both sides by 2 to get $\ln(x-8) = 10$. Now exponentiate both sides to get $x-8 = e^{10}$. After adding 8 to both sides, our solution is $x = e^{10} + 8$.

3. (2 points) Find the supplement of $\frac{\pi}{4}$.

Solution: By definition, supplementary angles must add up to π , or 180°. Then, the supplement of $\frac{\pi}{4}$ is $\pi - \frac{\pi}{4} = \frac{4\pi}{4} - \frac{\pi}{4} = \frac{3\pi}{4}$.

4. (3 points) Complete the table assuming interest is compounded continuously:

Initial Investment	Annual Percent Rate	Time to Double	Amount After 10 years
\$500	11.0%	6.30	\$1505.00

Solution: First, we compute the Annual Percent Rate. Since interest is compounded continuously, we must use the formula $A = Pe^{rt}$, where A is the balance in the account after some time t (in years), P is the initial investment (principle), and r is the annual percent rate. Plugging in what we are given in the chart and letting t = 10, we see $1505 = 500e^{10r}$. Dividing both sides by 500, we get $\frac{1505}{500} = e^{10r}$. Taking the natural log of both sides, we get $10r = \ln(\frac{1505}{500})$ or simplified as $r = \frac{\ln(\frac{1505}{500})}{10} \approx 11.0$ percent.

Finally we solve for the time to double. Plugging in the values given in the chart and letting A = 2P = 1000, we see $1000 = 500e^{0.110t}$. Dividing both sides by 500, we get $2 = e^{0.110t}$. Taking the natural log of both sides, we get $0.110t = \ln 2$ or simplified as $t = \frac{\ln 2}{0.110} \approx 6.30$ years