Name: C. Walker

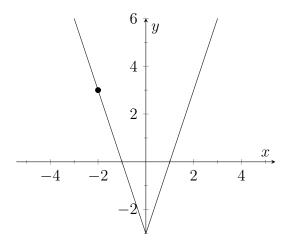
Quiz 4 Solutions

MAC 1147.6861, Fall 2016

Thursday, September 29, 2016

Show all relevant work to support your answer. A correct answer without supporting work will not earn the points. Problems 3 and 4 are on the back.

1.	(1 point)	What is your favorite joke? (Hir	t: There is no wrong answer	•)
				1
2.	(4 points)	Given the function $f(x) = x^4$	$9x^2$, determine the following	g:


Solution: The zeros of f(x) occur when $x^4 - 9x^2 = 0$. Simplifying, we get $x^2(x-3)(x+3)=0$, so that the zeros occur at x=-3, 0, 3.

(b) the right and left hand behaviors of f(x).

(a) the zeros of f(x).

Solution: Using the leading coefficient test, we see the polynomial can be compared to an even function with positive coefficient (i.e $f(x) = x^2$). Hence, f(x)increases as you go to the left and right.

3. (2 points) Use the graph of f(x) = |x| to write an equation for the function shown below.

Solution: We know the general equation for the function is f(x) = a |x - b| + c, where a, b, and c are rational numbers. Observe first that there is no horizontal shift (i.e b = 0), and a vertical shift of 3 units down (i.e d = -3). In order to find a, we plug in the point (-2,3) into the simplified equation y = a |x| - 3. Therefore after solving, we see a = 3. Then the equation of the function is f(x) = 3 |x| - 3.

4. (3 points) Find the inverse function of $f(x) = \frac{5x-3}{2x+5}$.

Solution: We can solve for the inverse function with the following steps:

$$y = \frac{5x - 3}{2x + 5}$$

$$x = \frac{5y - 3}{2y + 5}$$

$$x(2y + 5) = 5y - 3$$

$$2xy + 5x = 5y - 3$$

$$2xy - 5y = -5x - 3$$

$$y(2x - 5) = -5x - 3$$

$$y = \frac{-5x - 3}{2x - 5}$$

Hence
$$f^{-1}(x) = \frac{-5x - 3}{2x - 5}$$
.