ADVANCED CALCULUS MAA4102 FIRST HOUR EXAM FALL 2005

Name:	
No calculators permitted during the exam.	
Each problem is worth 20 points.	
Explain all answers!	
1.	
a. Give a careful definition of what it means for a sequence to converg a number L .	e to

b. Using the DEFINITION of limit show that $\lim_{n\to\infty} \frac{5n+3}{2n+7} = \frac{5}{2}$.

c. Using limit theorems compute $\lim_{n\to\infty}(\sqrt{n^2+3n}-n)$.

2.

a. State the square root algorithm of Archimedes/Heron.

b. Use the square root algorithm of Archimedes/Heron to compute three approximations of $\sqrt{7}$.

c. If K > 0 and x_n is the n^{th} term in the Archimedes/Heron algorithm to approximate \sqrt{K} , then show that $x_{n+1} \ge \sqrt{K}$.

റ	
. ``	

a. Give a careful statement of the least upper bound principle.

b. Prove: If a sequence is bounded and increasing, then it converges.

4	
4	٠.

a. Give a careful definition of what it means for a sequence to be Cauchy.

b. Prove: If a sequence is Cauchy, then it is bounded.

5.

a. Prove: If a sequence is bounded, then it has a convergent subsequence.

b. Prove: If a sequence is Cauchy, then it has a convergent subsequence.