ADVANCED CALCULUS MAA4102
 FIRST HOUR EXAM
 FALL 2006

Abstract

Name: No calculators permitted during the exam. Each problem is worth 20 points. Explain all answers! 1. a. Give a careful definition of what it means for a sequence to converge to a number L.

b. Using the DEFINITION of limit show that $\lim _{n \rightarrow \infty} \frac{7 n+2}{5 n+3}=\frac{7}{5}$. (You will receive zero credit for using any limit theorems.)
c. Using limit theorems compute $\lim _{n \rightarrow \infty}(\sqrt{4 n+7}-\sqrt{4 n})$.
2.
a. State the square root algorithm of Archimedes/Heron.
b. Use the square root algorithm of Archimedes/Heron to compute three approximations of $\sqrt{11}$. (i.e. If $x_{0}=1$, then compute x_{1}, x_{2}, and x_{3}.)
c. If $K>0$ and x_{n} denotes the $n^{t h}$ term in the Archimedes/Heron algorithm to approximate \sqrt{K} and $x_{0}=1$, then show that $x_{n+1} \leq x_{n}$.
3.
a. Give a careful statement of the least upper bound principle.
b. Determine the least upper bound of the set $S=\left\{x \in \Re: x^{3}<5\right\}$.
4.
a. Prove: If $\lim _{n \rightarrow \infty} x_{n}=L$ and $\lim _{n \rightarrow \infty} y_{n}=M$, then $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=$ $L+M$.
b. Prove: If a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to a number L, then it is bounded.
5.
a. Give a careful definition of what it means for a sequence to be Cauchy.
b. Determine whether or not the sequence $x_{n}=(-1)^{n} \frac{n+1}{n}$ is Cauchy. Explain your answer.

