ADVANCED CALCULUS MAA4102 SECOND HOUR EXAM FALL 2005

Name:

No calculators permitted during the exam. Each problem is worth 20 points. Explain all answers! 1.

a. Give a careful definition of what it means for a sequence to be Cauchy.

b. Prove: If a sequence is Cauchy, then it converges.

a. Show the series $\sum_{n=1}^{\infty} \frac{1}{n^n}$ converges. (Be sure to explain your answer.)

b. Find an integer N with the property that if $n \ge N$, then $|\sum_{n=1}^{n} \frac{1}{n^n} - \sum_{n=1}^{N} \frac{1}{n^n}| < \frac{1}{10^3}$. Justify your answer. (Think geometric.)

3.

a. Give a careful statement of the Mean Value Theorem.

b. Prove the Mean Value Theorem.

a. Give a careful statement of the Intermediate Value Theorem.

b. Prove: If $f(x): \Re \to \Re$ is defined by $f(x) = x^5 + 5x + 1$, then there is at least one point $z \in \Re$ with the property that f(z) = 47.

c. Show that $f(x) = x^5 + 5x + 1$ has the property that there is exactly one point $z \in \Re$ such that f(z) = 47.

a. Prove: If n is a positive integer, then the function $f(x) = (1+x)^{\frac{1}{n}} - (x)^{\frac{1}{n}}$ is decreasing for all $x \in [0, \infty)$.

5.

b. If $f(x) : \Re \to \Re$ is differentiable at every $x \in \Re$ and f(x) is strictly increasing, then is it necessarily true that f'(x) > 0 for all $x \in \Re$? Explain!

5