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Remarks by the Author

Topics and Clientele

Keep the interests of the students in mind and the rest will work itself

out.—Bill Harris, NSF

The goal of this set of notes is to present mathematical topics selected from numer-
ical analysis, which are suitable for a semester course at the upper level undergraduate
level. The topics have been organized thematically under the headings of root find-
ing and approximation theory. The discussion of root finding techniques includes
the square root method of Archimedes/Heron, the method of Newton/Raphson, the
bisection method, and the contraction mapping theorem. The discussion of approx-
imation theory includes the topics of Taylor’s Theorem, polynomial approximation,
least squares, Fourier Series, splines, and wavelets. The Pythagorean Theorem and
the concept of orthogonality provide a unifying overarching theme which appears
throughout. The topics have been selected with the idea that they will be particu-
larly relevant for students in computer science, electrical engineering, and computer
engineering.

Since engineering students are typically inexperienced, untrained, and uninter-
ested in formal mathematics, the subject of numerical methods has a sad reputation
for being a dull, difficult, and irrelevant requirement for graduation. In the numer-
ous times I have taught this course, I have not infrequently encountered the atti-
tude: “This is my last math course-hopefully.” In particular, I have found teaching

a course on numerical methods a pedagogical challenge because students lack the

vil
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required mathematical training to appreciate the discussions. In one class, I noticed
that one of my engineers was visibly resistant to the proof of a key theorem. On
further questioning it became evident that he saw no justification for his time being
wasted in such an exercise. For some reason, I finally asked ”What is the difference
between a definition and a theorem?” His response was “Aren’t they the same?” I was
startled to think that a student, who had passed three semesters of Calculus as well
as semester courses in Linear Algebra and Differential Equations could make such a
statement. Even the teachings of Euclid were beyond this fellow. Unfortunately, he
is not alone. Since that experience, I now regularly confront such issues on the first

day of class by asking the following basket of questions:
1. “Why do we have definitions and theorems?”
2. “What is a conditional sentence?”
3. “What is the structure of a theorem?”

4. ‘What is the difference between the way a mathematician and a statistician uses

the word hypothesis?”
5. “What is a mathematical system?”
6. “Why should anyone care?” (This question is the most important!)

I try to answer these questions by giving short expositions on basic propositional logic
and the ramifications of Euclid’s famous 5 Postulate. After one such introduction,
a computer science student, a native of Southeast Asia, stated she was shocked by
the remedial level of the discussion. She left and never returned.

In case you are thinking [ am prejudiced against the engineering students, let
me mention that my math majors also have deficiencies when taking more applied
courses. One extremely bright and talented student (also from Southeast Asia) earned
an almost perfect score on every exam. However, when asked to write five lines of

computer code to approximate the square root of a number, she was helpless. In
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general, the engineers complain about the theory and clamor for more projects, while
the mathematics students thrive on the theory and wish the projects were not a part
of the course. Thus, I have found that the instructor of an applied mathematics
course should be alert to the differing needs of the students, while at the same time
not getting derailed repairing too many deficits.

In my experience, the single most important reason students find numerical anal-
ysis dull, boring, and difficult is their lack of skill and knowledge in Logic, Geometry,
and Linear Algebra. A second reason is their inability to connect the theory with
some aspect of their expected future employment. The “Interview” has been included
in an effort to address these issues. For students who have been away from math-
ematics for a long time, I have included many other brief reviews throughout the
notes.

While the focus of the discussion is on the mathematics, the goal is to present a
readable account of the thought behind the theory in a manner that will be appre-
ciated by a large subset of the students. The approach is to present the material as
a historical progression of ideas motivated by key examples and easy-to-understand
special cases. Hopefully, this approach will help neutralize negative attitudes and

better meet the needs of the students.

A Brief History of the Dialogue Format
Mathematics is written for mathematicians. — Nicolaus Copernicus

With a quick glance through the these notes, the reader will immediately notice
that they are written in a dialogue format. Surely the author must be joking. Why
would anyone waste his/her time writing a mathematics textbook in dialogue format?
Why would anyone waste hard-earned money purchasing such a volume? Galileo as
a central character in the discussion” However, that is exactly what is offered: an
allegorical presentation of real mathematical ideas.

Let us begin our defense by noting that numerous books from antiquity were
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written as dialogues. Plato (427-347 B.C.E.) wrote virtually all his works in this
dramatic style. In his “Apology,” he dramatizes the fatal conflict between Socrates
and his enemies Meletus, Anytus, and Lycon, who had accused him of “corrupting the
youth.” For this crime, Socrates receives the ultimate punishment. In his “Allegory
of the Cave,” Plato tries to clarify the concepts of intellect, belief, and knowledge.
In this dialogue, he chains prisoners in an underground cave, where they see only
shadows cast on the wall in front of them and hear only echoes from behind. This
allegory dramatizes the fundamental human conflict that we can never know reality.
His commentaries on ethics, politics, astronomy, and mathematics were also written

as dialogues.

In 1632, Galileo (1564-1642) published his “Dialogue Concerning the Two Chief
World Systems: Ptolemaic and Copernican,” [3] where he dramatizes the scientific
conflict between two different mathematical models of the solar system. Simplicio,
his spokesman for the Aristotle/Ptolemaic earth-centric view of the universe, plays
the role of a foil to Salviati, who advocates the Copernican view that the sun is the
center of the solar system. A third character, Sagredo, plays the role of the forward
looking aristocrat, who considers both sets of arguments, but consistently ends up
siding with Salviati. In the narrative, Salviati presents observations of the ocean
tides, the moons of Jupiter, and the phases of Venus as evidence that the Earth
moves. The main reason for his use of the dialogue format was to present the case
for the Copernican view while pretending to be impartial. Of course, this ruse failed
to protect him from the wrath of the Inquisition of Pope Urban VIII (1568-1644).
On 22 June 1633, he was found guilty of heresy and sentenced to house arrest for the

remainder of his life.

In 1638, Galileo published a second dialogue “Dialogues Concerning Two New
Sciences,” [5]. In this work he again presents the same three characters in a four day
discussion of fundamental concepts in two key areas of modern Physics. The focus
of the discussion for the first two days is on the strength of materials. The focus for

the second two days is on the behavior of a falling object. While Galileo’s style is
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again engaging, the style of this second volume is more mathematically challenging
than the first. Much of the writing is in an definition, theorem, proof format, where
the reader is subjected to numerous difficult mathematical arguments. (Most of these
discussions are geometric in nature.) On the first day, he even considers several of the
paradoxes of infinitesimals and infinity, which arise in his discussion of strength of
such materials as copper wire, glass, marble, and rope. At the beginning of the fourth
day, his Proposition I concludes that the path of a falling object describes a parabola.
Later in the same day, his Proposition VIII asserts the familiar physics/calculus fact
that a projectile fired from a cannon at a 45 degree angle will travel farther than when
fired at any other angle. While much of the complexity of these arguments can be
reduced if armed with a knowledge of modern calculus, the discussions remain fresh
to this day. For example, on the second day Salviati argues that a giant cannot be
arbitrarily sized in the same proportion as a smaller creature unless the bones are
made from a stronger material. Thus, real physical reasons exist that explain why

the largest mammals reside in the great oceans of the world.

A number of modern authors have also employed a dialogue format in their math-
ematical writings. In 1895, Lewis Carroll (1838-1898) published “What the Tortoise
Said to Achilles,” where the discussion elucidates the subtleties of the logical argument
of modus ponens. In particular, he addresses the logical problem of self-referencing.
(The easiest example of self-referencing is to consider the truth or falsity of the
statement: “I am lying.” Think about it.) In 1963-64, the Hungarian mathemati-
cian/economist/historian Imre Lakatos (1922-1974) published four articles entitled
“Proofs and Refutations.” (The articles were published as a book in 1976 [8].) In this
small set of dialogues, the author creates a classroom setting through conversations
between a teacher and a small group of students. The teacher is named Teacher
and the students are named Alpha, Beta, Gamma, etc. Through their interactions
the reader is drawn into the world of mathematical rigor. The concepts of axioms,
definitions, and theorems are discussed through a question/answer format, where the

focus of the mathematics is Euler’s famous theorem that V — E + F = 2 for any
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polyhedral 2—sphere, where V, E| F' denote the number of vertices, edges, and faces,
respectively. While mathematical rigor, logic, proof, examples and counterexamples
(i.e. refutations) are central, Lakatos teaches the process of formulating carefully
worded definitions and theorems so that ambiguity or vagueness are removed. As the
discussion shows, if you are sloppy or careless with your wording, a counterexample
to what you had expected may be lurking nearby. Alfred Renyi (1921-1970) was one
of the outstanding Hungarian mathematicians and statisticians of the 20" Century.
He even has an institute constructed in his honor. In 1965, he published ”Dialogues
on Mathematics,” [8] where Socrates, Archimedes, King Hieron II, and Galileo are
featured discussing such subjects as “pure versus applied mathematics.” On occasion,
he even performed these works with his daughter. His best known quote is “A math-
ematician is a machine for converting coffee into theorems.” (Another Hungarian,
Paul Erdés, has also received credit for this quote.) In his 1974 dialogue “Surreal
Numbers,” [7] Donald Knuth strands two ex-students, Bill and Alice, on an isolated
beach. Bored and lonesome, they find happiness in mathematics (and a touch of
romance) through a highly rigorous discussion of the properties of the real number
system. In 1979, Douglas Hofstadter expanded on Lewis Carroll’s discussion of of
self-referencing in his highly popular Pulitzer Prize winning book “Godel, Escher,
Bach” [4], where he makes connections between a myriad of subjects including logic,
art, music, computer programming, the nature of language, the nature of thought,
the replication of our genetic code, Turing machines, artificial intelligence, and free
will. Dialogues between Achilles, the Tortoise, the Anteater, the Crab, and Charles
Babbage interlace this book of ideas. Most recently, Keith Kendig has written the
book “Conics” [6], where a Teacher, a Philosopher, and a Student uncover the prop-
erties of the conics through an engaging and readable dialogue. The Philosopher is
looking for unity and beauty, the student loves stories, and the teacher provides the

details. Along the way, questions are asked and mathematical discoveries are made.

The inspiration behind the dialogue format set forth in these notes is Dava Sobel’s

book “Galileo’s Daughter,” [10]. While most books on Galileo (1564-1642) provide
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an account of his scientific achievements and/or his political problems, the focus of
Sobel’s book is his relationship with his eldest daughter, Virginia (1600-1633). While
Galileo had two other children, Virginia was probably his favorite. She was bright,
beautiful, serious, and passionately devoted to her father. Since she was illegitimate
(as were his other two children), marriage was problematic. Thus, at the age of 16
she followed the respectable alternative of the times by dutifully taking vows as Suor
Maria Celeste at the convent of St. Mateo in Padova, Italy. (The name Celeste is
derived from celestial and is probably an indirect reference to Galileo’s astronomical
discoveries.) Life at the convent was dominated by prayer, never ending chores, and
grinding poverty. Despite their separation and difficult circumstances, the father and
daughter adored each other. She provided him with aid and comfort when he was
ill and wrote him continually during their extended separations. In return, Galileo
never failed to respond to her requests for money. Sobel speculates that this dutiful
daughter may have assisted in the preparation of his dialogue “Two Chief World
Systems.” One can only wonder what she might have achieved if she had been more
fortunate in her birthright.

A downside to the dialogue format is a lack of economy. Since mathematics lives
perfectly well in its own sparse setting, the experienced instructor or reader may find
the conversational style not only unnecessary, but also distracting and irritating. If
this is the case, simply move on to a new topic. The author has no intention that
someone would teach word-for-word what is written in these notes. What is written

here contains too much of one individual instructors own classroom style.

Cultural Impacts on Pedagogy

We note that a huge body of evidence attests to the fact that a soci-
ety’s values are passed from generation to generation through a process of
transmission which may be vertical (from parents) or oblique (from oth-

ers in the prior generation) and involves a psychological internalization of
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values. —Karl Marx

How does society optimize the transfer of mathematical knowledge and skills from
one generation to the next? While the educators, politicians, and media have spent
inordinate quantities of time, thought, and cash trying to address this issue, my view
is that the answers lie in the culture of the community, the reward system for those
involved, and the method of delivery. Needless to say these three forces are not
unrelated.

If a community values finance, fashion, and football more than mathematics and
science, then guess what? The resources and talent of the community will flow into
those more preferred areas. Sometimes political events change the behavior of a
community. Before the rise of the Nazis, mathematics training in America was al-
most nonexistent at every level. With the immigration of prominent scientists to the
United States in the 1930’s, interest in mathematics began to rise. In 1957 the Rus-
sians changed science forever by launching Sputnik. This event provided the impetus
for educators to launch advanced science and mathematics courses in high schools
throughout the United States. The “New Math” was part of this Cold War effort
to catch up. In 1962, John F. Kennedy’s push to land a man on the moon created
an excitement that boosted the production of PhD mathematicians to never before
seen levels. The study of mathematics in America was transformed from being worst
to first. Students and young faculty now came from all over the world to study in
America. Unfortunately, only a short time later the excitement began ebbing back
to the historical mean. In the 1970’s, the concern became: How are we going to
find employment for all these mathematicians? In the 1990’s, the concern refocused
to: Why does a kid in a far-off land perform better on standardized math exams
than those in America? Recently, I quizzed a number of (excellent) Chinese graduate
students on this issue. I asked whether or not their mothers pushed them to excel.
Their response was that not only did their parents insist they study hard, but the
expectation was uniform among their friends so negotiation was not part of the equa-

tion. When they performed well, they were rewarded. Their parents had also given
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them a choice: They could study or they could work. In a culture where education
was a privilege, not a right and where drudge labor was the norm, the connection was
clear. Thus, parents, prestige, and profit combined to create an environment where
they became driven by internal forces. My students from Eastern Europe, Russia,
India, and South America are driven by similar pressures. In all these cultures, math
is easy when compared with the alternatives.

So what incentives are available for motivating students in today’s world? While
the excitement of the space race and the new math have evaporated and the economies
of the world are doing reasonably well, a plethora of new gadgets, technologies, and
issues have exploded in their place. Calculators are everywhere. Imaging Science
is a field that permeates medicine and the military. Environmental (e.g. global
warming), public safety (e.g. hurricane tracking), and public health issues (e.g. the
spread of AIDS) abound. These new areas all require appropriately chosen numerical
methods and models. Since engineers enjoy projects that impact society, a focus of
this dialogue is to connect the abstract mathematical ideas to as many applications

as possible.

Pedagogy as a Process

Knowing something for oneself or for communication to an expert col-
league is not the same as knowing it for explanation to a student. ~-Hyman

Bass

While mathematicians are expected to write in a definition-theorem-proof style
that is clear, rigorous, and lean, I have found few undergraduate (or even graduate)
students, who can retain much from this style of information transfer. Instead, I pre-

> where

fer to present modern mathematics as a naturally unfolding “Socratic process,’
simple questions and observations lead to fundamental insights. The key is to formu-
late and answer clearly stated questions, which get to the heart of the problem. If

you “Begin with the easiest problem you don’t understand,” then the solution to one
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problem often leads to new questions and new answers which lead to new solutions.
Simple observations evolve into ever more general and abstract concepts. These ab-
stract general results become more accessible and easier to understand. The dialogue
format provides a mechanism which can be used to capture this spirit of discovery.
The question “What does it mean for a technique to work?” leads to a precise defini-
tion of the rules of the game. In my experience, students typically find definitions an
unnecessary and pedantic annoyance. A mathematicians attitude is that you can’t
play the game until you have a precise statement of the rules. The question “Does
the technique always work?” frequently leads to examples demonstrating a negative
answer. These examples lead to the question “When does the technique work?” The
response of the mathematician is to formulate a theorem or proposition, which pro-
vides exact conditions when a positive result can be guaranteed. The question “Can
the method be generalized”?” may lead to a technique that can be applied to a wider
range of problems. Once a generalization has been formulated the process repeats

itself.

The Contraction Mapping Theorem of Stephan Banach (1906-1960) is a notable
example of this evolution from simple to abstract. Without reference to the ancient
Archimedes/Heron square root algorithm and the Newton/Raphson root finding tech-
nique 1700 years later, this theorem lacks seems to emerge from nowhere. Approx-
imation theory provides a second progression of ideas, where the topics presented
include: polynomials, Fourier, splines, and wavelets. In each case, orthogonality (or
lack thereof) is fundamental to the success (or failure) of the technique. Since orthog-
onality is nothing but a fancy way of saying perpendicular, the Pythagorean Theorem
is at the heart of the discussion. The fact that root finding and approximation took
several thousand years to unfold indicates the richness of the ideas underlying the
techniques. Our approach is to use this rich history to drive the discussion. Armed
with an understanding of this mathematical process, the hope is that the reader
should be better able to evaluate, select, and apply numerical methods in their own

endeavors.
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While not as important as the development of mathematical ideas, I find that stu-
dents also enjoy mathematical gossip. By introducing cartoon versions of some the
great contributors to mathematics, I am hoping the reader can begin to appreciate
some of their quirky personalities. Probably my favorite story is Fourier’s personal
interest in the heat equation. In short, after an enjoyable visit to sunny Egypt with
Napoleon in 1798, Fourier returned to the miserable rain and snow of Grenoble’s
winter, where he turned up the heat in his apartment to the highest setting. Thus
stimulated, he developed stable methods for solving the heat equation. Such anec-
dotes lead to the questions: “Who cares?” and “Why would anyone be interested in
solving these types of problems?” George Polya (1887-1985) also endorses this “jour-
nalistic” approach to pedagogy when he remarks that your five best friends are What,
Why, Where, When, and How [9]. I would also add Who. Thus, the mathematical
ideas are embedded in an interactive discussion of the background, significance, and
historical context of the subject. In my experience, I have found that my engineering
and medical students find this approach an agreeable alternative to the more tradi-
tional one, where they are stuffed with facts, formulas, and techniques like the overfed

4

goose headed for the dinner table as “paté de foie gras.”

In addition to presenting the theoretical ideas as a process, we have followed the
lead of G. Polya in our discussion of examples and problems. In his book “How to
Solve It,” [9], he spells out a general four step process for solving a mathematic’s

problem:
1. understanding the problem,
2. devise a plan,
3. carry out the plan, and
4. look back and review what was done.

This process provides a student with a structure and framework for attacking a prob-

lem. Probably the best example of this approach is our treatment of limit problems,
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where we insist students are able to know and apply the definition of a limit. In
the problems we consider, the plan is always the same. Each solution requires three
simple steps. While students argue that they should not be expected to know this
skill, they soon find that they are far easier than the problems connected with real
applications. As you will read many times in these notes: “Math is easy. It is life

that is difficult.”

Murphy’s Law

What can go wrong, will go wrong. ~Murphy

While logic and rigor are fundamental to the spirit of mathematics, computer
scientists, engineers, and physicists turn to mathematics for techniques to mathe-
matically analyze and model real-world phenomena. Students from these fields may
enjoy the study of mathematics, but are driven by the needs of their particular appli-
cation. Unfortunately, the curriculum has become so crowded that most instruction
in these applied areas becomes “technique driven” rather than “process driven.” In
other words, the instructor presents the formulas and techniques, but hurries on to the
next topic before discussing history, insights, or caveats associated with the method.
However, in my experience, I have found Murphy’s Law to be the one guiding prin-
ciple that rules the study of numerical methods. In these notes, key examples have
been provided to help the student identify the numerous tar pits that are forced on
the subject. Hopefully, the student will develop a wariness when employing these and

other techniques in their own investigations.

A Final Comment

And yet it moves. —Galileo

While Galileo’s book, “T'wo Chief World Systems,” contained thinly veiled politi-

cal statements not in accord with the dogma of his times, the dialogue strategy failed
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to keep him out of harm’s way. For on 22 June 1633 the wrath of Pope Urban VIII
descended upon him when the Holy Inquisition convicted him of heresy and subjected
him to life imprisonment (later commuted to house arrest). If he had not been so
famous and had not abjured himself, he might have been burned at the stake as was
his predecessor, the heretic Giordano Bruno (1548-1600). It was not until 31 Octo-
ber 1992, after almost 13 years of investigation (including the testimony of Physicist
Steven Hawking), that a commission appointed by Pope John Paul II admitted that

“mistakes must be frankly recognized.” And so it goes.
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Day 1. The Interview






Chapter 1

Introductions

The universe cannot be read until we have learned the language and be-
come familiar with the characters in which it is written. It is written in
mathematical language, and the letters are triangles, circles and other ge-
ometrical figures, without which means it is humanly impossible to com-

prehend a single word. —Opere Il Saggiatore p. 171. Galileo Galilei

3



4 CHAPTER 1. INTRODUCTIONS

(1564-1642)

The Setting:
The time is the present. Galileo sits at his desk absorbed in a manuscript. A

small glass of Chianti rests nearby. Enter Virginia and Simplicio. Galileo looks up.

Galileo: And what brings you to my office?

Virginia: We are interested in learning more science and mathematics.

Galileo: Tsubmit that the study of these subjects is a noble and worthy goal. Virginia,
who is this young fellow with you?

Virginia: I would like you to meet my new friend Simplicio.

Galileo: T am pleased to meet you Mr. Simplicio. I am sure you have found Virginia
to be a gracious lady with exquisite manners and charm. She is one of my favorites.
Simplicio: Indeed I do enjoy her company.

Galileo: And if I may ask, what career goals do you have?

Virginia: I am interested in teaching mathematics.

Simplicio: I would like to become more knowledgeable about important applications.
An understanding of numerical methods seems to be a requirement for my future
employment.

Galileo: Very interesting, but why?

Simplicio: I am not sure, but several prospective employers have mentioned data. It
seems they are overloaded with data and having trouble making any sense of it. They
recommended I discuss these issues with you. It seems you are the master of data.
Galileo: I am flattered. Others have not been so kind. It sounds like you have talked
to someone, who requires a knowledge and skill in data acquisition, storage, and
analysis techniques. Is that correct?

Simplicio: One company builds devices, which acquire and analyze signals for the
military. One builds medical imaging equipment. One is in communications. One is

in the business of compressing images.



Galileo: So, you are ready to journey through a mathematically rigorous study of
these topics?

Simplicio: Unlike yourself, I do not enjoy the rigor of mathematics.

Galileo: T am sorry to hear that. I find the beauty, oder, and clarity of mathematical

ideas a refreshing contrast to the sloppy thinking that surround us.
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Chapter 2

Science, Models, and Applications

From the same principles, I now demonstrate the frame of the System of

the World.-Isaac Newton
A job is death without dignity. -Dylan Thomas

Simplicio: While I have no objection to rigor for others, my reason for this visit is to
learn techniques useful in my employment.

Galileo: Do I detect that “rigor” and “employment” are concepts separated by a
void?

Simplicio: To be honest, I find mathematics to be difficult, boring, and irrelevant. I
search for a job, where the pay is good and the work not too stressful.

Galileo: You are an honest man.

Simplicio: I always make an effort to be direct. What skills do we need?

Galileo: Over the ages, the ancient thinkers have developed numerical techniques to

compute:
1. solutions to systems of linear equations,
2. solutions to systems of nonlinear equations,

3. derivatives
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4. integrals,
5. eigenvalues and eigenvectors,
6. solutions to differential equations, and
7. solutions to partial differential equations.

While these methods are all useful, we are not going to have time to discuss them all.
Choices must be made.

Simplicio: Which skills would an employer prefer?

Galileo: The big picture is that all these techniques are useful in setting up and
solving mathematical models of physical phenomena. In short, these techniques are
joined as the computational component of the scientific method. This simple, but

severe test can be summarized as repeated iterations of the following procedure:
1. observational and/or experimental data is acquired,
2. a mathematical /statistical model is formulated, and
3. the model and the data are tested for agreement.

The reason for this process is to make predictions, which help answer the questions

“When,” 13

where,” or “how much.” Interestingly, sometimes the data comes first and
stimulates the search for a model. The data I collected on the motion of a falling
body showed that the motion can be modeled by a quadratic equation. Johannes
Kepler (1571-1630) demonstrated that Tycho Brahe’s data forced the conclusion that
the orbit of Mars is an ellipse. Soon after, Isaac Newton proved that both these
models can be explained as consequences of his laws of motion. This tour de force is
unmatched in the history of science. On the other hand, sometimes the theory comes
first. Albert Einstein’s special theory of relativity wasn’t confirmed by data until more
than a decade after the discovery. In both scenarios, confirmation of agreement is

key. Each time new data is acquired, the accuracy of the model is reevaluated. If one

model provides better agreement and predictions than another, then it is preferred.



This process is ongoing. While the process is imperfect, it is better than all its
competitors. Needless to say, some models have greater predictive value than others.
Aristotle asserted that the earth is the center of the universe. The epicycle model of
Ptolemy (Claudius Ptolemaeus, 87-150) was based on this assumption. For centuries,
the church accepted this view as dogma. Even though this model provided reasonably
accurate predictions for the motion of the planets, the Newton/Kepler model is easier
to understand and provides a clear explanation for such anomalies as the apparent
retrograde motion of Mars.

Simplicio: The method seems to be intelligently designed.

Virginia: Ouly if you play by the rules.

Galileo: We now have successful models for the motion of the planets, the motion of a
pendulum, the motion of a spring, fluid flow, the nature of electricity and magnetism,
the nature of waves, and heat transfer. While many models are complicated, the
best models are based on simple principles that you sure are correct. Our confidence
in many of these models is now so great we would be shocked if the unexpected
happened. Every time you turn on one of your electronic gadgets, you are using the
laws of electricity and magnetism.

Simplicio: What about hurricanes, floods, and beach erosion?

Galileo: The models for fluids are not as reliable as those for electricity. While you
can criticize those making predictions based on less perfect models, you might think
of them as an opportunity for employment. If you can accurately predict the future,
you can make money. Better yet, you can begin to understand the world around you.
Virginia: You can also get into trouble.

Galileo: Sometimes my colleagues have been sloppy about their data. While my
colleague Aristotle claimed the distance traveled by a falling body has a linear rela-
tionship with the time of flight, he never tested his ideas properly. My data shows
the relationship is quadratic. In particular, if you double the time of flight, then the
distance traveled will be quadrupled.

Simplicio: I guess data is important, but is an employer going to hire me to expound
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on these already well-understood insights? Why would he care?

Galileo: The techniques of the ancient masters are embedded in the technology of the
present. For example, Fourier series techniques used to solve partial differential equa-
tions are now being used in a multitude of applications including speech recognition,
image analysis, and signal compression.

Simplicio: So where do numerical methods factor into this scenario?

Galileo: If you can model a problem by an equation or system of equations, then the
goal of numerical analysis is to provide techniques to find the solution (or solutions).
If your model is linear, then Linear Algebra is your tool of choice. Whenever possible,
you should linearize your problem:.

Simplicio: What do you do if your problem is not linear?

Galileo: If possible, you linearize your problem over a short period of time. The
underlying concept in differential calculus is that the first derivative is the slope of
the line that “best approximates” the curve. For us, the root finding method of New-
ton/Raphson is an example of a technique that repeatedly uses a linear approximation
to solve a nonlinear problem.

Simplicio: OK, so what skills do I need to work in this area?

Galileo: If you find data fascinating, then I recommend you become versed in the

following areas:
1. mathematics,
2. computer science,
3. statistics,
4. physics, and possibly
5. a biomedical area.

Virginia: [ am worried about that computer science requirement. I have limited

programming experience. My background in physics is a bit weak as well.
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Galileo: You need to have enough computer skills to implement and test your own
ideas. No one is going to do it for you. Otherwise, you will have no ability to
test your ideas. You need to be comfortable with physics because different data
acquisition devices employ different physical principles. A technique that produces
accurate estimates for one modality may be useless when applied to signals or images
acquired on another system. Any numerical method for analyzing data should be in
sync with the device or method used to acquired it.

Simplicio: What about statistics? The only word that comes to mind is: boring,

boring, boring. My view is:

[ know not Y,

I know not square,
Nor do I know,
Why I should care.

Galileo: Maybe you should reconsider this attitude. Statisticians are the gatekeepers
to a multitude of today’s scientific questions because they provide us with tools for
making sense of data. While the last century was the century of the hard sciences,
the exciting new frontiers are now shifting to medical and biomedical applications.
Imaging science will play a large role in these areas. Genomics with its terabytes of
data may be a better example. In any case, anyone who has the ability to make sense
of the mountains of data that is generated daily will be employable. In a word: Data,
Data, Datal

Virginia: So that’s why you mentioned biomedical applications?

Galileo: You got it.
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Chapter 3

Topics for the Tutorial

He who does not understand motion, cannot understand Nature.-Galileo

Virginia: Good Sir, could you give us an overview of the topics you will be discussing
in this tutorial?

Galileo: Certainly. The two main themes will be root finding and approximation
theory. Since root finding has a long and distinguished history, we will begin with
this theme. The task of finding a root is equivalent to that of solving a system of
nonlinear equations.

Simplicio: Could you remind me about roots?

Galileo: A root of a function is a point x = r, where the graph of function crosses the

x—axis. The official definition is:

Definition 3.0.1. If f(z) : [a,b] — R, is a function and f(r) =0, then v =71 is a

r00t.

Simplicio: Why would 1 care?

Galileo: If you recall from your study of Calculus, the problem of maximizing and/or
minimizing a function f(z) : [a,b] — R is at the heart of a multitude of applications.
The strategy is to compute the first derivative f'(x) at each critical point x = r. The
maximum of the function y = f(x) on the interval [a, b] will equal the maximum of

the values f(a), f(b), f(r1), f(ra),..., f(rs), where ri,ro, ... 1, is the list of all the

13
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critical points for f(z). A similar statement is true for computing the minimum of the
function. The beauty of this strategy is that an infinite problem has been reduced to
a finite one.

Simplicio: Forgive me, but it has been a long time since I have suffered through
Calculus. What is a critical point?

Virginia: A critical point of a function is a point x = r, where the graph of the first
derivative crosses the r—axis. In other words, a location where the function has a

horizontal tangent line. The precise definition is:

Definition 3.0.2. If f(x) : [a,b] — R, is a differentiable function and f'(r) = 0, then

x =71 is a critical point for f(x).

Galileo: Very good. Note that the critical point always lies in the domain of the
function.

Simplicio: And why should I care about critical points?

Galileo: If a company can represent their profits by a function, then they can max-
imize their profits by simply computing this function at all the critical points. The
largest value will be the maximum of the function. A similar statement holds for
minimizing their costs.

Simplicio: I must admit that [ am having a bit of trouble visualizing this situation.

Galileo: How about the example of the parabola? Calculus is nothing more than
the recognition that concepts such as velocity and acceleration associated with the
motion of a falling body can be generalized to arbitrary functions. If you understand
the parabola, you are a long way home.

Simplicio: Sounds good.

Galileo: If f(x) = ax® + bx + ¢, then the first derivative is f'(z) = 2ax + b. The
critical point x = r is commuted by solving the equation f'(z) = az +b = 0. As an
expert in Algebra, you immediately recognize that the critical point is r = z = —g
and the critical value is f(r) = f(=2) = a(=2)* + b(—=2) + ¢ = =22 + ¢ In the
special case of a falling body, I found that the height can be modeled by the formula
s(t) = —3gt* + vot + s9, where g = —32- Lt = 9.8y, denotes the initial velocity,

sec? sec??
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and sy denotes the initial height. Since this curve is concave down, the highest
point of the flight of the ball will occur when the velocity equals zero. Since the
velocity is the first derivative of the height function, the critical point will occur
when v(t) = §'(t) = —gt + vo =0 or t = *2.

Virginia: If you toss the ball in a downward direction, then the initial velocity is
negative. In this case, the maximum value of f(z) will occur at time ¢ = 0.

Galileo: Good point. I should have mentioned that we are assuming vy > 0. While the
critical points are easy to find for this problem, real-world problems require much more
general techniques. We will focus our discussion on the Newton/Raphson, bisection,
and Contraction Mapping Theorem techniques. The Newton/Raphson method is
based on finding the root x = r for the linear function y = f(x) = ma + b. Since
r= —%, the problem is not too difficult. Right?

Simplicio: These remarks help, but why are we discussing several different methods
for finding roots? Why not simplify the discussion and just focus on one method?
Galileo: Each has its place. Our discussions will be driven by such questions as: Does
the method always work?” Which converges faster? Unfortunately, with numerical
techniques, you don’t always get clear winners. We will often find that the application
drives the choice of technique.

Simplicio: And why would I care about the Contraction Mapping Theorem?
Galileo: This theorem is an elegant generalization of the method of Archimedes/Heron
and Newton/Raphson. While these extensions are easy to understand in retrospect,
they took 2000 years to unfold.

Simplicio: Do [ need elegance?

Galileo: This theorem can be used to solve linear systems of equations, non-linear
equations, and differential equations. It is even used to generate fractal pictures and
compress images. In other words, it can be used to solve a multitude of different
types of problems. In its most basic form, the technique is easy to understand, can
be implemented in only a few lines of computer code, and always works. I call that

elegant and I appreciate it when I find it.
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Simplicio: I like the idea of compressing images.

Virginia: I too have enjoyed the beautiful snowflake example.

Galileo: While we won’t have time to discuss fractals, we will lay the foundation so
you can study that subject on your own.

Virginia: Are these all the topics we will cover?

Galileo: The second theme of our tutorial is approximation theory, where we will
discuss the topics of Taylor’s Theorem, polynomial approximation, Fourier Series,
cubic splines, and wavelets. These methods are useful if you would like to approximate
a function f(z) by a function with certain desirable properties. For example, given
the function f(xz) = sin(z), we would like to approximate its value at a particular
point & = xy. We can do this with a Taylor polynomial of the form p; (z) = z,p3(x) =
x— 2%, ps(x) = x — ga® + 552, ete. Since polynomials are easy to compute and the
method always converges to the correct answer, Taylor’s Theorem is a great place to
start. Taylor’s Theorem provides a fundamental tool for the numerical approximation
of first and second derivatives. Virtually any problem involved with rates of change
requires the estimation of velocity or acceleration. The formulas we will derive are
used everywhere in differential equations, partial differential equations, and signal
and image processing.

Simplicio: What’s next?

Galileo: After Taylor’s Theorem, we turn to a second technique for approximating
functions by polynomials. The advantage of this method is we use a sampling of the
values of the function at scattered points rather than the values of the function and
its derivatives at one particular point.

Simplicio: So?

Galileo: Typically, when we are given a set of data points, we are not given any
information about the derivatives so Taylor’s Theorem cannot be applied. Thus, we
need a new technique.

Simplicio: OK.

Galileo: This topic also provides an excellent entry point into the modeling of data.
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Since we usually have more data than we know what to do with, we usually try to
reduce the data to a form that is easy to understand. Straight lines and parabolas are
often a good place to begin. The technique that gets us there is linear least squares.
While least squares is usually associated with straight line approximations, it can also
be used to approximate data with a parabola of the form py(x) = ag + a1z + apz?.
Our falling body problem is a good example, where a parabolic fit works. In 1958,
Charles Keeling (1928-2005) began the collection of data measuring the concentration
of carbon dioxide in the atmosphere. These measurements have been made monthly
ever since he began this effort. When least squares is used to fit a parabolic curve
to this data, the fit is excellent. A current political issue is whether or not the rising
concentration of this gas causes global warming. Just because the fit is good, doesn’t
mean we can extrapolate out too many years. We shall see.

Simplicio: Interesting.

Virginia: Why would we worry about Fourier series?

Galileo: Fourier made his mark in mathematics by recognizing that trigonometric ap-
proximations produce much more accurate results than polynomial ones when solving
the heat equation. We will discuss that famous Runge example, which shows that
high degree polynomials are evil.

Simplicio: Good and evil in a mathematics class?

Galileo: If you are an engineer making a calculation and your calculator gives you a
stupid answer, then your attitude is that the device is evil.

Simplicio: Even I understand that.

Virginia: Why discuss polynomials at all?

Galileo: As we mentioned, linear and quadratic fits can often produce useful results.
Least squares are used everywhere. However, probably the best reason is polyno-
mial interpolation provides an excellent entry point to Fourier series. In fact, if you
look at the subject properly, the discrete Fourier transform is exactly polynomial
interpolation. Thus, if you understand polynomials, you are a long ways towards

understanding Fourier. Better yet, waves and wavelike (i. e. periodic) motion are ev-



18 CHAPTER 3. TOPICS FOR THE TUTORIAL

erywhere in nature. While the motion of the pendulum is the first one that comes to
mind, light, radio, ocean, and sound waves are also examples. A wave with frequency
w can be written as a trigonometric function of the form cos(w(t — tg)). Fourier series
are nothing but linear combinations of functions of the form cos(nz) and sin(nz). Not
only are they perfectly designed for modeling waves, but they also have remarkable
mathematical properties.

Simplicio: But I am not interested in their math properties.

Galileo: You should be. As it turns out, engineers love Fourier techniques because
they are not only directly connected with wave phenomena, but because they are
computationally stable. Thus, they can trust the answers. The fundamental reason
for this trust takes us back to Pythagoras.

Simplicio: I can’t wait.

Virginia: What about cubic splines?

Galileo: While they are not as useful in physics as Fourier series, they have the same
stable characteristics as Fourier series but even better convergence properties for the
first and second derivatives. This property is not necessarily true for Fourier series.
Splines have another important property that Fourier series don’t have. Namely,
while functions like sin(z) and cos(z) oscillate up and down forever, splines equal
zero outside some finite interval.

Simplicio: Why is that property important?

Galileo: When you compute a linear combination of a bunch of spline functions at
a particular point x, you can ignore all the intervals not containing z. Typically,
the point x will lie in no more than 5 intervals. Since splines are piecewise cubic
polynomials, they are almost instantaneous to compute on each interval and lie in a
small number of intervals, they are blazingly fast. For these reasons, they are often
used in computer graphics and computer animations.

Simplicio: I will have to pay attention when we discuss that topic.

Galileo: You will enjoy the elegant theorems associated with splines as well.

Virginia: And finally, what are wavelets good for?
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Galileo: Wavelets represent the best of all possible worlds. If you think about the
name a minute, you realize that the word wavelet implies “little wave,” which is
exactly what they are. Wavelets oscillate like sin(z) and cos(z) so they are useful
for modeling real physical phenomena. Like the trigonometric functions, they enjoy
the benefits of Pythagoras and so are stable to compute. In addition, they have the
same finiteness properties that splines have so they are fast to compute. Needless
to say, wavelets are very popular and are used in a multitude of applications. In
particular, Jean Morlet used them to search for intense, short term bursts in geologic
sonography data. They are also used in a multitude of imaging applications including
compression and analysis.

Simplicio: If wavelets are so great, why don’t we skip the other topics?

Galileo: Because you would be lost and confused. We will try to let the story unfold
so the ideas become more transparent.

Simplicio: So that’s it?

Galileo: Since the heat equation and the wave equation gave rise to the popularity of
Fourier series, we really are required to discuss partial differential equations. Since we
know your limits, we will make the discussions as brief as possible. Since differential
equations are also everywhere in Nature, we will mention those topics as well.
Simplicio: I never had a course in differential equations.

Galileo: He who does not understand motion, cannot understand Nature.

Simplicio: Maybe I should become a monk.

Galileo: You can run, but you cannot hide. Remember: Math is easy. Its life that is
difficult. And young lady, why are you here?

Virginia: I find all this talk about data and applications quite exciting. Hopefully,
this experience will make me a better teacher.

Galileo: If your students can see how mathematics connects with the real world, then
maybe they will be more motivated.

Simplicio: Again, why would you want to teach?

Virginia: [ enjoy the logic, clarity, and simplicity of mathematics. It all makes sense.
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I enjoy interacting with young people. My material needs are few so [ don’t object
to the low pay.

> and “Hmmm.”

Galileo: (The phone rings. Galileo answers. After he mumbles “Yes.’
repeatedly, he gets up from his chair.) My benefactor feels I should return to my
research. So ends my catechism.

Simplicio: One last question?

Galileo: Yes?

Simplicio: Every book on numerical methods I have looked at begins with a discussion
of round-off errors. Why haven’t you mentioned this topic?

Galileo: Round-off errors are a detail. The big picture comes first. (Galileo sips from
his glass of wine and departs.)

Simplicio: What do you think? Should we enroll in this guy’s tutorial or take someone
else’s class? All he talks about is definitions, theorems, and proofs. Nothing but math,
math, math. Worse yet, he seems to be a preacher teacher. I am not sure I can handle
it.

Virginia: You can always take the course with Professor Powertrip. You might prefer
to be with all those engineers. It is probably more your style.

Simplicio: Not a chance. That guy is mean and will do whatever he can to make you
feel stupid.

Virginia: How about Professor Poubelle’s section?

Simplicio: At least he wouldn’t expect much from us.

Virginia: While I am a bit worried about the computer projects and the applications,
I have decided to enroll with the preachy guy.

Simplicio: Tonight is ladies night at the “Math and Music Bar.” Interested?
Virginia: Are you serious? I have to study.

Simplicio: Tomorrow is another day, maybe.
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Galileo: You have returned?

Simplicio: While I am not yet certain this course of study is worth my time, I have
decided to give your tutorial a try.

Galileo: My administrator will be pleased I have clients. This is good. In any case,
be certain to pay your fees before you leave.

Simplicio: What?

Galileo: Don’t you expect compensation for your labors?

Simplicio: I will have to discuss this problem with my father. What about her?
Galileo: She has been awarded a scholarship.

Virginia: Enough of this talk. Let’s move on.

Galileo: T plan to begin our tutorial by presenting several proofs of the Pythagorean
Theorem.

Simplicio: Why on Earth would you present a theorem we have seen in our youth?
Galileo: Recall from our first conversation that the computation of the square root is
of fundamental importance in math, statistics, and engineering. The Linear Algebra

version is at the heart of the success of Fourier series.

The only prerequisite for this course is plenty between the ears.-Walter

Rudin

Simplicio: What are the prerequisites for this tutorial?

Galileo: Since my funding requires that I sustain my research program, let me be
brief. You only need to know one thing, but you have to figure it out.

Simplicio: (To Virginia) Is this guy serious? He speaks in tongues.

Galileo: OK, let me rephrase my response. To succeed in mathematics or science you
need to develop the ability to solve a problem on your own. Most never get it.
Simplicio: But can I ask questions?

Galileo: The math gene is what separates you from the other primates so you have the
talent. Do you really think that an employer is going to reward you with a high salary

to implement well understood ideas? Unfortunately, mathematics is not a spectator
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sport. Just like an athletic competition, you have to put in the time and effort. I
am not interested in passive learners who just say “feed me.” I expect you to run up
and down the field like everyone else. Otherwise, we will both be wasting our time.
Attitude is everything.

Simplicio: How about if you just tell me what [ need to know to survive this tutorial?
Galileo: Since we will not be discussing specific issues in physics and biology, you
can learn those subjects on another occasion. While statistics is important and we
will discuss the rudiments of least squares and classification, you will not need any
training in statistics to follow our discussions. On the other hand, since one of the
main goals of this tutorial will be to develop algorithms, you will definitely need to
have basic skills in computer programming. If you don’t, you will be helpless when
asked to implement even the most rudimentary algorithm.

Simplicio: I can handle those requirements.

Virginia: I am worried.



Chapter 4

Geometry

There is no royal road to Geometry.—Euclid
Euclid alone hath seen beauty.—Emma Talley Shaw

Uncle Dave, Geometry is easy.-Carter McMillan

Simplicio: What about the mathematics?

Galileo: A solid foundation in Euclidean Geometry is essential. You will find Pythago-
ras (569-475 B.C.E.) everywhere in our discussions.

Simplicio: Surely, you are joking Mr. Galileo. I found Euclid (325-270 B.C.E) dull,
difficult, and irrelevant.

Virginia: Mr. Simplicio, I find that statement surprising. I loved Euclid with his

points, angles, similar triangles, congruent triangles, the area formulas for a paral-
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lelogram and rhombus, and ruler and compass constructions. I particularly enjoyed
the careful and rigorous logic he used when presenting his axioms, postulates, and
theorems. Side-angle-side was my favorite. He opened a whole new world for me.
Galileo: And don’t forget my colleague Archimedes (287-212 B.C.E.). He had his
volume formula for the sphere engraved on his tomb.

Simplicio: I am interested in computers. Whoever heard of using a ruler and compass
to implement a mathematical technique on a computer? Side-angle-side? Give me a

break.

4.1 The Pythagorean Theorem

At its deepest level, reality is mathematical in nature.-Pythagoras

Galileo: In the spirit of the ancients, we begin with the Pythagorean Theorem. [
know you have seen it before.

Simplicio: It is a theorem I learned in geometry many years ago. Why would you
begin our discussion with such an old theorem?

Galileo: Because the Pythagorean Theorem provides a unifying theme for this tuto-
rial. In fact, it contains four important concepts that appear everywhere in modern

mathematics. These concepts are:

1. length,
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2. roots,
3. orthogonality, and
4. projection.

Can you state the theorem?

Virginia: I remember it.

Theorem 4.1.1 (Pythagorean Theorem). If the legs of a right triangle have
lengths a and b and the hypotenuse has length c, then ¢? = a? + b®.

Galileo: We begin by making some easy observations about the theorem that should
help to make these themes more transparent. First, since the length of the hypotenuse
of a right triangle is the square root of the sum of the squares of the other two, it
forms the basis for computing the distance between two points. In fact, the formula
for the distance between two points P(xy,y;) and Q(z2,y2) in the plane is given by

the formula:

dist(P, Q) = /(w3 — 1)% + (y2 — y1)2.

This rule is an immediate application of the Pythagorean Theorem. Note that we
will begin our tutorial with a discussion of the Archimedes/Heron square root algo-
rithm for approximating the square root of a number. As you will see, the ideas in
this algorithm are embedded in a number of important modern techniques including
Newton/Raphson and the Contraction Mapping Theorem. Also, while lengths and
distances may seem too easy, the concept of computing distances between points reap-
pears in Linear Algebra, Fourier series, orthogonal polynomials, splines, and wavelets.
We will revisit this idea repeatedly during our quest. Are wavelets new enough?
Simplicio: OK, OK.

Galileo: A key assumption in the Pythagorean Theorem is that one of the angles has
to be a right angle. Without that assumption, the theorem is false. As we will see in
our investigations, many numerical techniques fail badly. Engineers do not like being

blind sided by a stupid result when they are in the middle of a project. They like
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methods that always produce accurate answers. The concept of orthogonality helps
fulfill this wish.

Simplicio: I never heard of orthogonality before.

Galileo: Orthogonality is just a fancy way of saying right angle or perpendicular. In
the Pythagorean Theorem, the two shorter sides of the triangle are assumed to be
perpendicular (and thus orthogonal).

Simplicio: It looks easy from here.

Galileo: The fourth idea is that we can project the hypotenuse of the triangle onto
either of the other two sides. Note that the length of the hypotenuse is greater than
the length of either of the other two sides.

Simplicio: That’s evident from the formula ¢ = a? + b2

Galileo: This desirable property is a consequence of our assumption that the angle
opposite the hypotenuse is assumed to be a right angle. While not all projections
have this wonderful property, Fourier does. Such projections are called orthogonal.
Virginia: Since I don’t exactly understand Fourier series, I am not sure where you
are going with this. In any case I find these ideas interesting.

Simplicio: So far, I like this discussion. Easy is good.

Galileo: I like to begin with easy examples. Can you prove this theorem of Pythago-
ras?

Simplicio: I fear it has evaporated from my cranium.

Galileo: Pythagoras of Samos (ca.569 — ca.475 B.C.E.) is often described as the first
pure mathematician. While he is an extremely important figure in the development of
mathematics, we know very little about his mathematical achievements. Unlike many
later Greek mathematicians, we have nothing of Pythagoras’s writings. The society
which he led was half religious and half scientific. His theorem has been claimed
by both the Chinese and Babylonians at least 1000 years before his birth so maybe
others deserve credit as well.

Virginia: Isn’t it time we prove it?

Galileo: How about two proofs?
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Proof. The Pythagorean Theorem
Proof 1:

After a cursory look at Figure 4.1, we see that the area of both squares equals
(a + b)%. Since the area of the square on the left is the sum of the square in the
middle and 4 triangles, A = ¢* + 4(3ab) = ¢* + 2ab. Since the area of the square on
the right is the sum of two squares and two rectangles, A = a? + 2ab + b?. Thus,
A =% +2ab = a? + 2ab + b*. By subtracting the quantity 2ab from both sides of the
equation, we arrive at the relation ¢? = a? + b2.

Proof 2:

A second proof can be given using only the square on the left. Since the area of
the large square is (a + b)? = a® + 2ab + b* and since the whole is equal to the sum of
its parts, we see that a® + 2ab 4+ b* = ¢* + 4(3ab) = ¢® + 2ab. Again, by subtracting
2ab from both sides of the equation, we find ¢? = a? + b. O

Galileo: That wasn’t so bad was it?

Simplicio: Even I can understand these proofs. What else did he do?

Galileo: Pythagoras led a remarkable life. In about 535 B.C.E Pythagoras visited
Egypt, where he learned about their refusal to eat beans, their refusal to wear even
cloths made from animal skins, and their striving for purity. In 525 B.C.E. Camby-
ses II, the king of Persia, invaded Egypt. Pythagoras was captured and removed to
Babylon. Eventually, he was allowed to leave and returned to Samos. In about 518
B.C.E. he left Samos and went to Croton in southern Italy, where he formed a math-

ematical/religious society. He and his followers believed that reality is mathematical

Figure 4.1: The Pythagorean Theorem
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in nature including the idea that things are numbers and each number has its own
personality. The Pythagoreans also believed that the Earth is a sphere at the center
of the Universe and that every number should be rational.

Virginia: What happened when they discovered the quantity /2 is not a rational
number?

Simplicio: They probably started eating beans again.

Galileo: And so it goes.

Exercise Set 4.1.

1. Prove the Pythagorean Theorem for three dimensions. In particular, if a,b,c
represent the lengths of the sides of a rectangular box and d represents the
length of the diagonal, then show that d* = a? + b* + ¢*. (Hint: Apply the

Pythagorean Theorem twice.)

4.2 Garfield’s Proof of the Pythagorean Theorem

Ideas control the world.-James Garfield

Galileo: While the Pythagorean theorem is of great interest to mathematicians, it
even inspired President James Garfield to provide his own proof. Let’s take a look.

Garfield: My proof is based on the a trapezoid, where the two bases have lengths «
and b, respectively, and the height is a +b. A picture containing the ideas of the proof

is given in Figure 4.2.
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Proof. If we compute the area of the trapezoid, we find:

A :%(a+b)(a+b)

1
= §(a2 + 2ab + b%)

1 1
= §a? + ab + 5b2

Now computing the same area as the sum of the areas of the three triangles that

comprise the trapezoid we find:

1 1 1
A = — — —c?
2ab+2ab+20
b+1 2
2

Setting these values for the area of the trapezoid equal to each other we find:
1 1 1
A==a’>+ab+ =b* = ab+ =¢*.
2a + ab + 5 ao + 20

Thus, by subtracting the quantity ab from both sides of the equation and multiplying
both sides of the equation by 2 we have the desired result:

a? + v =2

Figure 4.2: President Garfield’s Proof of the Pythagorean Theorem
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Simplicio: I don’t see that his proof is much different from the two we just discussed.
It just seems to divide everything by two and adds little to my understanding. He
should have been shot.

Galileo: He was.

Exercise Set 4.2.

1. Investigate Alexander Graham Bell’s role in trying to save President Garfield’s

life. What technology was used?

4.3 Two Applications of Square Roots

Galileo: While the Pythagorean Theorem provides one situation where the computa-
tion of a square root is needed, a couple of others should also be mentioned. You do
remember the formula for computing the area of a triangle?

Simplicio: Of course, the area is simply one half the base times the height.

Galileo: OK, but would it not be more natural to have a formula, which produces
the area in terms of the lengths of the three sides? This question is a natural one
because the height may not be known.

Simplicio: I don’t recall any such formula.

Galileo: Leave it to the ancient Greeks to not only have asked this question, but to
have answered it as well. While Heron of Alexandria (10 — 75) is frequently given
credit for its discovery, the formula was already known to Archimedes of Syracuse
(287-212 B.C.E.). For the area of a triangle whose sides have lengths: a, b, and ¢, the

area is given by the formula:

A= /s(s—a)(s—b)(s—c),

etbic denotes the semi-perimeter. Note that the computation of a square

where s =
root is required.
Note that as long as you know how to compute the square root of a number, the

formula is straightforward to compute. Do either of you see why the formula might
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be useful?

Virginia: In fact good sir, I prefer this formula to the usual one given in Geometry
because you frequently don’t know the height of the triangle. This formula works
great if you simply know the lengths of the three sides?

Simplicio: I like the formula, but how would anyone have ever thought of it?
Galileo: While I can’t answer that question, always remember that those ancient
fellows were smart and thought deeply.

Virginia: How would such a formula be proved?

Galileo: In modern notation, simply represent the vertices of a triangle by vectors
u = (a,b) and v = (¢, d) in the plane and compute. It helps to use the fact that the
area of the triangle is the absolute value of $(ad — bc). However, it is still a bit of a
mess. We will leave this problem as an exercise.

Simplicio: (To Virginia) That problem belongs to you.

Galileo: A second example is the golden mean (or ratio) ¢, which the ancient Greeks
felt had special, even mystical, significance. This quantity appeared in their art and
architecture as well as their mathematics. The ratio of the height to the width of the
Parthenon equals this famous number. A pentagram is loaded with ratios equal to ¢.
The golden ratio is defined as the ratio ¢ = %, where x is the point in a line segment
[0, 1] such that ¢ = 1;1}”” In other words, the point z is chosen so that the ratio of the
whole segment to the longer subsegment equals the ratio of the longer segment to the
shorter. When this proportion is solved for z, the answer is x = %‘/5 Since lengths
should be positive quantities, we are only interested in the answer z = ’1%‘/5 An
easy computation shows that ¢ = % = 1+—2‘/5 == 1.61803.... Thus, the Greeks had a
natural interest in computing the quantity /5.

Virginia: If I remember correctly, this number can be approximated by computing
the ratios of the terms in the Fibonacci sequence 1,1,2,3,5,8,....

Galileo: Very good.

Simplicio: Is that why we have note cards of dimension 3 x 5 and 5 x 87

Virginia: You do the math.
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Exercise Set 4.3.

1. Compute the golden mean to 8 decimal places.

2. Compute the area of a triangle, whose sides have lengths 1,1, and 1.
3. Compute the area of a triangle, whose sides have lengths a, a, and a.
4. Compute the area of a triangle, whose sides have lengths 1,2, and 3.

5. Compute the area of a triangle, whose sides have lengths 1,2, and 4. Why do
you have an OOPS?

6. Prove the Archimedes/Heron formula for the area of a triangle, whose sides

have lengths a, b, c.

4.4 Rigor

The development of mathematics towards greater precision has led, as is
well known, to the formalization of large tracts of it, so that one can prove

any theorem using nothing but a few mechanical rules.-Kurt Godel

Galileo: A deep understanding of Geometry is built on a foundation of mathematical

rigor. I insist you are conversant in mathematical rigor.
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Simplicio: Why?

Galileo: Before you can understand the strengths and weaknesses of a mathematical
technique, you need to have an understanding of when it works and when it fails. A
bit of logic and mathematical formalism will aid in the understanding of when you
can trust a method. Key examples can be used to point out when you should be
suspicious. The first requirement in formal mathematics is that you must understand
the difference between an axiom, a definition, and a theorem.

Simplicio: I knew this discussion was going to deteriorate. Here it comes.

Galileo: Unfortunately, the beauty of numerical analysis is that the subject is ruled by
Murphy’s Law. Namely, “What can go wrong, will go wrong.” A technique that works
well for one application may fail for another. Worse yet, for any given technique, an
example can invariably be found, where it provides answers that make no sense. It
is important to understand why one method is preferred over another. Definitions
and theorems can be used to make these thoughts precise. I now introduce Professor
Godel, who has agreed to help clarify these issues for us. Professor Godel.

Virginia: [ am pleased to meet you sir.

Simplicio: Good day sir. (To Virginia) He looks mean. This meeting could get ugly.
Godel: T am not sure I am welcome. Maybe I should retreat to my office.

Galileo: Please enlighten these young people about the nature of mathematics.
Godel: T will try. First, every theorem consists of two parts. The first is the hypoth-
esis, while the second is the conclusion. If the theorem is valid and the hypotheses
are true, then we can conclude that the conclusion is also true. Symbolically, every
theorem is a conditional sentence of the form: If p, then . If the theorem is true
and we know that the statement p is also true for our particular situation, then we
immediately know that q is true as well. This bit of logic is called modus ponens.
Galileo: Let me note that our friends in statistics are also quite fond of conditional
sentences. The theorem of the Presbyterian minister Thomas Bayes (1702-1761) is
central to any discussion of conditional probability. Thus, people other than my-

self require you to understand the structure of language. In any case, what is the
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hypothesis of the Pythagorean Theorem?

Virginia: Actually, we have two hypotheses. The first hypothesis is that the geometric
object we are dealing with is a triangle. The second is that this triangle is of a special
type. Namely, one of its three angles is 90 degrees.

Galileo: Correct. Now what is the conclusion?

Virginia: The relationship between the length of the hypotenuse and the lengths of
the other two sides of the triangle. Namely, the equation ¢? = a? + b%.

Galileo: Correct again.

Simplicio: Why are you boring us with these discussions? I know the formula

¢ = a? + b? has been established. But if I know the formula, then isn’t that good
enough? What else matters?

Godel: How can this guy be so obtuse? Children are evil. (Godel departs)
Simplicio: This wizened little guy is mean.

Virginia: Maybe he was a pediatrician and had you as a patient.

Galileo: How about a bit less disrespect and a bit more discussion?

Godel: (Godel returns) Has anyone seen a small black valise? It contained important
work.

Galileo: What if the triangle is not a right triangle? In particular, what if the triangle
is acute or obtuse? You need to know when it is appropriate to apply the formula.
Virginia: Obviously, the formula does not apply for all triangles.

Galileo: Correct again. If the hypothesis is not satisfied, then the theorem does not
apply and you cannot pretend the conclusion holds.

Simplicio: What do you do then?

Godel: This discussion is outrageous. Plato understood these issues 2500 years ago.
These young people should have mastered logic and rigor when they studied Euclid.
We should not be having these discussions.

Galileo: Patience good sir. However, my experience has been that people in applica-
tions tend to be sloppy in these matters. I find it is better to discuss them up front.

Later, when the setting is more abstract, a discussion of rigor might get lost in the
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mud. We might as well address the issue now while we are in the familiar setting of
geometry. You will be well served if you make the effort to clarify these questions of
rigor and logic now. Don’t worry, we will revisit these issues.

Godel: Let’s just reduce the discussion to the essentials.

1. A theorem is a statement of the form: “If p, then q.”

2. The converse of the theorem “If p, then q.” is a statement of the form “If q,

then p.”

3. The contrapositive (modus tollens) of the theorem “If p, then q.” is a statement

of the form “If ¢, then p.”

4. If a statement “If p, then q.” and its converse are both true, then p and q are

considered equivalent. In other words, p is true if and only if ¢ is true.

While politicians and preachers would like you to believe that a theorem and its
converse are equivalent, nothing could be further from the truth.

Simplicio: How about some examples?

Godel: Consider the statement: ”If you are Franklin Delano Roosevelt, then you are
famous.”

Simplicio: T would rather consider the statement: ”If you are Emmitt Smith, then
you are famous.”

Virginia: Who is Emmitt Smith? Is he famous?

Galileo: I think we are off topic here. In any case, let us assume the statement is
true.

Godel: The converse of MY version of the statement is: ”If you are famous, then you
are Franklin Delano Roosevelt.” Do you think this converse is also true?

Simplicio: No. Barbara Bush is famous and she is not even a male. In particular, the
two statements are not equivalent.

Virginia: On the other hand, the contrapositive of this statement is: “If you are not
famous, then you are not Franklin Delano Roosevelt.” Note that this statement is

indeed equivalent to the original statement.
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Galileo: Correct again.

Simplicio: So why should I care?

Godel: T am done. (Godel picks up his valise and departs.)

Galileo: As you will see many times during our discussions, the contrapositive is at the
heart of a proof by contradiction. In other words, we will assume that the statement
q is false and then will show that the statement p is also false. In summary, an
understanding of definitions, theorems, converses, and contrapositives is about all
the logic you will need to know.

Virginia: If I remember my Geometry correctly, we also considered lemmas, proposi-
tions, and corollaries.

Galileo: These three words all represent different names for for small theorems. A
lemma is interesting only because it can be used to help prove a more important
theorem. Sometimes they are called helping theorems because they help organize
the proof of an important theorem. A proposition is a small (but usually useful)
theorem, which is more of a stepping stone than a reservoir containing a big concept.
A corollary will usually represent an easy consequence of an important theorem. For
example, the Mean Value Theorem has several important corollaries that we will use
more often than the theorem itself.

Virginia: So when we are studying for an exam, we study the theorems first, the
corollaries second, and the propositions last.

Simplicio: Do we get to forget the lemmas?

Virginia: For you, the answer is probably yes. For the rest of us, a lemma helps
us organize and remember the proof. What do you have to say about axioms and
definitions?

Galileo: Axioms are something you assume true. For example, in algebra we assume
that equals added to equals are equal.

Virginia: So, if a = b and ¢ = d, then a + ¢ = b+ d.

Galileo: While definitions are written in the same “If p, then q.” format we use for

theorems, their purpose is to define a new concept.
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Simplicio: An example please!

Galileo: How about the definition of a right triangle?

Definition 4.4.1. If a triangle has the property that one of its angles is a right angle,
then it is a right triangle.

Note that while this definition is written as a statement of the form “If p, then
q.” , it is understood that the p and ¢ are equivalent.
Virginia: In other words, there are no converses for definitions. If the triangle doesn’t
have a 90 degree angle, it cannot be a right triangle.
Galileo: Looks like you understand the hierarchy. 1 would only add that you pay
special attention to theorems with names such as the Pythagorean Theorem, Taylor’s
Theorem, the Mean Value Theorem, and the Intermediate Value Theorem. We will
think of a theorem as an item in a bookkeeper’s ledger. Whenever you need to know
if something is true, you simply check the list of theorems in the ledger. If you find
one that you think might be relevant, all you have to do is check the hypotheses. If
they are satisfied, you get the conclusion for free. In other words, the hard work has
already been done. Now, you have to admit that this logic and rigor is easy. All you
have to know is four logic rules and the difference between a definition and a theorem.
Simplicio: I should have gone to church this morning.
Galileo: Remember, math is easy, it’s life that’s difficult.

Simplicio: Let’s move on before I become rigor-mortified.
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Chapter 5

Limits

Augustin Louis Cauchy (1789-1857)

Men pass away, but their deeds abide.-Augustin Louis Cauchy [His last

words?|

5.1 The Definition of a Convergent Sequence

Calculus has its limits.-unknown

Galileo: We now introduce Augustin Louis Cauchy (1789-1857) for an explanation
of the theory underlying limits. His text “Cours d’analyse” (written in 1821) was an

important step towards bringing rigor to Calculus. Professor Cauchy grew up during

41
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the French Revolution so he knows how to bring order out of chaos.

Virginia: If I count correctly, Newton’s Principia was written in 1689 so it took more
than 100 years to bring rigor to Calculus.

Galileo: Actually, this issue has been around since Plato recorded the paradoxes of
Zeno of Elea (490-450 B.C.E.) in his dialogue Parmenides.

Simplicio: As far as I am concerned, infinity has nothing to do with the real world.
Why don'’t we just focus on algorithms. Something useful an employer would appre-
clate.

Virginia: Your goal is to earn a blue collar wage?

Galileo: Before we begin, we let us take a minute and have a brief quiz to make sure

you will follow each nuance of the discussion.

Quiz:
1. What is a conditional sentence?
2. What is the purpose of a definition?
3. What is the difference between a definition and a theorem?

If you can’t answer these question, then there is no point continuing.

Simplicio: But we just covered these issues?

Galileo: I am never quite sure what you retain. Professor Cauchy, where should we
begin?

Cauchy: Let us begin by admitting we have a problem. Namely. some sequences
converge and some do not. The issue is simple. We must get the language straight.
Namely, we must make some carefully worded definitions that set the ground rules

for what we want. Let us begin with two examples, which encapsulate the issues.

Example 5.1.1. First, the alternating sequence of points defined by {x,}5°, =
{(=D)"}e, = —1,1,—-1,1,—1,..., causes trouble because it seems to converge to

two points at the same time, namely +1 and —1. However, if you are going to allow

a sequence to converge to two numbers, then why not three? Why not four? Now the
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situation is out of control so we decided that we wanted a sequence to converge to only

one number.

Example 5.1.2. Second, while some people might want the first sequence o con-
verge to both +1 and —1, I don’t think anyone would allow a sequence to converge
to infinity. Thus, the sequences {x,}5°, = {n}>, = 1,2,3,4,5,...,n,... and
{yn}oo, = {n?}20, = 12223242 5% ... n? ... march off to infinity. The theory
and applications work much better if we simply rule them out. For example, looking
ahead, we would like to have a theorem which states that the limit of the sum equals
the sum of the limits. However, if we had that theorem, we might try to compute the
limit of the sequence

Jim {z,}32, = lim {n— )2, = lim {0}, — lim {n*}32, = 00 — 00 =777

Thus, we don’t want to deal with unbounded limits-at least not at this time.

Simplicio: How about something more positive?

Cauchy: No matter what your attitude, the following three sequences should converge.

Example 5.1.3. The sequence {%}Z":l =1, %, %, i, %, ..., should converge to zero.
Example 5.1.4. The sequence {#}Z"Zl = -1, —%, i, —%, ..., should also con-

verge to zero.
Example 5.1.5. The sequence {nT_l}fLo:l =0, %, %, %, %, ..., should converge to one.

Cauchy: To rectify the situation with the first two examples, we first need to decide
what the word convergence means.

Simplicio: You mean you we get to make up the rules?

Cauchy: You are in control. But remember, once you have made a choice, you have
to stick with it. You don’t get to change the rules.

Virginia: But how do you make up a rule to test for something that goes on forever?

Cauchy: First, we are given a sequence of numbers {z,,}°°,.
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Second, we have an idea of what number the sequence is supposed to converge to.
Since that number is going to be the LIMIT of a sequence, we will denote it by the
letter L.

Third, we need to devise a test (or criterion) to decide whether or not the sequence
converges to the number L.

Simplicio: What’s wrong with the rule that the sequence simply stabilizes. Namely,
a sequence converges when ay = agy1 = Agyo = Grr3 = .... That idea worked fine
when we computed square roots.

Cauchy: Unfortunately, that idea only worked because of the finite precision of your
calculator or computer. The successive terms just look equal. There are even exam-
ples of sequences that have the property that successive terms are equal, while the
sequence converges to 0o.

Simplicio: Like what?

Cauchy: Consider the sequence z,, =Y ;_, % Compute x,, when

n = 100, 000, 000, 000,000 and when n = 100, 000, 000, 000, 001 and then check to see
if they are the same.

Simplicio: But who would be dumb enough to ever compute that many terms of the
sequence.

Virginia: We are not talking about computing yet. We are simply trying to get the
language straight.

Galileo: T can think of a number of situations, where you might want to compute
even more terms.

Cauchy: In any case, there are valid mathematical and engineering reasons to proceed
with a bit of caution right at the beginning.

Galileo: Proceed.

Cauchy: The tricky part about the definition of a limit is the test (or criterion). This
test is given in terms of a conditional sentence.

Galileo: Remember: “If p, then q.”?

Virginia: I do.
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Cauchy: This conditional sentence can be thought of as a challenge, where I begin
by giving you a distance and then you are expected to show that almost all of the
terms of the sequence are within this given distance of the limit L. Historically, this
distance has been denoted by the Greek letter €. Since distances are always positive,
we insist that € > 0. In other words, eventually all the terms of the sequence are
within a distance of € from L.

Galileo: Mr. Simplicio, let me ask you one last time: Are you clear about the
difference between a definition and a theorem?

Simplicio: I know, I know. I was listening.

Cauchy: We have two different ways of measuring distance at our disposal. The first
is the open interval. The second is the absolute value function. These two different
techniques are equivalent. In other words, it doesn’t matter which you choose, the
results will be the same.

Simplicio: Why not just give us the easiest one?

Cauchy: The open interval definition is easier to visualize, while the absolute value is
usually easier to compute. The advantage of the absolute value function is that you
are often able to condense multiple cases in a mathematical argument into a single
case. Thus, the arguments are shorter.

Galileo: And sometimes it provides a more conceptual framework because you can
think in terms of distances from the limit L.

Cauchy: We begin by defining the terms interval, open interval, and closed interval.

We also let the symbol R denote the set of real numbers.

Definition 5.1.1. A subset X of R is called an interval if there are points a and b

in R such that one of the following four cases is true:
1. X =(a,b) ={r eR:a <z <b},
2. X =(a,b)={r eR:a<z b}

3. X =la,b) ={reR:a <z <b},
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4. X =la,b)={reR:a <z <b}.

If a,b € R, then an open interval has the form (a,b), (a, 00), (—o0, b) or (—o0, 00)
and a closed interval has the form [a, 0], [a, 00), (=00, b], or (—o0,00). In particular,
the set R is considered both an open and closed interval. While the empty set is
considered an interval, it will seldom be of interest. In fact, in the definition of limit,
we will want to rule it out by assuming our open intervals U are non-empty.
Simplicio: These ideas are easy so far. If someone gives you two points a and b, then
an interval defined by a and b will be all the points between a and b and possibly one
or both endpoints.

Cauchy: Maybe now is a good time to give a formal definition of the absolute value

function.

Definition 5.1.2 (The Absolute Value Function). If x € R, then the absolute

value of x 1s defined by the rule

xif x>0
x| = _ :
—xifr <0

Cauchy: This function is intimately connected with finding the distance between
two points. The properties of the absolute function are summarized in the following

proposition.
Proposition 5.1.3. If z,y € R, then
1. |z| >0,
2. |z| =0 if and only if v =0,
3. |z +y| < x|+ |y|, and
4o el =yl < |z =yl

Proof. The proofs of these items are straightforward. O
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Cauchy: While we are at it, why don’t we define the distance between two real

numbers?

Definition 5.1.4 (Distance). If x,y € R, then the distance between x and y is
defined to be dist(z,y) = |z — y|.

Cauchy: The properties of the distance function are summarized in the following

proposition.

Proposition 5.1.5. If x,y,z € R, then
1. dist(z,y) > 0, and dist(z,y) = 0 if and only if v =y (positive definite),
2. dist(x,y) = dist(y,z) (symmetry), and
3. dist(x,y) < dist(x, z) + dist(z,y) (triangle inequality).

Virginia: So, am I to understand that whenever I see the absolute value function, I
should think length. Also, whenever I see the absolute value of the difference of two
numbers, I should think distance.

Cauchy: Absolutely. Note also that while these propositions are important, we have
not labeled them as theorems. We will save that designation for the big boys like the
Mean Value Theorem and Fundamental Theorem of Calculus. We now offer three
equivalent definitions for a sequence to converge to a number L. The first definition

is conceptual. If you don’t like it, ignore it. We won’t use it often.

Definition 5.1.6 (Convergence of Sequence 1). A sequence of real numbers
{z,}5°, is said to converge to a number L if for any non-empty open interval U
of the form U = (L — ¢, L + €), then all but a finite number of terms of the sequence
lie in U.

Simplicio: I am not sure I understand that definition at all.
Cauchy: In other words, for any open interval U containing L, there is an integer N

with the property that if n > N, then z,, € U. If you draw a picture with the first five
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terms of the sequence x1, 2, 3, T4, T5 outside the interval, but xg, 7, xs, . . . all inside
the interval U, then you have the idea. Let’s go back to one our successful examples.
Simplicio: I find the use of that symbol € annoying.

Cauchy: The use of the letter € has been around for a long time and probably won’t
change any time soon. While any other letter or symbol could be used, this letter
is indelibly etched in mathematical culture. If it helps, think of it as a tolerance or
precision forced on you by your employer. For example, if you are expected to build
some structure within a certain precision, then the amount of error you are allowed
is €. If you prefer, you can use any symbol you want. However, we will follow our

cultural traditions. Sorry.

Example 5.1.6. We would now like to show the sequence {%}20:1 =1, %, %, i, %, ce

converges to the limit L = 0. The procedure is as follows. If I give you an open

1 1

—15>1g)> Your job is to find an integer N, which has the property that

interval U = (
whenever n > N, then x, = % eU.

Virginia: Obviously, if N = 11, then x; = ﬁ,xlg = 1—12,:1:13 = 1—13,@4 = ﬁ, ... all lie
in U. Since all but 10 terms in the sequence lie in U, we are done.

Cauchy: Very good. Now, how about a smaller interval? Say, U = (—1555 155)-
Virginia: Obuviously, if N = 101, then x19; = ﬁ,xlm = ﬁ,xwg = ﬁ,xlm = ﬁ, .
all lie in U. Since all but 100 terms in the sequence lie in U, we are done.

Cauchy: Very good again. Now let’s try the case when ¢ = 0.

Simplicio: Even I can see that if € = 0, then the interval U = [0, 0] is simply a single
point and we will never have any terms of the sequence in U.

Virginia: Now I see why made this annoying distinction between open and closed
intervals. Obviously, we only want open intervals for these types of problems. While
the interval U = [0,0] is closed, it is not open. Thus, we don’t have to worry this
case.

Cauchy: Excellent. Now let’s try the case when e = —1.

Simplicio: But, if ¢ = —1, then the interval U = (+1,—1) is the empty set and we

will never have any terms of any sequence in U.
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Virginia: And we now see why the definition only expects us to consider NONEMPTY
open intervals.

Galileo: I think we are getting somewhere.

Cauchy: Of course, you realize that you haven’t satisfied the definition at all. These
first few choices of U were just for practice. The real test comes when we choose
U = (—¢,¢€), where € > 0.

Galileo: Howewver, before we do that, let’s follow the example of George Polya and
think in terms of his four steps to solving a problem. Do you know what they are?

Virginia: I know:
1. understanding the problem,
2. devise a plan,
3. carry out the plan, and
4. look back and review what was done.

Cauchy: She is good. How do you recruit such good students Professor Galileo? OK,
so do you understand the problem?

Simplicio: I am not sure.

Galileo: So, now may be a good time to devise a general plan of attack.

Cauchy: When using the definition to prove a sequence converges to a particular
number L, the plan of attack is always the same and can be broken down into three

steps:
1. The Challenge,
2. The Choice, and

3. The Check.

In the first example, we were considering the sequence x, = % and I Challenged

you with the interval U = (— 4, ).
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Virginia: We then noticed that if we C'hoose the integer N = 11, then it might be a
good candidate to separate the terms that are members of U and those that are not.
We then had to Check that if n > N = 11, then the term xz, = % s a member of U.
Simplicio: Fven I can see that when you gave us the interval U = (—T:O, T:O), the
process was exactly the same. The same three steps work.

Cauchy: OK, now I want you to consider the fourth step in Professor Polya’s plan.

Namely, let’s review what we have done and generalize the process. As you will see,

the first step is ALWAYS the same:
Step 1. The Challenge: Let € > 0 be given.

If you miss that step on an exam problem, your professor will classify you as a slow
learner. As you can see in our practice problems, the positive quantity € defines the
endpoints of our open interval U = (—¢, €). This quantity has to be positive because if
it equals zero, the interval is not open and if it equals a negative number, the interval
U is empty. We are only interested in nonempty open intervals. OK, what do you do
newt?

Virginia: Now it is time to choose the integer N. Obuviously, for this problem,
1
Step 2. The Choice: Choose N > —.
€

Simplicio: How did you know to do that?

Cauchy: In general, making an intelligent choice for N is almost always the hardest
of the three steps.

Virginia: But, for this problem, we simply work backwards from what we want.
Namely, since we would like % < €, then we assume what we want and solve for
n. In this case, this step is easy because if we multiply the above expression by n and
divide by e, then we get n > %

Cauchy: To complete the process, we must now Check that your Choice works.
Virginia: For this problem, this last step is easy because all we have to do is reverse

the process from Step 2.

1
Step 3. The Check: If n > N, then we must show x, = — € U = (—¢, €).
n
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Forifn> N > %, then 0 < % < = < e Thus, z, :% lies in U = (—¢,€) and we are

1
N
done.

Cauchy: Ezcellent. Professor Galileo, you should be proud.

Galileo: I am.

Simplicio: How did you figure that out?

Cauchy: Did you notice that we used a conditional sentence in step three? Namely,
we only needed to check that x, = % s in U for “large” n. Namely, those larger than

N. In fact, in the definition of convergence, that’s what we meant by the phrase “all

but a finite number of terms of the sequence lie in U..”

Example 5.1.7. Cauchy: In this next ezample we will show the sequence {%}Z"Zl =

—1.1 —

' 5 ,—%, ..., converges to the limit L = 0. The procedure is the same as be-

=

Y

W=

fore. If e = %, then could you outline the process?

Virginia: Step 1. The Challenge:
We begin with the challenge: Let % be given. Again, this quantity defines the open

interval U = (— 15, 15)-

Step 2. The Choice:
We also choose N as before. Namely, we choose N = 11.

Step 3. The Check:
(=D

n

T3 = —1—13,.7014 = 1—14,... all lie in U = (—%,%). In general, if n >

We must now check that whenever n > N, then z, = € U. However, x,

1 1
—1v12 = 13

N =11, then —1—10 < (—;)n < 11—0.

Cauchy: Very good. Now, how about a smaller interval? Say, U = (—rio, Tio)'
Virginia: Obviously, if N = 101, then the discussion we just gave guides you through
the three steps.

Simplicio: Fven I am beginning to get it.

Cauchy: Very good again. As before, these first two choices of U were just for practice.

Now let’s attack the general case, where I give you the following

Step 1. The Challenge: Let € > 0 be given.
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How do you show all but a finite number of the terms of the sequence x, = CU" gie

in U = (—¢,€). Note that I just did 33% of the problem for you!

Virginia: Obuviously, we can make the same choice as before.
. 1

Step 2. The Choice: Choose N > —.

€

We now have to show that this choice works by giving the following short proof.

—1)n
Step 3. The Check: If n > N, then we must show x,, = (=1) € U = (—¢€).
n
Proof. For it n > N > %, then —e < —% < —% < (7;)71 and (7n1)n < % < % < €
Thus, , = 52 lies in U = (—e, €) and we are done. O

n

Cauchy: Professor Galileo, where do you find such excellent students?

Galileo: I am a lucky man.

Simplicio: I think I am beginning to figure it out. The open interval U needs to
surround the limit L so it traps terms of the sequence coming from both sides.
Virginia: That’s why the interval is nonempty and open.

Cauchy: In the spirit of Polya’s looking back, I would like to comment on the phrase
“all but a finite number of terms of the sequence lie in U.,” which appears in the
definition of a convergent sequence. While this phrase makes sense, it is a bit of a
mouthful and it is not expressed mathematically.

Virginia: But isn’t that why we went to the trouble to find the integer N with the
property that if n > N, then x,, € U.

Cauchy: Exactly. Note also that the phrase “if n > N, then z,, € U” is a conditional
statement. Thus, when we check a sequence converges, the Check will always be a
test phrased as a conditional sentence.

Virginia: Now we understand why we discussed conditional sentences when we re-
viewed logic and rigor.

Simplicio: I didn’t say anything. Why are you looking at me?

Cauchy: For practical problems we have two standard choices for €. To ensure that

1

our sequence is within single precision accuracy of the limit, we would choose € = 157.
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To ensure that our sequence is within double precision accuracy of the limit, we would

1

choose € = 1.

Thus, for single precision accuracy, we let U = (L — =, L+ 7). For
double precision accuracy, we let U = (L — 10%, L+ 10%) Of course, € can represent
any positive number. Conceptually, ¢ measures the distance from the center of the
interval to the two endpoints of U. I think you can now see why we insist e MUST
always be positive. If it were negative, the set U would represent the empty set. Also,
since it represents a distance, it must be positive.

From an engineering point of view this definition can be thought of as an em-
ployer/employee challenge, where the employer gives the employee the specs (or tol-
erance for error) on the project and the employee is expected to search until he/she
can guarantee that all the remaining terms of the sequence are within that specifica-
tion. The number € represents the tolerance forced by the employer on the employee.
For example, if I wanted to build a house with 2500 square feet and I gave you a
tolerance of 10 square feet, I would be upset if I ended up with only 2450 square feet.

We would now like to give a second definition of convergence.

Simplicio: You have got to be kidding. One definition was bad enough, but now I
have to deal with another one?

Cauchy: The idea behind the first definition is to get the language as simple and
natural as possible. The only difference between the first and second is the observation
that an open interval U = (L — ¢, L + €) is equal to the set of all numbers x € R such
that | — L| < e. For the sake of completeness, we formalize this bit of information

in the next proposition.

Proposition 5.1.7. If L,e,x € Re, then x is a member of the set U = (L —¢€, L+¢)
if and only if |x — L| < e.

Simplicio: Am [ correct in noting in this proposition that if € < 0, then the set U is
the empty.
Cauchy: True, but we aren’t interested in negative values for e. The second definition

of convergence can be given as:
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Definition 5.1.8 (Convergence of Sequence 2). A sequence of real numbers
{x,}52, is said to converge to a number L € R if for every ¢ > 0 there is an

integer N with the property that if n > N, then |z, — L| < €.
Proposition 5.1.9. Definition 1 for convergence is equivalent to Definition 2.

Proof. By the previous proposition, we know z is a member of the set U = (L—e¢, L+¢)

if and only if |z — L| < e. Thus, we are done. O

Cauchy: While this last definition may be a bit less transparent, the test for conver-
gence has changed from open interval to distance. In other words, the test requires
the distance between z, and the limit L is less than e for all but a finite number of
the terms of the sequence. Since we now have the idea of distance, we see that the
sequence {x,}>, converges to L if for any positive distance €, we can find an integer
N with the property that if n > N, then the distance between x,, and L is less than
e. If the limit of a sequence {z,}°°, equals L, then we will write lim,_,{z,} = L.

Simplicio: So, let’s see if I can phrase the definition in engineering terms. First, the

inputs are:
1. a sequence {z,}% ,
2. a number L, and
3. a tolerance € > 0.

Second, if the test for convergence is successful, the output is an integer /N, which has

the property that if n > N, then |z, — L| < e. Moreover, if your employer has insisted

1

Torr> then you might as well have used my definition

your precision is within € =
that a sequence converges when you can find an integer N with the property that if
n > N, then x,, = T,41 = Tpio = Tpyz = ....

Galileo: I think he’s got it!

Cauchy: As with the first definition, each argument can be broken down into three

steps.
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Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice of N:

The second step in the limit definition is to choose an integer N that “work’s” If you
have no idea how to choose this integer, you might leave this step blank until after
you have made a few preliminary mathematical calculations. These calculations are
usually begin by assuming what you want to be true and working backwards until
you uncover an expression for n in terms of .

Step 3. The Check that N “works”:

The third step in the process is to check that your Choice of N has the property: If
n > N, then |z, — L| <.

Another tip: When first learning about a new type of mathematical argument, it
is often a good idea to write down what you are expected to do. For limits, a helpful
starting point is to write the sentence: We MUST show: If whenever n > N, then
|z, — L| <.

Galileo: OK, let’s go through this process to prove that lim{%} = 0. I think you will

agree that the limit should equal zero.

Example 5.1.8. Cauchy: Using the definition of limit, show that lim,_.{~} = 0.
Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice of N:
Since we want |z, — 0] = |£| <€, we can multiply both side of the inequality by n and
observe that we require n > % Thus, our Choice for N 1is any integer larger than %
Step 8. The Check that N works:
Let us begin this step by writing down what we are expected to do. Namely, we MUST
show: If n > N, then |z, — L] = |+ — 0| = £ <.
Since we only have to test integers n > N, we know that n > N > %, we know
n > % By dividing both sides of the inequality by n and multiplying both sides by e,

we see that + < e. Thus, |, — 0] = = < € and we are done.



26 CHAPTER 5. LIMITS

Simplicio: That argument was the same as for the first Definition.

Galileo: T think you have got it. Let’s move on to the next example.

Example 5.1.9. Cauchy: Using the definition of limit, prove that limn%m{#} =0.
Galileo: How about if you present the argument this time?
Simplicio: To begin the discussion I simply write:

Step 1. The Challenge:
Let € > 0 be given.

Is that correct?
Galileo: Correct, you are 33% of the way to the goal. Moreover, you have absolutely
no excuse for getting this step wrong. It is the same for every problem of this type.
Simplicio: But I have no idea how to choose N.
Galileo: No worries. Stmply make the same choice we made for the first problem and
see what happens.
Simplicio: OK, I will simply repeat your choice. Not having to think is good.

Step 2. The Choice of N:
Choose N > %

Step 3. The Check:
We MUST show: If n > N, then |z, — L| = #—0| = % <eIfn>N > %, then
n > % When we divide by n and multiply by €, we find that % < € as before. Since

1 <n,n<n? Thus, |z, —L| =5 < + <e

Cauchy: Note that this last sequence converges to zero much more quickly than the
sequence lim,Hoo{%}. The difference in the rate of convergence will be discussed again
when we compare the bisection and Newton/Raphson methods.

Simplicio: I don’t see any reason for this new definition. How about an example that

illustrates the benefits of this second definition?

2n—3

) emists.

Example 5.1.10. Cauchy: OK, how about if we prove the lim,_,{
Virginia: Since we aren’t told what the limit should equal, we have a problem even

getting started. Maybe we should add an extra “Step” to the process, where we make
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an educated guess for L.. In this example, it isn’t too difficult to figure out that L = £
Simplicio: How so?
Virginia: If we divide both numerator and denominator by the integer n, then we

3
2n—3 __ 2-
see that 5n+1 = 5+

. Thus, if n s large, then the numerator is close to 2 and the
denominator is close to 5. Thus, the limit L should equal %
Step 0. The Candidate for L:
Let L = =
Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice for N:

Since I have no idea how to choose N, I will simply assume what I am trying to prove

and set |22 — 2| < e.

5n+1
Simplicio: Wait a minute. Even I know that that can’t assume what you are trying
to prove.

Virginia: The idea is that we will be able to make an “educated guess” for a value of

N that might work. In other words, if we are clever, we will be able to reverse the

steps. All we are going to do is solve this inequality for n in the following steps:

1. §Z+1 __| <€

2. |5(2"€’5)%| < €.
J. 5_51§+f | <e

4- 156D 5n+1 | <e

17
5. m<€.

6. & < 25n+5.

7.1 5 < 25n.

7_p5

8. S5 < n.
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17
" > 17

Now choose N to be any integer so that N > -5 -

Note that if N > 21_5757 then 2;—3\[ < €.

Thus, to find the integer N all you need to do is:

1. Write down the absolute value of the difference between the limit L (in this case

L = 2) and the formula for x, (= 2=3),

2. Determine a common denominator (= 5(5n + 1)),
3. Simplify the numerator (= 17), and
4. Solve for n.

Step 3. Check N works:

If n > N, then
2n—3 2, [5(2n—3) —2(5n +1)|
s i A 5(5m + 1)
=152
- 5(5n+1)
_ [ =17]
“5(5n+1)
17 17
T5Gn+1) BN -

Galileo: For this example, Definition 2 has a technical advantage over Definition 1
because the absolute value function takes care of different cases that you would have
had to separate. Thus, the argument is cleaner. OK, Mr. Simplicio. How about if
you try the next example. It is going to reappear many times before these gathering

are finished.

Example 5.1.11. Using the definition of limit, prove that lim,_..{5=} = 0.
Simplicio:

Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:

Working backwards again, how about if we choose N so that QLN < €? If we solve this



5.1. THE DEFINITION OF A CONVERGENT SEQUENCE 29

inequality, we see that % < 2N Taking logarithms of both side of the inequality, we see
that —log(e) = log(L) < log(2") = Nlog(2). Thus, we should choose N > —:sg((g
Step 3. The Check:

To complete the problem, simply reverse the steps. In other words, if n > N, then

n>N > —:gg((;; so that nlog(2) > —log(e). Thus, log(2") > log(%),2" > L, and

€> 5.

Cauchy: I think he has got it!

Galileo: While not all limit problems can be solved in such a straightforward fashion,
at least we have a method for these. In the spirit of Professor Polya, we should look
back at what we have done and generalize the method. The next proposition does

exactly that.
Proposition 5.1.10. If x € R and |z| < 1, then lim,_, 2™ = 0.

Proof. Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:
Working backwards again, how about if we choose N so that x|V < €? If we take
logarithms of both side of this inequality, we see that Nlog(|z|) < log(e). Since
|z| < 1,log(]z|) < 0. Thus, when we divide both sides of the inequality by log(|x]),

log(€)
log(|z]) *

the sign of the inequality reverses and we find that N >
Step 3. The Check:
To complete the problem, simply reverse the steps. In other words, show that if

n > N, then |z|" <. O

Simplicio: I really like that proof,

Virginia: Really?

Simplicio: But, why is it important?

Galileo: As you will soon see, we can use this fact to show that the square root
method of Archimedes/Heron always converges. For this application, x = %, which

tells you that the error drops by 50% for each iteration of the algorithm. For the cube
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2
3

root algorithm, z = £, which means that the error drops by 33% for each iteration.
This fact will also appear in the error formula for the Contraction Mapping Theorem.
Cauchy: Once again following the dictums of Professor Polya, we should review
what we have done and think bigger. At the beginning of our conversation about
convergence, we began by defining the absolute value function and a distance metric.
Distance is a very general concept and works in all dimensions.

Virginia: Pythagoras provides us with distance formulas for vectors in the plane and
three space.

Cauchy: Better yet, Pythagoras provides us with distance formulas in infinite dimen-
sional spaces.

Simplicio: I bet those formulas are really complicated.

Galileo: Actually, no. The formula for R" generalizes in a completely natural way.

Definition 5.1.11. If f(z),g(x) : [a,b] — R are continuous functions, the distance
between f(x) and g(x) is defined by

d(f( \// 2))? dx.

If you think of the points € [a,b] as coordinates, then this formula is exactly

the Pythagorean Theorem. Moreover, it satisfies the same symmetry and triangle
inequality properties that the absolute value function does. Thus, we can now talk
about limits of functions.

Simplicio: OK, but why would we want to? How could that formula be useful?
Galileo: Since a multitude of applications are based on frequency and since frequencies
can be modeled by the trigonometric functions cos(nx) and sin(nz) defined on the
interval [—m, 7], we confront these problems everywhere. The heat equation and the
wave equation are just the beginning.

Cauchy: True, but we are going to need to be more general than that. As it turns

out,

Exercise Set 5.1.
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1. Using either definition of limit, prove that limnﬁoo{%} =0.
2. Using the definition of limit, prove that limnﬁoo{#} =0.

3. Assume you have a sequence defined by the following rules:

) = 2.

1
In—ﬁ

xn—i—l — 9

After the first fifty terms are computed, are you close to convergence yet? What
can you conclude after the first million terms are computed? Do they seem to

be bounded? Is the sequence increasing?

3n—"7

4. Using the definition of limit, prove the following limit exists: lim,Hoo{Qn+5 .

2n+5
3n—77)"

5. Using the definition of limit, prove the following limit exists: lim,,

6. Prove: If lim, ,. 2, = L, then lim,_, |x,| = |L|. (Hint: This fact is easier
to prove if you select the right fact from the right proposition. Otherwise, you

have to consider a number of special cases.)

7. Find a sequence {z,}5° | with the property that the statement
limy, o |2, = |L| is true, but the statement lim,, ,,, x, = L is false. (Remark:

In other words, the converse to the previous problem may not be true.)

8. Using the definition of limit, prove that lim,_,.{+} = 0.

5.2 The Geometric Series

Galileo: Before we move on to more theoretical issues, we should discuss the Geo-
metric series. This special case has played an important role in mathematics since
Archimedes used it to compute the area under a parabola.

Virginia: But isn’t that a Calculus issue?

Galileo: If that Roman soldier hadn’t run the old man through with a spear, we

would have had integration several thousand years ago. Archimedes was an amazingly
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productive individual. When you read his proof of the volume of a sphere, all you
can do is wonder at his imagination and energy. In any case, we now turn from the
problem of computing the limit of a sequence to computing the sum of an infinite
series.

Simplicio: What is difference between a sequence and a series?

Galileo: The sum of an infinite series is a special case of a limit of sequence. Thus,
any fact we prove about the limit of a sequence immediately translates into a fact
about series. However, before we do that, let’s compute the sum of a finite series.

This formula should be familiar.

Proposition 5.2.1 (Sum Formula for the Finite Geometric Series). If v € R

and © # 1 and S, = S.1_, ¥, then S, = =22

-z
Proof. If S, = Y i _, «*, then xS, = >_;_ 2" If we subtract these two equations,

then only two terms remain on the right hand side. Thus, (1 — )5, =1 — 2" and

the result follows by dividing both sides of the equation by 1 — x. O
Simplicio: That proof was too easy.

Example 5.2.1. Galileo: How about the special case when v = i? Archimedes needed
this case when he computed the area under a parabola.

Virginia: But that is easy. By the formula, we can see that

1 1 1 1 1— -1 4-1L
S, =1+ —4+—=—4+—=4+---4+— = ant? — an
+41+42+43Jr +4n 1-1 3

Galileo: So what number is this sum close to?

1

Virginia: If n is large, then

15 small, which implies S, ~ %.

Galileo: So, can you find a parabola with area % under the curve?

Galileo: This example leads to the question: How do you sum an infinite series?
When we computed in the proposition, note that we added up the first n terms of
the sequence, which we denoted by .S,,.

Virginia: We then observed the limit of this sequence of sums converges to %.

Galileo: We not make two definitions to formalize the ideas in this example.
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Definition 5.2.2. If Y °7° xy is an infinite series, then the sum of the first n + 1

terms S, = Zzzo xy, is called the n'* partial sum.

Definition 5.2.3. An infinite series Y, xy is said to converge to a number S, if
the limit of the n'™ partial sums converges to S. More precisely, S = > p ,xy if and

only if lim,,_,o, S, = S, where S, = >}, T.

Galileo: We are now in a position to compute the infinite version of the Finite Geo-

metric series.

Proposition 5.2.4 (Sum Formula for the Infinite Geometric Series). If v €

and |z] <1 and S, =Y,y xF, then Y707 ja% =lim, 00 S, = 7.

Proof. Step 1. The Challenge:
Let € > 0 be given. Step 2. The Choice:

Since S, = Y 2" = 12" e only need to find an integer n with the property

-z 7
that
| 1 1 — xn+1 | _
— €.
1—ux 11—z
Since | — l_l“i"x+l| = “’i"_;l |, we only need to show that |“ii+;| < €.
Working backwards, we see that
lz|"™ < (1 —1)e
(n+ Dlog(lx]) < log{(1 — z)e}
l 1-—
nil > lgld—2)e}
log(Jx|)
log{(1 —2)e}
log(Jx|)

log{(1—x)e} 1.

Thus, we choose N to be any integer with the property that N > Tog(T])

Step 3. The Check:

To check that N works, simply assume n > N and reverse the above inequalities. [J

Simplicio: I noticed you reversed inequalities in the middle of the argument, where

you chose V.
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Galileo: Good observation. Since we assumed that |z| < 1, the quantity log(|x|) is
negative. Thus, we must reverse the inequality.

Simplicio: Does the argument work better if z > 17

Galileo: Unfortunately, the proposition is false if z > 1.

Virginia: Which log function did you use? Natural or base 107

Galileo: Choose your weapons. Either, in fact, any logarithm will work just fine.

Exercise Set 5.2.
1. Sum the finite series S, =1+ 2+ 22 + ...+ 2",
2. Sum the terms in the finite sequence S, =1+ 3 + 32+ --- + 3"
3. Sum the terms in the infinite sequence S =1+ % + 2% +o g

4. Sum the terms in the infinite sequence S =1+ % + 3% + b

3n
5. Sum the terms in the infinite sequence S =1— 2+ 5 — -+ (=1)"55 +....
6. Sum the terms in the infinite sequence S =1— 3+ 35 — -+ (—1)"55 +....

5.3 Limit Facts For Sequences

Cauchy: We next turn to the idea of making limits a bit easier so we don’t always

have to grind our way through this three step process of proving limits. For example,

2n2+3n+5

= %, you will find that annoying technical

if you try to show that lim,,_,.
difficulties arise. Thus, while we still want to have the capability of using the definition
to prove a limit, we would also like to have more weapons at our disposal. The point
of our discussion will be to make limits and convergence easier.

Simplicio: I like easy.

Cauchy: However, before we start, I would like remark that we are going to be proving
theorems and propositions. These proofs require that you understand the logic and

rigor of a mathematical argument. Before we proceed, it is necessary that you can

answer the following questions.
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1. What is the triangle inequality for the absolute value function?
2. What is the contrapositive of the statement “If p, then q.”?
3. What is a proof by contradiction?

4. What is the connection between a proof by contradiction and the contrapositive

of a statement?

Do you remember the contrapositive and modus tollens?

Virginia: Yes, I do.

Simplicio: I'm not sure.

Cauchy: Well, there is no point in proceeding until you know. Go back and review
these concepts.

Simplicio: I think we should move on before my brain melts.

Virginia: I am ready.

Cauchy: Good. Let us begin. While you should have already seen these ideas in
your previous study of Calculus, you may not have seen the proofs. The facts we will

establish are:
1. The limit of the sum is the sum of the limit.
2. The limit of the product is the product of the limit.
3. The limit of the quotient is the quotient of the limit.
4. The uniqueness of limits.
5. Several squeezing propositions.

The proofs of the first three facts will all have the same 3 step structure that we
just employed for our examples. For the sum, product, and quotient proofs, we will
use the absolute value function extensively. For the uniqueness and squeezing facts
we will use a proof by contradiction strategy. Let’s now state and prove the first

proposition.
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Proposition 5.3.1 (Limit Facts for Sequences). Let {x,}3°, and {y,}>, be
sequences in R. If lim, ,oo{x,} = L and lim, o {y,} = M, then

(i.e. The limit of the sum equals the sum of the limits or LS = SL.)

2. limy, oo{@y * yn} = lim, s oo{zn} * lim, oo{yn} = L * M,
(i.e. The limit of the product equals the product of the limits or LP = PL.)

. n _ l.mn%oo{wn} _ L
5. If M #0, then limp oo{j*} = m R

(i.e. The limit of the quotient equals the quotient of the limits or LQ = QL.)

Proof. 1. Let us begin by proving lim, .o {z, + v} = L + M.

Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:
Since we are assuming that lim, ,,.{x,} = L, we can find an integer N; with the
property that if n > Ny, then |z, — L| < 3.

Since we are assuming that lim,, . {y,} = M, we can find an integer N, with the
property that if n > Nj, then |y, — L| < 3.

Since we want both of these statements to be true, we choose N to be any integer
larger than both Ny and Ny. The best choice is N = maxz{Ny, Na}.

Step 3. The Check:
If n > N, then by the triangle inequality

T+ Yy — (L + M)| = (2, — L) + (yu — M)

§|$n_L|+|yn_M|

<e+e
2 2
=e€.

2. Next let us prove lim, ,oo{x, * yo} = L * M.
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While the proof of this proposition is often considered more difficult than LS =
SL, the approach is the same. The main difference is that we are confronted by the
distributive law.

Step 1. The Challenge:

Let € > 0 be given.

Step 2. The Choice:

Since we are assuming that lim, ,,{z,} = L, we can find an integer N; with the
property that if n > Ny, then |z, — L| < €.

Since we assume that lim, ,..{y,} = M, we can find an integer N, with the
property that if n > Na, then |y, — L| < €.

We again choose N = max{Ny, Ny}.

After we make a couple of computations, we will figure out reasonable choices for
€, and €5. For LS = SL, it was easy to see that €; and €3 should both be chosen equal
to 5.

Step 3. The Check:

If n > N and we have been smart enough to choose €; so small that |z,[e; < § and

€1|M| < 5, then by the distributive law and the triangle inequality we see that

|y * Yy — (L x M)| = |2, * yp, — 2, M + 2, M — LM|
= |n(yn — M) + (2 — L) M|
< |wnll(yn — M|+ [(zn — L)||M]
< |zalez + e[ M]

< |znle2 + €| M]

<e+e
2 3
< €.

Virginia: While I am not sure about €5, I can see that we should choose ¢, = ﬁ,

then €, [M| < £.

Cauchy: But if M = 0, then you are dividing by zero. Bad idea.
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Virginia: You are correct. I guess I had better choose ¢; = so the denominator

SR
can never equal zero AND the choice of ¢; will still have the property that e [M]| < .
Cauchy: Yes, you have now covered all the cases.

Simplicio: But what about choosing e, so that |z,|e; < 57 I don’t see that choice at
all.

Cauchy: We can begin addressing that question by observing that if we choose €; < %,
then we will know that |z,| < |L| + 5 for all n > N;.

Virginia: In other words, if we had chosen €, = then we can guarantee that

3|L€|+17
zulea < (L] + 3) * T < 5- Thus, to complete the argument, we only need to
— AMinfl

choose €, = Min{3, 3|M—6‘+1}
Cauchy: Correct.

3. Next let us prove the quotient rule: If M # 0, then limn_m{z—z} = ﬁ

Since the strategy for proof of LQ = QL is similar to LP = PL, we will leave
the proof as an exercise. However, since we have just proved that the limit of the
product equals the product of the limit, note that we only need to prove the special

case: limn%oo{yin} = ﬁ O

Simplicio: Thanks. I have had enough anyway. How about an example?

Example 5.3.1. Cauchy: Suppose you are asked to show limn%w{% = % If

you try to use the definition, you will find the process annoying. However, with the

Basic Limit Facts, we simply make the following computations:

2n? +3n+5,  limy {2+ 2+ 5}

y _ LQ = QL
nl—glo{ n?+1 } hmnaoo{7+#} ( Q Q )
24+0+0
2t r- LS =S5L
7+0 ( )
_2
==

Cauchy: The next corollary shows that we can “pull” a constant across the limit sign.

Corollary 5.3.2. If K is a real number and {x,}52, is a sequence of numbers such

that lim,, o x,, = L, then lim,, ., Kx, = K lim,_,, x, = KL.
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Proof. This result follows immediately from the limit of the product equals the prod-
uct of the limits because we can define y, = K for all n. Since the limit of the constant

sequence K, K,...,K,... is K, we are done. O

Cauchy: We now give a second proof of the sum formula for the Geometric series.
Simplicio: A second proof?
Galileo: The result is useful and Repetition is a great teacher. You will see this

formula again.

Proposition 5.3.3 (Sum Formula for the Infinite Geometric Series). Ifz € R,

x| <1, and S, = >4y a¥, then D 0 o aF = lim, 00 S, = %

—T

Proof. Since we are assuming that |z| < 1, we know lim,, ,,, 2™ = 0. By the limit of

the sum equals the sum of the limits and the previous corollary we can see that

1 — g™t 1 1 1
lim S, = lim o= lim (1 — 2")
n—o00 n—soo 1 — 1 1 — 1 nooo

1
lim 2"t = )
l—2z 1—2noc 11—z

O

Cauchy: We now prove uniqueness for limits.

Simplicio: Uniqueness? I have been patient until now, but this theory stuff is killing
me.

Cauchy: While you may not think uniqueness is important, engineers really do want
to know when there is only one answer. In some sense, the sequence z,, = (—1)" has
both —1 and +1 as it limits. Rather than deal with this ambiguity, the mathematics
community has voted to say the sequence does not converge. While these facts may
seem obvious, they require proof.

Simplicio: But every test problem I ever did only had one answer. (To Virginia) Did
you ever bubble in more than one answer?

Virginia: No, but few of my tests were multiple guess.

Cauchy: OK, but quadratic polynomials usually have two roots. A multitude of
computational problems have more than one answer. Life is easier when we have

uniqueness.
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Simplicio: One wife, one mother-in-law?

Proposition 5.3.4 (Uniqueness of Limits). Let {z,,}°°, be a sequence of numbers

in R, If limy, oo {x,} = L1 and lim,,_,{x,} = Lo, then Ly = L.

Proof. Cauchy: By way of contradiction, we will assume the proposition is false.
In other words, we will assume L; # Ls. If you make a smart choice of e-namely
€ = 1dist(L1, Ly) = 3|L1 — Ly|, then you will find that all but a finite number of the
terms of the sequence must lie in both of the intervals (L —¢, L1+¢€) and (Ly—e¢, Lo+-¢).
However, by the choice of ¢, there are no points in both of these intervals. Thus, we

have a contradiction. Now, that wasn’t so bad was it? O

Simplicio: Short is good. It was OK.

Cauchy: Now it is time to squeeze.

Simplicio: And I must ask again. What are these facts good for?

Cauchy: A basic rule for applications is that inequalities are more important than
equalities. As physicist Werner Heisenberg (1901-1976) pointed out, measurements
are not exact and we are thus forced to settle for approximate answers. Under these
circumstances, we are comfortable if we can control a sequence by squeezing it between
two constants. Many of the algorithms we will be using can be controlled this way.
Simplicio: How about an example.

Cauchy: While root finding method of Newton/Raphson and the Contraction Map-
ping Theorem are the first settings where we will need these ideas, we will also need

tools of estimation everywhere in Fourier series. Squeezing helps.

P £ ¢
,L\”i A Ty A +E
— e )
4 Lpt=l8 Ly
/C‘ lz"j\l
- A

Figure 5.1: The Uniqueness of Limits
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Proposition 5.3.5 (Squeezing Facts). Let {z,}°, {y,}5°,, and {z,}2, be se-

quences in R, where x, <y, < zj,.
1. Fact 1. If lim, yoo{xn} = L and lim, oo {2,} = M, then L < M.

2. Fact 2. If the sequence {y, }52, converges and y, < M for all n, then lim,, oo {y,} <
M.

3. Fact 3. Iflim, ,oo{x,} = L = lim,_, {2, }, then the sequence {y,}>° | converges

and lim, ,o{y,} = L.

Proof. Proof of Fact 1.

The proof of the first squeezing fact, is again by contradiction. Thus, we begin
by assuming that L > M. The next step is to let € = 2dist(L, M) = 1|L — M|. Since
L > M, we have the situation that all but a finite number of the terms of the sequence
{z,}52, lie in the interval (L — €, L + €) and all but a finite number of the terms of
the sequence {y,}>2, are in the interval (M — €, M +¢€). Since these two intervals are
disjoint and L > M, we have now created the problem that all ¥, < x, for all but
a finite number of the integers n. Thus, we have a contradiction to our assumption
that z, <y, for ALL n.

Proof of Fact 2.

This fact follows immediately from Fact 1 because the constant M can be thought
of as a sequence where 2, = M, for all n.

Proof of Fact 3.

Since we are not assuming that the sequence {y,}2° , converges to any number,
this fact doesn’t immediately follow from Facts 1 or 2. However, we can go back to
basics.

Step 0. The Candidate:

The only possibility is that the sequence {y,}>>, should converge to M.

Step 1. The Challenge:

Let € > 0 be given.
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Step 2. The Choice:

The integer N will be the maximum of the integers Ny and N,, where
1. If n > Ny, then x, € (M — ¢, M +¢).
2. If n > Ny, then z, € (M — ¢, M +¢).

Step 3. The Check:
Thus, if n > N, then both z,, and z, lie in the interval (M — ¢, M + €). Since we are

assuming «, <y, < 2, Yp € (M — ¢, M +¢€).

Exercise Set 5.3.

1. Using limit facts, prove that limn_m{#} =0.

2. Using limit facts, prove that limn_m{%} =0.

3n—=7\1 _ 3

2n+54 T 27

3. Using limit facts, prove that lim, ,{

2n+51 __ 2

3n—74 7 3°

4. Using limit facts, prove that lim,_,{

202477 _ 2

3n2-5J 7 3-

5. Using limit facts, prove that lim, ,,{

2n34+571 _ 2

3n3-7J 7 3°

6. Using limit facts, prove that lim,_,{

5.4 Every Bounded Increasing Sequence Converges

Numbers are the free creation of the human mind.-Julius Wilhelm Richard

Dedekind (1831-1916)

Galileo: We now turn to the problem of showing that every bounded increasing
sequence converges.

Simplicio: I hate to be predictable, but why should I care?
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Galileo: The short answer is that if we can show an algorithm produces a sequence
of numbers which is both bounded and increasing, then the method will “work.” For
an engineer, it is important that the method produce accurate answers reliably.
Virginia: The long answer?

Galileo: The long answer is that it took well over 2000 years to figure out how to fill
in the holes in the real numbers. Since checking all the details of this construction
is really really boring, we are only going to present the flavor of the ideas. This
topic is probably the most theoretical we will encounter in this tutorial. If you do
not remember our discussion of rigor and logic, it might be a good time to review
definitions, contrapositives, and proof by contradiction,

Simplicio: I believe in the real numbers. Maybe I will take a short nap.

Galileo: The following two examples should set the stage for the main theorem.
Example 5.4.1. The sequence x, = k? is increasing, but not bounded.
Example 5.4.2. The sequence x = (—1)* is bounded, but not increasing.

Simplicio: And?

Galileo: As we have already remarked, an engineer wants to have confidence in his
answers. In other words, if he hits the square root button on his calculator, he would
like to know the answer is correct. The beauty of the Archimedes/Heron square root
method is that it always produces a bounded decreasing sequence. The beauty of
the bisection method is that it produces a sequence of closed intervals, where the left
endpoints are increasing and the right endpoints are decreasing. Thus, the answer
is always “trapped.” Thus, if we can show that every bounded increasing sequence
converges, then we will have shown that these two methods “always work.”

Galileo: We now turn to a fascinating little problem that has caused 2000 years of
consternation. Namely, how do we “fill in” the “holes” in the real line so we can be
sure the irrational numbers such as V2, e, 7, and €™ are well-defined.

Simplicio: Wait a minute. What does the word “well-defined” mean?
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Galileo: Julius Wilhelm Richard Dedekind (1831-1916) went to great lengths to
get arithmetic right. With his idea of a “cut” he showed that the associative,
commutative, and distributive laws for addition and multiplication can not only
be extended from the positive and negative integers Z to the rational numbers
Q = {%’ : p,q € Z and g > 0}, but can also be extended to the real numbers R.

A large part of this problem is the exact definition of a real number.

Definition 5.4.1. A non-empty subset S of Q is a called a cut if the following

conditions hold:
1. The set S is not equal to Q.
2. If whenever p € S and q < p, then q € S.
3. The set S contains no largest rational number.

Virginia: Thus, the number /2 can be represented by the set
s ={L: (%)2 < 2or? < 0}. In general, a real number can be represented by
a “connected” open interval of rational numbers! And the real numbers R is the

collection of all such connected open intervals.

Galileo: Correct.

Simplicio: But I thought a real number was a point? Now you tell me it is a set.
Galileo: No worries. You can go back to thinking a real number is a point. While this
construction represents an important milestone in establishing the rigor of arithmetic,
I agree that it can only be described as tedious. The details are guaranteed to put
even the sleep deprived into a sound slumber.

Simplicio: I am a man of faith. Let’s move on.

Figure 5.2: A Dedekind Cut Representing /2
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Galileo: The Least Upper Bound Principle is a consequence of Dedekind’s construc-
tion. The importance of this principle is that it “fills in” all the “holes” in the real
number line.

Virginia: When you use the word consequence, I suspect you mean that this Principle
is really a theorem which must be proved from other more basic assumptions
Galileo: Correct again. While the Least Upper Bound Principle is a theorem, which
can be proved from the properties of Dedekind’s construction, we will not go there.
In the interests of time, we will assume it is true.

Virginia: Like an axiom, a postulate, or a definition?

Galileo: Yes.

Simplicio: As I said, let’s move on.

Galileo: Before we can state this important principle, we must define what it means

for a set to have an upper bound.

Definition 5.4.2 (Bounded Above). A non-empty set S C R is bounded above if
there 1s a number M € R with the property that x < M for all x € S. The number M

15 called an upper bound for the set S.
Galileo: We now define the least upper bound (lub) of a set of real numbers.

Definition 5.4.3 (Least Upper Bound). If a real number L is an upper bound for
a non-empty set S C R, then L is called the least upper bound (lub) of S if for any
upper bound M of the set S, it is always true that L < M.

We now state the Least Upper Bound Principle.

Principle 5.4.4 (The Least Upper Bound Principle). If a non empty set S € &

1$ bounded above, then it has a least upper bound.

Simplicio: I failed to get that principle at all. I need an example.
Galileo: If we consider the sequence z,, = (—1)", we notice that the terms oscillate
between +1 and —1. While the sequence has a multitude of upper bounds such as

2,47, and 1001, the number +1 is not only an upper bound but, in fact, the least
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upper bound. On the other hand, if we consider the sequence x, = we again

notice that the sequence has a multitude of upper bounds including 2,47, and 1001.
Again, the least upper bound of the sequence is +1.

Simplicio: Why did you give us two examples with the same answer?

Galileo: To point out that in the first example the least upper bound is equal to one
of the terms of the sequence, while the least upper bound in the second case never
equals any term in the sequence. If the least upper bound was always one of the
terms in the sequence, it never would have been invented. In fact, if the least upper
bound was always a rational number, it never would have been invented. In other
words, the Least Upper Bound Principle fills in the “holes” in the real number system
vacated by numbers such as v/2, v/2, e, .

Simplicio: Let’s move on.

Galileo: Certainly. We begin with two important concepts associated with sequences:
increasing and bounded. These two ideas will provide a test for when a sequence

converges. The definitions of these terms are now presented. We begin with the

definition of an upper bound for a sequence.

Definition 5.4.5. A sequence {xy}{2, is bounded above if there is a number M € R

such that x, < M for all integers k > 1.
Definition 5.4.6. A sequence {xy}52, is increasing if xy < T4y for all k > 1.

Theorem 5.4.7 (Every Bounded Increasing Sequence Converges). If a se-
quence {x, }2° | is both bounded above and increasing, then there is a number L such
that lim,,,o{x,} = L. In particular, if M is any upper bound, then x, < L < M for

all n.

Proof. The reason we mention the least upper bound principle is to identify the limit
L.

Step 0. The Candidate:

Set L equal to the least upper bound of the set of points consisting of all the terms

of the sequence {z,,}°° ;. In particular, L = lub{z,, : n=1,2,3,...,n,...}. We must
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now show that lim,, ,{z,} = L.

Step 1. The Challenge:

Let € > 0 be given.

Step 2. The Choice:

Choose N so that xty > L —e.

Simplicio: How do we know we can find such an N7

Galileo: Good question. Once again, the only viable proof for the existence of such
an integer N is by contradiction. To this end, we assume that no such integer N
exists. But, if we make this assumption, then zy < L — € for ALL integers N. Thus,
L — ¢ is also an upper bound for the sequence. Since L < L — ¢, we would have a
contradiction of the assumption that L is the least (or smallest) upper bound.

Step 3. The Check:

We must now show that if n > N, then z, € (L — ¢, L + ¢€). Since n > N, and we
are assuming the sequence is increasing, we know that Xy < xyi1 < axyio < ..., 2.
Thus, L —e < xy < xy,.

Since we are assuming that L is an upper bound for the sequence, z, < L < L+e.

Thus, x,, € (L — ¢, L + €) and the sequence converges to L. O

Galileo: Now that proof wasn’t so bad, was it?
Simplicio: This proof seems to have the same four steps as the others.
Galileo: An equivalent formulation of this theorem (and the one that we will need)

can be stated in terms of bounded decreasing sequences.

=&
Eaw lf(n.' Xz b:é‘ :
1 ,l(; - H— -~ |
X, Xs M Xou L M

Figure 5.3: Every Bounded Increasing Sequence Converges
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Definition 5.4.8. A sequence {x}72, is said to be bounded below if there is a number

M such that x > M for all integers k > 1.

Definition 5.4.9. A sequence {xy}72, is said to be decreasing if xy > xy41 for all

integers k > 1.

Theorem 5.4.10. If a sequence {x,}°°, is both bounded below and decreasing, then

there is a number L such that lim,_,{x,} = L.

Galileo: For bounded decreasing sequences, we will see that the sequence will actually
converge to the greatest lower bound.

Simplicio: I have a question. In a real-world problem, you don’t know the answer so
you can’t begin to test if some number L is a limit. If you did, you wouldn’t do all
this checking. Why waste your time when a client wants the results yesterday.
Galileo: You have a good point. All we have done so far is set the context. We will
return to your question when we discuss Cauchy sequences. His sequences are the
ones engineers care about.

Simplicio: Cauchy again?

Exercise Set 5.4.

1. Compute the least upper bound of the sequence {% o ,- Compute the great-

est lower bound. Does the sequence converge to the least upper bound?

2. Compute the least upper bound of the sequence {(—1)"%-2}> . Compute the

greatest lower bound. Does the sequence converge to the least upper bound?

3. Prove: If a sequence {x,}52, is both bounded below and decreasing, then there

is a number L such that lim, ,{z,} = L.

5.5 Cauchy Sequences

Galileo: We now recall our friend Cauchy to provide a brief introduction to a criterion

that guarantees a sequence converges.
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Simplicio: I dread the thought of more theory.

Cauchy: The reason for defining this new concept is that we would like to be certain
a sequence converges even when we have no idea what the limit will be. If we know
the answer, then why waste time computing limits!! Since the limit is missing, the
setting is more like the situations engineers face with real-world problems. Namely,
they don’t know the answer before they start. However, it will turn out that while

we don’t know the limit exactly, it can be contained somewhere in a small interval.

Galileo: Actually, Mr. Simplicio has already encountered these ideas in Calculus

when he was introduced to the ratio and n" root tests.

Simplicio: I liked the ratio test. It was easy because all you had to do was compute

r = lim, % If » < 1, then the series ZZOZO a, converges. If r > 1, then the

series diverges.
Galileo: Very good.
Simplicio: Actually, that is the only technique I remember on that subject.

Galileo: The only problem is that several cards were dealt from the bottom of the

deck.
Simplicio: How so?
Galileo: The technique didn’t actually give you the answer.

Simplicio: You are correct. The answer to those problems was simply “convergent”

or “divergent.”

Virginia: But wait a minute. If you think about the proofs of the ratio test, you are

dominating the given series by a Geometric series. That information ought to help.

Simplicio: I do my best to avoid proofs and here she comes.

Virginia: If we assume the series Y a, has the property % < r for all integers
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n=0,1,2,...,n,..., then |a,| < |a,_1|r for all n. Thus,

|ao| <lao|r®.
lay| <|ag|r.
las| <|ai|r < |ag|r.
|as| <|azlr < aolr®.

|aa| <|aglr < laglr®.

lan| <|an_1|r < lao|r™.
Adding these quantities, we see by the sum formula for the Geometric series that

|Zan| < Z|an| < |ao|Z = Jaol—

We can always estimate the error by comparing the tails of series

n+1

|En |—|Zak—zak|—| Z ax| < Z |ak| < laol Z r Iao| —

k=n+1 k=n-+1 k=n-+1

n+l
Since limy, s |ao| 5= = 0, we have convergence.

Galileo: Very good! However, it isn’t immediately clear that the symbol > 77 ay
actually represents a real number.

Simplicio: But isn’t that obvious?

Galileo: Show me the sum.

Virginia: If you think about it, the only general condition we have that guarantees a
sequence converges is that it is bounded and increasing.

Galileo: Correct. The reason for Cauchy sequences is to guarantee convergence. Once
we have completed this task, the ratio test will guarantee that the symbol Y 77 ay
makes sense. By the way, Cauchy is involved whenever we are apply any comparison
test. In particular, the root test and the integral test are involved.

Simplicio: OK, enough of these old tests, how about this Contraction Mapping The-

orem?
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Galileo: The strategy is the same with the Contraction Mapping Theorem, Namely,
you use an iterated function computation z, 11 = T'(z;) to create an infinite sequence
{n}52, of points. Since T'(x) is a contraction with contraction factor M < 1, we
can use the same Geometric series argument Virginia just mentioned to show that
|z, — on| < M5z lwe — 21| for all n > N. This inequality will be sufficient to show
that the sequence is Cauchy. Later we will see we have the same issues with Fourier
series. While it is easy to show the series > ' 2 cos(nz) converges for all z € R, it
is not so easy to figure out a tidy little formula for the function it represents.
Simplicio: So where do we begin?

Galileo: We begin with the definition, which poses the following challenge: If given
a sequence {x,}>° ; and a tolerance ¢ > 0, then find an integer N so that whenever
n > N, the point x,, will lie in the interval (Xy — €, Xy + €). In particular, all but a
finite number of the terms in the sequence will lie in the interval (Xy — ¢, Xy + ¢€).
As we did with the second definition for convergence, we will use the absolute value

function and distance in the definition of Cauchy Sequence.

Definition 5.5.1 (Cauchy Sequence). A sequence {x,}>° | is called Cauchy, if for

every € > 0, there is an integer N with the property that if n > N, then |z, —xy| < €.

Cauchy: Note that this definition is exactly the same as the definition of limit except

there is no mention of the limit L. Consider the following examples.

Example 5.5.1. The sequence x, = (D" g Cauchy.

n

The argument this statement is true is the same as we encountered for convergent
sequences.
Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice:
Choose N > %
Step 3. The Check:
If n > N, then |(7i)n - (71)N| < |G 4 - (71)N| <+ +
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Simplicio: That argument is certainly within my comfort zone.

Example 5.5.2. The sequence x, = (_n# 1s Cauchy.
Step 1. The Challenge:

Let € > 0 be given.
Step 2. The Choice:

Choose N > \/g Thus, N* > 2.
Step 3. The Check:

Ifn> N, then |55 - S5 < b+ < & <

Simplicio: So it looks like we need to choose the integer N a bit larger than before.
Cauchy: I knew you would like this topic.

Galileo: The beauty of the situation is that convergent sequences are Cauchy and
vice versa. Our first theorem is the observation that if a sequence is convergent, then
it must also be Cauchy. Note that the format of the proof exactly parallels the proofs

of the previous limit theorems. Note also, that the triangle inequality is evident.

Theorem 5.5.2. If a sequence of real numbers {x,}32, is convergent, then it is a
Cauchy sequence. In particular, if there s a number L so that lim, .oty = L, then

{zp}72, is Cauchy.

Proof. Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:
Choose N so that if n > N, then |z, — L| < 3.

Step 3. The Check:
We must show that if € > 0 is given, then we can always find an integer N such that
whenever n > N, then |z, — zy| < €.

However, since the sequence converges to some limit L, we know by the definition
of limit that there is an integer N such that if n > N, then |z, — L| < ¢/2.

Thus, |z, —oy|=|2n —L+L—ay| < |z, — L[+ |L—-2ay|< 5+ 5 =c¢

Thus, the sequence is Cauchy. 0
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Cauchy: We now prove the converse of the previous theorem, which shows that every
Cauchy sequence converges to some number.

Simplicio: But I thought you said we couldn’t find the number.

Cauchy: As you might have guessed, the answer comes to us as a least upper bound
or a greatest lower bound of a set of numbers. While it is a bit theoretical, we do

have it trapped in an arbitrarily small closed bounded interval.

Theorem 5.5.3. If a sequence of real numbers {x,}>°, is Cauchy, then there is a

unique real number L such that limy, ..{x,} = L.

Proof. We will find two sequences {a, }°°, and {b,}3°, such that:
1. a, 1 <a, <b, <b,  for all integers n,
2. b, —a, < % for all integers n, and

3. for each integer n there is an integer N,, with the property that if & > N, then

Ty € [an, by

The essence of the argument is to simply set € equal to smaller and smaller numbers
and then apply the definition of Cauchy sequence. While any sequence of numbers
which converges to zero will do, we simply let € = % for larger and larger values of n.

Case n =1. Let e = 1.

Find an integer Ny such that if & > Ny, then |xy — zn,| < 1. Let a; = zn, — 1 and
by = zn, + 1. Note that by —a; = % a1 <z < b for all £ > N;.
Case n = 2. Let e = L.

2

Find an integer No > Nj such that if & > Ny, then |z — zp,| < Let ay =

3
max{a, TN, — %} and by = min{by, xy, + %} Note that by — ay < % and a; < ay <
Tr < by < b for all £ > N,.

Case n = 3. Let € = %
Find an integer N3 > Nj such that if & > Ny, then |z, — zn,| < 3.

Let a3 = max{az, xn, — %} and by = min{be, rn, + %} Note that by — az < % and

ar < ag <az3 <o < b3|l€b2 < b1 for all k£ > N3.
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Case n =n. Let € = =.
Continuing inductively, find an integer IV, > N,,_; such that if & > N, then |z; —
TN, | <t

Let a, = maz{ap_1, xn, — =} and b, = min{by_1, zn, ++}. Note that b, —a, < 2
and a; <ap <a3 <---<a, < <by <o <by < by < by forall k > N,

Since the sequence {a,}52, is bounded and increasing, it converges to some num-
ber L. Since the sequence {b, }°°; is bounded and decreasing, it also converges. Since
b, —a, < % for all integers n, the sequences must converge to the same number L.
Note that a,, < L < b, for all n.

We now have to prove that the sequence {x,}2°, converges to L.

Step 1. The Challenge:

Let € > 0 be given.

Step 2. The Choice:

Choose N large enough that % < € and N large enough so that whenever n > N, then
ay < x, < by in the above construction. In particular, we know by — ay < % < €.

Step 3. The Check:

If n > N, then z,, € [ay,by]. Since L € [ayn,by], |2, — L| < by —ay < £ <e.

2
N

Thus, {z,}>°, must converge to L. O

Galileo: In the spirit of Professor Polya, let’s think about the key components con-

tained in this proof.
1. Construct a nested sequence of closed bounded intervals {[a,, b,]}32 ;.

2. Note that since a, < a,41 < bpy1 < b, for all n, both {a,}>°; and {b,}>°,

converge.

3. If lim,, 00 (b, — a,) = 0, then both sequences converge to the same number. In

other words, there is a number L so that lim,, ,,, a, = lim, ,, b, = L.

4. Any sequence which is frequently in each of these intervals has a subsequence

which converges to L. In other words, if {x,}5°, is a sequence with the property
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that there are integers n; < no, < --- < ngp < ngyp < ... such that z,, €

[a1, 1], xn, € [az,ba], Ty, € [as, bs], ete. then limy oz, = L.

5. Any sequence squeezed by these intervals also converges to L. In other words,
if {z,}5°, is a sequence with the property that for every integer n there is an

integer NV, such that whenever k > N, then xy € [ay, b,], then limy_, o 2, = L.
The first three items in this construction can be encapsulated in a proposition.

Proposition 5.5.4. If {[a,,b,]}°, is a nested sequence of closed bounded intervals
with the property that lim,,_, (b, — a,) = 0, then there is a unique point L which is

contained in every interval [a,,b,]. Moreover, lim, . a, = lim, ,. b, = L.

We will see this construction again when we discuss compactness. We will need

this property when was show integrals of reasonable functions exist.

Exercise Set 5.5.

1. Show the sequence z, = (n# is Cauchy.
2. If |z| <1 and S, = >_,_, 2", then show the sequence S, is Cauchy.

3. If |z] <1 and S, = Y "p_,(—x)", then show the sequence S, is Cauchy.

4. If S, = Y °p_o(—1)*L, then show the sequence S, is Cauchy. (Hint: Think ratio
test.)

5. If S, =Y 7 (—1)%-L, then show the sequence S, is Cauchy. (Hint: Think n*
k=0 2

root test.)

5.6 The Definition of the Limit of a Function

Galileo: We turn now to the topic of the limit of a function. I am sure you studied

this topic in your Calculus courses.
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Simplicio: It has been a long time since I took Calculus. Much knowledge has since
evaporated. So where are we headed?

Galileo: The first theorem we will discuss is the Mean Value Theorem, which contains
the idea that a function cannot grow faster than the maximum of its first derivative.
The second key theorem is Taylor’s Theorem, which basically states that a smooth
function can be approximated by a polynomial.

Simplicio: If we are interested in sequences and data, why should we have to discuss
functions?

Galileo: For the Archimedes/Heron algorithm, an understanding of the function
T(x)=x— "”’22;;( becomes central. Since an easy calculation shows that |T"(z)| < 3 for
all z > v/ K, we will be able to conclude that the difference between the n'* approxi-
mation z, and the answer v/K drops by 50% for each iteration. Such a convergence
rate is known as linear (or first order) convergence. These ideas are completely general
and apply to a wide range of problems including cube roots and beyond.

Simplicio: A 50% improvement at each iterations sounds good.

Galileo: As you will see, we are actually doing better than 50%. Taylor’s Theorem
will be the key to understanding why this algorithm converges so rapidly. In fact,
of all the theorems you visited in Calculus, Taylor’s Theorem is probably the most
important for numerical computations. This theorem allows us to compute first and
second derivatives numerically. Thus, many differential equations and partial differ-
ential equations can be solved numerically including heat transfer, fluid flow, airfoil
design, electromagnetism, and weather modeling. The basic techniques of signal and
image processing also involve these methods. In other words, the applications are
everywhere.

Simplicio: I like these applications.

Galileo: Unfortunately, before we can even think about modeling a real-world prob-
lem, we have to develop the requisite language. Since the Intermediate Value Theo-
rem, the Mean Value Theorem, and Taylor’s Theorem have hypotheses where func-

tions are assumed continuous or differentiable, we begin our discussion with the def-



5.6. THE DEFINITION OF THE LIMIT OF A FUNCTION 87

inition of the limit of a function. We begin our discussion with the definition of a

limit of a function.

Definition 5.6.1 (Limit of a Function). If X is an interval and f(z) : X — R,
then limg_of () = L, if for every e > 0, there is a 6 > 0 with the property that if
z € X,|lz—a|l <0, and x # a, then |f(x) — L| <e.

Simplicio: Brutal. For sequences we had one Greek letter, now we are doubly blessed.
[ am confused.

Galileo: True, but the real problem is that the definition is backwards. While the
function f(x) assigns a point z in the domain to a point f(z) in the range, the
tolerance € > 0 is associated with a distance in the range of f(z), while the § > 0
measures a distance in the domain of f(z). The € appears first, while the ¢ is second.
Virginia: Hey, this definition is not so bad. In fact, it is almost the same as the
definition for the limit of a sequence. The € functions exactly as it did before, while
the integer NV is replaced by the quantity 0.

Galileo: In other words, a given an accuracy between f(x) and L can be assured if a
given precision between x and a is required.

Simplicio: OK, but why do you have that little condition that = # a?

Galileo: Because Calculus is the study of being close. For example, if we compute the
derivative of the function f(z) = z? at the point = 2, then we must investigate the

values of the difference quotient DQ(z) = % close to (but not at) the number 2.

If we are careless and substitute x = 2 into this function, we get DQ(z) = % =1
fex)
a5 ad kE Lte
. ar : ) F:K)}

Figure 5.4: The Definition of a Limit
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Since division by zero is always evil, we must avoid that “bad” point x = 2. How
about if we use the definition to show that lim, ,,DQ(x) = 47
Virginia: We simply follow the same “Challenge, Choice, and Check” process we did

for sequences.

Example 5.6.1. Using the DEFINITION of limit show: lim, %= = 4,
Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice of § :
While I am not exactly sure how to choose 9, I will make the guess that 6 = €. If we
are wrong, we will make adjustments and do it again.
Step 3. The Check that & works:

If we can show the absolute value of the difference between DQ(x) = ‘f:; and 4 is

less than €, then we are done. However, if we assume that x # 2 and |v — 2| < § =,

then we see that

|x2—4 (x —2)(xz+2)

— 4] =
T — 2 -2
Thus, we are done.

—4l=lxz+2)—4=z—-2|<d=e

Galileo: Very good.

Simplicio: How about another example?

Example 5.6.2. Using the DEFINITION of limit show: lim,_,5(3z 4+ 5) = 11.
Virginia: I bet you can do it.
Simplicio: OK, I'll give it a try.
Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice of 9 :
Since I have no clue how to choose §, I will simply follow your lead and let 6 = e.
Step 3. (The Check that § works)
Again, following your lead, I will compute the absolute value of the difference between

3z +5 and 11. We find that |3x +5 — 11| = [3x — 6] = 3|z — 2| < 30 < 3e.
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Simplicio: OOPS. Now I am stuck.

Virginia: But think about it. If you had simply been a bit smarter and had chosen
0 =
32 4+ 5 — 11| = [3x — 6] = 3|z — 2| < 30 = 35 = €. Now you are done.

%, you would have been fine. With this choice we now see that if |x —2| < 0, then

Simplicio: Actually, that wasn’t so bad.

Galileo: Note that there is a general strategy here. Namely, choose

€
slope”

Simplicio: Sounds good, but what if the slope equals zero?
Virginia: And what if the slope is negative?

Galileo: OK, choose § = m.

Virginia: Much better. Now we know that ¢ can never be negative or zero.
Simplicio: However, I do have just one more question. When I took Calculus, we
always described limits by saying that if a sequence of points x1,z9,...,%,,... gets
close to a point a, then the sequence of points f(z1), f(z2),..., f(xy,),... gets close
to the limit L.

Galileo: Good question. In fact, your idea turns out to be equivalent to the definition

I just gave you. A more careful statement of the definition of limits in terms of

sequences is given in the following theorem.

Theorem 5.6.2 (The Sequence Definition for Limit of a Function). If X is an
interval, f(x) : X — R, and lim,_,, f(x) = L, then for any sequence {x, }°>, with the

property that x, € X, lim, o ©, = a, and x, # a for all n, then lim,_, f(z,) = L.

Proof. The proof follows the same format as our other proofs that sequences converge..
Begin by assuming we have a sequence {z, }5°, with the property that lim,_,,z, = a
and x,, # a for all n.

Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice of N :

Since we don’t have a formula for the function f(z), we are forced to use our hy-
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potheses to find N. However, since we are assuming that lim, ,, f(z) = L, we know
there is a 6 > 0 with the property that if |z —a| < 0 and = # a, then |f(z) — L| < e.
Since 6 > 0 and since lim,,_,, ,, = a, we can find an integer N with the property that
|z, — a| < &. This integer N is our choice.

Step 3. The Check that N works:

Since |z, — a| < ¢ and z, # a, we know immediately that |f(x,) — L| <. O

Galileo: Now that wasn’t so bad was it?

Simplicio: I guess the proof was similar to the others. But why would you bring up
this tangential topic?

Galileo: It may be tangential, but from a pedagogical point of view, sequences are
probably a bit easier to visualize than functions.

Virginia: But, are sequences good enough?

Galileo: Actually, the converse of the above theorem is also true so we have actually
formulated an equivalent definition of limits that only involves sequences.

Virginia: Should we prove it?

Galileo: While similar to the proof that every Cauchy sequence converges, the proof

is by contradiction and we have other topics to cover. I will leave it as an exercise.

Exercise Set 5.6.

1. Using the definition of limit show: lim, 3= = 6.

z2—9
z—3

2. Using the definition of limit show: lim,_,,(mxz + b) = ma + b.

3. Prove that the two Definitions of Limit are equivalent.

5.7 Basic Limit Facts for Functions

Galileo: Just as we assembled basic facts for limits of sequences, we now mention
similar facts for limits of functions. The same sum, product, and quotient rules hold

for functions as hold for sequences. Note that the spirit of the proofs is the same.
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Theorem 5.7.1 (Basic Limit Facts for Functions). If X is an interval, a € X,
and f(x),g(x) : X — R are functions with the property that lim,_,, f(x) = L and
lim, ., g(x) = M, then:

1. Fact 1. lim,o(f(z) + g(z)) = L+ M,
(The limit of the sum equals the sum of the limits or LS = SL.)

2. Fact 2. lim,_,,(f(x) x g(x)) = L x M, and
(The limit of the product equals the product of the limits or LP = PL.)

3. Fact 3. If M +# 0, then 1imm(%) =L

(The limit of the quotient equals the quotient of the limits or LQ = QL.)

Proof. Fact 1. The limit of the sum equals the sum of the limits.

Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:
Actually, we need to make two choices.

Choice 1: Since lim, ,, f(z) = L, we know that there is a quantity d; > 0 with
the property that if v # a and |z — a| < 6,, then |f(z) — L] < £.

Choice 2: Since lim,_,, g(z) = M, we know that there is a quantity d, > 0 with
the property that if 2 # a and |z — a| < d,, then [g(z) — M| < .

Since we want both of the statements |f(x) — L| < § and |g(z) — M| < § to be

true, we choose d to be the smaller of the two numbers ¢; and 0s.

Figure 5.5: The Limit of the Sum Equals the Sum of the Limits
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Step 3. The Check:
Thus, if z # a and |z — a| < §, then

[f (@) + 9(x) = (L + M)| < |(f(z) = L) + (9(x) = M)
< [f(x) = LI + [g(x) — M]|

<cEL€
~—+-=c
—2 2
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Fact 2. The limit of the product equals the product of the limits.

Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:
Actually, we need to make three choices.

Choice 1: Since lim,,, f(z) = L, we know that there is a quantity §; > 0 with
the property that if  # a and |z — a| < 01, then |f(z) — L| < FIViESE

Choice 2: Since lim,,, f(z) = L, we know that there is a quantity d, > 0 with
the property that if « # a and |z — a| < &, then |f(z) — L] < 1.

Choice 3: Since lim,_,, g(z) = M, we know that there is a quantity o5 > 0 with
the property that if  # a and |z — a| < 03, then |g(x) — M| < T

Since we want all three of the statements |f(z) — L| < EIVIESE |f(z)—L| < 3, and
lg(z) — M| < 3T to be true, we choose § to be the minimum of the three numbers
01, 02 and 93.

Step 3. The Check:

Thus, if z # a and |z — a| < J, then we know by the choices for ¢; and d, that

(@) g(x) = Lox M| = [f(2) * g(x) = f(x) + M + f(x) * M — L x M|
< [f(w) x g(x) = fx) « M|+ |f(x) * M — L M|
< [f(@)] lg(x) = M|+ |f(z) — L] |M]

()

€ €
M <
SIL[+1  3M|+1
€ €

< |f(90)|m t3

Since x # a and |r — a| < d2, we know by the second choice that

@)=Ll <] f@) - L1< 3,

which implies

f@) < LI+ 5
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Thus,
1 € 2
L+2)— <=
U+ 3)371 <3¢
and
F(@) £ g@) — Lx M| < [f@)| s+ = < (Ll + 2) o+ S < 2+ £ <
x)*g(x) — L * x = - —<-e+-<e
g 3L+1 3 2’3[L|+1 3373

Thus, the proof is complete.
Fact 3. The limit of the quotient equals the quotient of the limits.

This proof is left as an exercise. O

Simplicio: But wait a minute, I don’t quite see why we know

1) € < 2
— —€.
2’3|LI+1 3

(L] +

Galileo: Whenever you are expected to show one fraction is less than another, simply
assume the relation holds, cross multiply, and simplify. More than likely, you can
figure it out.

We now turn to a special case of the theorem that the limit of the product is the
product of the limits when one of the functions is a constant. We single out this case
because it is one of the details that needs to be checked when we show the collection
of continuous functions forms a vector space. In particular, if f(z) : X — R is a
function which is continuous at each € X and K € R, then the function K f(x) is

also continuous.

Corollary 5.7.2 (Pulling Constants Across Limit Signs). If X is an interval,
a € X, K is a real number, and f(z) : X — R is a function with the property that
lim, . f(z) = L, then lim, (K * f(x)) = K *lim,_,, f(z) = K % L.

Proof. This fact follows immediately from the limit of the product equals the product
of the limit. (i.e. Fact 2, above.) You only have to set g(z) = K, forallz € X. O

Exercise Set 5.7.

1. Using your limit facts, show: lim, ,,(mz + b) = ma + b.
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. Using your limit facts, show: lim,_,, 23 = a3.
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. Using your limit facts, show: lim,_,, 2% = a®.

3

. Using your limit facts, show: lim, o x? = 8.

-2

z2=9

. Using your limit facts, show: lim, ,3 r%=" = 18.

-3

. To complete the proof that the limit of the product equals the product of the

L+i

limit, show: If L > 0, then 3L

2
<3

. Prove: The limit of the quotient equals the quotient of the limits.
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Chapter 6

Calculus

If T have been able to see further, it was only because I stood on the

shoulders of giants.-Isaac Newton

Galileo: A solid understanding of Calculus is a must. While we will review the big
named theorems, we do expect you to be able to compute derivatives and sketch
graphs. In particular, you should know the product rule, the quotient rule, and the
chain rule.

Simplicio: I have forgotten the chain rule. Remind me.

Galileo: Go look it up.

Simplicio: I sold my book.

97
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Galileo: Sorry, I don’t have time to reteach all of Calculus.

Virginia: What about those word problems? I found them difficult.

Galileo: Any skills you learned solving extrema (e. g. max/min) problems should
help. Root finding and data fitting are techniques connected to real applications.
Real applications invariably involve transforming words into symbols.

Simplicio: Actually, while I also found some of those problems to be hard, I enjoyed
connecting the techniques to something in the real world.

Galileo: For Isaac Newton, Calculus was always connected to velocity, acceleration,
force, mass, and volume. Unfortunately, while these applications are the real reason to
study Calculus, we are now going to take a major detour and discuss the theory. You
should recall that the grandfather of all the theorems in Calculus is the Fundamental
Theorem of Calculus, which not only states that the two big ideas of Calculus are
related, but that they are actually inverse operations of one another. While we will
prove this theorem along the way, our main goals are to prove the Intermediate Value
Theorem, the Mean Value Theorem, and Taylor’s Theorem.

Simplicio: And why do we care about these wondrous theorems?

Galileo: The Intermediate Value Theorem is exactly the type of information we need
to guarantee the existence of a root for a continuous function. This theorem assures
us that the bisection algorithm always works.

Simplicio: And the Mean Value Theorem?

Galileo: The Mean Value Theorem provides a tool for showing certain methods con-
verge linearly.

Simplicio: Linearly convergence?

Galileo: While the sequence {%};’f’:l converges to zero, the rate is glacial. If you want
6 digits of accuracy, you have to compute more than a million terms. On the other
hand, the sequence {5:}22, converges much faster.

Simplicio: Looks to me like you only need 20 terms this time.

Galileo: Very good. In fact, the error drops by 50% for each new term. The Mean

Value Theorem helps us to uncover when this preferred convergence rate will occur.
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In particular, under reasonable conditions, the method of Newton/Raphson converges
linearly. This theorem also sets the stage for the algorithm associated with the Con-
traction Mapping Theorem

Simplicio: And Taylor’s Theorem?

Galileo: Consider the sequence {22% o .- How many terms do you have to compute
before you have 6 digits of accuracy this time?

Simplicio: Looks like you only need to compute 5 terms this time.

Galileo: Excellent! You should have been a computer scientist. OK, now think about
it. If you only have a paper and pencil, which sequence would you rather compute.
[ think the answer is obvious. In any case, as long as the function f(x) doesn’t have
multiple roots, the Newton/Raphson algorithm usually provides quadratic conver-
gence. Later, we will show how Taylor’s Theorem provides a technique for computing
derivatives numerically. Thus, they can be used to solve differential equations and
partial differential equations. These derivatives are also used extensively in signal
processing and image processing applications. You can find employment in these

areas.

6.1 Continuous Functions

Galileo: When we discussed the bisection method, we mentioned that the Interme-
diate Value Theorem can be used to show that the method always works. Since
continuity of the function f(x) is not only a key hypothesis for this theorem, but also
for the Fundamental Theorem of Calculus, the Mean Value Theorem, and Taylor’s
Theorem, it is now time to nail the Jello to the wall. Before we can give careful proofs
of these theorems, we need to prove a number of other theorems along the way includ-
ing the Extremum Theorem and the Intermediate Value Theorem for Integrals. Every
one of these theorems requires the assumption that the function f(z) is continuous.
In fact, whenever we integrate a function, we will assume it is continuous to make

sure the integral exists. The bottom line: continuity is an omnipresent assumption
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that insures good things will happen.

Simplicio: I guess theory awaits us.

Galileo: We now turn to the task of giving a careful definition of what it means for
a function f(z) : X — R to be continuous at a point @ in an interval X. As we have
already mentioned, this idea is quite natural. Time is probably the best example of a
continuous phenomenon. At least, we would like to think time changes continuously.
A multitude of physical quantities are measured as functions of time in a continuous
way. Examples include: the distance a projectile has traveled, the distance from the
earth to the sun, your age, your height, and your weight.

Virginia: How does nature connect with mathematics?

Galileo: Since we think of time as a linear progression, we can think of time as a
copy of the real numbers. Since we are giving ourselves the Least Upper Bound
Principle, we have no holes or jumps in the real numbers. The Intermediate Value
Theorem states that a function which is continuous at every point in an interval
actually preserves this property.

Virginia: In other words, the analogy is that time corresponds to the real numbers
and measurements dependent on time correspond to continuous functions.

Galileo: Deep in our hearts we believe atoms move through space in a continuous
fashion.

Simplicio: I bet your colleagues in Quantum Mechanics would have something to say
about this.

Galileo: No doubt. But we don’t have time for such a diversion.

Virginia: Let’s get back to the mathematics.

Galileo: As you will soon notice, a continuous function will be one whose limits are
EASY to compute. Namely, limits are computed by simple substituting. We now

give the precise formulation of the definition

Definition 6.1.1. Ifa € X, where X C R is an interval, f(x) : X — R is a function,

and limy_,, f(x) = f(a), then f(x) is continuous at x = a.

Simplicio: How about a few examples?
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Galileo: Moments ago, we showed that lim,_,, mx+b = ma+ b. This exercise showed
that the function f(z) = ma + b is continuous at the point © = a. Thus, straight
lines are always continuous. In fact, all your old friends including polynomials p,,(z),
trigonometric functions (e.g. cos(z) and sin(x)), and exponential functions (such as
e”) are continuous at every point x € R.. Any sum, product, or quotient of these

1

functions will also be continuous. While functions like f(z) = - and tan(z) = sin(z)

cos(z)

are continuous at most points, they both shoot off to oo at points where the denom-
inator equals zero. For example, the function f(x) = % heads off to infinity at z =0
and thus is not continuous at this point. However, they have the enjoyable property
that they are continuous at every point where the denominator is different from zero.
During our discussions, we will frequently need to assume that the functions under
consideration are continuous

Virginia: How about an example of a function, which is not continuous?

Example 6.1.1. Galileo: Consider the Heaviside function

Lifxr>0

H(z) = :
04fx<0

Note that while it s continuous at every point except x = 0, there is no point x with

the property that H(x) = 5. Thus, the function H(x) tears apart the real numbers

into two sets. The first set is all the negative numbers, which gets mapped to zero.
The second s the set of all the non-negative numbers, which gets sent to 1. Thus,
1

nothing gets mapped to 5. This example will become important when we discuss the

Intermediate Value Theorem 6.2.

The purpose of the next theorem is to formalize the fact that the sum, product,

and quotient of two continuous functions is continuous.

Theorem 6.1.2 (Sum, Product, and Quotient of Continuous Functions). If
a € X, where X is an interval, and f(x),g(z) : X — R are both continuous at the

point x = a, then
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1. the function (f + g)(z) = f(x) + g(x) is continuous at v = a.
2. the function (f * g)(xz) = f(x) * g(z) is continuous at x = a.

3. if gla) # 0, then the function (5)(1‘) = % is continuous at T = a.

Proof. 1f f(z) and g(z) are both continuous at z = a, then lim,_,, f(z) = f(a) and
lim, ,, g(z) = g(a).
From the Basic Limit Facts for Function 5.7.1, we now make three observations:
L limgoq f(2) + g(2) = limgoyq f (@) 4+ limae g(2) = f(a) + g(a).
2. lim,_,, f(2) * g(z) = lim,_,, f(x) * lim,_,, g(x) = f(a) * g(a).

3. If g(a) # 0, then lim,_,, % = % = J;EZ;

Simplicio: OK, those three proofs are easy, but what can I do with them?

Galileo: Since f(x) = x is continuous, we now know that f(z)* f(z) = 2% and f(z) *
f(z) % f(x) = 2* are also continuous. In general, we now know that any polynomial
Pu(T) = 2"+ ap 128"+ @, 27" 2+ - -+ a1 + ap is continuous at every point. Even
more generally, we know that if p,, () and ¢,,(x) are two polynomials, then the rational
function r(z) = ;’;—8 is continuous at any point x = a, where ¢,,(a) # 0. While we
won't take the time to show it now, the trigonometric functions cos(z) and sin(z)
also turn out to be continuous. Thus, functions like f(z) = 2z + 3 cos(x) + z? sin(z)
will be continuous.

Virginia: Wait a minute! I just noticed that the functions

cos(mx), sin(mx), cos(2mx), sin(27wx) are not covered by our Sums, Products and Quo-
tients Theorem. In other words, how do I know these functions are continuous?
Galileo: You caught me. I forgot to mention that the composition of two continuous
functions is continuous. Since g(y) = cos(y) and f(x) = 27z are continuous at every

point, then the next proposition justifies the claim that the function h(z) = g(f(x)) =

cos(2mx) is continuous at every point .

Proposition 6.1.3 (The Composition of Continuous Functions is Continu-

ous). Let X,Y be intervals in R. Let f(z) : X — Y and g(y) : Y — R be functions.
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If f(x) is continuous at a point a € X and g(y) is continuous at the point f(a) in'Y,

then the composition g(f(x)) is continuous at x = a.

Proof. Galileo: We can prove this proposition right from the definition. As usual,
the proof is backwards. Namely, we begin with the function ¢g(y) and then with the
function f(z). The only idea is that we have to choose two “¢’s.” We first choose 9,
for the function ¢g(y) and then (depending on the size of 0;) we choose d.

Step 1. The Challenge:
Let € > 0 be given.

Our job is to find a § > 0 with the property that if x € (a — d,a + 0), then
9(f(2) € (g(fa)) — &, g(fa)) + ).

Step 2. The Choice:
Since g(y) is continuous at y = f(a) and € > 0, choose §; > 0 with the property that
if y € (f(a) — 01, f(a) + d1), then g(y) € (9(f(a)) — € g(f(a)) +¢).

Since f(z) is continuous at x = a and d; > 0, choose ¢ > 0 with the property that
if r € (a—0,a+9), then f(z) € (f(a) — d1, f(a) + d1).

Step 3. The Check:
If 2 € (a—0d,a+0), then f(z) € (f(a) — 61, f(a) + 61).

Since f(z) € (f(a) = 01, f(a) + 1), g(f(x) € (9(f(a)) — € 9(f(a)) +€).

Simplicio: Not so bad.

Exercise Set 6.1.

1. Discuss why the function f(z) = sin(z? + 1) is continuous.

PRYe) J K4
s {i\ / m slbw)te
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Figure 6.1: The Composition of Continuous Functions Is Continuous
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z2+1

—= is continuous. Justify your answer.
z~9

. Show the function f(x) = |z| is continuous.

Explain why the function f(z) = 2252 is continuous at x = 3.
Evaluate the limit lim,_, 721?:151-
Show the function f(z) = = is continuous. Where does it fail to be continu-

ous?

sin(x)
cos(x)

Explain why the function tan(z) = is continuous at most points. Where

does it fail to be continuous?

Explain why the function f(x) = sin(z? + 3) is continuous. (You may assume

the function sin(x) is continuous.

Prove: If T'(z) : [a,b] — R is a function with the property that
|T(x1) — T(z2)| < M |xy — 25| for all xy,29 € [a,b], then show that T'(z) is

continuous at each x € [a, b].

Intermediate Values and Connectedness

Galileo: The Intermediate Value Theorem states something quite natural about the

way we perceive the world around us. For example, I contend that at some point in

your life you were exactly 4 feet tall.

Simplicio: No problem. Since I was less than 2 feet tall when [ was born and am now

over 5 feet, at some moment in time I must have been exactly 4 feet tall.

Galileo: While our friends in philosophy and physics might have objections, that is

the answer I was looking for. Your reasoning is encapsulated by the Intermediate

Value Theorem.

Simplicio: How about another example?
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Galileo: If the temperature is less than 50 degrees in the morning and more than 80
degrees in the afternoon, then at some moment during the day, the temperature must
have been exactly 70 degrees.

Virginia: But why is this theorem called the Intermediate Value Theorem?

Galileo: In the examples just mentioned, the temperature 70 degrees is intermediate
between 50 and 80 and the height of 4 feet is intermediate between 2 feet and 5 feet.
Assuming temperature and height vary continuously with time, the Intermediate
Value Theorem will guarantee that there is some instant in time when these values
are attained exactly.

Simplicio: But what if I was a midget and never got to be 4 feet tall?

Virginia: If you don’t satisfy the hypotheses, the theorem does not apply.

Simplicio: Remind my why I should care about this theorem?

Galileo: The Intermediate Value Theorem is exactly what is needed to guarantee
the bisection method always works. The first mathematician/philosopher to attempt
placing these ideas on a firm mathematical foundation was Bernard Bolzano (1781-
1848). His goal was to make the idea of an infinitesimal precise. While he published
a proof in 1817, he achieved little recognition for his efforts until after his death.
In fact, he had a rough time since he lost his teaching position at the University of
Prague for his pacifist views. He was even put under house arrest and forbidden to
publish.

Virginia: I think you could identify with the plight of this fellow.

Galileo: Indeed I do. While unaware of Bolzano’s ideas, Augustin Cauchy (1789-
1857) published many of these results in 1821. We now state and prove a technical
proposition, which will help us prove the theorem. Intuitively, this proposition states
that if a function f(x) maps a point zq to a value above yp, then a whole open interval
of points must also be mapped above 7. A similar statement can be made if f(z)

maps a point xy to a location below yy,

Proposition 6.2.1. Let f(x) : (a,b) — R be a function, which is continuous at a

point xy € (a,b).
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1. If f(xo) > yo, then there is a 6 > 0 with the property that f(x) > yo for all
z € (xg — d,x9 +0).

2. If f(xg) < yo, then there is a 6 > 0 with the property that f(x) < yo for all
z € (xg — d,x9 +0).

Proof. 1. If f(xo) > yo, then let € = f(xo) — yo > 0. Since f(x) is continuous at
T = Xy, there is a § > 0 with the property that if © € (zg—0, zo+0), then f(z) €
(f(zo) — €, f(xg) +€). Thus, f(x) > f(xg) — e =y for all x € (xg — 0,29 + 9).

2. If f(zo) < yo, then let € = yo — f(xy) > 0. Since f(x) is continuous at x = xy,
there is a § > 0 with the property that if x € (zo — 0,29 + ), then f(x) €
(f(zo) — €, f(xg) +€). Thus, f(x) < f(xg) + € =1y for all x € (xg — J, z9 + 0).

U

Simplicio: I didn’t like that proposition. I hope I never see it again.

Galileo: Unfortunately, we will see it again when we discuss extrema and compactness.
This proposition contains useful connections between continuous funtions and open
intervals.

Virginia: Open intervals aren’t so hard.

Galileo: Let us now state and prove the Intermediate Value Theorem. If we use our
example to illustrate the theorem, we should let the function f(z) be your height at
time z. This function will be a continuous function of time. Since you were less than
2 feet tall when you were born, f(0) < 2. If b denotes your current age, f(b) > 5.
Since yy = 4 is intermediate between 2 and 5, the theorem guarantees that there will

be a time zy with the property f(z9) = 4. Now, for the theorem itself.

Theorem 6.2.2 (Intermediate Value Theorem). If f(z) : [a,b] — R is contin-
uous at each x € [a,b] and f(a) < yo < f(b) (or f(a) > yo > f(b) ), then there is a

point zy € [a,b] such that f(z0) = yo.

Proof. The proof rests on the Law of Trichotomy, the Least Upper Bound Principle,

and the previous proposition.
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Figure 6.2: The Intermediate Value Theorem

Simplicio: What the heck is the Law of Trichotomy?

Galileo: The prefix “Iri” indicates three possibilities. The Law of Trichotomy is a
fancy way of saying that if someone gives you two real numbers x and y, then one of
the following three possibilities must hold: z > y,x <y, or x = y.

Simplicio: That Law is obvious.

Galileo: Well OK, but it can be proved from basic principles. In any case, our strategy
is going to be to find a number z, with the property that if f(a) < yo < f(b), then
there is a number 2 € [a, b] such that the statements f(zy) > yo and f(z0) < yo are
both false.

Virginia: So, by the Law of Trichotomy, there is no other possibility except that
f(#0) = yo.

Galileo: Correct.

Virginia: But how do we find 2,7

Galileo: The point 2y will be defined as the least upper bound of all those points x
in [a,b], such that f(z) is “below” the line y = y,. To formalize this statement, we
define this set by the rule S = {x € [a,b] : f(z) < yp}. A detail that needs to be
checked is that this set is non empty.

Virginia: Since f(a) < yo, we immediately know that a € S.



108 CHAPTER 6. CALCULUS

Galileo: Correct. Now we simply identify z, as the least upper bound of S.
Virginia: And show the two other cases f(z9) > yo and f(z9) < yo are both false.
Galileo: Correct.

Case 1. Suppose the statement f(zp) > yp is true.

By the previous proposition we can find a ¢ > 0 so that if z € (29—, 2o +0), then
f(x) > yo. Thus, if v € (29—9,b], then z is NOT in the set S and the number z; = z—0
must be an upper bound for S. Since z; = 2y — 0 < d, we have a contradiction to
the assumption that zy is the smallest upper bound. This contradiction forces us to
abandon the supposition that f(zy) > yo is true.

Case 2. Suppose the statement f(zp) < yp is true.

Again, by the previous proposition we can find a § > 0 so that if z € (29—9, 20+9),
then f(z) < yo. Thus, if x € (29 — 6,29 + d), then x € S. In particular, the point
r = ZOTH is NOT in the set S. Thus, we have a contradiction to the assumption that
2o is an upper bound of S.

O

Galileo: Notice that the idea underlying this proof is that the problem of “breaks” or
“jumps” in the curve y = f(z) is thrown back to the problem of no “holes” in the real
number line. Actually, what we are saying is that if X is an interval and the image
set Y = f(X) is defined by Y = f(X) ={y € R:y = f(x) for some z € X}, then YV’
is an interval. In other words, the continuous image of a connected set is connected.
Virginia: The Least Upper Bound Principle is what makes it all work.

Galileo: Before we leave this subject, let’s follow Professor Polya’s dictum that we
should look back at what we have accomplished. First, let me comment that the idea
of connectedness is a completely general concept, which is valid in any dimension.
In our setting, the point 1y, separates the real line into the two open intervals V; =
(—00, o) and V5 = (yo, 00). The proposition shows that the two sets S; = {x € [a, 1] :
f(z) € Vi} and Sy = {x € [a,b] : f(x) € V,} are unions of open intervals. Such sets
are called open. Since the sets V; and V; are disjoint, the sets S; and S, are disjoint.

Thus, we have separated the interval [a, b] into the union two non-empty disjoint open
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sets. The point zy we found shows this is impossible.
Virginia: Why do we need the assumption that the function is continous?

Galileo: Recall the Heaviside example

H(x) = lifx >0 7
0ifzx <0

where there is no point x with the property that H(z) = % Thus, the intermediate
value % is never attained.
Virginia: Where might we see these ideas again?
Galileo: In Complex Variables you will immediately be confronted by the Jordan
Curve Theorem, which says that any simple closed curve C' separates the plane into
two open sets, an “inside” and an “outside.” Thus, the set $*? — C' is not connected.
Simplicio: That stuff sounds way too theoretical to be useful.
Galileo: Not only is Complex Variables a beautiful subject, but it is used everywhere

in engineering and physics applications.

Exercise Set 6.2.
1. Show that the function f(z) = z° + x + 1 has a root in the interval [—1, 0].
2. Show that the function f(z) =z — ¢* has a root in the interval [0, 1].

3. Prove the following theorem: If f(x) : [0,1] — [0,1] is a function that is con-
tinuous at each x € [0, 1], then there is a point z € [0,1] with the property
that f(z) = 2. (Hint: Apply the Intermediate Value Theorem to the function

hz) =z — f(x).)

6.3 Compactness and the Extremum Theorem

Galileo: We now turn to the Extremum Theorem for continuous functions. This the-

orem states that a continuous function f(x) : [a,b] — R always attains its maximum.
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In other words, there is a point zy € [a, b] with the property that f(zy) > f(z) for all
z € [a,b].

Simplicio: So, if I toss a ball into the air and catch it a few moments later, then at
some instant 2y in time, the ball will be at its highest. Seems obvious to me.
Galileo: Not so fast. What about the function f(z) = 1 defined on the interval (0.1].
While the function is continuous, the graph becomes arbitrarily high as x gets close
to zero.

Simplicio: In other words, the ball just keeps on going up.

Galileo: Correct.

Virginia: How do we keep that from happening?

Galileo: Our friend the Least Upper Bound Principle will once again save us. Note
that the theorem states that not only is the function f(z) bounded above, but that
there is a particular point (or instant in time) zo which is the highest point on the

curve.

Theorem 6.3.1 (Extremum Theorem). If f(z) : [a,b] — R is continuous at each
point x € [a,b], then there is a point zy € [a, b] with the property that f(z0) > f(x) for
all x € [a,b]. Similarly, there is a point z, € [a,b] with the property that f(z1) < f(x)

for all © € [a, b].

Proof. This theorem is proved in two steps.

Our first step is to show the function f(z) must be bounded. In other words, there
is a constant M with the property that f(z) < M for all x € [a, b]. In particular, f(z)
cannot be unbounded the way the function f(z) = = is.

The second step in the proof is to guarantee that there is a point zy € |a, D]
with the property that f(z) = L, where L = lub(f([a,b])) = lubly € R : y =
f(z) for some z € [a,b]}. By the definition of L, L > f(x) for all z € [a,b]. If f(2) =
L, then f(z9) > f(x) for all z € [a, b].

Step 1. There is a constant M th the property that f(z) < M for all z € [a, b].

Suppose this statement is false. If false, then for each integer n the set S, = {z €

[a,b] : f(z) > n} is nonempty. Note that each S, is nonempty and that S, 1 C S, for
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all n. If b, = lub(S,,), then a < b, 11 < b, < b, for all n. Thus, the sequence {b,,}° | is
a decreasing sequence, which is bounded below by the number a. Hence the sequence
converges to some number zy € [a, b]. Note that zy < b, for all n.

Choose an integer n > f(zp). Since the function f(z) is continuous at x = z;, we
know by Proposition 6.2.1 there is a § > 0 with the property that if z € (29 —4, 29 +9),
then f(x) < n. Since no point z can be in both S,, and the interval (2o — 6, 29 + 9),
the number zy — § is an upper bound for the set S,,. Since zg — 6 < zy < b,, Thus,
the number zy — ¢ is an upper bound for the set S,,, which is smaller than its least
upper bound b,.

This contradiction shows that there is a constant M with the property that f(z) <
M for all z € [a, b].

Step 2. If L = lub(f([a,b])), then there is a point zy € [a, b] such that f(zy) = L.

Suppose this statement is false. If false, then define the function g(z) = L_;f(x)
Since f(x) is continuous for all € [a,b] and f(z) # L for all x € [a, b], we know by

Theorem 6.1.2 that the quotient g(x) = Lﬁ}(w) is also continuous. By Step 1, we know
there is a constant A/ > 0 with the property |L+f(x)| = |g(z)| < M for all z € [a, b].

Since L — f(z) > 0 for all = € [a, b], #(I) < M for all x € [a, b].

Thus, 57 < L — f(x) for all z € [a,b] or f(z) < L — 47 for all z € [a,b]. Thus,
L — 47 is an upper bound for the set {y € R : y = f(z) for some z € [a, ]}, which is
smaller than L.

Thus, we have a contradiction to the assumption that L is the least upper bound
for the set f([a,b]). Thus, there is a point zy € [a, b] with the property that f(zy) =

L > f(z) for all z € [a, b]. O

Galileo: In the spirit of Professor Polya let us think about what we have accomplished.
Note that we have just considered two big ideas: connectedness and compactness.
Simplicio: So?

Galileo: So the continuous image of a closed bounded interval is a closed bounded
interval. Thus, continuous functions preserve this type of interval. Note also that our

proofs of both the Intermediate Value Theorem and the Extremum Theorem employ
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Proposition 6.2.1. What is the key idea embedded in this Proposition?

Virginia: It seems to start with an open interval in the range of the function and then
work backwards to the domain.

Simplicio: The resulting set in the domain turns out to be the union of a bunch of
open intervals.

Galileo: Exactly. If we introduce a bit of notation, we can clarify the concept. In
particular, if we define the open interval in the range of the function by the rule
V ={y € R:y >y}, then we showed that the inverse image set U = f~1(V) =
{z € (a,b) : f(x) > yo} is the union of open intervals back in the domain. Better
yet, if we combine the two parts of Proposition 6.2.1 we have shown that the inverse
image of an open set is open.

Simplicio: So why is this idea a big deal?

Galileo: First, it throws all the problems back to an open interval in the real line R.
Thus, once we understand the real numbers, we are ready to go.

Simplicio: I have understood the real numbers for a long time.

Galileo: Maybe so, but it wasn’t until Cantor and Dedekind came along that people
felt the Jello was nailed to the wall. Two thousand years is a long time. While students
think that complex numbers are weird, the real difficulties lie in the real numbers,
where Dedekind showed the associative, commutative, and distributive laws can be
extended from the rational numbers to this bigger set of numbers.

Simplicio: Is that all?

Galileo: A second reason to think in terms of open intervals is that these ideas
generalize to all dimensions. In particular, the generalization of an open interval is
an open disk in the plane and an open ball in three space. An open set is the union
these simple building blocks.

Simplicio: So.

Galileo: If we define a continuous function to be one with the property that U =
f7Y(V) is an open set whenever V is open then we can show that the properties of

compactness and connectedness are both preserved by continuous functions.
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Simplicio: But that means we have to go through all that theory again. More proofs!
Galileo: But this time the proofs are more conceptual and much easier because we
don’t have all those €s, ds, and limits. This branch of mathematics is called Topology.
Virginia: Why don’t we do it?

Galileo: We could, but it would be a distraction from our main mission.

Simplicio: If this approach is easier, why didn’t we skip all the limit stuff and just do
Topology?

Galileo: We could have, but you would have found the discussions weird and abstract.
You would have constantly been asking where this stuff came from.

Virginia: It is interesting that one little proposition could lead to a whole new view
on a subject.

Galileo: Topology provides a wonderfully elegant framework for these ideas.

Exercise Set 6.3.

1. Identify the extreme values of the function f(x) = 2? — 1 on the interval [—1, 1].

2. Identify the extreme values of the function f(z) = z? — 5z + 6 on the interval

2, 3].

3. Identify the extreme values of the function f(z) = 2* — 9z + 1 on the interval

[—4,4].

6.4 Differentiation

Galileo: While you have seen the definition of derivative and the different rules for
computing the sum, product, and quotient of differentiable functions, we now provide
a quick review.

Simplicio: It has been years since I took Calculus. A review would be appreciated.
Galileo: We will need the assumption of differentiability as an assumption in many
of our theorems. We will also need to compute derivatives when we use the error

formulas to determine an upper bound on the error.
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Simplicio: But aren’t continuous functions good enough? Every continuous function
is differentiable. [ am sure that is true.

Galileo: Sorry, but you are mistaken once again.

Virginia: Don’t you remember that the function f(z) = |z| is continuous at every
point but has a sharp corner at x = 07

Simplicio: OK, OK.

Galileo: Since we have felt the impact of Murphy’s fist when we discussed the failures
of Newton/Raphson, our goal now is to get the language exactly right. As a polite

reminder we begin with the familiar definition for a function f(z) to be differentiable.

Definition 6.4.1. If X is an interval, f(x) : X — R, and the limit limhﬁow
exists, then f(x) is said to be differentiable at the point x € X. The derivative is

defined by f'(x) = limy o /L

Galileo: If y = f(z), we will sometimes write f'(z) = z—z. Just as we remarked
for continuous functions, the assumption of differentiability will occur in most of our
theorems including the Fundamental Theorem of Calculus, the Mean Value Theorem,

Taylor’s Theorem, and the Lagrange Error Formula for polynomial interpolation.
Example 6.4.1. If v € R, then recall the following derivatives.

1. If f(x) = cos(z), then f'(x) = —sin(z).

2. If f(z) = sin(x), then f'(z) = cos(z).

3. If f(x) = €, then f'(x) = €".

4. If © >0 and f(x) = log,(x), then f'(z) = 1.

Simplicio: No problem, I think I remember seeing all those rules.

Galileo: What about the derivative of h(z) = e**?

Simplicio: Hmmm. Not sure.

Virginia: That derivative follows from the chain rule, where you compute the deriva-

tive of the composition of two functions as the derivative of the outside holding the
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inside fixed and then multiply by the derivative of the inside. For this example, you

simply think of the function h(z) as the composition of the two functions f(z) = x?

and g(y) = ¢¥. Since h(x) = ™ = g(f(x)), W'(x) = ¢'(f () ['(x) = e 2,
Galileo: Very good. The important computational facts about the sum, product, quo-
tient, and composition of two differentiable functions are summarized in the following

theorem.

Theorem 6.4.2 (Differentiation Rules). If X is an interval and f(z),g(z) : X —
Y C R are both differentiable at the point x € X and h(y) : Y — Z C R is differen-

tiable at the point y = g(x), then

1 (f+g)(x) = f'(x) + ¢'(x),

(The derivative of the sum equals the sum of the derivatives.)

2. (fx9)(x) = fx) xg'(x) + ['(x) x (),
(The Product Rule.)

3. if gx) # 0, then (L)(z) = LLDg IO g
(The Quotient Rule.)

4. hlg(x))" = h'(g(x))g'(x).
(The Chain Rule.)

Proof. Galileo: You should be familiar with these formulas so we will skip the proofs.

O

Simplicio: Not a problem.
Galileo: Just as we commented for continuous functions, we see by the first derivative
rule that the sum of two differentiable functions is differentiable. By the second
derivative rule, we see that constants can pulled across derivative signs.
Simplicio: What?

dK[(z) _ prdf(2)

Virginia: In other words = .
) dx dx

Simplicio: Why would I care?
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Virginia: Because you now know that the collection of all differentiable functions on
an interval [a, b] forms a vector space.

Galileo: Correct.

Simplicio: Why is this important?

Galileo: The general rule is that the more smoothness you have in your data, the the
easier it is to find accurate approximations.

Simplicio: Smoothness?

Galileo: The more derivatives a function f(x) : [a,b] — R has, the smoother it is.
Let us make the following inductive definition for the n'* derivative as the derivative

of the (n — 1)* derivative.

Definition 6.4.3. If f(x) : [a,b] — R, then the n'* derivative of y = f(x) is defined

as Zl_g = f0(x) = W, where fO(x) = f(x), for all x € [a, b).

Simplicio: So, if y = f(z) = sin(z), then % = fW(z) = f'(z) = cos(r) and % =
f@(z) = f"(z) = —sin(x).

Galileo: Correct. In other words, not only is f()(z) = f(z), but also fM)(z) = f'(z)
and f@(z) = f'(fW(z)) = f"(x), etc. The purpose of the next definition is to grade
a function by the number of derivatives it has. The more derivatives f(x) has, the

smoother it is. The smoother it is, the easier it is to find accurate approximations.

Definition 6.4.4. The symbol C°[a,b] denotes the collection of all functions on the

interval [a, b] with the property that f(x) is continuous at each x € [a,b].

Definition 6.4.5. The symbol C"[a,b] denotes the collection of all functions on the
interval [a,b] with the property that f(z), f'(z), f"(z),..., f™(x) are all continuous

at each x € [a, b].

The larger the integer n, the smoother the functions in the collection.

The next proposition shows that if f(z) € C[a, b], then f(z) € C°|a,b].

Proposition 6.4.6. If f(x) : [a,b] — R is differentiable at a point v = z € [a, bl

then f(x) is continuous at x = z.
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Proof. We must show that lim,_,, f(z) = f(2).
Since the statement lim,_,, f(x) = f(2) is equivalent to lim,,,(f(z) — f(z) ) =0,
we need only prove this last equality.

We know by the limit of the product equals the product of the limits that

tim () — 1) ) =i L=
= lim Jo) = J(2) lim(x — z)
T—rz Xr — zZ T—r2z
=f"(z) x0=0.
Thus, lim, ,, f(z) = f(2) and f(z) is continuous at = = z. O

Exercise Set 6.4.

L. If f(z) = sin(5), then compute f'(z).
2. If f(x) = €, then compute f'(z).

3. If f(z) = e?, then compute f'(z).

6.5 Rolle’s Theorem

Michel Rolle (1652-1719)
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Galileo: Let us begin by introducing the ideas of Michel Rolle (1652-1719), a French
mathematician, who lived during the rein of King Louis XIV. While we will not
give a formal proof of this theorem, an easy physics application can be used to help
visualize where it comes from. In particular, if the variable x represents time and
f(z) represents the height of a ball thrown into the air, then the theorem states that
if the ball leaves your hand at 4 feet above the ground at time x = a and is caught
at this same height at a second time x = b, then there will be some time z when the
instantaneous velocity is zero. as it turns out, that time is at the exact moment when
the ball achieves its greatest height.

Simplicio: But what about a bungee jumper, who jumps off a bridge at time z = a
and returns to the same height a few seconds later at time x = b7

Galileo: You are optimistic to think that the bungee jumper will return to his initial
height. However, if he does, then we can visualize the point z as the moment in time
when a bungee jumper is at the bottom of his fall. Both situations are covered in his

theorem.

Theorem 6.5.1 (Rolle). If f(z) : [a,b] — R, where f(z), f'(x) are continuous, and
f(a) = f(b), then there is a point z € (a,b) such that f'(z) = 0.

Proof. Galileo: To ease your pain we will skip the difficult part of the proof. You
might be surprised to learn that the difficulties lie in showing that the function actu-
ally attains a highest (and lowest) value at some point z. However, if we can find a
point z € (a,b) with the property that f(z) > f(z) for all = € [a, b], then all we have
to do is compute the difference quotient on each side. The difference quotient will be
positive on the left and negative on the right. Thus, the derivative at the top of the
mountain must be zero.

A more quantitative argument can be given by simply noticing when the numer-
ator and denominator of the difference quotient are positive and negative. Since
f(z) > f(z) for all € [a, b], the numerator of the difference quotient f(z+h) — f(z)
is negative. If the point z + h is to the left of z, then the quantity h must also be

negative. Thus the fraction W must be positive.
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Similarly, if the point z 4+ h is to the right of z, then the quantity h must be

W equals a positive number divided

positive. Thus, the difference quotient
by a negative number and thus negative. Thus, f’(z) is the limit of both a sequence

of positive numbers and a sequence of negative numbers. Thus, f'(z) = 0. O

Galileo: An application of Rolle’s Theorem is in the area of roof repair. For example,
when you are in need of a hammer and call to your assistant to get one to you right
away, what is the fastest method?

Simplicio: The answer is simple. You simply throw it at him.

Galileo: Very good. However, fewer injuries will occur if the highest point of the
trajectory occurs where you are standing on the roof. If the velocity is zero, then you
can simply pluck the hammer out of the air.

Simplicio: I think I am beginning to see that locations where a function has zero
velocity might be useful.

Galileo: Others have made this observation before you. The next definition makes

this idea official.

Definition 6.5.2. If X C R, and f(z) : X — R is differentiable at each point in X,
then a point ¢ € X is a critical point of f(x) if f'(¢c) =0. The value y = f(c) is called

a critical value.

Figure 6.3: An Application of Rolle’s Theorem
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In other words, a critical point is where the curve y = f(x) has a horizontal
tangent.
Simplicio: Ah! So the point # = ¢ is nothing but a root of the first derivative. Why
do you call it a critical point?
Galileo: Because something important might be happening at that point. For us,
the word important means a maximum or minimum value of f(z) occurs at that
location. If you remember from Calculus, maxima and minima occur at critical
points or endpoints. Finding a root of a function’s fisrt derivative f’(z) is a big deal.
Virginia: Aren’t we talking about roots tomorrow?
Galileo: Absolutely. However, our immediate need for Rolle’s Theorem is that it

provides a quick proof of the Mean Value Theorem.

Exercise Set 6.5.

1. If f(x) = —2* + 3z — 2, then find a critical point for f(z). What is the critical
value? (Graph the function y = f(x).)

2. If f(x) = 2* + 2x, then show that f(x) has exactly one real root. (Graph the
function y = f(x).)

_z2

3. Compute the critical points and critical values of the function f(z) = we

(Graph the function y = f(x).)

6.6 The Mean Value Theorem

Galileo: Now we turn to the proof of the Mean Value Theorem.

Simplicio: What is the idea underneath the Mean Value Theorem? How am [ going
to remember it?

Galileo: Sometimes we refer to this theorem as the “Highway Patrol Theorem.”
Simplicio: Why is that?

Galileo: Suppose you decide to visit your grandmother, who lives 80 miles away. Since

you have just purchased a new car, you decide to drive. If you get there in one hour,
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then do you deserve a ticket?

Simplicio: I am not sure. The time does sound a bit short.

Galileo: Hopefully, the local police officer will be taking a lunch break. If not, you
might warrant a speeding ticket, which could cost you a serious amount of money.
Simplicio: How so?

Galileo: Since the distance traveled in one hour was 80 miles, the average velocity is
80mph. The Mean Value Theorem guarantees that at some time during the trip your
instantaneous velocity will be exactly 80mph. If the maximum speed limit over the
duration of the trip is 70mph, then you will need a very bright and energetic lawyer
to get you off.

Simplicio: How about if I get a fuzz-buster?

Galileo: Let’s turn to the theorem.

Theorem 6.6.1 (Mean Value Theorem). If f(x) : [a,b] — R has the property that

: : ; _ f()=f(a)
f(@), f'(x) are continuous, then there is a point z € (a,b) such that f'(z) = “5=57.

Proof. Define the function F(x) = f(x) — (f(a) + f(b,)) ﬁ( )(z —a)). Note that F(a) =
fa) = fa) = 0 and F(b) = f(b) — f(a) = (f(b) = f(a)) = 0. Since F'(x) = f'(z) —

W, we can conclude from Rolle’s Theorem that there is a point z € (a,b) such
that F'(z) = f'(z) — 102 = 0. Thus, f/(z) = 101, 0

Simplicio: I do not like that proof. How did some one think of that idea?

Figure 6.4: The Mean Value Theorem for f(z) =4 — (z — 2)? on [0, 2]
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Galileo: While the proof of the theorem may appear artificial, the basic idea is to
reduce the Mean Value Theorem to Rolle’s theorem by subtracting the straight line
y = f(a) + W(w — a) from the function f(z). The next version of the Mean

Value Theorem is rewritten into a form similar to Taylor’s Theorem, which we will

consider shortly.

Theorem 6.6.2 (Mean Value Theorem 2). If f(z) : [a,b] — R has the property
that f(x), f'(x) are continuous, then for every pair of points x,xy € (a,b) there is a

point z € (a,b) such that f(x) = f(xo) + f'(2)(z — o).

Proof. In the Mean Value Theorem 6.6.1 simply let xy = a,x = b, and substitute
into the expression f'(z) = W to get f'(z) = %‘f;gzo) If we multiply both

sides of the equation by xg, we see that f(z) — f(xo) = f'(2)(x — x) and the result
follows. O

Simplicio: So what is this Mean Value Theorem good for?
Galileo: The next theorem allows us to estimate how much a function expands or

contracts.

Corollary 6.6.3 (Corollary to the Mean Value Theorem). If f(z) : [a,b] — R
has the property that f(x), f'(z) are continuous and M = max{|f'(z)| : x € [a,b]},

then for every pair of points x,xy € |a,b] we know that | f(x) — f(xo)| < M|z — xo].

Proof. By Mean Value Theorem 2 6.6.2 we know that for any two points z, ¢ € [a, b],
there is a point z € [a, b] so that f(z) — f(xy) = f'(2)(z — x).

Thus, if M = maz{|f'(z)| : € [a,b]}, then |f(z) — f(zo)| = |f'(2)||x — zo] <
M|z — xg]. O

Galileo: From an intuitive perspective, the Corollary states that if you drive your
rusty old car from your house to a party at your grandmother’s house 80 miles away
and the jalopy cannot go faster than 45mph, then you had better leave in plenty of
time or you will be late.

Simplicio: If you allow only an hour, then you will be assured of being late.
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Galileo: There it is, a mathematical fact.

Example 6.6.1. If f(x) = sin(x), then we will show that |sin(x) — sin(y)| < |z — y|
for any two real numbers x and y.

Howewver, since f'(x) = cos(x) for all x € R and cos(x) < 1 for all x € R, we know

by the Mean Value Theorem 6.6.3 that |sin(z) — sin(y)| < |z — y| for all x,y € R.

How about if you practice on a couple of the following problems?

Exercise Set 6.6.

1. If f(x) = 2?2 —4,a = 0, and b = 1, then find the point z guaranteed by the
Mean Value Theorem 6.6.1. (Graph the function y = f(z).)

2. If f(x) = 2* —4,a = 1, and b = 5, then find the point z guaranteed by the
Mean Value Theorem 6.6.1. (Graph the function y = f(z).)

3. If f(x) = €® and z,y € [0, 1], then show that | — e¥| < 3|z — y|. (Graph the

function y = f(x).)

4. K >0and T(x) = x—“’z;K = 12+ £ then show that |T'(z)-T(y)| < 1|z —y|
for any two real numbers z,y € [V/K, 00). (We will see this problem again when

we analyze the Archimedes/Heron square root algorithm. Graph the function

y="T'x).)

5. If K > 0and T'(x) = v— %K = 204K then show that |T'(z) T (y)| < 2|z—y|

312 3227

for any two real numbers z, y € [V/K, 00). (We will see this problem again when

we analyze the cube root algorithm. Graph the function y = 7"(z).)

6. If T'(z) = % cos(2z) — 3, then show that |T'(z) — T'(y)| < 2|z — y| for any two

real numbers x and y.

6.7 Uniform Continuity

Galileo: We now turn to the topic of uniform continuity.
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Simplicio: Yet a second type of continuity? Isn’t one enough?

Galileo: It really isn’t a new type of continuity, but rather is involved in the choice
of 0 when you have been challenged by an e.

Simplicio: I have no idea what you are talking about.

Galileo: Let us begin with a couple of examples.

Example 6.7.1. If f(x) : R — R is defined by the rule f(z) = 2x,29 € R, and e > 0
is given, then how small must 6 > 0 be chosen to guarantee that if v € (xg— 9, xo+0),
then f(x) € (f(zo) — €, f(xo) +€)7

Simplicio: Even I can answer that question. All we have to do is choose 6 = § because
to check that this choice works we simply note that |f(z) — f(xy)| = |22 — 24| =

2lr — x| <25 =€
Galileo: Very good. Now consider a second example.

Example 6.7.2. If f(z) : R — R is defined by the rule f(x) = 2%, 20 € R, and € > 0
is given, then how small must 6 > 0 be chosen to guarantee that if v € (xo — 0, x9+0),
then f(x) € (f(zo) — €, f(xo) +€)7

Simplicio: This question is a bit harder, but let’s figure it out. If we assume that
§ < 1, then |z| < |wo| + 1. Thus, |f(z) — f(zo)] = |22 — 2| = |(xz — zo)(x + 30)| =
|z — zol|x 4+ zo] < 0(|z] + |x0|) < 6(2|x0| + 1). Thus, if I choose § > 0 less than the

minimum of 1 and § < 5] then I am done.

__ €
$0|+17

Galileo: You are getting good at these computations. [ am impressed. OK, what is
the difference between the choice of ¢ in these two examples?

Virginia: In the first example, the choice of § does not depend on the given point z;.
Namely, 0 = 5 for any point x¢. In the second example, the choice of 6 must be made
smaller for larger values of x;.

Galileo: In other words, in the first example, the choice of ¢ is independent of the
point zy, while in the second example, the choice of § depends on xy. Let’s modify

the second example and see if you can figure out what the choice should be this time.
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Example 6.7.3. If zy € [-100, 100] and € > 0 are given and f(x) : [—100,100] — R
is defined by the rule f(x) = a2, then how small must § > 0 be chosen to guarantee
that if x € (xg — 0,9 + ), then f(x) € (f(xo) — €, f(xg) +€)7

Simplicio: This question is easy. If we choose § = 35, then |f(x)—f(xo)| = | —zf| =

[(x — x0) (2 + x0)| = |2 — 20]|100 4 100| < §(200) < 555200 = e.

Thus, we are done.

Galileo: Very good. Now, what is the difference between the second and third exam-
ples.

Simplicio: Obviously, the only difference is that the interval in the third example is
closed and bounded.

Virginia: And you choose 6 = =, where M > |f'(z)| for all z in the interval.

e
Galileo: Guess what! You have discovered two new theorems.

Theorem 6.7.1 (Uniform Continuity 1). If X is an interval in ® and f(z) : X —
R is a differentiable function with the property that |f'(x)| < M for all x € X, then
for any xo € X and any € > 0, there is a 6 > 0 with the property that if |x — xo| < 6,
then |f(x) — f(zo)| < e.

Proof. Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice:
Choose 0 = 3,547
Step 3. The Check:
If |z — xo| < 6, then by the Mean Value Theorem 6.6.3

|f(.iL')—f(1‘0)|§M|.iL’—.iL’0|<M6<MM:_1=ML_|_1€<€.

O

Galileo: The next theorem provides the generality we desire. Note the hypotheses
have been changed so that it is no longer necessary to assume that the function is
differentiable. However, to make up for this weaker assumption, we must assume that

the interval is closed and bounded.
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Theorem 6.7.2 (Uniform Continuity 2). If f(z) : [a,b] — R is a function with
the property that f(x) is continuous at each x € [a,b], then for any € > 0 there

is a & > 0 with the property that if xy,x € [a,b] have distance |x — x| < 0, then

|[f(2) = flwo)] <€

Proof. By way of contradiction, assume that there is no such delta.
If this is true, then we have the following cases.
Case n = 1.

For ¢, = % = 1 we can find points yi, 21 € [a,b] with the property that |y, — 2| <

01 =1 and [f(y1) — f(21)] > €
Case n = 2.

For 6, = % we can find points ys, 25 € [a, b] with the property that |y, — 2| < 0o =

and |f(y2) — f(22)] > €.

Case n = 3.
For 03 = § we can find points y3, z3 € [a, b] with the property that [y; — 23] < 65 = 3
and [f(ys) — f(z)] = €.

Case n = n.
For ¢,, = % we can find points y,, z, € [a,b] with the property that |y, — z,| < J,, = %

and [f(yn) = f(za)| 2 €

Since we have assumed the interval [a,b] is closed and bounded, the sequence
{yn}22 | has a convergent subsequence. Without loss of generality, we can assume the
sequence {y, }°°, converges to some point . Since the function f(z) is continuous at
Ty, we can find a 6 > 0 with the property that if |z —x¢| < 6, then |f(x) — f(xo)| < 5.

Choose an integer N sufficiently large that if n > N, then |y, — x| < %.

Since |y, — 0| < 2 <6, |f(ya) — fm0)] < &

IN

Since |z, — To| = |20 — Yn + Yn — To| < 20 — Yu| + |y — 20| < %—i_%g %_'_g
5 +5=0,1f(za) = flao)| < 5.
Combining these last two pieces of information, we see that |f(y,) — f(z)| =

|F(yn) = f(x0) + flwo) = f(zn)| < [f(yn) = f(@o)| + [f(20) = fzn)| < 5 +5 =€

Thus, we have a contradiction to our assumption that |f(y,) — f(z,)| > € for all
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integers n.

Thus, the theorem is proved. O

Simplicio: I have the creepy feeling I have seen that argument before.

Galileo: You have. As part of the proof of the Extremum Theorem, we showed that
a continuous function on a closed bounded interval is bounded. The argument is the
same except for the phrasing. In fact, our theorem on uniform continuity can be
used to show a continuous function on a closed bounded interval is bounded. The
argument is straightforward.

Simplicio: Well, why didn’t you give us this argument before? It would have been
more economical.

Galileo: True, but it would have seemed a bit contrived. In any case, repetition is a
great teacher.

Simplicio: I have one last question. Why did we go to the trouble to discuss uniform
continuity? It seems like a detail.

Galileo: While you are correct that uniform continuity is a detail for an applications
person like yourself, it is the key idea in the proof that a continuous function on a
closed bounded interval is integrable.

Simplicio: As far as I am concerned, any function can be integrated.

Galileo: The continuous functions on a closed bounded interval form a generally well
behaved collection. They possess the extremum and intermediate value properties. As
we will see momentarily, they are also integrable. Thus, they form an important subset
of the collection of integrable functions. In some sense the collection of continuous
functions are a nice subset of the collection of integrable functions. In an effort to
isolate the concept of Uniform Continuity and unify the two theorems Theorem 6.7.1

and Theorem 6.7.2, we make the following definition.

Definition 6.7.3. If X is an interval in R and f(z) : X — R is a function with the
property that € > 0 there is a & > 0 with the property that if xo,x € X have distance
|z — zo] <6, then |f(z) — f(x0)| < e
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Exercise Set 6.7.

1. If f(z) = 2® + 3z is defined on the interval [—2,2] and € > 0, then find a
6 > 0 with the property that if |x — x¢| < 0, then |f(z) — f(zo)| < € for all

T,z € [—2,2].

2. If f(z) = 2*+x is defined on the interval [—3, 3] and € > 0, then find a § > 0 with
the property that if |z — x| < 9, then |f(z) — f(z0)| < € for all z,zy € [-3, 3].

3. If f(x) = 5|z| + 3]z — 1| is defined on the interval [—2,2] and € > 0, then find
a 0 > 0 with the property that if | — zo| < §, then |f(x) — f(x)| < € for all

T, % € [—2,2].

6.8 Integration

Galileo: Since our proofs of both Taylor’s Theorem and the Fundamental Theorem
of Calculus require the Intermediate Value Theorem for Integrals, I guess we have no
choice but to define the integral of a function.

Simplicio: More theory?

Galileo: While you dislike the theory, the definition is in the same spirit as the
definitions we gave for limits of sequences and functions. If you have forgotten those
details, go back and look at your notes from those discussions.

Virginia: You mean you can phrase the definition in terms of a challenge?

Galileo: Absolutely. First, we have to define the ideas of a partition and a refinement

of a partition. These terms will appear in the definition of the integral.

Definition 6.8.1. A partition of an interval [a,b] is a finite ordered set of points of

the form P ={a =1z < x; < xy < --- < x,, = b}.

Definition 6.8.2. If P and P' are two partitions of an interval |a,b], then P' is a

refinement of P if every member of P' is a member of P.
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Definition 6.8.3. A bounded function f(x) : [a,b] — R is integrable with integral
fabf(:r) dx if for every € > 0, there is a partition P with the property that if P' =
{a =29 < 1 <29 < -+ < xp, = b} is any refinement of P and for any choice of

points x; € Xk, Tpt1], then

|i:f($2)($k+1 — Zy) —/ f(z) dx| < e.

Since we have an excess of notation, we will use the notation
S(P) = Y170 f(at)(xky1 — 7) to denote the sums approximating the integral. We
will write this sum with the understanding that xj € [z, 2g11]. With this notation

we can reformulate the definition a bit more succinctly.

Definition 6.8.4. A bounded function f(x) : [a,b] — R is integrable with integral
fab f(z) dx if for every € > 0, there is a partition P with the property that if P' is any
refinement of P, then

|S(P’)—/ (@) do| < e.

Simplicio: This definition seems unnecessarily complicated.

Virginia: Actually, no. I can already see that it can once again be phrased as a three
step process with the usual suspects: Challenge, Choice, and Check. If I challenge
you with an € > 0, then you are required to find me a partition P (The Choice) with
the property that any “bigger” partition P’ has the property that S(P') is within €
of the integral fabf(x) dr. Once again the € is a measure of our distance from the
desired answer. Not complicated at all.

Galileo: The next proposition encapsulates the two most important facts concerning
integrals. The first states that the integrable of the sum is the sum of the integrals.
The second states that we can pull constants across the integral sign. Recall that
derivatives also had these two properties. Together these two properties state that
the derivative and integral are linear transformations and thus lie under the purview

of Linear Algebra. More about this later.

Proposition 6.8.5 (Linearity Property for Integrals). If f(z),g(z) : [a,0] = R

are integrable and K is a real number, then
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1. fabf(x) +g(x) do = fabf(:r) dr + fabg(x) dx
(The integral of the sum equals the sum of the integrals.)

2. fabe(x) dr = Kfabf(x) dx
(Pulling constants.)

Proof. Fact 1. Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice:
Choose a partition P with the property that if P’ is any refinement of P, then

L. |S§(P') — f f(z) dx| < § and
! b €
2. 18,(P') — [ g(x) da] < §

where S;(P') and S,(P') denote the approximating sums associated with f(z) and
g(x), respectively. (We assume that the choice of zj is the same for both approxima-
tions.)

Step 3. The Check: Since S;(P') 4+ Sy(P') = Spiq(P'),

S (P / Fla) dz + / o(z) de)| =IS; (P / Fla) da + /abg
—|5;(P /f ) d + S, ( /bg ) d|
<Is;(P /f ) el 415,07~ [ ota) o

l\DIm
DO |

Proof of Fact 2.

Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:
Choose a partition P with the property that if P’ is any refinement of P, then

[S5(P") = [, f(x) da| <

IK\+1
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Step 3. The Check:
If P’ is any refinement of P, then | Sk ¢(P’) Kf f(x) dx| = |KS§(P') Kf f(x) dz| =
|K||Sf(P") — f fz) do| < |K|pis <« O

Virginia: Those proofs weren’t bad at all. They were almost the same as our limit
facts.

Simplicio: But why are they called linearity properties? I don’t see any proportions.
Galileo: Do you remember the definition of linear transformation from your studies
of Linear Algebra?

Simplicio: I am not sure what you are getting at.

Galileo: If you remember, a transformation L : U — V from a vector space U to a

vector space V' is called linear if it satisfies two properties:

1. L(u; +uy) = L(uy) + L(uy) for all u;,uy € U and

2. L(Ku) = KL(u) forallu € U and K € R.

Of course, the vector space of integrable functions is infinite dimensional.

Simplicio: I have no use for infinite dimensional vector spaces and their transforma-
tions.

Galileo: But you will.

Simplicio: Oh.

Galileo: The global strategy will be to approximate infinite dimensional spaces by
finite dimensional spaces and linear transformations by matrices. You have heard
of a matrix, haven’t you? Derivatives, integrals, and Fourier Transformations all
operate in the infinite dimensional arena. Fortunately, they all have finite matrix
representations. Thus, Linear Algebra will be involved.

Simplicio: OK, OK. An integration example please.

Galileo: Before we present an example, I would like to present two more notations

for the lower and upper sums.

Definition 6.8.6. If f(x) : [a,b] — R is a bounded function, P is a partition of |a, b],

and z;, € [Tk, Tp41) has been chosen with the property that my = f(z) < f(x) for all
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T € [xg, Ty, then define the lower sum on P by S(P) = S_070 f(2p) (xhsr — k) =

S s M (Thp1 — k)

Definition 6.8.7. If f(z) : [a,b] — R, P is a partition of [a,b], and Zy € [Tk, T41]
has been chosen with the property that f(z) < f(zx) = My for all x € [z, Tk11], then
define the upper sum on P by S(P) = Y024 f(Zx) (@rr1 — 1) = S pzg Mi(@rp1 — ).

Virginia: Actually, I hate to be picky, but I have a complaint about these last two
definitions. If we assume the function f(x) is continuous, we know we can find the
points z, and Z;. However, if we don’t make this assumption about f(z), we might
not be able to find such points. What do we do then?

Galileo: Good point. We would be on safer ground if we defined them more carefully

using the concepts greatest lower bound and the least upper bound.

Definition 6.8.8. If f(z) : [a,b] — R is bounded and P = {a = xy < 21 < 3 <
o < x, = b} is any partition of [a,b], then define the notation my = glb{f(z) : x €

[k, Tpy1] and My, = lub{f(x) : x € [xg, Tpy1]-

Virginia: I see why you are assuming your functions are bounded. If you had un-
bounded functions, the quantities m; and M} could be infinite.
Galileo: You are correct. We are trying to keep our discussion as simple as possible.

Let us begin by making a number of observations.

Proposition 6.8.9. If f(z) : [a,b] — R is bounded and P is any partition of |a,b],
then the lower and upper sums exist and S(P) < S(P) < S(P).

Proof. Since my, < f(x}) < My, for all © € [xy, xg11] and all k =0,1,...,n—1,

S(P) = S mlanss — 1) < S(P) =3 (05) (st — 1)
< i Mk(l‘k+1 - J,‘k) = E(P)

Thus, we are done. O
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Proposition 6.8.10. Let f(z) : [a,b] — R be bounded. If P and P’ are any two
partitions of [a,b] where P' is a refinement of P, then S(P) < S(P') < S(P') < S(P).

Proof. Simplicio: Even I can see that this proposition is true.
Galileo: But, you might want to be a bit careful and increase the partition P to P’

by adding one point at a time. This technique is called induction. O

Simplicio: Our example please.
Galileo: OOPS! We need to remind you of one more detail. We need the sum formula

for the arithmetic series.

Proposition 6.8.11. > )  k=1+2+---+n= ”(”2+1).
Proof. Virginia: I remember the proof.
Ifwelet S, =14+2+---+n, then
S, = 1+ 2 4+ .+ n
Sp = n + (n=-1) + ... + 1
25, = (n+1) + (n+1) + ... + (n+1)

Since the quantity 2S5, is written as n sums of the number n + 1, we see that

25, = n(n+1). Thus, S, = @ O
Virginia: Now we should be ready for our example.

Example 6.8.1. Galileo: How about if we compute the area under the curve y =
f(z) =x for x € [0,1]?
Simplicio: Sure, but I already see the enclosed region is a right triangle with base and
height equal to one. The answer equals %
Galileo: We shall do as the young lady instructs.
Virginia:
Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice:

Begin by choosing an integer n with the property that n > %
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Now choose the partition P to be n + 1 equally spaced points between 0 and 1.
In other words, P = {0 = xyp < 11 < xy < ++» < x, = 1}, where xp = %, for
k=0,1,2,...,n.

Step 3. The Check:
Let P' be any refinement of P with x} any choice of points in the interval [xg, Ty41].
Before we discuss P', let’s make a couple of observations about P. Since w1 —xp = %

andmk:%,forallk:O,l,...,n—l,

n—1

S(P) =Y mi(wpnn — )

Similarly, since My = %, forallk=0,1,...,n—1,

7
L

vl
3
[

My (g1 — @)

3 =
Il
—= O

ol
+
—_
SENS

o
S

7
L

(k+1)

S >
=0
_I_
=

Il
+
o

(V)
S
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1n+l
2 n

|S(P') — 3] < = <. Thus, folx dr =1

9°

nl — 2 — 1 we can see that
n 2n n

N[

Since we have chosen n > % and

Virginia: Since each estimate of the integral is squeezed between a bit less than %
and a bit more than %, I see we have a squeezing type process taking place here.
Simplicio: OK, but I knew before we started that a triangle with height and base

equal to one has area equal to %

Example 6.8.2. Galileo: OK, then how do you compute the area under the parabola
y= f(x) =a?, for x €[0,1]7

Simplicio: I would use my antiderivatives from Calculus.

Galileo: But, what if you were Archimedes? He had no antiderivatives.

Simplicio: I would be in trouble.

Galileo: While we won’t give his proof, the next proposition provides the key to a proof

he would appreciate. Virginia, how about if you lead the way again?

Proposition 6.8.12. Yp_ k% = 12 4+ 22 4 ... 4 p? = nedbentl)

Proof. Note the following special cases.
If n =1, then 12 = I(ILES(ZH).

If n = 2, then 12 4 22 = 22t

If n =3, then 1% 4 22 + 3% = 33HDESEL

The formal proof is by induction. O

Virginia: Using the definition, we simply go through the same steps as before.
Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice:
Begin by choosing an integer n with the property that n > %
Now choose the partition P to be n + 1 equally spaced points between 0 and 1.
In other words, P = {0 = zy < 21 < 3 < --- < x,, = 1}, where x, = £, for

k=0,1,2,...,n.
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Step 3. The Check:
Let P" be any refinement of P with x} any choice of points in the interval [xg, Ty41].
Before we discuss P', let’s make a couple of observations about P. Since w1 —xp = %

and my = (£)2, for all k =0,1,...,n — 1,

n

7
L

I
3
[

My (Tpq1 — Tg)

Il

i
o >|—tO
—
3|
N—

no
S|+

Il

|'_‘ 3w|'_' i
™
Do

7
L

_ (;— )n(2n —1)
n? 6

1(n—-1)(2n-1)

"6 n? ’

Similarly, since My = (%)2, forall k=0,1,...,n—1,

i
L

l
=
Il
=
5
o
=

|
8
N

7T
|
= o
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i
L
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| w Il
o
Il
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Thus,

é(n— 1)71(2271— 1) _s(P)
<S(P')
<S(P)
<S(P)
<S(P)
1(n+1)2n+1)
6 n? ’

Since we have chosen n > %,

S(P) - S(P) <1(n+1)(2n+1) 1 -=1)(2n-1)

~6 612 6 6n?
20 +3n+1 20 —3n+1
- 6n? B 612

_6n 1

6w

and both S(P') and 2 are trapped between S(P') and S(P'), these estimates show that
|S(P') — 2| < £ <. Thus, fol a? do = 5.

Simplicio: These examples are not as bad as I would have expected. However, how
did you know that mjy = (£)? and M, = (££1)2?

Virginia: Since the function y = f(z) = 2? is increasing on the interval [z zj, 1], the
lowest point on the curve occurs at the left endpoint @y. Thus, my, = (z))* = (£)2
Similarly, the value of My, is computed at the right endpoint so that My, = (zx41)* =

(k)2

Example 6.8.3. Galileo: How about if we show that fol 2® dr = i? The only fact we
need is that Y p_ k3 = ()2,

Simplicio: Holy Mother of Jesus, save me from this maniac. Let’s move on. I would
rather we do it Isaac Newton’s way.

Galileo: So you do appreciate a good theorem when you see one! OK, we will leave it

for an exercise.
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Galileo: OK, now it is time to move on to inequalities. Note that the next proposi-
tion is analogous to the squeezing theorem for sequences. Unfortunately, just as the
previous squeeze involved a proof by contradiction, the current proof does as well.
Simplicio: But, why can’t we avoid new proofs?

Galileo: Sadly, we did not define the integral in terms of sequences.

Simplicio: I can smell that contrapositive already.

Proposition 6.8.13 (Monotone Property for Integrals). If f(x), g(x) : [a,b] —
R are bounded, integrable, and f(x) < g(x) for all x € [a,b], then fabf(x) dr <

fabg(x) dz.

Proof. Begin by noting that if P is any partition of [a, b], then our assumption that
f(z) < g(x) for all z € [a,b], implies that

—
—

n—

Sp(P) = > flap)(@ers —xk) < ) g(0)) (@1 — x1) = S,y(P).

n—

B
Il
B
Il

By way of contradiction assume that fab f(z) dz > fabg(x) dz. We will show this
assumption leads to the absurdity that the number S;(P) is strictly less than itself.

Step 1. The Choice of epsilon:
b b
Let e = 42 /@ d””;fa 9(@) dz

(Since we are proving the contrapositive, we get to choose € to be any number we
want. The smart choice is half the distance between the integrals fab f(z) dz and
[} 9(@) dx)

With this choice of €, we know 2¢ = fab f(x) do — fabg(x) dz. If we write 2e = e+¢

and move one integral to the other side of the equation, then

/abg(:r) d:r+6:/abf(x) dr — e,

Step 2. The Choice of the partition P :
(We now get to choose the partition based on the choice of e.)

Choose a partition P with the property that if P’ is any refinement of P, then
1S;(P') — [ f(x) do| < e and |S,(P") — [7 g(x) dz| < e.
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Step 3. The Contradiction:

(We now show that the number S;(P’) is less than itself.)
Since [S;(P') — [} f(z) dz| < e, [0 f(x) dz — ¢ < Sp(P").
Since [S,(P') — [ g(x) dz| < €, S,(P') < [ g(x) d +e.
Since Sp(P') < Sy(P’), we see that

sf(P')gsg(P')</ o) dx+e:/ (@) de — e < Sy(P).

Thus, S¢(P') < Sf(P'), a contradiction since no number can be less than itself.
Don’t let all the notation confuse you. The proof is easier than it looks. Draw a
picture.

O

Simplicio: That proposition seems obvious to me. I don’t see why it was necessary
to prove it.
Galileo: The next corollary will provide the starting point in our proof of the Mean

Value Theorem for Integrals.

Corollary 6.8.14 (Integral Bounds). If f(x) : [a,b] — R is bounded, integrable,
and m < f(x) < M for all x € [a,b], then m(b—a) < fabf(x) de < M(b — a).

Proof. This corollary follows immediately from the previous proposition.
First, set g(z) = M for all x € [a, b]. Thus, fabf(:r) do < fabM de = M(b— a).
Second, set g(z) = m for all z € [a, b]. Thus, m(b— a) = fabm dr < fabf(x) dz.
]

Simplicio: I have a quick question. Why all this generality in the definition of the
integral? In other words, as soon as you decided to compute, you immediately chose
your partition to have equally spaced points. Why not always limit your partitions
to equally spaced points?

Galileo: Excellent question! We have partitions with variable length intervals for

both practical and theoretical reasons. A practical reason is that the integral can be
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estimated more efficiently and accurately if we have shorter intervals where the func-
tion y = f(x) is changing rapidly and longer intervals where the function is changing
more slowly. If the function happens to be differentiable, then the computations will
be improved if the lengths of intervals are chosen relatively small in regions where the
derivative is large and relatively long in regions where the derivative is close to zero.

This process can be automated.

Example 6.8.4. For example, our friends in statistics are always having to approwi-
mate integrals like f_ul]o e dx. Since the function flz) = e " and its first derivative
are virtually zero on the intervals [—10, —5] and [5,10], our partition

P={-10=2y <z <3< -+ <xp_q <xp, =10} can be chosen so that v1 = —5.

and x,—y = 5. The intermediate points can be clustered in the interval [—5,5].

Virginia: And the theoretical reasons?

Galileo: If we use the definition of integral we just gave, it is easy to prove the rule
fabf(x) de = [7f(z) do + fcbf(x) dz for ¢ € [a,b]. We simply add the point ¢ to
an arbitrary partition P = {a = zp < x; < .-+ < x,, = b} to create a refinement
P={a=zg<z < - <z <<y <---<x,=>b}. The proof of this fact is a
bit of a nuisance if we had only considered equally spaced partitions. We will prove
this fact momentarily.

Simplicio: Is that all?

Galileo: As you will see during this discourse, many techniques have difficulty when
making approximations near the boundary. The Runge and Gibbs example stand out
as examples of this type. Some of these problems can be alleviated when we choose
our partition so that most of the points are clustered out near the boundary of the
interval. For numerical integration, Gauss Quadrature provides an elegant way to
make this choice.

Simplicio: Any other thoughts?

Galileo: While most of our discussions will be restricted to the 1-dimensional setting,
most real applications take place in 2,3, or even higher dimensional spaces. While

upper sums and lower sums may not be well-defined in these settings, the expression
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S(P) = Y2070 f(2})(wry — x) makes sense as long as the value f(r}) lies in a
real vector space and the quantity (zx,1 — 2) is a real number. The other issue is
convergence for the partial sums. However, if we define the metric on the range of
the function so convergence implies convergence on each coordinate, then we are back
to dimension one. Pythagoras does that for us. He is our man. This heavy-handed
discussion implies that when we integrate a function of the form r(t) = (x(¢), y(t)),
we simply integrate the two coordinates separately.

Simplicio: Hmmm.

Virginia: I also have a question. When you computed the examples, you immediately
turned to the lower and upper sums. If you have equally spaced points, then the
lower and upper sums are sequences so you simply could have defined P, to be the
partition of the interval [a, b] with n equally spaced points. The integral can now be
defined simply as the limit of the sequence lim,,_, S(P,) = lim,_, S(P,). While these

two limits might not be equal, I doubt that happens. Can these limits differ?

Example 6.8.5 (A non-Integrable Function). Galileo: Now you are asking for a
bizarre example. However, the following function has the property that all the upper

sums equal +1, while all the lower sums equal —1. Thus, it cannot be integrable.

Definition 6.8.15 (A non-Integrable Function). Define the function f(x) :
[0,1] — R by the rule
-1 of x  is a rational number

flz) = :
1 if © s not a rational number
Virginia: Yes, I can see that no matter what the choice of the partition, P, it will
always be true that my = —1 and My = 1.
Simplicio: How so?
Virginta: Since there will always be a rational number . between xy, and Ty, my =
—1. Thus, S(P) = —1 for any partition P. Since there will always be an irrational

number x}, between xy and w1, My = 1. Thus, S(P) = 1.
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Galileo: While this example makes the point that we should be careful, we won’t use
it much. However, it does set the stage for a criterion that guarantees the existence of
the integral. The criterion is similar to the Cauchy criterion we had for sequences. In
fact, the proof involves the same construction we went through for Cauchy sequences
where all but a finite number of terms of a sequence are trapped in a nested sequence
of intervals [ay,, b,], where b, — a, < %

Galileo: OK, now it is time provide conditions, which guarantee the integral exists.
Simplicio: This discussion will be for the math majors.

Galileo: True, but it will reinforce your understanding of the definition of the integral.

Theorem 6.8.16 (Cauchy Integrability Criterion). If f(z) : [a,b] — R is a
bounded function, which has the property that for every e > 0, there is a partition P
such that Sy(P) — S;(P) <€, then f(x) is integrable.

Proof. The proof is constructive, where a sequence of partitions {P,}>° ; are found
with the property that P, refines P, and S;(P,) — Sp(P) < %

Casen = 1. Let e =1.

Choose a partition Py with the property that S;(P) — S, (P1) < 1.

Casen = 2. Let € = %
Choose a partition P, with the property that Sy(Ps) — S;(P,) < 3. Since refinement
only forces the upper and lower sums to be closer, assume that P, refines P;. (If it
doesn’t, then add the points of P; to P,.)

Case n = 3. Let € = %
Choose a partition Py with the property that Sy(Ps) — S;(Ps) < 3. Since refinement
only forces the upper and lower sums to be closer, assume that P; refines P,. (If it
doesn’t, then add the points of P, to Ps.)

Continue in this manner for arbitrary integers n to obtain a sequence of partitions

with the property that

SH(P) < Sp(Py) <o < 8p(Py) < Sp(Py) <--- < Sp(Py) < Sp(P)
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and Sy(P,) — S;(P,) < +.
Since the sequence {S(P,)};2, is bounded increasing, it converges to some num-
ber, call it fabf(x) dz.
Since the sequence {S(P,)}%, is bounded decreasing, it also converges to some
number.
Since Sy(P,)—S;(P,) < %, the sequence {S;(P,)}22, also converges to f; f(z) dx.
Thus, the function f(x) is integrable.
Simplicio: But, wait a minute. Don’t you have to go through the same Challenge,
Choose, and Check routine we did before?
Galileo: Of course, you are correct. Since you asked, here it is.
Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice:
Choose an integer n with the property that n > %

Now choose the partition P = P,, where P, denotes the partition we just con-
structed.

Step 3. The Check:
Let P" be any refinement of P with x} any choice of points in the interval [z, Tgi1].

Since S (P,) < Sp(P') < S5(P,) and S;(P,) < [ f(x) dz < 54(P),

[Sp(P') = [ f (@) du| < 5p(P) = Sp(Pa) < § <e.
Simplicio: You told me more than I wanted to know.
Virginia: But the argument really was the same as those given before. Namely, you
simply trap the two numbers S;(P’) and fab f(z) dz in the interval [S(P,), Sf(P,)].
Since the length of this interval is less than €, the two points can’t be separated by

more than e. Thus, we are done. Think visually.

Virginia: What about the converse?
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Galileo: The converse is easy because the integral is given to you for free. No infinite

process is required.

Proposition 6.8.17. If f(z) : [a,b] — R is a bounded integrable function, then it has
the property that for every e > 0, there is a partition P such that Sy(P) —S;(P) < e.

Proof. Let € > 0 be given.
Since f(z) is integrable with integral fb f(z) dz, there is a partition P with the prop-
erty that if P’ is any refinement of P, then |S;(F”) f f(x) dx| < 5. Since the choice
of the point 7} is arbitrary in the approximatlng sum Sp(P) = Y070 f(ah) (@he1— ),
we see that |S;(P f f(x) dr| < § and |S;(P f f(z) da] < 5.

Thus,

Sy(P) = S4(P) /f d:c+/f ) dz — S,(P) <

l\.’JIm
l\DIm

O

Galileo: The next proposition provides us with conditions when we know there will

never be a problem integrating.

Theorem 6.8.18 (Continuous Functions are Integrable). If f(z) : [a,b] — R

is a function which is continuous at each x € |a, b, then f(x) is integrable.

Proof. To prove this proposition all we have to do is check the Cauchy Integrability
Criterion. As with the definition of the integral, we have the Challenge, Choice, and
Check.

Step 1. The Challenge:

Let € > 0 be given.

Step 2. The Choice:
By Theorem 6.7.2 we can find a 6 > 0 with the property that whenever |z — 2’| < 9,
then |f(z) — f(2')] < 3%. Now choose P = {a = xp < 21 < --- <z, = b} to be any

partition with the property that xy,y —xx <6, forall £ =0,1,...,n — 1.
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Step 3. The Check:
By the Extremum Theorem 6.3.1 we know that there are points z}, x}* € [Tk, T441]

with the property that f(z}) = my and f(x}*) = M.
Thus,

—_

n—1

My (2p41 — ) — ka(xk-i—l — p)
k=0 k=0
n—1

= (My — my) (whs1 — )

3

Sy(P)—S8;(P)

Galileo: There it is.

Virginia: In fact, the argument is virtually the same as for the two examples we
discussed earlier. The main difference is that we replaced those tricky summation
formulas by Theorem 6.7.2, which actually makes the argument easier.

Galileo: And MUCH more general.

Simplicio: But there is one difference. With the examples we knew the answers before
we started. Now we don’t.

Galileo: True. However, for the special case when a function is differentiable, we can
use Theorem 6.7.1 to help choose your partition. In particular, this theorem provides
a tool for measuring the difference S;(P) — S,(P).

Simplicio: How about an example?

Galileo:
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Example 6.8.6. If f(x) = 2% on the interval [-3, 3] and € = %, then find a partition
P={-3=uz) < <-- <z, =3} with the property that S;(P)—S;(P) < € = 1.
Simplicio: Let me give this problem a try.

First, compute the first derivative f'(z) = 2x.

Second, compute the mazimum value of |f'(x)| = |2z| on the interval [—3,3]. For
this function the maximum is M = 2% 3 = 6.

Third, choose § > 0 sufficiently small that whenever |x — x'| < 0, then |f(z) —
f(a")] < M|z —2'| < Mé.

Fourth, the difference

n—1

Sy(P) = 54(P) :iMk(xk-l-l — ) = Y (g — @)

k=0

:i(Mk — mp)(Tp1 — k)

n—1

:Z M5($k+1 - LL’k)
k=0

n—1

<Mo Z($k+1 — T)

k=0

=6 6(3 — (—3)) = 36 6.

Fifth, if we choose § < 55 = 3—166 = 3—16%, then we guarantee that
St(P) = S;(P) < 15 for any partition P = {=3 = 1o < 21 < -+ < 2, = 3} with the

property that vy, — xx <0 for allk=0,1,...,n—1.

Galileo: You should appreciate this control.

Simplicio: It might surprise you, but I do appreciate the ability to measure the error.
Galileo: In the spirit of Professor Polya, let us take a second look at this last example.
Note that the key is being able to choose a partition P with the property that ¢ <
m. The Mean Value Theorem 6.6.3 tells us the constant A is needed in the
denominator.

Simplicio: It still bugs me that only justification for our discussion of Uniform Conti-

nuity is one inequality in the middle of Theorem 6.8.18. Mathematicians are neurotic.
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Galileo: It is hard to argue with your thought, but they have a need to get it right.
At some point your future employer may apply the same test to your performance.
If you like neurotic details, you will love this next proposition, which states that if a
function is integrable on a closed bounded interval, then it is integrable on any closed

bounded subinterval.

Proposition 6.8.19. If f(x) : [a,b] — R is integrable and a < ¢ < d < b, then
fcdf(x) dx exists.

Proof. The proof of this proposition depends on Theorem 6.8.16. In order to use this
theorem properly, we need to notate the function f(z) restricted to the subinterval
[e,d] by fr(z):[c,d] = R. (i.e.fr(x) = f(z) for all z € [¢,d].) Now all that is required
for the proof is to show that for every € > 0 we can find a partition Py, = {¢ = z¢ <
Ty <---<--- <z, =d} with the property that S(P(fr)) — S(P(fr)) <e

However, since we are assuming that f(z) : [a,b] — R is integrable, we can find a
partition P of [a,b] with the property that S(P) — S(P) < e. Since refinement always
makes the upper and lower sums closer together, we might as well assume that the
two points ¢ and d are included in P. Now simply create a partition P(fg) of [¢, d] as
the members of P with the points less than ¢ and the points larger than d deleted.

Thus, S(P(fr)) — S(P(fr)) < S(P)) — S(P) < e so we are done. O
OK, it is now time to mention a version of the distributive law for integration.

Proposition 6.8.20. If f(x) : [a,b] — R is integrable and ¢ € |a, b, then fab f(z) do =
JE f@) do+ [ f(a) do

Proof. Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice:
Since we know by the previous proposition the function f(x) is integrable on the
interval [a, ¢|, we can find a partition P, = {a = 2y < 2; < --- < x,, = ¢} with the

property that if P] is any refinement of P, then |S(P]) — [ f(z) dz| < 5.
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Similarly, we can find a partition Pr = {¢ = yo < y; < --+ < y,, = b} with the
property that if P}, is any refinement of P, then |S(P},) f f(z) do] < 5.

Choose P=P,UPr={a=a0<x, < - <xp,=c=yp <y < - < Ypy=b}.

Step 3. The Check:
If P'is any refinement of P, then note that the members of P’ can be written as
P" = P, UP},, where P] contains all the members of P’ to the left of ¢ and P, contains
all the members of P’ to the right of c. create a partition of the left subinterval [a, c|
defined by P] = {a = x¢y < x; < --- < x, = ¢} and a partition of the right subinterval

Pi={c=xy <zg41 <+ -+ <mx,=0>b}. Thus,

—(/acf(x)dx+/cbf(x)dx)|: S(P!) /f ) de + S(P)) /f ) da|

(6.8.1)
<Is(r) ~ [ 1) wl s 15~ [0 ar
(6.8.2)
<t 4= (6.8.3)
5t5 =€ 8.
0
Simplicio:
Exercise Set 6.8.
1. Using the DEFINITION of the integral, show that [z dz = 2.
2. Using the DEFINITION of the integral, show that ff a? do =1
3. Using the DEFINITION of the integral, show that fol o de = 1.
4. If f(z) = 2* + 3z is defined on the interval [—2,2] and € > 0, then find a

partition P with the property that |S(P f f(x) dx| < e.

5. If f(z) = z* +x is defined on the interval [—3, 3] and € > 0, then find a partition
P with the property that [S(P) — [°, f(z) dz| < e.
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6. If f(z) = b|z|+ 3|z — 1] is defined on the interval [—2, 2] and € > 0, then find a
partition P with the property that |S(P) — fi f(z) dz| <e.

6.9 The Intermediate Value Theorem for Integrals

Galileo: We now turn to the Intermediate Value Theorem for Integrals. Some people
call it the Mean Value Theorem for Integrals. Actually, its a bit of both.
Simplicio: Isn’t one Intermediate Value Theorem enough?
Galileo: Well no. These theorems provide the key steps in the proofs of the Funda-
mental Theorem of Calculus and Taylor’s Theorem. While you are already familiar
with the Fundamental Theorem of Calculus 6.10.3 and 6.10.4, the remainder form of
Taylor’s Theorem will probably require some work on your part. In my experience,
students are only visit Taylor Lite these days.
Virginia: Even for me, it seems like we are a bit over the top on the theory. Why do
we need Taylor’s Theorem?
Simplicio: Looks like I am beginning to get some support from the rear.
Galileo: The short answer is that this theorem will provide the key step in explain-
ing why the method of Newton/Raphson converges more quickly than the bisection
method. When we discuss this topic, we will make numerous computations of roots
of functions. For example, we will find that the method of Newton/Raphson will
only require six iterations to achieve 14 decimal places of accuracy when approxi-
mating v/2. On the other hand, the bisection method will require more than thirty.
Even with today’s speedy computer’s this difference could become important in a big
computational project where these computations must be made millions of times.
The long answer is that Taylor’s Theorem will provide a systematic way to numer-
ically compute first, second, and higher order derivatives. These numerical derivatives
are used to numerically solve two point boundary value problems in differential equa-
tions and partial differential equations. They are also used every where in image and

signal processing. Taylor is a big deal.
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Simplicio: While I don’t care anything about differential equations, I like the signal
processing connection.

Galileo: Just as the derivative detects the amount of change that is taking place with
a function, an edge detector is designed to identify those pixels in an image, where
rapid change is occurring. Edge detectors are often constructed from numerical first
and second derivatives. We now state and prove the Intermediate Value Theorem for
Integrals. Note that this theorem is a formal statement of the fact that the area under
the curve is the area of a rectangle with base of length b — a and height somewhere
between the highest and lowest possible values of the function. For a visual of the
geometry see Figure 6.5. Note also that the key idea of the proof is that the mean of
the function, ;- fab f(z) dz, is intermediate between the lowest (i.e.f(z1)) and highest

values (i.ef(2p)). Thus, we named it the Intermediate Value Theorem for Integrals.

Theorem 6.9.1 (Intermediate Value Theorem for Integrals). If f(x) : [a,b] —

R is continuous at each point x € [a, b, then there is a point z € [a, b] with the property

that [ f(x) do = f(2)(b— a).

Proof. Since f(x) is continuous at each = € [a, b], we know it is integrable. Thus, the
symbol fab f(x) do makes sense.

By the Extremum Theorem 6.3.1 there are points zp, 21 € [a, b] with the property
that f(z1) < f(x) < f(zp) for all x € [a,b]. Since the numbers f(z) and f(z;) are
constants (wrt x), we know by Integral Bounds Corollary 6.8.14 that

f)(b—a) = f(z) / 1dz < / f() dz < f(z0) / Ldz = f(20)(b — a).

a a

Thus,

Fe) < s [ 1) de < ()

so the value 7 < fabf(x) dx is intermediate between f(z1) and f(zp). By the In-
termediate Value Theorem 6.2, there is a point z € [a,b] with the property that
(@) =55 [, f(@) de.

Thus, [* f(z) do = f(2)(b— a). O
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Figure 6.5: The Intermediate Value Theorem for Integrals

Galileo: The next theorem is a generalization of the Intermediate Value Theorem for

Integrals.
Simplicio: What!!!? Another one?

Galileo: OK, I know you have had it with all this theory, but this theorem is exactly
what we need to prove the error formula for Taylor’s Theorem. This error formula
is essential to our understanding of the convergence rates of sequences generated
by Newton/Raphson. Error formulas guide us when, where, and things go wrong.

Remember, the name of the game is control.

Theorem 6.9.2 (Intermediate Value Theorem for Integrals 2). If f(t), w(t) :
[a,b] — R are continuous at each point t € [a,b] and w(t) > 0 for all t € [a,b], then
there is a point z € [a,b] with the property that fab ft)w(t) dt = f(2) fabw(t) dt.

Proof. Since f(t) is continuous at each ¢ € [a, b], we know by the Extremum Theorem
that there are points 2y, 2; € [a,b] with the property that f(z1) < f(t) < f(20) for
all t € [a,b]. Since w(t) > 0 for all t € [a,b], f(z1)w(t) < f(H)w(t) < f(zo)w(t) for all
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¢t € [a,b]. Since the numbers f(zo) and f(z1) are constants (wrt £), we know
s vy ae= [ s a
< [ sy
< /ab f(z0)w(t) dt
=) [t .

Thus, .
t t) dt

fa) < % < f(=)

[P fw)t) dt .

P wl) di " is intermediate between f(z1) and f(zy). By the Intermediate
Value Theorem 6.2, there is a point z € [a, b] with the property that

o F@w(t) dt
[Pw(t) dt

a

so the value

f(2)

Thus, [7 f(tyw(t) dt = f(2) [ w(t) dt. O

Virginia: If you think about it, not only is this last theorem a generalization of the
First Intermediate Value Theorem for Integrals, but the proof is the same.

Galileo: Correct.

Virginia: But how are we going to use it to prove Taylor’s Theorem?

Galileo: While the function w(t) is completely general, the case most interesting to
us is when w(t) = (z — t)", where t € [z, z].

Simplicio: But if 2y > x, then the interval [z, z] has no points in it.

Galileo: Technically, you are correct. However, we only care about values of ¢ between
x and xg.

Virginia: OK, but if the integer n is odd and =z <t < xy, then the quantity x — ¢ is
negative so that w(t) will be a negative number. The theorem does not apply.
Galileo: Technically, you are again correct. However, if you take a second look at the

theorem, you will realize that the theorem is still true if we assume w(t) < 0 for all .
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Exercise Set 6.9.

1. If f(x) = 2% for z € [0,2], find a point z € [0,2] with the property that
f(z) = %f; 2? dz = 5. Draw a graph of the function y = f(x). Indicate the
placement of the point (z, f(z)) on the graph.

2. If f(x) = 2® for z € [0, 2], find a point z € [0, 2] with the property that f(z) =
%fg 23 dx. Draw a graph of the function y = f(z). Indicate the placement of
the point (z, f(z)) on the graph.

3. If f(x) = 2% for x € [0,2] and w(x) = (x — 2), then find a point z € [0, 2] with
the property that [ f(t)w(t) dt = f(z) [} w(t) dt.

4. If f(x) = 2® for z € [0, 2] and w(z) = (z — 2)?, then find a point z € [0,2] with
the property that [ f(t)w(t) dt = f(z) [} w(t) dt.

6.10 The Fundamental Theorem of Calculus

If T have been able to see further, it was only because I stood on the

shoulders of giants.-Isaac Newton

Galileo: Let us now introduce our colleague Sir Isaac Newton (1642-1727). Professor

Newton made more contributions to our understanding of the world around us than
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almost any other scientist. Not only was he an inventor of Calculus, but he also ap-
plied it to real physical problems. His Second Law of Motion F' = ma is fundamental
to the understanding of the motion of a cannonball dropped from the Leaning Tower
of Pisa, the orbits of the planets around the sun, the motion of a pendulum, and the
motion of a particle through a fluid. His contributions to optics were also remarkable
and included building the first reflecting telescope and his recognition that that white
light can be refracted into the many beautiful colors we have in the visible spectrum.
His Principia (1687) and Opticks (1704) are two of the greatest scientific works ever
written.

Newton: You forgot to mention that I served as the Lucasian Professor of Mathemat-
ics at the University of Cambridge during the years 1669-1701 and I was president of
the Royal Society during the years 1703-1727.

Galileo: Thank you for reminding me of these details. Good sir, could you give us a
few insights into the Fundamental Theorem of Calculus?

Newton: The Fundamental Theorem of Calculus provides the bridge that connects
the two main themes in calculus: derivatives and integrals.

Simplicio: I must admit that the slope of a tangent line and an integral do not seem
to have anything in common.

Newton: But they do. Let us begin our discussion by visualizing the area of a region
and the length of its boundary. How about if we begin with a circle?

Simplicio: From Geometry, I know the area of a circle is given by the formula A = mr?;
the circumference is given by C' = 27r. So?

Newton: But did you ever notice that % =2mr =C7

Simplicio: Seems like an accident of nature to me.

Newton: Not so. This simple observation points out the general fact that the rate of
change of the area of a region is the length of the changing part of the boundary.
Simplicio: Sounds like double talk to me.

Newton: How about a rectangle with height A = 1 and base b = x. If we think of the

area as a function of the length of the base, then the area A = x and % = 1, which
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equals the height of the moving edge.

Simplicio: A second accident of nature?

Newton: Actually, these two examples are completely general. For if we have a
function f(¢);[a,b] — R, which is continuous at each t € [a,b], then the function
F(x) = [V f(t) dt, computes the area under the curve at each point = € [a,b]. The
first part of the Fundamental Theorem of Calculus states that F'(z) = f(x).
Virginia: Which generalizes the example you just presented! Namely, the rate of
change of the area under the curve y = f(¢) equals the length of the right hand side
of the region, namely f(z).

Galileo: Very good.

Newton: But that observation is obvious. The first proposition is exactly what we
need to prove the second part of the Fundamental Theorem of Calculus. It basically
states that if you have no velocity, then you aren’t going anywhere. Maybe some of

our students should achieve a little velocity.

Proposition 6.10.1. If f(z) : [a,b] — R is differentiable at each point x € [a,b] and
f'(z) =0 for all x € [a,b], then f(x) = f(a) for all x € [a,].

Proof. If x € [a,b], then by the Mean Value Theorem 6.6.1 we know there is a
z € [a,b] with the property that f'(z) = W Since we are assuming f'(z) =0
for all x € [a,b], f'(2) = 0, which implies the fraction W = 0. However, if a
fraction equals zero, then the numerator also equals zero. Thus, f(z) — f(a) = 0,

which implies f(x) = f(a). O

Definition 6.10.2. If f(x), F(x) : [a,b] = R and F'(x) = f(x) for all x € [a,b], then
the function F(z) is called an antiderivative of f(x).

Example 6.10.1. If F(z) = 2* and f(x) = 322, then F(x) is an antiderivative of
f(z).

Example 6.10.2. If F(z) = 2® + 1 and f(z) = 322, then F(z) is an antiderivative
of f(x).
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Virginia: From these last two examples, we see that a function may have many
antiderivatives.

Galileo: Correct.

Newton: The Fundamental Theorem of Calculus shows that there is a close relation-
ship between area and antiderivatives. For convenience, the theorem is split into two
parts. The first part relates the derivative of the area under a curve and the height of
the changing boundary. The second part is what every Calculus student remembers

about computing areas.
Theorem 6.10.3 (Fundamental Theorem of Calculus).
1. If f(t) : [a,b] = R is continuous at each t € [a,b] and F(z) = [ f(t) dt, then
F'(z) = f(x).
2. If f(t) : [a,b] = R is continuous at each t € |a,b] and G(t) is any antiderivative
of (1), then [ f(t) dt = G(b) = G(a).
Proof. Part 1.

If F(x) = [ f(t) dt, then there is a z = z(h) (i.e. z depends on h) between x and
x + h so that

=lim

o JGE) [T de

~ a5 h

_ i S0 (2 + b — )
h—0 h

= lim f(2(n) )

=lim f(2) = f ()

Note that we used the Intermediate Value Theorem for Integrals 6.9.1 to justify the

z+h z+h
equality Sz IJz(t) dt _ f(Z(h))iw at
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Simplicio: Why did you write the point as z = z(h)?
Newton: Since the point z varies as the point A varies, the point z is actually a
function of h. The last equal sign is valid because the function f(z) is continuous at
the point z and the values of z(h) converge to x as h converges to 0.

Part 2.

Let H(z) = G(x) — F(x). Since H'(z) = G'(xz) — F'(x) = f(x) — f(z) = 0 for all
x, we know by the previous proposition that H(z) = H(a) for all € [a,b]. Thus,
G(z) = F(x) + H(a) for all z € [a,b]. If G(¢) is any antiderivative of f(¢), then
G(b) —G(a) = F(b)+ H(a) — (F(a)+ H(a)) = F(b) — F(a) = F(b) — 0 = fabf(t) dt.

O

Newton: We now give a simplified statement of the Fundamental Theorem of Calcu-

lus, which is in the form we will need.

Theorem 6.10.4 (Fundamental Theorem of Calculus 2). If z,xy € X, where
X is an interval in R and f(t) : X — R is a function with the property that f'(t) is
continuous at each t € X, then fwo f'(t) dt = f(z) — f(xp).

Simplicio: I like simplified.

Virginia: What about Archimedes’ formula for the volume of a sphere?

Simplicio: What about it?

Virginia: If V = §7r7”3, then ‘fi—‘t/ = 47r?, which just happens to be the surface area of
a sphere. Is that an accident?

Newton: And now it becomes obvious where all those theorems in higher dimensional
Calculus come from.

Simplicio: Enough of all this theory. How about an example?

Galileo: OK, let’s begin with an easy one.

Example 6.10.3. Compute fol zt du.

Virginia: Since F(x) = %5 is an antiderivative of f(x) = x*, we know by the Funda-

mental Theorem of Calculus 6.10.3 that
P01

/0x4dx:F(1)—F(0) "5 "%



158 CHAPTER 6. CALCULUS

Simplicio: No fancy summations. No partitions. Now I'm in my comport zone. How
about another such beast?

Galileo: Don’t think those old guys were any less delighted.

Example 6.10.4. Compute fol " dx.

n

Virginia: Since F(z) = f::: is an antiderivative of f(x) = ™, we know by the

Fundamental Theorem of Calculus 6.10.3 that

1n+1 0n+1 1

/lm” de = F(1) — F(0) =

n+l n+l n+1l

Example 6.10.5. If F(z) = [ t* dt, then compute F'(z).

Simplicio: I can do this one too. Here goes. Since the function G(t) = ? is an
3 03 $3
3

antiderivative of f(t) = t2, we know F(z) = fox t?2 dt = G(z) — G(0) = z—
Thus, F'(x) = 2°.

3

Virginia: But you forgot to pay attention when we discussed the first part of the
Fundamental Theorem of Calculus. You worked much too hard. All you have to do is
substitute the upper limit of the integral, namely x, into the function f(t) =t* to get
F'(x) = f(x) = 2*. You are finished with zero effort.

Galileo: Theorems are good.

Example 6.10.6. ]fF f 2 dt, then compute F'(z).
Virginia: Since F(x f ¢ dt =— [ ¢ dt, F'(z) = —2”.

Simplicio: I understand that example.

Example 6.10.7. IfF f f(t) dt, then compute F'(x).
Virginia: Since F(x f f(t) dt = — [T f(t) dt, F'(x) = — f(x).

Example 6.10.8. If F(x fo t dt, then compute F'(x).

Simplicio: An antiderivative of f(t) =t is the functzon G(t) = 2, which of course
has derivative G'(t) = t. Thus, by Theorem 6.10.3 F(x fo t dt = G(z*) — G(0).
By the Chain Rule for derivatives, F'(x) = de(I ) 7 = G'(2*)2z = 2*2x.
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Virginia: If you notice that the function F(x) can be written as the composition
F(x) = G(H(z)), where G(y) = [t dt and H(x) = 2*, then F'(z) = G'(H (z))H'(v)

and you are done.

Simplicio: Your method was a lot easier.
Virginia: Easy is good. The general method is summarized in the following proposi-

tion.

Proposition 6.10.5. If f(t) : [a,b] — R is continuous at each t € [a,b], and F(z) =
5 £(0) da then F'(a) = F(A()A(z) = f(a(@)g (@)

Galileo: How about one last example?

Example 6.10.9. Compute [ (v —t) dt.

(z—1)?

Virginia: Since the antiderivative of the function f(t) = x —t is — 5>,

/x(x—t) dt = _Mﬁ:xo —0— (_(x—x0)2) _ (x—xO)Q.

2 2 2

Simplicio: Why did you present this last example?
Galileo: That computation is exactly what we will need for the last step in the proof

of Taylor’s Theorem.

Exercise Set 6.10.

1. If F(z) = [y t° dt, then compute F'(z).
2. If F(z) = fa? 9 dt, then compute F'(x).
3. If F(z) = foxz t? dt, then compute F'(z).
4. If F(z) = [ sin(t* + 1) dt, then compute F'(z).

5. If F(z) = f;3 sin(¢? + 1) dt, then compute F'(z).

6. Compute [” (x —t)? dt.

Zo
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6.11 Integration By Parts

Brook Taylor (1685 - 1731)

Galileo: Let’s now invite Professor Brook Taylor (1685-1731) to remind us about
integration by parts. Professor Taylor has many achievements to his credit. Virginia,
what can you tell us about Professor Taylor?

Virginia: Professor Taylor was born into a family of culture and means. His father
provided him with a fine education in mathematics both at home and later at Cam-
bridge. While his first wife was from a good family, she had little money and his
father disapproved of the match. Unfortunately, she died in childbirth. While his
father approved of his second marriage, she also died in childbirth.

Simplicio: He suffered a sad life.

Virginia: Life is uncertain.

Galileo: But he achieved great mathematics! In addition to inventing the technique
of integration by parts, Professor Taylor also developed methods for approximating
functions by polynomials. These methods are now known as Taylor series. As you
will see, these methods can be used to numerically approximate derivatives. To this
day these methods are used in a multitude of applications from the design of an
airfoil to predicting the path of a hurricane. These techniques are now known as

finite difference methods. We welcome you Professor Taylor.
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Taylor: Let us begin our discussion of integration by parts by remarking that inte-
gration generally has fewer tools than differentiation.

Simplicio: How so?

Taylor: With differentiation we have the product, quotient, and chain rules. Unfor-
tunately, integration has no such rules.

Simplicio: Which means there is less to learn. I like that.

Taylor: Maybe so, but then you are left with functions which can be differentiated, but
not integrated. For example, try integrating the functions f(z) = log(z)e”, f(z) =

+* While computing the derivatives of these functions is straight-

s or flx) =e
forward, they are impossible to integrate using the Fundamental Theorem of Calculus.
Virginia: Is that because you can’t compute their antiderivatives?

Taylor: You got it. On the other hand, the technique of integration by parts is an
attempt to rescue a product rule for integrals.

Simplicio: What does that mean?

Taylor: Sometimes it works, sometimes it doesn’t.

Simplicio: An example please.

Taylor: We will show that the technique works great for the integral [z cos(z) du
and is helpless for the integral ff log(z)e” du.

Galileo: Let’s move on to the theorem and its proof.

Taylor: Since we would like to be more formal, we state this method as a theorem

with definite integrals. The idea underneath the proof is to simply differentiate the

product u(z)v(x) and then manipulate a bit.

Theorem 6.11.1 (Integration by Parts). If u(z) and v(z) are differentiable func-
tions on an interval [a,b], where u'(x) and v'(x) are continuous at each x € [a, ],

then fabu(x)v’(x)dx = u(z)v(z)’_, — fabv(x)u’(x)dx

Proof. By the Product Rule for Derivatives 6.4.2, we know that

du(z)v(z) dv(x) du(z)
dx dx +ol@) de

= u(x)

Thus,
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u(x)dv(:r) _ du(z)v(z) o(2)

dx dx

Integrating both sides of the equation on the interval [a, b], we find that

Since the function u(x)v(z) is an antiderivative of %, the result follows. [

Simplicio: How about an example?
Taylor: For actual computations, we will simplify the theorem to f udv = uv—f v du,

where we understand the functions « = u(z) and v = v(x) depend on z.

Example 6.11.1. Compute the integral fol z(x —1)3 dz.
Simplicio: I can do that problem. All you have to do is expand the expression

z(z—1)% = x(2® — 322 + 32! — 1) = 2* — 32% + 32% — & and integrate each one of the

four terms.
Taylor: Instead, if we let uw = x and dv = (x — 1)3, then du = dx and v = % we
see that
T O Vs _/(»”6—1)4 _ @-1t (@-1)p
/m(:r 1) de ==z 1 1 de =x 1 0
Thus,

' N C e A (z—-1°, (-1 1
/Ox(x—n dr=o - ==

The worst aspect of the technique is keeping track of the minus signs.
Simplicio: How about another example?

Example 6.11.2. Compute the integral [ x cos(x) d.
If we set u=x and dv = cos(z), then du = dx and v = sin(x).

Thus,

/07r zcos(z) de = wsin(z)|r_, — /Oﬂ sin(z) de = —(—cos(x))|5i_, = —2.
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Example 6.11.3. Compute the integral fol x e¥ dx.
If we set u = x and dv = €*, then du = dx and v = €”.

Thus,
1 1
/xe“”d:r::reﬂi_o—/exdx:e—(e—l)zl.
0 0

Example 6.11.4. Compute the integral ff log(z) e dx.
If we set u = log(z) and dv = €*, then du = %dm and v = €*.

Thus,
1
/log(x) e’ dr = log(x)e® — /ex— dz.

x
So, what do you do with the integral fe"”% dx?
Simplicio: I have no clue.
Taylor: Ezxactly my point. The method provides no useful information.
Virginia: What if you set u = €* and dv = log(x)?

Taylor: You end up with an even bigger mess.

Galileo: How about a set of guidelines for using your technique?
Taylor: To reduce the complexity of the integral [u dv for the following examples,

make the following choices.

1. If nis a positive integer and [ 2™ cos(z) dz, then choose u = 2™ and dv = cos(x).

(This choice will have to be repeated n times.)

2. If n is a positive integer and [ 2" sin(z) dz, then choose u = 2™ and dv = sin(z).

(This choice will have to be repeated n times.)

3. If n is a positive integer and [ 2™e” dx, then choose u = 2" and dv = €.

(This choice will have to be repeated n times.)
4. If n is a positive integer and [ z"log(x) dx, then choose u = log(x) and dv = z".

5. If [e”sin(x) dz, then choose u = e* and dv = sin(x).

(This choice will have to be repeated twice.)
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6. If [ e cos(x) dx, then choose u = e* and dv = cos().

(This choice will have to be repeated twice.)
Exercise Set 6.11.

1. Compute the integral [z sin(x) da.
2. Compute the integral [« sin(x) da.

3. Compute the integral [ log(x)x dz.

6.12 Taylor’s Theorem: Degree One Polynomials

Brook Taylor (1685 - 1731)

Galileo: We now turn to the final topic in our review: Taylor’s Theorem.

Simplicio: Does this mean the pain of all this theory will soon lift?

Galileo: Actually, no. Let us now invite Professor Taylor for a second visit. Good
sir, could explain your methods for approximating functions by polynomials?
Taylor: The idea behind these approximations is that calculus would be a lot easier
if we considered only polynomial functions. As you have noticed, polynomials are

attractive because the computation of derivatives and integrals is easy. Unfortunately,
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@ L and In(x) don’t quite fit into

numerous useful functions such as cos(z), sin(z), e*, =,

this setting. The beauty of my theorem is that it provides a strategy for approximating
these functions by polynomials.

Simplicio: I like this idea. Calculus would certainly be easier if every function was a
polynomial.

Taylor: That is the concept.

Simplicio: Where do we start?

Taylor: The idea is to write a function f(z) = p,(z) + E,(x), where p,(z) is a
polynomial of degree n and E,(z) represents the error. In the next theorem, we
approximate a function f(z) by the straight line y = py(x) = f(zo) + f'(z0)(x — o).
The error is represented as the integral Fy(x) = f:; f(t)(x —1t) dt.

Theorem 6.12.1 (Taylor Theorem 1). If z,xy € X, where X is an interval in R
and f(t) : X — R is a function with the property that f"(t) is continuous at each
t e X, then

f(@) = F(wo) + f'(m0) (@ — w0) + / P — 1) d.

Proof. The idea of the proof is to apply integration by parts to the last term. In
particular, if we let u(t) = x —t and dv = f"(t)dt, then du = —dt and v = f'(?).
Thus, by parts and the Fundamental Theorem of Calculus, we have the following

sequence of equalities.

[ Foe =i = @070k, - [ 1o
= —(z = 20) f'(w0) + f(z) = f(0).
Thus, f(z) = f(w0) + (x — x0) f'(w0) + [, f"(t)(x —t) dt. u

Simplicio: While the proof of this theorem is easier than I expected, I don’t like the
formula for the error term.
Galileo: Surprising you should mention this concern. I think you have someone who

agrees with you. Let me introduce Professor Joseph Louis Lagrange (1736-1813), who
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was a survivor of the French Mathematician. He did much to explain and exploit
Professor Taylor’s ideas. Welcome Professor Lagrange, but please don’t mumble.
Lagrange: I agree that the form of the error term is a nuisance. If you recall the second
version of Intermediate Value Theorem for Integrals 6.9.2, then we can present a form
for the error that is easier to remember.

Simplicio: You mean we are actually going to use that theorem?

Galileo: We discussed it for a reason.

Lagrange: My version of Taylor’s Theorem now becomes:

Theorem 6.12.2 (Lagrange Form of Taylor’s Theorem). If x,xy € X, where
X is an interval in R and f(t) : X — R is a function with the property that f"(t) is

continuous at each t € X, then there is a point z € X so that

f"(Z)
2

(z — 20)%

f(x) = f(xo) + f'(wo) (2 — mo) +

Proof. To prove this theorem will apply the Intermediate Value Theorem for Integrals
6.9.2 to the integral f;; f"(t)(x —t) dt. To be certain we can apply this theorem we
have to check the function w(t) = z — ¢ does not change from positive to negative for
values of ¢t between xy and x. Once we have made this check, the hypotheses hold.

We have two cases to consider.

Case 1. If x > xy, then we are considering ¢ € [zg, z|.

For this case, the function w(t) =z — ¢ > 0 for all ¢ € [y, z].

Case 2. If z < x then we are considering ¢ € [z, xq].

For this case, the function w(t) =z —t < 0 for all ¢ € [z, x].

Now, we can apply the Intermediate Value Theorem for Integrals 6.9.2 to the
integral f:; f"(t)(xz —t) dt and to find a point z € [z, x| so that

(x —t)*

[ row-nd=e [ @-na=-rete, - e

(z — xo)Q'
2

O

Lagrange: Notice that we have written the function f(z) in the form f(z) = pi(z) +
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E,(x), where py(z) = f(xo) + f'(x0)(z — xp) and E\(z) = @(w — 7p)?. Thus, the
error term now has the form of a second degree polynomial.

Galileo: There it is. Both the statement and proof are elegant and easy to understand.
Simplicio: I agree that this form of the remainder is easier to remember. How about

an example?

Galileo:

Example 6.12.1. Use Taylor’s Theorem to compute py(x) = f(xo) + f'(xo)(x — x0)
for the function f(x) = cos(z), where xy = 0.
Simplicio: Even I can do this problem. All we have to do is compute f'(x) = — sin(x)
and notice that f(0) =1 and f'(0) = 0.

Thus, p1(x) = 1. I wish all problems were this easy.
Galileo: What about a bound on the error?
Virginia: Since f"(z) = —cos(x), |f"(x)| <1 for all x € R.

Thus, |Ei(z)] < L (z — 20)* = 2% for all x € R.

Galileo: You should now understand Taylor.

Simplicio: Wait a minute. You promised that we would approximate a function by
a polynomial of degree n. The only polynomial I see is the straight line p,(z) =
f(zo) + (x —x0) f'(xp). Even I can see that a line y = 1 is not going to provide a close
approximation to the function f(z) = cos(x).

Galileo: While you are correct, we only need this special case for our discussion of the
Newton/Raphson method for computing roots. No worries. We are going to invite
Professor Taylor to return when discuss approximation theory. We will definitely see
the general case then.

Simplicio: You are making an assumption.

Galileo: Well folks. We have now concluded our discussion of the background material
required for tomorrow’s gathering.

Virginia: Wait. What is tomorrow’s topic?

Galileo: We will show you how to compute roots.
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Virginia: We have covered an enormous amount of material today. Could you sum-
marize the essentials of what we need for tomorrow?

Galileo: You must have acquired the following skill set.
1. the ability to comprehend a mathematical argument,
2. the ability to define and apply limit facts,
3. be able to state and apply the Mean Value Theorem 6.6.3, and

4. be able to state and apply Taylor’s Theorem 6.12.2.

Tomorrow we will begin to see how all this theory impacts finding the root of a
function.
Simplicio: After discussing all these different topics, we are only required to have
acquired four skills?
Virginia: Math is easy.

Exercise Set 6.12.

1. Use Taylor’s Theorem to compute py (z) = f(zo)+f'(xo) (x—xo) for the functions
f(z) = sin(z),In(1 — =) and e* at the point zy = 0.

2. Use Taylor’s Theorem to compute p;(z) for the function f(z) = In(z) at the

point xy = 1.

3. If f(x) = sin(x), for € [—m, 7] and zo = 0, then use Taylor’s Theorem to

_ e

> (x—x0)?. Repeat the exercise for the function

estimate a bound on F (x)
f(z) =e".

4. If f(x) = In(1 — z) for x € [-0.5,0.5], and xy = 0, then use Taylor’s Theorem

to estimate a bound on F)(z) = @(x — x9)2.

Simplicio: But wait a minute, you never answered my question about approximation
by polynomials of degree greater than one.

Taylor: We will address that question at another gathering.
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Part 111

Day 3. Roots
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Isaac Newton (1642-1727)

Truth is ever to be found in the simplicity, and not in the multiplicity and

confusion of things.-Isaac Newton

Simplicio: What are the for today’s lesson?

Galileo: The first topic will be the Archimedes/Heron algorithm for computing the
square root of a positive number. This technique is easy to understand, always
works, and converges quickly. For an engineer this is the best of all possible worlds.
To illustrate how the algorithm works, we will compute a number of examples such
as v/2,v/3, and v/5. These computations should increase your comfort zone.
Simplicio: Wait a minute. I am a bit confused here. The other day you talked about
the root of a function f(x). Today you are talking about the root of a positive number
K. Do I detect double talk here?

Galileo: You have made a good observation. However, this confusion can be quickly
explained away because the quantity r = v/K is a root of the function flx) =2 - K.
Simplicio: Oh, I see all you have to do is substitute r = v/K into the function f(x)
and get f(r) = f(VK) = (VK)? = K = K — K = 0. I now understand that point.
What is next?

Galileo: After the square root algorithm, we introduce a similar algorithm for com-

puting cube roots and n'* roots.
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Simplicio: While I can understand why someone might be interested in computing a
cube root, why in heaven’s name would I care about n'* roots?

Galileo: What about music? Recall that a piano has 12 keys for each octave. Each
key is represents a different frequency. The frequency represented by C in one octave
is twice the frequency for C in the previous octave. The 12 root of 2 is the key.
Also, the formula for the n'* root algorithm motivates the formula for the method of
Newton/Raphson. As it turns out, the square root, cube root, and n** root methods
are all special cases of Newton/Raphson.

Simplicio: Why would we bother with the special cases then?

Galileo: Now you are thinking like a mathematician. If you have a general method,
why not keep it simple and discard the special cases? However, from a pedagogical
point of view, we like to discuss the easy cases first. Building on the experience we
have gained from the easy cases, the general cases should be more accessible. We
could begin our discussion with the method of Newton/Raphson. However, simple
examples exist, which demonstrate that this method doesn’t always work. Our square
root method doesn’t have this problem.

Simplicio: Now you have me worried.

Galileo: Mathematicians always worry. However, after showing you how to compute
square roots, cube roots, and n'* roots, we present Cardano’s formula for computing
the roots of a cubic polynomial. This nifty formula requires that you are able to
compute square roots and cube roots.

Simplicio: That sounds fine.

Galileo: The next set of topics will be focused on different root finding techniques.
In particular, we will present the Newton/Raphson, secant, and bisection methods.
Simplicio: Techniques are good. I am sure I will enjoy it.

Galileo: After we discuss these three algorithms, the story turns ugly. We first
show that Newton/Raphson fails in a fundamental way. Sometimes the algorithm
produces a sequence, which diverges to infinity. Sometimes the sequence converges

to an unexpected answer. Occasionally, the sequence simply oscillates.



175

Simplicio: This is not the news I wanted to hear.

Galileo: Unfortunately, the evil Mr. Murphy is lurking behind every clever algorithm.
He will pounce when you least expect it. In addition to we will mention a famous
example of James Wilkinson, which shows that the roots of a 20 degree polynomial
can lead to dangerous instabilities. In other words, you are insane if you model a
real-world problem with a high degree polynomial.

Simplicio: OK, OK.

Galileo: The next discussion will focus on the successes we can salvage from our
collection of disasters. In an effort to understand and rectify these issues, we turn to
mathematics.

Simplicio: Does this mean theory?

Galileo: When you hit the square root button on your calculator, you would like to
get the correct answer, wouldn’t you?

Simplicio: I have no argument with correct answers.

Galileo: Actually, you are making too much of a big deal about mathematical rigor.
We did all the heavy lifting yesterday when we defined and discussed convergence.
We will show the method of Archimedes/Heron “always works.” The words bounded
and increasing will reappear.

Virginia: I look forward to these insights.

Virginia: What’s next?

Galileo: The next goal is to demonstrate mathematically why one method might be
preferred over another.

Simplicio: What does the word “preferred” mean in this context?

Galileo: If it takes 5 iterations to compute the square root of a number with one
method and 30 iterations with another, which would you prefer?

Simplicio: Hmmm.

Galileo: Surprisingly, the Mean Value Theorem and Taylor’s Theorem will drive this
discussion. We are interested in the problem of when one sequence converges faster

than another.



176

Simplicio: Wait a minute. What does it mean for one sequence to converge faster
than another?

Galileo: Now you are thinking like a mathematician. The first type of convergence
is called first order or linear. The second is called second order or quadratic. The
Mean Value Theorem is the tool for showing a sequence converges linearly. Taylor’s
Theorem is used to show Newton/Raphson (usually) converges quadratically. As you
will see, quadratic convergence is preferred.

Virginia: So Newton/Raphson is preferred when it works!

Galileo: Correct. If one is not careful, Murphy will get you.

Virginia: What is next?

Galileo: The process of understanding the method of Newton/Raphson leads to the
amazingly general Contraction Mapping Theorem. Once the terms contraction and
fixed point have been defined, this theorem is easy to state, easy to prove, and even
easier to implement. The method always works. Better yet, a multitude of appli-
cations are connected with this theorem including the solution of linear equations,
non-linear equations, the solution of differential equations, and the creation of fractal
patterns. This technique represents the best of all possible mathematical worlds.
Virginia: Great.

Galileo: We will finish the day with a discussion of Aitken’s method. The goal of this
technique is to speed up the rate of convergence from linear to quadratic. While it
works well in some cases, it is not as useful as one might hope.

Simplicio: What? You are going to waste our time by showing us methods that don’t
work?

Galileo: While Aitken has his place in the world of numerical methods, his technique
does little to speed up the bisection method. This is just one example. The sad truth
is that the highway of numerical techniques is littered with good ideas that failed to
perform as hoped.

Virginia: Let me summarize today’s agenda:

1. the square root technique of Archimedes/Heron,
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2. general root finding techniques,
3. failure of general methods,
4. success of general methods,
5. analysis of convergence rates,
6. generalization of Newton/Raphson to the Contraction Mapping Theorem, and
7. Aitken’s Method to improve the convergence rate.

Galileo: You got it.

Simplicio: The program makes sense to me.
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Chapter 7

The Method of Archimedes/Heron

Archimedes (287-212 B.C.E.)

Certain things first became clear to me by a mechanical method, although
they had to be demonstrated by geometry afterwards because their inves-
tigation by the said method did not furnish an actual demonstration. But
it is of course easier, when we have previously acquired by the method,
some knowledge of the questions, to supply the proof than it is to find it

without any previous knowledge.-Archimedes to Eratosthenes

179
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7.1 Square Roots

Galileo: We now introduce one of the great masters of antiquity, Archimedes of
Syracuse. He was one of the great mathematicians of all time, who wrote expositions
solid geometry, pumps (the Archimedes’ helix-shaped screw), floating bodies, the
center of gravity, and the area under a parabola. His proof of the formula for the
volume of a sphere is a gem. If he had the ideas of modern algebra, he would have
invented Integral Calculus. Professor Archimedes welcome to our tutorial.
Archimedes: 1 am glad to be here.

Galileo: Good sir, could you enlighten us on your method for computing square roots?
Archimedes: The underlying idea is quite simple: given a positive number K find two
numbers a and b that are close together and have the property that ab = K. If the
approximations are not good enough, then replace a by the average @ = aTer and b by

K Note that ax b = K.

a

the product b =
The square root method can now be implemented in the following steps:
Let K > 0 be a given real number.
Step 0. Begin the process by setting agp = 1 and by = K.
Step 1. Set a; = @ and b, = £,

al

Step 2. Set ay = % and by = %

Step n. Set a, = “"‘17;“””‘1 and b, = %

Note that for each iteration n, we have the property that a, x b, = K.
Galileo: What can be more reasonable and elegant than computing the average of
two numbers?
Simplicio: I like this method. It is easy to understand and easy to implement.
Archimedes: The algorithm can be simplified. In particular, if a, is replaced by z,
and b, is replaced by %, then the method becomes:

Let K > 0 be a given real number.

Step 0. Initialize the process by setting zy = 1.
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4+

Step 1. Set z1 = x02$°.

4+

Step 2. Set x9 = e 5t
Tp—1+ K

Tpn—1

Step n. Set x, = 5

Simplicio: I like this version even better.

Example 7.1.1. Galileo: Here is a table with the first 6 estimates of the square root
of 2, when we choose the initial guess xo = 1. In Figure 7.1 we have displayed graphs

of the first three tangent lines.

X! X
Kbz o= 87

Figure 7.1: The First Three Estimates of /2

xo | 1.000000000000000

x1 | 1.500000000000000

Ty | 1.416666666666667

x3 | 1.414215686274510

xq | 1.414213562374690

x5 | 1.414213562373095

xe | 1.414213562373095

Table 7.1: Six Estimates of v/2

Simplicio: Amazing!! After only 6 iterations we have 15 digits of agreement. I like

this algorithm.
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Galileo: What do you notice about the terms of the sequence? Do they increase or
decrease?

Simplicio: Looks to me like they decrease after the initial guess.

Galileo: Why not try a few exercises to see how the method works?
Virginia: Where did this algorithm come from? What inspired you?
Archimedes: Geometry is the key. Consider the following diagram, where we suppose

2? ~ K and we want to find a Az such that (z + Az)? = K.

AX

Figure 7.2: The Geometry Underneath the Square Root Algorithm

Archimedes: Since Az is small, Az? is even smaller, so we can eliminate this shaded

piece of the diagram. Doing so we find

K = (z+Ax)?

= 22 4+ 22xAx + Ax?

~ 1? + 2wz,
which implies
Ax ~ K2—$x2.
Thus,
r+Axr =z — voK

2x
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Rewriting x + Az as x,4; and x as x,, we arrive at the equation

Tn+1 =Tn —
:rn—i—%

2
1 1K

- §x"+2xn’

which is exactly the previously discussed method. In particular, the value of ., is
the average of x,, and %

Simplicio: But I have one quick question. Will the algorithm eventually terminate or
will we have to compute forever to get the exact answer?

Galileo: Note that if K is a rational number (i.e. the quotient of two integers), then
each 1, 2o, ..., 2, must also be rational numbers. Thus, if VK = z,, for some n,
then v/K must also be rational. The bad news is that even our colleague Pythagoras
noticed that the square root of 2 is irrational (i.e. not rational).

Virginia: Thus, if we start the process of approximating v/2 with 2y = 1, then every
succeeding estimate x,, will be a rational number. And we are forced to make an
infinite number of computations to get the exact answer.

Galileo: As we have already learned, the ancients found this knowledge quite upsetting
and mystical. Archimedes do you have any other thoughts on this technique?
Archimedes: Note also that division by 2 in a calculator (or computer program) can

be implemented as a bit shift. Thus, the only serious computation is the division
by = .
Simplicio: I like that observation.
Galileo: You can see that Archimedes is keeping up with current advances in tech-
nology.
Virginia: What is a bit shift?
Simplicio: Instead of representing a number base ten by a sequence of digits chosen

from the set {0,1,2,3,4,5,6,7,8,9}, you represent a number base two by a sequence
of digits from the set {0,1}. For example, 6 = 2% + 1 x 2+ 0 = 110. If you divide 6
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by 2, you get 3 =2+ 1 = 11. In other words, to divide by 2 you simply drop the 0.
A computer geek will say he has shifted the digits 110 one unit to 11.

Example 7.1.2. Galileo: Let’s use our algorithm to compute the square root of zero.
Simplicio: Your kidding! Everyone in the room knows the answer. Why bother?
Galileo: I have an agenda.
Simplicio: In any case, it is easy. If K =0, then x, 11 = x, — %ZT—nK = %:rn
Galileo: If xo = 1, then what is xg?
Simplicio: Since the value of the estimate at one step in the process is exactly half
the estimate at the previous step, xg = 2%
Galileo: How far is that from the final answer?
Virginia: Compared with the other examples we have just discussed, we are miles, no
light years, from the final answer.
Galileo: How many iterations will we need to get 12 digits of accuracy?
Simplicio: Since 2'° ~ 1000, we observe that 2*° ~ 1000* = 10"2. Thus, x4 ~ 15rs-
Virginia: Forty iterations is a lot more than sic.
Simplicio: What’s going on here?
Galileo: Think about it. We will return to this issue shortly. If you work the homework

problems, you will see we have problms with very large numbers as well.

Simplicio: We were doing so well. Now I am worried.

Galileo: Before we leave the topic of computing square roots, we should observe the
idea underneath this method is to “linearize” the problem. More specifically, when a
problem is too difficult to solve in general, simply discard the higher order terms and
solve the remaining linear part of the problem. With luck, the solutions to a sequence
of simple linear problems will converge to the solution to the non-linear problem. We

will see this strategy again with the method of Newton/Raphson.

Exercise Set 7.1.

1. Show that v/2 is not a rational number.
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. Let K =5 and zy = 1. Compute the first five iterations of the square root algo-

rithm to estimate v/5. What do you notice about the terms of the sequence? Do
they increase or decrease?” What is the difference between your estimate and the
exact answer? How many iterations does it take before the difference between
x, and the exact answer is less than 0.0000017 (Make your computations with

10 digits of accuracy.)

. Let K = 10 and zy = 1. Compute the first five iterations of the square root

algorithm to estimate /10. What do you notice about the terms of the sequence?
What is the difference between your estimate and the exact answer? How many
iterations does it take before the difference between z,, and the exact answer is

less than 0.0000017 (Make your computations with 10 digits of accuracy.)

. Let K = 100 and xy = 1. Compute the first five iterations of the square root

algorithm to estimate 1/100. What is the difference between your estimate and
the exact answer? How many iterations does it take before the difference be-
tween x,, and the exact answer is less than 0.0000017 (Make your computations

with 10 digits of accuracy.)

. Let K = 10,000 and xy = 1. Compute the first five iterations of the square

root algorithm to estimate /10, 000. What is the difference between your es-
timate and the exact answer? How many iterations does it take before the
difference between z,, and the exact answer is less than 0.0000017 (Make your

computations with 10 digits of accuracy.)

. Let K =1,000,000 and xy = 1. Compute the first five iterations of the square

root algorithm to estimate /1,000,000. What is the difference between your
estimate and the exact answer? How many iterations does it take before the
difference between x,, and the exact answer is less than 0.0000017 Compare the
number of iterations require for this problem and when you approximated v/2.

Which is greater? (Make your computations with 10 digits of accuracy.)
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7. Let K =0 and xp = 1. Compute the first five iterations of the square root al-
gorithm to estimate /0. What is the difference between your estimate and the
exact answer? How many iterations does it take before the difference between
x, and the exact answer is less than 0.0000017 Compare the number of itera-
tions require for this problem and when you approximated v/2 and /T, 000, 000.

(Make your computations with 10 digits of accuracy.)

Simplicio: These exercises would have been a drag without my trusty programmable
calculator.

Galileo: While your calculator is fine for these problems it will be woefully inadequate
for most real-life computations. Get used to idea of implementing your methods in
computer software.

Simplicio: No problem.

Galileo: Note that these exercises were designed to stress the algorithm. By comput-
ing VK for large and small numbers we are checking two important aspects of the
algorithm. First, we are looking to see if we get the correct answers. Second, we are
checking the rate of convergence. Both of these considerations will be addressed in
future discussions.

Simplicio: I guess I had better redo these problems.

7.2 The Computation of Cube Roots

Galileo: Since we now understand how to compute square roots, we now turn to
the problem of computing cube roots. Our strategy will be to imitate the approach
described for square roots. This time we will again assume that the quantity x is
a reasonably close approximation of v/K and now search for the quantity Az such
that (z + Az)®> = K. While the picture is more difficult to draw than for the 2-
dimensional case, it can be visualized by simply replacing the square by a cube as we

have attempted in Figure 7.3.
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Again, if Az is small, then Az? and Az?® are even smaller, so we find

K = (v+An)?
= 23 + 32°Azx + 3zAz? + Ar?

~ 2% 4+ 32 Azx.

Thus, if we let Az = K:,’;;”?’ and replace z by x,, and x + Ax by x,1, we have the

following cube root algorithm:

Ty = 1,

3
Tn

K
Tntl = Tn — T ,n > 0.

Simplicio: This discussion is quite familiar.

AX

AX

Figure 7.3: The Geometry Underneath the Cube Root Algorithm

Example 7.2.1. Galileo: OK, it is time to work an example, where we have computed

the first 6 iterations to approzimate /2.

xif“;sz?

i /‘x Laszp 2

Xs= L2599

Figure 7.4: The First Three Estimates of v/2
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xo | 1.000000000000000

x1 | 1.333333333333333

Ty | 1.263888888888889

x3 | 1.259933493449977

x4 | 1.259921050017770

x5 | 1.259921049894873

Te | 1.259921049894873

Table 7.2: Six Estimates of /2

Simplicio: This set of computations is amazing! Once again, the 5 and 6™ terms
are identical out to 15 decimal places.

Galileo: What else do you notice?

Virginia: After the initial guess, the terms are decreasing.

Galileo: Very good. Now let’s make a few remarks about the algorithm. Since the
formula for x,,; can also be written as

20, + 5 9 1K
Tnt1 = Tﬂ = 3% + 322

it becomes apparent that x,; is the weighted average of x,, and %, where the first

weight is % and the second weight is %

Archimedes: While I get annoyed when others try to take credit for my ideas, I am

a bit embarrassed that you are assigning this method to me. We didn’t even think

about cube roots in those days.

Galileo: While you are correct, you must admit the concept is the same. While this

generalization to the computation of cube roots may seem like an easy generalization

of the method of Archimedes/Heron, the time gap is in terms of millennia.

Simplicio: Probably nobody cared.

Galileo: You may be right. Even today, square roots are used much more often

than cube roots. In any case, the concept that bridged the gap was an improved

understanding of algebra and the binomial theorem.
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Exercise Set 7.2.

1. Let K = 5 and xy = 1. Compute the first five iterations of the cube root
algorithm to estimate v/5. What is the difference between your estimate and the
exact answer? How many iterations does it take before the difference between
x, and the exact answer is less than 0.0000017 (Make your computations with

10 digits of accuracy.)

2. Let K =10 and zy = 1. Compute the first five iterations of the cube root algo-
rithm to estimate v/10. What is the difference between your estimate and the
exact answer? How many iterations does it take before the difference between
x, and the exact answer is less than 0.0000017 (Make your computations with

10 digits of accuracy.)

3. Let K = 1000 and zy = 1. Compute the first five iterations of the cube root
algorithm to estimate +v/1000. How many iterations does it take before the dif-
ference between x, and the exact answer is less than 0.0000017 (Make your

computations with 10 digits of accuracy.)

4. Let K = 1,000,000 and 2y = 1. Compute the first five iterations of the cube
root algorithm to estimate /1,000, 000. How many iterations does it take before
the difference between x,, and the exact answer is less than 0.0000017 Compare
the number of iterations with your answer for 1,000,000. Which algorithm

takes more iterations? (Make your computations with 10 digits of accuracy.)

5. Let K = 10° and xy = 1. Compute the first five iterations of the cube root algo-
rithm to estimate v/10°. What do you notice? How close is the last estimate to
the correct answer? How many iterations does it take before the difference be-
tween x,, and the exact answer is less than 0.000001? (Make your computations

with 10 digits of accuracy.)

6. Let K = 0 and zy = 1. Compute the first five iterations of the cube root

algorithm to estimate Y/0. How close is the last estimate to the correct answer?
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How many iterations does it take before the difference between x,, and the exact
answer is less than 0.0000017 Compare the number of iterations require for this
problem and when you approximated /0. (Make your computations with 10

digits of accuracy.)

7.3 The Computation of n'* Roots

Galileo: We now show how to generalize the method of computing cube roots to a
method that can be used to compute the n” root of a number.

Simplicio: Why would we care about n'* roots?

Galileo: What about music? Let’s ask Pythagoras.

Pythagoras: Long ago I observed that two blacksmith’s striking different anvils at
the same time can produce resonating frequencies when one is twice the size of the
other. With string instruments two strings produce resonating sounds when one is
twice (or three times) the length of another and under the same tension.

Simplicio: How do you get the tensions to be the same?

Pythagoras: If you place the fret at the midpoint, the frequency is doubled.

Galileo: While we are at it, let me comment that a major concern of Fourier series
is the problem of approximating functions f(x) : [—m, 7] — R by linear combinations
of functions of the form 1,cos(z),sin(x),cos(2z),sin(2x), ..., cos(nz),sin(nz). Note
that the frequency of cos(2z) is twice that of cos(x) and the frequency of cos(3x) is
triple that of cos(x). We will return to this topic.

Simplicio: Interesting.

Galileo: Since my father was a musician, I find this subject of particular interest and
would like to make a couple of additional remarks. Every piano has 12 notes from one
octave to the next. As you progress up the scale, the frequency changes by the factor
%/2. In the key of C, you begin with middle C as the first note, D is the second note,
E is the third, F is the fourth, and G is the fifth. Thus, if you strike the fourth white
key to the right of middle C, you have the perfect fifth. The frequency of middle C
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is 252 Hertz so the frequency of the perfect fifth is 252 x ( ¥/2).
Simplicio: What a strange way to tune an instrument? Why not simply tune the piano
so the frequencies are equally spaced? That method would seem more reasonable to
me.
Pythagoras: As I just remarked, if we were to use your strategy, then the frequency
of C (or any other note) in one octave would not be twice the frequency of C in
the previous. Thus, our notes would not be harmonious. On the other hand, if the
frequencies are spaced multiplicatively, then harmony is preserved.
Simplicio: I have another question. If the note G is called the perfect fifth, then why
isn’t it computed as 252 * ( ¥/2)%?
Galileo: The modern piano has black keys as well as white keys. These black keys are
tuned as half notes (also known as semitones). The perfect fifth is seven half steps
above middle C.
Pythagoras: And note that the quantity ( V/2)7 ~ %
Simplicio: Interesting.
Galileo: People frequently remark that music and mathematics go together. Well,
there it is.
Now let’s get back to the mathematical issue of computing the n** root of a number
K by following the strategy used for computing cube roots. To that end, suppose we
have a number z which is a reasonably close approximation of /I . We now would
like want to approximate the quantity Az with the property that (r + Az)" = K.
Again, if Az is small, then for any integer k > 1, the power Az” is even smaller.
For example, if Az = 0.1, then Az? = 0.01 and Az® = 0.001. Thus, by the binomial

theorem we find that

. +n(n—1)(n—2)xn—3Ax3+...+Ax”
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K—a"
nxn—1"

Thus, a good choice for the approximate Ax is to set Az = If we set xp = x

and 1, = x + Az, then we have the following recursive algorithm for any K > 0 :

Ty = ]_,

n
xp—K

Tpy1 = Tk — a1

Simplicio: Given the previous discussions on square roots and cube roots, the tech-
nique is quite understandable.

Galileo: Again, note that we have taken a difficult problem, non-linear in the variable
Ax, and made it linear in that variable.

Virginia: Is that so the problem is easier?

Galileo: Correct. Note also that we can again write x;, 1 as the weighted sum of xy

x’{(—l . In particular,
k

and
n—1

mk-}-l - 1>

1 K
L ——

where the two weights are wy = ”T’l and w; = %

Simplicio: OK, this discussion is getting all too familiar. How about an example?

Example 7.3.1. Galileo:

We have presented the first siz approzimations for /2 in Table 7.3.

xo | 1.000000000000000
x1 | 1.200000000000000
29 | 1.152901234567901
x3 | 1.148728886527325
x4 | 1.148698356619959
x5 | 1.148698354997035
xg | 1.148698354997035

Table 7.3: Six Estimates of v/2

Simplicio: These computations are getting boring. I can see that the questions and

answers are the same as for square roots and cube roots.
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Example 7.3.2. Galileo: We have presented the first siz approzimations for N2 in
Table 7.4.

xp | 1.000000000000000
x1 | 1.083333333333333
Ty | 1.062153572038919
x3 | 1.059500262653840
x4 | 1.059463101529905
x5 | 1.059463094359296
ze | 1.059463094359295

Table 7.4: Six Estimates of /2

Simplicio: Finally something happened! At least we have a difference in the 15" digit

for the 5 and 6™ estimates.

Galileo: This algorithm is worthy.

Exercise Set 7.3.

1. Compute v/2 using 2o = 1 to initialize the algorithm. How many iterations
does it take before the error is less than 0.0000017 (Make your computations
with 10 digits of accuracy.)

2. Compute v/2 using zo = 1 to initialize the algorithm. How many iterations
does it take before the error is less than 0.0000017 (Make your computations
with 10 digits of accuracy.)

3. Compute the first five iterations of the n'* root algorithm to estimate ¥/2 using
2o = 1 to initialize the method. How many iterations does it take before the

error is less than 0.0000017 (Make your computations with 10 digits of accuracy.)

4. Compute the first five iterations of the n*® root algorithm to estimate 3/2 using

2o = 1 to initialize the method. How many iterations does it take before the
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error is less than 0.0000017 Compare the number of iterations required with the

previous three problems. (Make your computations with 10 digits of accuracy.)

Compute the first five iterations of the n** root algorithm to estimate %/0 using
2o = 1 to initialize the method. How many iterations does it take before the

error is less than 0.0001? (Make your computations with 10 digits of accuracy.)
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Roots of Cubic Polynomials

Omar Khayyam (1048 - 1122)

Algebras are geometric facts which are proved.-Omar Khayyam

Galileo: Since we now understand how to compute square roots, cube roots, and n*
roots, we now turn to the problem of computing roots of cubic polynomials. First,

let us remind you that the solutions of the quadratic equation Az? + Bx + C = 0 are

—B+vB?—4AC

given by r = o

Simplicio: Sure, I remember that formula. [ learned it many years ago.
Galileo: Well then, can you solve the general cubic equation Ax®+ Bx?+Cx+D = 0?
Simplicio: I must admit I have forgotten that formula.

Galileo: Actually, the development of these formulas has a long and sometimes bitter

195
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history.

While it may be true that the Babylonians were the first to solve quadratic equa-
tions sometime around 400 B.C.E., this statement is a bit of an oversimplification
since the Babylonians had no notion of “equation.” What they did develop was an
algorithmic approach to solving problems which, in our terminology, would give rise
to a quadratic equation. The method is essentially the technique of “completing
the square.” Of course, the ancient Greek mathematicians knew how to solve the
quadratic formula by ruler and compass.

Nearly 1500 years later, we find the first success at solving a cubic equation. While
trying to solve the problem of finding a right triangle with the property that the
hypotenuse equals the sum of one leg plus the altitude of the hypotenuse, the Persian
mathematician and poet, Omar Khayyam (1048 - 1131), found a positive root to the
cubic equation z® + 2002 = 2022 + 2000. The mathematics world would have to wait
another 400 years for a solution to the general cubic equation and the solution would
not come easily. The Italian mathematician Scipione del Ferro (1465-1526) designed
algebraic solutions to cubic equations of the form 2 + ma = n.

Simplicio: Did del Ferro publish his work?

Virginia: He made the mistake of showing his ideas to his student Antonio Fior.
Simplicio: How so?

Virginia: Didn’t he compete in a challenge, where each contestant gave the other

thirty problems to solve?

When the cube and the things together

Are equal to some discrete number,

Find two other numbers differing in this one.
Then you will keep this as a habit

That their product shall always be equal
Exactly to the cube of a third of the things.
The remainder then as a general rule

Of their cube roots subtracted
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Figure 8.1: Niccolo Fontana (1499-1557), known as Tartaglia, the Stutterer

Will be equal to your principal thing.-Niccolo Fontana

Galileo: Correct. The other contestant was another Italian mathematician, Niccolo

Fontana (1499-1557), known as Tartaglia, the stutterer.
Simplicio: Why was he called the stutterer?

Galileo: When he was a teenager, the French invaded his home town. In the process,
a soldier bashed the young fellow in the head causing such severe and permanent

injuries he found it difficult to speak.
Simplicio: So what contribution did Tartaglia make to the problem of solving cubics?

Galileo: Tartaglia’s methods were more general and were able to solve cubics of the
form 2 + ma? = n. Fior’s methods cold not handle this case and Tartaglia won
the challenge. This challenge between Fior and Tartaglia sparked the interest of yet

another Italian mathematician, Girolamo Cardano (1501-1576).

Simplicio: So who was Cardano?
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Girolamo Cardano (1501-1576)

I wrote it out five times, may it last the same number of millennia.-

Girolamo Cardano

Galileo: Cardano was an unusually cantankerous fellow, who was schooled in the
field of medicine. However, because of his reputation as a difficult man he was not
admitted to the College of Physicians in Milan. This rejection forced him to establish
a small medical practice of his own. Cardano’s practice, however, could not pay his
gambling bills, so when a mathematics lecturing position became available at the
Piatti Foundation in Milan, he took it. After hearing of Tartaglia’s success with a so-
lution to the cubic equation, Cardano attempted, without success, to learn Tartaglia’s
methods. Cardano first contacted Tartaglia through an intermediary to request that
his method be included in Cardano’s soon-to-be published book. Tartaglia declined
Cardano’s request stating that he intended to publish the method himself. Cardano
then persuaded Tartaglia to explain his method.

Tartaglia did not just simply tell Cardano his results. Instead, he wrote them in a
poem, so that if it were to fall into the wrong hands, they would still be safe. Further-
more, he insisted that Cardano would not publish the results. Cardano, with the help
of Tartaglia’s method, was able to find proofs for all cases of the cubic. He even solved

the quartic equation. Some years later, Tartaglia still had not published his results.
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Cardano then learned that del Ferro, not Tartaglia, had been the first to solve the
cubic. Cardano used this new information to justify publishing Tartaglia’s method.
While Cardano gave Tartaglia full recognition, Tartaglia never forgave Cardano.
Virginia: I can understand why. The formulas are known as Cardano’s formulas.
Poor old Tartaglia is never mentioned.

Galileo: There are many bitter stories like this one in academics. The profession
seems to attract people who have a tendency to involve themselves in this type of
politics.

Simplicio: I think my decision to go into business may have been wise.

Galileo: As we noted the general cubic equation can be reduced to an equation of the
form, where the quadratic term equals zero. Thus, we can assume that the cubic has

the form:

p(x) =2 +pr+q=0.

For an equation of this form, one root can be written as

Yy Py (S S 2y Ly
r=——\/- — —\/—q — —p3.
o A AT e 1 e T k72

Virginia: I like that formula because it shows that the roots of a cubic equation can

be written in terms of square roots and cube roots.

Simplicio: I agree that Cardano and his friends have produced an amazing formula.
Galileo: Not so fast. Note that care must be exercised when we actually apply the
formula. A problem arises because the square root always generates two answers and
the cube root function always generates three answers. (Of course, the square root
and cube root of zero is zero, so that number is an exception.) Thus, this expression
for r could generate as many as 12 different “answers.” However, this problem will
be avoided if we assume p and ¢ are real numbers and the expression ¢? + %p3 is

positive. In this setting, we can make the convention that we choose the positive

square root {/q? + %p?’ in both parts of the formula for r. Since —¢+4/¢* + 21‘7]93 >0

and —¢ — \/¢% + %p?’ < 0, we can always find a unique real cube root of each. If
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we follow this convention and thus avoid choosing complex numbers, then r will be a
root.

Virginia: What if ¢* + 5-p? is negative?

Galileo: We then have to get distracted by the subject of complex numbers. Since
we have many more topics to discuss, let us move on.

Virginia: Are there similar formulas for polynomials of all degrees?

Galileo: Unfortunately, the answer to that question is no. While the general quartic
equation can also be solved using only square roots and cube roots, the Norwegian
mathematician Niels Henrik Abel (1802-1829) and the French mathematician Everiste
Galois (1811-1832) showed that no such formula exists for the equation z°+z+1 = 0.
Of course, we should not forget that Gauss proved the Fundamental Theorem of
Algebra around 1800. In fact, he produced five different proofs. The beauty of this
theorem is that it states that every polynomial

o) = T+ an 12" L a, 2™ 2. . .4+ a x4 ay, where each ay, is a complex number,
has the property that it can be factored as a product of linear factors in its roots. In
other words, roots ry, ra, .. ., 7, can be found so that p,(x) = (x—r1)(z—rz) ... (x—ry).
If we count multiplicities, we see that every polynomial of degree n > 1 has exactly
n real roots. Unfortunately, the bad news is that the work of Abel and Galois shows
that we will be unable to find a tidy little formula for these roots.

Simplicio: I notice that these two fellows Abel and Galois both died at an early age.
Galileo: While Abel died of tuberculosis, Galois was shot and killed in a duel over
politics or a woman. It seems that he had a penchant for getting into trouble. A year
before his death, he made threats against King Louis-Phillipe while at a dinner with
200 Republicans. While making his speech, he may have been holding a dagger in his
hand.

Virginia: Is it not true that trouble seems to have followed you as well.

Galileo: At least I left my daggers at home.

Simplicio: Again, I think my decision to avoid a career in academics may have been

wise.
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Exercise Set 8.1.

1. Compute a root of the equation 2® + 2 +1 = 0.
2. Find a root for Omar Khayyam’s equation x> + 200z = 2022 + 2000.

3. Show that the quantity r given by the Cardano formula actually produces a
root for the equation 2 + px + ¢ = 0. (Hint: Substitute z = r into p(z).)

4. Compute a root of the equation 2 + 22 +1 = 0.

5. Find a formula for a root of the equation z® + Az? + Bx + C = 0. (Suggestion:

Surf the internet to see what others have done.)

6. Show the equation 23 + x + 1 = 0 has exactly one real root.
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Chapter 9

Root Finding Methods

Isaac Newton (1643-1727)

If T have been able to see further, it was only because I stood on the

shoulders of giants.-Isaac Newton

Galileo: We now introduce the English mathematician Isaac Newton (1642-1727), who
is one of the giants in physics and mathematics. His treatise, Principia, is probably
the most important science book ever written because it created mathematical models
that explained the motion of the projectiles, planets, pendulums, fluids, and the tides.
These models are based on fundamental principles concerning the nature of force,

including gravitational and centripetal. His Second Law of Motion, F' = ma and his

203
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inverse square law for gravitation are probably his most famous. The mathematical
foundation for this work was geometry, geometry, geometry.
Simplicio: Wait a minute. What about Calculus?
Galileo: If you actually open this magnificent book, you will notice an abundance of
triangles, parallelograms, and ellipses. You will find no derivatives g—g. Old Is aac was
too smart to justify his methods on mathematics that was not quite ready for prime
time. Of course, the spirit of Calculus was present everywhere.
Simplicio: Sounds like a lot of math theory to me. Did he include any data to support
his theory?
Galileo: In fact, he did. Remember that the idea that the orbits of the planets might
be elliptical comes from Kepler. The basis for his ideas was the data set acquired by
Tycho Brahe (1546-1601). Newton actually included other astronomical data in his
“Principia.”

Tell us about yourself, Sir Isaac.
Newton: While I was interested in a variety of different subjects including chemistry
and theology, my main interest was in physics and mathematics. In physics, I made
fundamental contributions to dynamics, statics, optics, hydrodynamics, hydrostatics,
and of course I discovered Calculus.
Virginia: I thought Gottfried Wilhelm von Leibniz (1646-1716) also invented Calculus.
Newton: Yes, you might have heard about that controversy. However, as the president
of the Royal Society, I appointed an “impartial” committee to decide whether Leibniz
or myself was the sole inventor. The official report of this illustrious committee
concluded that I deserve full credit for the Calculus as we know it. Of course, I used
the Calculus to explain the motion of falling bodies, Kepler’s three laws of planetary
motion, as well as the tides.
Galileo: But who wrote the report?
Newton: Well, I did.
Galileo: Enough of that. Let us mention, however, that Joseph Raphson (1648-1715)

was a contemporary of yours, but used the same method to approximate roots of an
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equation. Raphson, however, was one of the few people who you allowed to see your
mathematical papers.

Newton: He took a clear position in favor of my claims over those of Leibniz. I
appreciated his support.

(Newton leaves.)

Virginia: I am not certain that I would like to converse with that Mr. Newton again.
He is a most unpleasant fellow.

Galileo: A great mind may possess a small personality. How about if we forgot all
that politics and refocus our energies on his method. Since has been such a cad about

the efforts of others, I think we should give Raphson equal credit?

9.1 The Method of Newton/Raphson

Galileo: Professor Newton, could you explain the ideas behind your method?

Newton: Certainly. Let us begin this section with the definition of the term root.

Definition 9.1.1. If X is an interval and f(x) : X — R is a function, then a point
r € X is called a root of f(x) if f(r)=0.

Newton: The fundamental principle underlying the method is to “linearize the prob-
lem” by approximating a non-linear function by a straight line. Thus, easiest starting
point is to find the root of the function f(x) = m(x — o) + b.

Simplicio: Even I can do that. All you have to do is solve the equation 0 = m(r —

b
g

x9) + b. As long as m # 0, the root r = zy —
Newton: My method is not much more difficult. Since the first derivative of a function
is the slope of the line that “best approximates” the curve y = f(x) at a given
point (xo, f(zo)), we begin the process by drawing a tangent line to the curve at
this point. Since the tangent line to the curve y = f(x) at a point zy is given by

y = f(xy) + f'(xo)(x — xg), and the root of this linear equation is found when y = 0,
the x-intercept is found by solving the equation 0 = f(xo) + f'(xo)(z — w0), for .
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When we do this, we find that = 2y, = xy— [wo) 1f g represents the approximation

f'(@o)”
at the n'* iteration, then x,; = z, — ;c,(g;)).
The Newton/Raphson Algorithm:
Tp = an initial guess.
Tpp1 = Tp— f,(x”) for all n > 0.
f'(@n)

The recursive part of the algorithm can be thought of as a generalization of the

z—K

cube root algorithm z,,1, = x, — =5, where the denominator of the fractional

expression is also the derivative of the numerator.

Simplicio: Actually, I am quite comfortable with this algorithm.

Example 9.1.1. Galileo: We now include a practice problem. If we would like to
approzimate the value of \/2, then we can let ©o = 1 and begin computing using the
recursive formula stated in the algorithm. Notice that the first step is to think up a

function f(x) which has the property that r = /2 is a root.

Virginia: How about the function f(z) = x? — K?

Successive Approximations of the Newton/Raphson Method

The X Values

Figure 9.1: Five Steps in the Newton/Raphson Algorithm for f(z) = 22 — 2.
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Galileo: The approzimations provided by the first five steps of the method are displayed
in Figure 9.1. Note that xo is between the root r = VK and x1, T3 1S between r = VK
and xo, and x4 is between 1 = VK and x3. This pattern continues indicating that
there is a strong probability that the sequence of x—intercepts for the tangent lines

will converge to the root.

Virginia: Is the concavity of the curve important?

Galileo: In fact, it is. But we will discuss that thought in more detail at a later time.

Example 9.1.2. Galileo: A second example is the polynomial p(x) = x®+x+1. This
example is of particular interest because our friends Abel and Galois showed we have
no option except numerical computation of the roots.

Here 1s the algorithm.

Step 0. xy = 1.0

5

)+ a9+ 1

Ste 1. x = CE—Oi
b ! ° Sag+ 1

5

]+ x+1

Step 2. 9y = 1, — L "~ —
b ? : Sx}+1

x>+, +1

St . Xy, — n_%
P 1. Tnt1 v St 41

The data computed from this algorithm is listed in Table 9.1.
Simplicio: What a great algorithm! While not quite as good as the square root and
cube root methods, this technique s still in my comfort zone.
Galileo: The method of Newton/Raphson is popular.

Virginia: I can see why.

Simplicio: However, I do have one quick question. If this method includes the square
root and cube root algorithms as special cases, why didn’t you simply skip them?
It certainly would have been more efficient to simply discuss the Newton/Raphson
Algorithm at the beginning.

Galileo: We could have, However, there is a difference between presenting mathemat-

ics in its most perfect form and presenting mathematics to someone unfamiliar with
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Zo

1.000000000000000

X

0.500000000000000

X2

-0.666666666666667

X3

-0.768115942028985

X4

-0.755162523060901

X5

-0.754877799264274

Te

-0.754877666246722

X7

-0.754877666246693

Table 9.1: Seven Estimates of a Root of p(z) = 2° + z + 1

the subject. When presented with a new concept, the human brain works inductively

from particular cases to more general ones. Mathematics is a process, which has been

unfolding for several thousand years. The pedagogic rule we will follow is to proceed

from the particular to the abstract.

Simplicio: I actually agree with this concept.

Galileo: We will soon discuss examples, where the method of Newton/Raphson fails.

These examples will encourage us to search for algorithms, which “always work.” The

square root and cube root algorithms do in fact have this enjoyable and comforting

property.

Exercise Set 9.1.

1. Set up the Newton/Raphson algorithm to compute v/2. Test the method by

using x¢ = 2 to initialize the method and compute 6 iterations.

2. Use the method of Newton/Raphson to compute a root of the polynomial p(x) =

2% 4+ o + 1 with error less than 10°. Initialize the method with =y = 1.0.

3. Use the method of Newton/Raphson to compute a root of the polynomial p(z) =
(z—1)(x—2)(z—3)(x—4)(x—>5) with error less than 107°. Initialize the method

with zg = 5.10.
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10.

11.

12.
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. Use the method of Newton/Raphson to compute a solution of Omar Khayyam’s

equation 22 +200x = 2022 +2000 with error less than 10 °. Initialize the method
with 2y = 1.0. Compare your answer with the one produced by Cardano’s

formula.

Use the method of Newton/Raphson to compute a root of the function f(z) =
x cos(x) with error less than 107°. Initialize the method with zy = 10. Be sure

to make your computations using radians rather than degrees.

Use the method of Newton/Raphson to compute a root of the function f(x) =
x €® with error less than 107°. Initialize the method with xy = 0.00 and zy, =

1.00.

Use the Newton/Raphson method to approximate a root of the polynomial

p3(z) = 2*+x+1 with error less than 107°. Initialize the method with z¢ = 1.0.

Use the method of Newton/Raphson to compute a root of the the polynomial
p3(z) = 23+ +1 with error less than 107°. Initialize the method with xy = 1.0.

Use the method of Newton/Raphson to approximate a solution of the equation
sin(z) = e* with error less than 107°. Initialize with xy = 0 and z, = 5. What

do you notice?

Use the method of Newton/Raphson to approximate a solution of the equation
e® = 3x? with error less than 107°. Initialize with z, = 0 and z, = 5. What do

you notice?

Use the method of Newton/Raphson to approximate a solution of the equation
loge(x) = — cos(z) with error less than 107°. Initialize with zy = 2.0. What do

you notice?

Let pa(x) = (2 —1000)? and gz(z) = 22 — 1000000. Note that z = 1000 is a root
for both py(z) and go(z). Use the method of Newton/Raphson to approximate
this root for both polynomials. Initialize the method with 2y = 1001. Compare
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the number of iterations required to achieve an error of less than 1075, What

do you notice? What is different about the roots of the two polynomials?

9.2 The Secant Method

Galileo: We now turn to a variant of Newton/Raphson known as the secant method,
where the first derivative is approximated numerically as the slope of the line through
the two previous approximations produced by the algorithm. This modification is
important in applications, where the first derivative is difficult to compute using

the usual rules of differential Calculus. Instead of having the term f’(z) in the
f@n)—f(@n-1)

n—ZTn-1

denominator of the second term, the approximation is used.

Thus, the (n + 1) term becomes:

T =z f(xn)
n+1 n f’an)
N f (@)
~ I T T —f@an)
Tn—Tn-—1

— f(@n)(@n — 2n1)
! f(xn) - f(xn—l) ‘

Since we require two values to initialize the algorithm, the secant method can

implemented as:

The Secant Algorithm:

Step 0. xg,xq7 = Iinitial estimates
f(xn)(xn - xn—l)
f(xn) - f(xn—l)

Simplicio: OK, I see that the secant method has the advantage that you don’t have

Step n. T4 = T, —

to compute the first derivative. How about an example?

Example 9.2.1. Galileo: In table 9.2 we display the data for estimating the /2
computed by the secant algorithm. We chose v = 1 and 1 = 2 to initialize the
algorithm.

We present the graph of the approzimating lines in in Figure 9.2.
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xo | 1.00000000000000

x1 | 2.00000000000000

x9 | 1.33333333333333

x3 | 1.40000000000000
g | 1.41463414634146
x5 | 1.41421143847487
xe | 1.41421356205732
x7 | 1.41421356237310
xg | 1.41421356237310

Table 9.2: Eight Estimates of the Square Root of 2

[ R R S - S -

The X Values

Figure 9.2: The Secant Method for the Curve f(x) = 2% — 2
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Virginia: Are there any disadvantages?

Galileo: The first problem is that you need two starting points instead of one. The
second problem is that you have to take care not to divide by zero. This problem is
more likely to occur with the secant method because two successive approximations,
f(z,) and f(z,_1), may be approximately equal so that the difference f(x,)— f(x,_1)
is close to zero. This problem is a real and dangerous possibility. In fact, if we had
computed a few more terms with our approximation of /2, we would have hd a
division by zero explosion. The third problem is that the convergence rate is slower
than the convergence rate for Newton/Raphson. We will make that statement more

precise on another occasion.

Exercise Set 9.2.

1. If K =5, f(xr) =2 — K,zp = 1, and z; = 5, then use the secant method to

_1

compute the root with an accuracy of 16.:000"

How many iterations are required?
Compare the estimates generated by the secant method with those generated by
the Newton/Raphson method when zy = 1. Which is faster: the secant method

or Newton/Raphson?

Repeat this experiment for K = 10, 000.

2. If K = 2,5,10,000, zy = 1,7, = K, and f(z) = 2*> — K, then how many

iterations will be required for the secant method to estimate a root of f(x) to

1

To000- Compare the number of iterations required for the secant

an accuracy of

method and the number required by the Newton/Raphson method when zy = 1.

3. Use the secant method to compute a root of the polynomial p(z) = 23+z+1 with
error less than 1075, Initialize the method with 2 = 0.0 and z; = 1.0. Compare
the number of iterations required for the secant method and the number required

by the Newton/Raphson method when zy = 1.

4. Use the secant method to compute a root of the polynomial p(z) = 2°+z+1 with

error less than 1075, Initialize the method with 2y = 0.0 and z; = 1.0. Compare
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the number of iterations required for the secant method and the number required

by the Newton/Raphson method when zy = 1.

5. Use the secant method to compute a root of the of the polynomial p(x) =
(x — 1)(x — 2)(z — 3)(x — 4)(z — 5) with error less than 107°. Initialize the
method with 2y = 0.5 and x; = 1.5. Compare the number of iterations required
for the secant method and the number required by the Newton/Raphson method

when ¢y = 0.5

6. Use the secant method to compute a root of the Omar Khayyam’s equation
23 + 2002 = 2022 + 2000 with error less than 10~°. Initialize the method with
9 = 0.0 and x; = 1.0. Compare the number of iterations required for the
secant method and the number required by the Newton/Raphson method when

1'0:1.

7. Miiller’s Method: Determine a recursive formula that uses three successive
points to determine the next approximation to a root r for a function y = f(z).
In other words, given three points zg, x1, s, find a parabola py(z) = A(x —
x3)? + Bz — x2) + C with the property that py(zo) = f(x0), pa(21) = f(21),
and po(zo) = f(x2). After computing the constants A, B, and C, then use the
quadratic formula to compute an approximate root x3. Note further that since
the quadratic formula provides two roots, the choice with the largest denomi-

nator is preferred.

(Answer: A = (@1—22)[f(wo) = f(@2)]—(wo—w2) [f (w1)— f (22)
' (zo—w2)(w1—52)(z0—21) ’
B— (xo—x2)2[f(xl)—f(m)}—(l’l—1‘2)2[f(1’0)—f(x2)], and C = f(x,).)

(wo—2)(2z1—22)(T0—21)

Simplicio: But wait a minute. The functions in these exercises all have first derivatives
that are easy to compute. Wouldn’t we simply use Newton/Raphson?

Galileo: To illustrate a situation, where you might want to choose the secant method
consider the polynomial py(z) = (x — 1)(z — 2)...(x — 20). Note that the roots of
pao(x) are the integers r = 1,2,...,20. While the value of py(z) can be computed
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for any value of x, the first derivative requires you to either expand the function as
a 20 degree polynomial or compute 20 product rules. Take your pick. Better yet,
implement the secant method for finding a root for pyy(z) and then test the method
for two initial input points xy and x;, where x¢ and x1, are chosen near the root r = 1
and near the root » = 20. Compare your results for two different sets of inputs.
Simplicio: I get the concept, but what about computing pe(z) when z = 21?7 By my
calculation, I get 20!, which is a very large number. In fact, it turns out to be equal
to about 2.4329 x 108,

Galileo: You are very perceptive. We will see shortly that the computation of the roots
of this polynomial lead to a fundamentally unstable problem. In fact, this problem
offers a view into exactly the type of problem applications people must either avoid

or enter into at great risk.

9.3 The Bisection Method

Galileo: The bisection method is probably the most basic method for finding a root of
a continuous function. This method is a straightforward application of the Interme-
diate Value Theorem 6.2 for the case when y = 0. In particular, if f(z) is continuous
on an interval [a,b] and f(a) and f(b) have opposite signs (i.e either f(a) > 0 and
f(b) < 0or f(a) < 0 and f(b) > 0), then the value y = 0 is intermediate between
f(a) and f(b). If we let ag = a, by = b, and my = 2 then we have two cases.
If f(ap) and f(my) have opposite signs, then define a; = ay and by = my. If not,
then define a; = my and by = by. Repeating this process, let m; = % If f(ay)
and f(my) have opposite signs, then define ay = a; and by = m;. If not, then define
ay = my and by = by.

Inductively, if ap_; and b,_; have been found, then define m,_; = a’“‘%b’“‘l If
f(ag_1) and f(my_1) have opposite signs, then define ar, = ay_ and by = my_. If
not, then define a;, = my_; and by = bp_;.

Note that a root will lie in the interval [ay, by] and the length of the interval is %2
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Thus, the value my = @ will approximate the root with an error no more than
J=4. In fact, for any given function f(z) the convergence rate only depends on the
length of the interval [a, b]. Thus, this estimate of the convergence rate is the same

for every function.

f(x)

fx)

Figure 9.3: The Bisection Method for the function f(z) = 2% — K

Galileo: In general, the technique can be stated as the

Bisection Algorithm:

1. Let f(z) be a continuous real-valued function on a closed bounded interval [a, b],

which has the property that f(a) and f(b) have opposite signs.

2. Let m = “T“’

3. If f(a) and f(m) have opposite signs, then set b = m.

4. If f(a) and f(m) do not have opposite signs, then set a = m.

5. Continue this process (i.e. repeat steps 2-4) until the required accuracy has

been achieved.



216 CHAPTER 9. ROOT FINDING METHODS

Simplicio: This method seems to be quite understandable.

Galileo: If a function f(z) crosses the x—axis at some point in an interval [a, b] and
f(a) and f(b) have opposite signs, then this method has the virtue that it “always
works.” While the method may always work, its downside is that the convergence
rate is slower than the method of Newton/Raphson.

Simplicio: How about an example?

Example 9.3.1. Galileo: If we consider our old friend f(x) = 2* — K, and initialize

the bisection algorithm with a =1 and b = 2, we obtain the following set of values.

xo | 1.000000000000000
x1 | 1.500000000000000
xo | 1.250000000000000
x3 | 1.375000000000000
x4 | 1.437500000000000
x5 | 1.406250000000000
xg | 1.421875000000000
x7 | 1.414062500000000
xg | 1.417968750000000

Table 9.3: Eight Estimates of a Root of the /2

Simplicio: You are right. The convergence rate of this method is glacial in comparison
with either the Newton/Raphson or secant method. With theses other methods we are
almost perfect after eight steps. Since /2 = 1.414213562373095, we have achicved
only two digits of accuracy with the bisection method. Why would anyone use it?

Galileo: The method is important because it always works and because it can be used in
combination with other less stable methods such as Newton/Raphson. In particular,
the bisection method can sometimes be iterated enough times to guarantee convergence.
We will discuss this issue again in more detail. The combination of two such methods

results in a hybrid, which is sometimes better than each used separately.
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Virginia: What can you say about the error?

Galileo: Since the midpoint m is half way between the points ¢ and b, note that the

error is cut in half at each iteration. Thus, the initial error is b — a and the first
b—a

error is 5. The general formula for the error can be summarized in the following

proposition.

Proposition 9.3.1 (Bisection Error Formula). If f(z) is a continuous real-valued
function defined on the interval [a,b] and f(a) and f(b) have opposite signs, then the

error B, at the n'™ iteration satisfies the inequality |E,| < b;—,ﬂ

Proof. Since a root of the function lies in the interval [a,b] which has length b — a,
the error Ej satisfies |Ep| < b — a. Similarly, since a root of the function lies in either
the interval [a, 2] or [%f2 5] and both these closed intervals have length 252, the
error |E; | < &£, Since the length of the interval containing the root is halved at each

iteration of the process, |E,| < %2 O

Example 9.3.2. Galileo: How many iterations are required for the bisection to guar-

antee 14 digits of accuracy when computing /2 on the interval [1,2]7?

Virginia: Simply find an integer n with the property that 2% < 10515. When we take
logs of both side of this expression, we find that this inequality will be satisfied iof
n > 15log(10)/log(2) — log(5)/log(2) ~ 47.5. Thus, if we choose n = 48, we will

achieve the required accuracy.

Simplicio: That’s worse than I thought it would be.

Galileo: In summary, while the method of Newton/Raphson may converge faster than
the bisection method, the bisection method has the advantage that it “works” as long
as the function f(z) is continuous and satisfies the initial condition that f(a) and f(b)
have opposite signs.

Simplicio: Something bothers me about the error formula |E,| < %%, While it con-
tains the initial endpoints ¢ and b, it seems to be the same for every function.
Galileo: Yes, your observation is correct. While it is reliable, its convergence rate is

the same for all functions.
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Exercise Set 9.3.

1. If K =2,5,20,000,a =1,b = K, and f(z) = 2* — K,2* — K or 2° — K, then

how many iterations will be required for the bisection method to estimate a
root of f(x) to an accuracy of m? Compare the number of iterations with

that needed by the Newton/Raphson method. Which do you prefer?

Using the bisection method how many iterations will be needed to approximate
the real root of the function f(z) =2* 4+ 2+ 1if a = —1,b = 0, and the error
is required to be less than 0.0000017 Compare your answer with the answer
you get when the method of Newton/Raphson is used with 2y = 0 as the initial

guess.

. If the bisection method is used to compute a root of the function f(z) = z?+1,

then what goes wrong? Why does the bisection method fail when we were

promised that it “always works.”

. If the bisection method is used to compute a root of the function f(z) = ze *’

initialized by the points ¢ = —2 and b = 3, then does the method work? How

many iterations will be required to estimate the root of f(z) to an accuracy of

_1
10,000 °



Chapter 10

Problems With Root Finding
Methods

10.1 Failure of Newton/Raphson

Galileo: How did you do on the Newton/Raphson problems I assigned?

Simplicio: Everything went well. I had no problems. I even seemed to get all the
right answers.

Galileo: How about if we take a more careful look at the method? What if we begin
by computing the square root of K, where we initialize the method with a value of
xo =07

Simplicio: Since the method of Archimedes/Heron is given by the recursive formula

K .
$n+$— 2 —K

n P :,E n

n

Tpt1 = a division by zero occurs. Obviously, this event will not
n+ 2z, )

be well-received in the mathematics community.

Galileo: Since the general formulation of Newton/Raphson is given by the equation

Tpgl = Ty — J{,((xx’;)w the strategy will be to avoid roots of the first derivative f'(x).

Simplicio: Since the probability of making such a choice is about zero, we should not
worry too much about that case. Right?
Galileo: While this avoidance task is easy for functions like f(x) = z*> — K when

K > 0 and zy = 1, it can actually happen in simple settings. For example, consider

219
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the function f(z) = 2* + 1. While this polynomial has real coefficients, its two roots
are the complex numbers 7 = 44, where i = /—1. If the method of Newton/Raphson
is initialized with xy = 1, then note that xy = 0, which leads to a division by zero
in the computation of x5. Thus, the value for x5 can’t even be computed. However,
even if we choose another number, say xy = 2, so that division by zero never occurs,
each recursively computed x,,,; will always be a real number. Thus, the method has
no chance to converge to either r; =i =+/—1 or ry = —i = —/—1.

Simplicio: Suddenly complex number have raised their ugly head, a worrisome situ-
ation.

Galileo: On the contrary.

Simplicio: You mean the method of Newton/Raphson can be used if the numbers are
complex? Your motivation and graphs only seemed to apply to real-valued functions.
Galileo: Not a problem. The key is that you can compute the first derivative.
The rules for derivatives are exactly the same as those you learned for real vari-
able Calculus. The only difference is that you change the letter x to the letter
z = a + bi. For the function we just considered, we let f(z) = 2?2 — K. The deriva-
tive turns out to be f'(2) = 2z and the recursive step in the algorithm becomes

Zngl = Zp — J{,((Zz)) = 2z, — Z%;RK An amazing feature of this example is that if the initial

guess 2y is chosen to be any complex number other than one of those on the real line,
then the method in fact works. Work the first problem in the set of exercises listed
below and you should begin to appreciate these remarks.
Simplicio: Interesting. What is the next example you have in mind?
Galileo: While dividing by zero is an obvious problem, we might also worry about
functions with large derivatives near a root. For example, consider the function
f(z) = z3. Note that f(0) = 0so x =0is aroot. If we apply Newton/Raphson to
this function, we find that the recursive relation becomes
5
Tpgl = Ty — % =Ty — 3Ty, = —2Ty.

1
3on

Thus, unless your initial guess xy = 0, you will have problems.
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Simplicio: Is that it?
Galileo: As you might guess, the situation gets worse.

T

Let us now consider the differentiable function f(z) = x - e *", which is graphed
in Figure 10.1. This function illustrates a fundamental problem with the method of
Newton/Raphson. While the function f(x) has a unique root at x = 0 and has a
graph which is almost a straight line near zero, a poor initial guess can lead to a

sequence of points that converge to infinity.

Successive Newton/Raphson Approximations of f(x) = x‘exp(fx?)

> 0 + *
-05f \

. . . . . .
-3 -2 -1 0 1 2 3
The X Values

—x2

Figure 10.1: Failure of Newton/Raphson for the function f(z) =z -e

Simplicio: How does that happen?

Galileo: Since the derivative is f'(z) = (1 — 222)e ", f(z) has critical points at
r = :I:?, which are the locations of the minimum and maximum. Thus, if the initial
guess xg for the Newton/Raphson method is chosen to the right of the location of
the maximum, then it is clear that the subsequent terms in the sequence each be
further to the right than the previous. In other words, zy < x; < x9,etc. We can
actually show that the sequence converges to infinity. Similarly, if the initial guess x
is chosen to be to the left of the location of the minimum, then the resulting sequence
will converge to negative infinity. On the other hand, if the initial point is chosen

close to zero, then Newton/Raphson converges without a problem. Thus, the method

works in some situations and not in others. One of our tasks will be to establish
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conditions which will guarantee convergence.

Virginia: Looks like we have a theorem to look forward to.

Galileo: Correct.

Simplicio: Groan. These examples make me worry that the method of Newton/Raphson
is not as perfect as I had hoped.

Galileo: Just another example, where Murphy’s Law applies to numerical methods.
However, our next discussion will focus on the success of the method. As you will
see, a number of very smart people have thought about these issues for a very long
period of time.

Simplicio: Could you summarize the problems with Newtion/Raphson?

Galileo: Sure, the previous examples indicate the types of trouble we can expect to

encounter with Newton/Raphson. These potential problems can be summarized as:

Example 10.1.1. (Division by Zero) The derivative f'(x,) = 0 for some integer n.
If f(z) = *—2 and Newton/Raphson is initialized with Ty = 0, then f'(xy) = f'(0) =
0 so x1 cannot be computed.

If Newton/Raphson is initialized with any other real number xo < 0, then the
sequence T, converges to —/2. If Newton/Raphson is initialized with any other real

number xy > 0, then the sequence ,, converges to /2.

Example 10.1.2. (Unexpected Answer) The initial guess xo was not chosen suffi-
ciently close to the root x = r and the Newton/Raphson sequence converges to an
unexpected answer.

If f(x) = sin(z) and Newton/Raphson is initialized with xo = 3 + 0.001, then the
sequence converges to a root r. However, the root r is far to the right of the initial

guess.

Example 10.1.3. (No Answer) The function f(x) fails to have a real root.
If f(z) = 2?+1 and Newton/Raphson is initialized with any real number xq, then the

sequence x, simply bounces around and never has any hope of converging.
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Example 10.1.4. (First Derivative Problem) The first derivative f'(x) does not exist
at the root and the Newton/Raphson sequence diverges.
If f(z) = 23 and Newton/Raphson is initialized with any real number xy # 0, then

Tpi1 = —2x, and the sequence diverges to co.

Example 10.1.5. (Poor Initialization) The initial guess xo was not chosen suffi-
ciently close to the root x = r and the Newton/Raphson sequence oscillates.
If f(z) = ze™® and Newton/Raphson is initialized with xy = 0.5, then the sequence

x,, oscillates between +0.5.

Example 10.1.6. (Poor Initialization) The initial guess xo was not chosen suffi-
ciently close to the root x = r and the Newton/Raphson sequence diverges to infinity.
If f(x) = ze™® and Newton/Raphson is initialized with xy = 1, then the sequence x,

diverges to +00.

Simplicio: So if I am computing my Newton/Raphson Algorithm for a particular
function and it hasn’t converged in 200 iterations, then I need to take a second look
at the problem to make sure the method has a chance of working.

Galileo: Correct. And remember, the type of problem most likely to occur is the
one depicted in Figure 10.1. In higher dimensional vector spaces, this problem is so

common it is labeled “The Curse of Dimensionality.”

Exercise Set 10.1.

1. Use the method of Newton/Raphson to compute a root of the polynomial p(x) =
2? + 1. Begin by Initializing the method with 2y = 1 and compute a thousand
terms. What do you observe? Can you decide whether or not the resulting
sequence diverges to infinity or is bounded? Initialize the method a second
time with the complex point zy = 1 + i, where i = /—1. What do you notice

about this sequence of iterates?

2. Use the method of Newton/Raphson to compute a root of the function f(z) =

3. Note that 2 = 0 is a root of f(z). Initialize Newton/Raphson with values
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of zo = 0.1,0.2,...,1. What do you notice? How about if we initialize with

xo = 0.01 or zg = 0.0017

I f(x) = o e~**, then implement Newton/Raphson with the values z, =

0.25,z9p = 0.50, and zy = 0.75. What do you observe with these three ex-
amples? Find the largest real number L such that if o € (=L, L), then the
Newton/Raphson sequence {x,}5°, converges to the root 0.

If the secant method is used to compute a root of the function f(z) = ze *’

with gy = 1/2 and x; = 1, then does the method work? How many iterations

1

16,000 Compare the

will be required to estimate a root of f(x) to an accuracy of
number of iterations required by the Newton/Raphson method when zy = 1/2

or rg = 1.

Use the method of Newton/Raphson to compute a root of the function f(z) =
sin(z). Note that = 0 is a root of f(x). Initialize the method with values of
o = 5 + 0.1 and 29 = § + 0.001. Does the method converge to a root? If so,

find it.

10.2 Newton/Raphson and Double Roots

Galileo: We would now like to mention some examples, which reflect on the the rate

of convergence for the method of Newton/Raphson. As it turns out, different choices

of functions f(z) may produce different rates of convergence. In some of the exercises

we assigned the convergence took 6 iterations to achieve as much convergence as you

could want, while others took more than 30.

Simplicio: Yes, [ remember that computing the square root of 5 worked great, while

the square root of zero took much longer. I wondered about that.

Example 10.2.1. Galileo: Consider the example, where py(z) = f(z) = 2> —1000% =

22 — 1,000,000. Note that the roots are r, = 1000 and ro = —1000. The algorithm

f(zn)

for Newton/Raphson is given by the recursive erpression xn, = T — sy = Tn
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xi;ioo? = %xn + %. We have the output from this algorithm summarized in Table

10.1, where the initialization was chosen to be xy = 1001.

xo | 1001.00000000000
x1 | 1000.00049950050
x9 | 1000.00000000012
x3 | 1000.00000000000

Table 10.1: Three Estimates of /1,000, 000

Simplicio: Since the method converges in three steps, there is no problem.

Galileo: Correct.

Example 10.2.2. Galileo: Now let’s compute a second example that looks almost the
same. If gz(x) = f(z) = (x — 1000)?, then the roots are r; = 1000 and ry = 1000.
(We have a double root!) The algorithm for Newton/Raphson is given by the recursive

eTpression Tny1 = Tp — ﬁé’;@ = X, — % =z, — “”"_721000 = %xn + 500. The
computations from this algorithm are displayed in Table 10.2, where we again have
mitialized with the value xy = 1001.

Simplicio: Hey, this algorithm is as bad as the bisection method. The error simply

drops by 50% for each iteration. Not good.

Galileo: In both these examples, we see that the sequence of numbers {x,}>°, is
converging to the number 1000. In the first example we have a sequence that produces
11 digits of accuracy after only three iterations. In the second example, the algorithm
has produced ly 4 digits of accuracy after 15 iterations. It is getting there, but even
after 30 iterations, we have w3y = 1.00000000000093, which still isn’'t quite there.
Simplicio: What seems to be the problem?

Galileo: While the first example has distinct roots that are far apart, the second has
the double root r; = ry = 1000. Double roots slow down the convergence rate from

quadratic to linear.
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xo | 1001.00000000000

x1 | 1000.50000000000

x2 | 1000.25000000000

x3 | 1000.12500000000

x4 | 1000.06250000000

x5 | 1000.03125000000

x| 1000.01562500000

x7 | 1000.00781250000

xg | 1000.00390625000

Ty | 1000.00195312500

x10 | 1000.00097656250

x11 | 1000.00048828125

x12 | 1000.00024414063

x13 | 1000.00012207031

x14 | 1000.00006103516

Table 10.2: Three Estimates of /1, 000, 000
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Simplicio: What are these quadratic and linear convergence rates?

1
on

Galileo: The sequence x,, = converges linearly to zero. The sequence x,, = 2%
converges quadratically to zero. These examples typify the different convergence
rates. Make a few calculations and you will see the difference. You do the math.
Virginia: Our initial guess xy = 1001 is reasonably close to the final answers. What
if we had made a poor initial guess?

Galileo: If we use zyp = 1 as our initial guess, then the method of Newton/Raphson
produces x1p = 1296.191592707 for py(x) and z19 = 999.024414063 for the root of
¢2(x). However, after 14 iterations, the method produces x4, = 1000.000000000 for
pa(x) and x4 = 999.939025879 for g»(x). Thus, our convergence is complete for the
root of py(x), but still has an error of more than 0.939 for the root of ¢»(x). Thus,
while the linearly convergent sequence converges better for the first ten terms, the
quadratically convergent sequence quickly overtakes it once it gets close. The Mean
Value Theorem will provide our main tool for showing linear convergence. Taylor’s
Theorem will provide our main tool for showing quadratic convergence.

Simplicio: I am not quite sure what is going on here.

Galileo: Don’t worry. We will return to this topic.
Exercise Set 10.2.

1. If py(z) = f(z) = 2> — 10% and xy = 10,001, then how many iterations of

Newton/Raphson are required to achieve an accuracy of 10 decimal places?

2. If () = f(xr) = (z — 10000)? and zy = 10,001, then how many iterations
of Newton/Raphson are required to achieve an accuracy of 10 decimal places?

Compare your answer with your answer to problem 1.

3. If f(z) = (z +3)? and xy = 1, then compute the first 30 iterations of the
Newton/Raphson algorithm. Format your output in a column. How does the

convergence rate of the last five computations compare with the first 257

4. Compute 15 iterations in the Archimedes/Heron/Newton/Raphson algorithm
to approximate the square root of K = 1,000, 000. Initialize the algorithm with
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xp = 1. Format your output in a column. How does the convergence rate of the

last five computations compare with the first 107

10.3 Instabilities Associated With Root Finding

James Hardy Wilkinson (1919-1986)

Galileo: Before moving on to the topic of the theory of convergent sequences, let us
take a closer look at the problem of computing the roots of the polynomials. First, to
give you an idea of where the problems lie, let us look at the graph of the polynomials
pa(@) = (z —1)(z = 2)(z = 3)(z — 4) and ps(z) = (z — 1)(z — 2)(z — 3)(z — 4)(z - 5).
These polynomials are of particular importance because the roots are simple (i.e. not
double roots) and equally spaced. However, also note that the graphs are almost flat
between the roots. Thus, a small change of one of the coefficients can lead to a large

change in the placement of the roots.

The British mathematician, James Wilkinson (1919-1986), noticed that the roots
of the polynomial pyg(x) = (z —1)(x —2) ... (z —20) have even more bazaar instabil-
ities. First, he noticed that if this polynomial is multiplied out, then the coefficient

of the 19" —degree term is —210.
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Figure 10.2: The Graph of the polynomial y = py(x)
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Figure 10.3: The Graph of the polynomial y = ps(x)
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Simplicio: That calculation is easy because that coefficient is simply the sum of the
integers —1, —2,...,—20. I know how to use the formula for the arithmetic sum to

compute this quantity.

Example 10.3.1. Galileo: Wilkinson also noticed that if this coefficient of x'° is

changed by 272 ~ 1077, then the roots become

1.0,
2.0,
3.0,
4.0,
5.0,
6.0,
7.0,
8.0,
8.9,
10.1 + 0.64,
11.8 + 1.7,
14.0 + 2.5i,
16.7 + 2.8i,
19.5 + 1.9i,

20.8.

In particular, o very small change in one coefficient can lead to a large change in

the values of the roots. Worse yet, half of the roots are complex.

Simplicio: That example is amazing!! Not only did the last root change by 0.8, but
ten of the roots suddenly became imaginary. It makes one worry about finding the

roots of any function.
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Galileo: I couldn’t agree more. The rule is: Small changes in the coefficients may
lead to large changes in the values of the roots. This type of problem occurs when the
function is very “flat” near the root. Try graphing the function locally near r = 20.

Simplicio: Has anyone ever tried to build something using these high-degree polyno-
mials?

Galileo: Indeed, a group of my engineering colleagues tried to use 16 and 32 degree
polynomials in a mathematical model designed to control the motion of an arm of
one of their robots. Their efforts were a disaster. One of their students was almost
killed.

Simplicio: So avoiding an unstable mathematical method could save lives.

Galileo: If you model a phenomenon with an unstable method, you are asking for
trouble. As always, the mantra for numerical analysis remains the same: “The name

of the game is control.”

Exercise Set 10.3.

1. Note that the polynomial of degree 9 with roots 1,2,3,4,5,6,7,8,9 can be
expanded into the form pg(z) = 2% — 45 * 2® + 870 x 27 — 9450 x 2% + 63273 *
2% — 269325 * ! + 723680 x 23 — 1172700 * 2% + 1026576 * x — 362880. Using
available software, compute the roots of the polynomials gy(z), r9(z), and sq(x)

listed below.

(a) qo(z) = 2° — (45 + —%5) * 2® + 870 % 27 — 9450 * 25 + 63273 x 2° — 269325 *

105

ot 4+ 723680 x 23 — 1172700 * 22 + 1026576 * 2 — 362880,

(b) ro(x) = 2 — (45 + =1) % 2% + 870 % 7 — 9450 % 25 + 63273 * 2° — 269325 *

107

xt 4+ 723680 x 23 — 1172700 * 22 + 1026576 * 2 — 362880, and

(c) so(x) = 2% — (45 + —%5) » 2% + 870 % 27 — 9450 x 2° + 63273 * 2° — 269325 *

108

xt + 723680 x 23 — 1172700 * 22 + 1026576 * 2 — 362880.

How many real and how many imaginary roots do each of these polynomials
have? What is the distance between corresponding roots of pe(z) and go(z),

po(x) and ro(z), and po(x) and sq(z)?
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Chapter 11

Successful Root Finding Methods

Galileo: Our next goal is to establish conditions when our root finding methods
“work.” In particular, we will show that the method always converges when computing
the bisection method, square roots, cube roots, and n'* roots. Of course, the square
root methods and the cube root methods are special cases of the n'® root method,
but they are worth doing because the geometry and arguments are so clear. Actually,
the three arguments are all based on the idea that a bounded decreasing sequence
converges.

Virginia: So that’s where the idea for those theorems on convergence sequences came
from.

Galileo: Light bulb time.

11.1 The Bisection Method

Galileo: Showing that the bisection method always works is easy. All we have to do
is find a bounded increasing sequence or a bounded decreasing sequence.

Virginia: In fact, we have both. For if [a,,b,] denotes the interval that has been
found at the n'™ stage of the bisection algorithm, then the sequence of points {a,,}°°,
is bounded and increasing, while the sequence {b,}>° , is bounded and decreasing. In

other words, you have two sequences from which to choose.

233
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Simplicio: But what if they converge to two different points?

Virginia: Remember that the error formula £, < b, — a, = "Z’—n“, which converges to
zero. Thus, lim,_, a, = lim,,_. b,.

Simplicio: Good. So the method always works.

Virginia: Well, you do have to remember that the function f(z) is continuous and

that f(a) > 0 and f(b) < 0, or vice versa. Other than that, you are in your comfort

zone.

Example 11.1.1. If f(z) = « + sin(z) — 13, for x € [0,15], then we have to check
two conditions to make sure that the bisection method will find a root in the interval
0,15).

First, we have to check that f(x) is continuous. However, since f(x) is the sum
of three continuous functions, it is continuous.

Second, we must check that f(0) and f(15) have opposite signs. However, since
f(0) = =13 <0 and f(15) = 15 +sin(15) — 13 > 0, this condition is satisfied and we

are done.

Example 11.1.2. If f(z) = 32> + 2, for v € [—1,1], the even though f(x) is contin-
uous, the signs of f(—1) and f(1) are the same. Thus, the bisection method does not

guarantee a root will be found.

Simplicio: What about the function f(x) = 32% — 2, for z € [—1,1]?

Galileo: Good point. Despite the fact that the function is continuous, the values
of the function at the two endpoints do not have different signs. In fact, we have
f(=1) = f(1) = —1. Thus, the only problem with applying the bisection method is a

poor choice of interval. If we had chosen the interval [0, 1], we would have been fine.

11.2 Success for Archimedes/Heron

Galileo: We now show that the square root method of Archimedes/Heron always

produces a bounded decreasing sequence. Recall that when we computed v/2, our data
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showed this property. The proof that this property always holds will be completed in
three steps.

1. The geometric mean is less than or equal to the arithmetic mean.

2. The points generated by the algorithm are bounded from below by VK.
3. The sequence is always decreasing.

The next three propositions formalize these three statements.

Proposition 11.2.1 (Geometric/Arithmetic Mean). If z1,z5 > 0 then

T1+T2
A/ L1T2 S s -

Proof. Since (z; — x2)* > 0, the result follows by simply expanding the product and

manipulating the factors. O
oe Tt
Proposition 11.2.2 (Boundedness). If K > 0,79 = 1, 2341 = —5%, and k > 1,
then x, > VK.
) " SET K
Proof. By the previous proposition, T, = —5% > /g * ol VK. O
xk-l-%

Proposition 11.2.3 (Decreasing). If K > 0,zy = 1,24, =
x> VI then xp < x.

sk >0, and

. . T+ - 2—K
Proof. Since z, > VK, xi—K > 0. 5ince T4 = —5* =T —

2
57, and 7 — K >0,

the result follows. U

Galileo: The next theorem proves that the algorithm of Archimedes/Heron always

works.

Theorem 11.2.4 (Square Root Convergence for Archimedes/Heron). If K >

K

+E
0,00 =1, 2511 = t 5, then the sequence {x}72, is bounded and decreasing and thus

converges. Moreover, if L = limy_,o @%, then L = /K.
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Proof. Since the sequence {xj}7, bounded and decreasing, it converges to some

number L. Thus,

. limy oo {2r} + ﬁ L+ &
L= Jim {wee) = e = =
K
which implies that L = “S%. Thus, 2L = L + £ and L? = K. O

Virginia: Now I see why we proved that the limit of the sum is the sum of the limits.
This argument is easy.
Simplicio: While I do not have the disposition or time to endure many proofs, I agree

that this one isn’t too bad.

11.3 Success for the Cube Root Method

Joseph-Louis Lagrange (1736-1813)

I regard as quite useless the reading of large treatises of pure analysis:
too large a number of methods pass at once before the eyes. It is in the
works of applications that one must study them; one judges their ability
there and one apprises the manner of making use of them.-Joseph-Louis

Lagrange

Galileo: We now turn to the problem of showing that the method for computing cube

roots always works. While it is virtually the same as the proof of the square root
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method, it unfortunately has a new technical difficulty.

Virginia: What seems to be the problem?

Galileo: For cube roots the proof that the geometric mean is less than the arithmetic
mean becomes a bit more complicated. Let us introduce Joseph-Louis Lagrange
(1736-1813). Though self taught, he was able to make significant contributions to the
Calculus of Variations, Group Theory, the three body problem, differential equations
(the Euler-Lagrange equations), and the theory of constrained maxima and minima.
Virginia, could you tell us more about his life?

Virginia: While he is always thought of as French, Professor Lagrange was born in
Turin in what is now a part of Italy. In 1755 he began a series of collaborations with
Leonhard Euler on problems related to the cycloid. He also worked on the three body
problem, the motion of the moon, and the perturbations of the orbits of comets by
the planets. He made contributions to algebra and number theory including the first
proof of Wilson’s theorem: If p is a prime number, then p divides (p — 1)! + 1. In
abstract algebra, he proved that the order of a subgroup divides the order of a group.
Galileo: In 1793, he almost lost his life during the French Revolution. If the chemist
Lavoisier had not spoken on his behalf, he would have been executed. Unfortunately,
Lavoisier was not so lucky since a revolutionary tribunal condemned him to death
the next year.

Virginia: Need I reiterate, science seems to be a most dangerous business.

Simplicio: I think I am going to like this guy. He works on real-world problems.
Galileo: I agree. You will also get to meet him again when we discuss the error
formulas for Taylor’s Theorem and polynomial approximation. Joseph-Louis could
you provide us with a bit of insight into your method of constrained maxima and
minima? In particular, we would like to show that the geometric mean never exceeds
the arithmetic mean.

Lagrange: While this fact can be shown algebraically, my method of (Lagrange!)
multipliers is more elegant. The technique can also be generalized to any number of

points.
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Proposition 11.3.1 (Geometric/Arithmetic Mean). If z1, x5, 23 > 0, then

T1m2T5 < %ﬁx?’
Proof. An elegant way to prove this result is to recast the problem as a constrained
optimization problem, where the function F'(x,y,z) = zyz is maximized subject to
the constraint x + y + z = M. By the method of Lagrange multipliers, we know
that the solution to this problem will be found at a critical point of the function
G(z,y,2,\) = F(z,y,2) — Mx +y+ 2z — M). In particular, we must solve the system

of 4 equations and 4 unknowns:

% = yz — A =0
% = rZ— A =0
%—f = Ty — A =0
9% — —(z+y+z—M) =0.

From the first 3 equations, we see that the only non-zero solution of this system
is when yz = 2z = 2y or ¢ = y = 2. From the 4 equation we see that z +y + z =
r+x+x = 3z = M. Since the maximum value of F(z,y,z) = xyz occurs at
x =y =z = M/3 and never exceeds &« ¥« & = (z4y+2)3/27, xyz < (x+y+2)*/27.
The result follows by taking the cube root of both sides of this expression. O
Simplicio: Unfortunately, I don’t remember my Calculus well enough to appreciate
that proof. I think I will simply accept this proposition and ask that we move on.
At least the statement is easy enough to understand. How did he come up with that
complicated proof anyway?

Galileo: He was a smart fellow. In any case, you will be pleased to note that the rest

of the argument is virtually the same as the one provided for square roots.

Proposition 11.3.2 (Boundedness). If K > 0,zy = 1,254 = x) — %K then

3:0% ’
3
Ty > VK.

>

$k+:ltk,+w

Proof. By the previous proposition, Ty, = ——5—% > 3/x) x Ty, * IK =vK. O
k

Bl
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Proposition 11.3.3 (Decreasing). If K > 0,2y = 1,251 = 2% — k>0, and

1, > VK, then xpyq < .

327

3
Proof. Since x, > VK, 23 — K > 0. Since zpy1 = xp — :chZK and 23 — K > 0, the
k

result follows. O

We can now use these two propositions to prove the following convergence theorem
for the cube root method.

3_
T — K K
3$k2 )

Theorem 11.3.4 (Cube Root Convergence). If K > 0,2y = 1,254 = T —
then the sequence {xy}52, is bounded and decreasing and thus converges. Moreover,

Proof. Since the sequence {xy}72, is bounded and decreasing, it converges to some

number L. Thus, we immediately observe that L = L — 3; and L = K. O

Simplicio: Well, after we passed that initial technical detail, the ideas are not so
difficult. In fact, the proof is virtually the same as the one you presented for the
square root method.

Galileo: You seem to be getting more comfortable with these proofs. Maybe you
should consider becoming a mathematician. You might like the profession.
Simplicio: I fear my economic aspirations are higher than yours.

Galileo: Good family, loyal friends, a glass of red wine, what more is there?

11.4 Success for the n'" Root Method

Galileo: Just as we were able to determine a method for finding cube roots from the
square root method, we can also determine a method for finding n'* roots. We have
the following recursive algorithm for n'* roots of K, where K > 0 :

.1‘0:]_,

g — K
Ter1 = Tk — L
k

This algorithm leads us to the convergence theorem for the n* root method.
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Theorem 11.4.1. If K > 0,29 =1, and xp1 = Tp — xi;ﬁ then the sequence {xy}72

nay

is bounded and decreasing and thus always converges to V' K.

Again, to prove the convergence theorem we use the following three propositions.
The first proposition states that the geometric mean is always less than or equal to

the arithmetic mean.

Proposition 11.4.2 (Geometric/Arithmetic Mean). If xy,29,23,...,2, > 0,

then n/$1x2$3 .. ‘/ETL S w.

Proof. The proof is the same Lagrange approach to the cube root case. Just more

variables. O

Proposition 11.4.3 (Boundedness). If K > 0,290 = 1,244 = % — %, then
nIk
Tpe1 > VK.

Proof. By the definition of the sequence and the previous (i. e. Geometric/Arithmetic

Mean) proposition,

Ty — K
Tk+1 = Tk — =1
n:rk
K
(n — l)xk + =
_ Ty
n
K
n n—1
Z xk * n—1
L,

0

Proposition 11.4.4 (Decreasing). If K > 0,2y = 1,24, = o) — %, k>0 and
n:vk
xr > VK, then xp < .

Proof. Since x, > V K for all k > 1, we see that z}} — K > 0. Since x4, = o) — xr’:;f

Tlil?k

and both the numerator and denominator of the expression Zi"f are both non-
k

negative, ;1 = x,— non-negative number. Thus, xj 1 < x. O
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n
xp—K
nwkn—l )

Theorem 11.4.5 (n'* Root Convergence). If K > 0,29 = 1,Z441 = Tp —

then the limy,_,o xp exists and limy_, o = VK.

Proof. Since the sequence {xy}72, is bounded and decreasing, it converges to some
number L. Thus, by the limit theorems we know that L = L — % Simplifying this

expression we see that L" = K and the result follows. O

Exercise Set 11.4.

1. Show that the method for computing the fifth root of a number always con-
verges. Use your method to compute the 5 root of 10. How does the rate
of convergence compare with the rate of convergence when the square roots of

these numbers are computed? Repeat for the numbers 100,000 and 0.000001.

11.5 Success for Newton/Raphson

Galileo: We would now like to build on the success of the method of Archimedes/Heron.
To do that, we need to consider the key ingredients that guarantee the method will
always work.

Virginia: In the discussions of the success of each of the square root, cube root, and

n'* root methods, we only had to worry about three issues:

1. The geometric mean does not exceed the arithmetic mean.
2. The sequence is bounded from below by the root we are seeking.
3. The sequence is always decreasing.

Galileo: So how do these properties interact?

Virginia: The only reason we need the geometric and arithmetic means is to show
that x,, > r, where r = VK or r = VK is the root. We showed the sequence 1is
decreasing by showing that x,,1 = x, — @,,, where (),, equals a positive number that

becomes smaller for each iteration.
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Galileo: How did we show @, is positive?

Simplicio: The quantity @, = Q(x,) = J{,((fc’;)) is positive because both f(z) and f'(x)
are positive for all x > r.

Galileo: Is this sufficient?

Virginia: I am not sure it will suffice to only have f(z) > 0 and f’(x) > 0. Think of
the example f(z) = ze* . If we initialize the method of Newton/Raphson with a point
just to the left of the bump at x = 4, then the first iteration x; will be negative and
be to the left of the root r = 0. For example if zy = 72 — 0.001, then I suspect we
will have a problem.

Galileo: Let’s consider the shapes of the curves y = f(z) = 2> — K and y = f(x) =
ze®”. Recall from Calculus that concavity is one measure of the shape of a curve. If
f"(x) > 0 for all x in some interval X, then the curve y = f(z) is concave up.
Virginia: And thus holds water!

Galileo: Correct. On the other hand, if f”(x) < 0 for all z in some interval X, then
the curve y = f(x) is concave down.

Simplicio: And thus does not hold water!

Galileo: Note that the first curve is concave up on the interval [0, c0), while the second
is concave down on the interval [0,1/32). Note further that when we use the method
of Newton/Raphson to find roots of these functions, the approximations differ.
Virginia: In what way?

Galileo: As we have established, the approximations for the positive root of f(x) =
22 — K form a decreasing sequence which is bounded from below by the root r = VK.
However, for the function f(z) = xe®" with a choice of zy = 0.4, the sequence of
iterates oscillates between positive and negative estimates. The goal of this discussion
is to build on the success of Archimedes/Heron. To this end we first state and prove

a small proposition, which states that if the method Newton/Raphson produces a

sequence which converges to a number L, then L will be a root of the function.

Proposition 11.5.1 (Newton/Raphson Convergence). Let f(z) : [a,b] — R
be a differentiable function with the property that |f'(x)| < M for all x € [a,b]. If
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a sequence of points {x,}2 | in |a,b] is defined recursively by xy € |a,b], T,11 =

Ty — J{,((‘Z)), and limy, oo x, = r, then f(r) = 0. (i.e. The point x = r is a root of

f(x).)

Proof. We will prove this theorem by showing that if € > 0, then we can find an
integer N with the property that |f(x,)| < € for all n > N.

Step 1. (The Challenge)

Let € > 0 be given.

Step 2. (The Choice of N)

Choose N so that if n > N, then | z, — r| < 557.

Step 3. (The Check)

Since T, 11 = Ty — ;,((Z")) , we begin by subtracting x,, from both sides of the equation

and multiplying by f'(x,) so that f(x,) = —f'(2n)(®ns1 — z,). Thus, |f(z,)| =
[F @)l [Zngr = 2.
However, if |f'(x)] < M for all € [a,b], then |f(z,)] < M |zp41 — x| <

M|ty =1+ 7 = 24]) < M{Jtwps — |+ Ir = wal) < M( J<2t=c O

_€ _€
2M+2M

Simplicio: Actually, I think I can visualize this proposition in the following way. If
this proposition were to be false and f(r) > 0, then as the the points x,, get close to r
the slope of the tangent lines get steeper and steeper. Thus, the slope of the tangent
line at x = r should be infinite.

Virginia: While a good idea, I think you have in mind the special case when z, > r
for all n and f(z) > 0 and f'(z) > 0 for all # > r. In this setting, we know that
f(z,) > f(L) > 0 which I agree would force f'(r) = +o0.

Galileo: The next theorem is a generalization of the proof of the convergence of

Archimedes/Heron.

Theorem 11.5.2 (Newton/Raphson Convergence 2). Let f(z) : [r,+00) = R

be a function with the following properties:

1. f(x) has a root at x =r,
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2. f(z), f'(x), and f"(x) exists for all x € (r,+00),
3. xy is any point € (r,4+00), and

4- Tpt1 = Tp — ]{’((Q:U;;))

If f(x) >0, f'(x) >0, and f"(x) > 0 for each x € (r,+00), then
1. zpyq <z, (decreasing),
2. 1 < xpy1 (bounded below by r), and

3. limy, o0 ¢, = 1. (convergence)

Proof. Step 1.

f(zn) pos
f,(xn

Tni1 < &, and the sequence is decreasing.

If z, € (,+00), then x,.; = z, — = x, — pos < x,. Thus,

I
8
S

|
|

Step 2. If we suppose that x,, > r, then we must show that z, ., > r.

If x, > r, then the vertical distance between the curve y = f(z) and the tangent
line y = f(x,) + f'(x,)(x — x,) at the point x = x,, is d,, = f(x,) + f'(x,)(r — x,) —
f(r) = f(zn) — f(r) + f'(x,)(r — z,). But, by the Mean Value Theorem, there is a
point z € [r, z,] with the property that f(z,) — f(r) = f'(z)(z, — 7).

Thus, d,, = f'(2)(x, — 1)+ f'(@)(r — zn) = f'(2)(@n — 1) = fl(2n)(xy, — 1) =
(f'(2) = f'(zn) )@ — 1) = = f"(22)(xy, — 2)(x, — ) < 0. Thus, the tangent line is a
negative number at the point x = r and the approximation x,; must be between r
and x,,.

Step 3.

Since the sequence {x,}52, is bounded from below and decreasing, it converges
to some number L. By the previous proposition, we know that f(L) = 0. Since we
are assuming f(x) > 0, for all x > r, then we have a contradiction if f(L) > 0. Thus,

it must be true that L = r. O

Simplicio: Despite your motivation, that proof was a bit over my head. How about

an example?
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Galileo: Sure, how about the polynomial p(z) = 2® +z — 17

Example 11.5.1. If p(x) = 2* + x — 1, then note that

3. p(x)=32*+1>0 for all z, and
4. p"(x) =6x >0 for all x > 0.

Thus, the polynomial has a root x = r between 0 and 1. Since both the first and
second derivatives are positive for x > 0, we know above theorem applies. Thus, if we

initialize Newton/Raphson with any point xy > 1, the method will always converge.

Virginia: [ was just thinking about the proof of the Proposition you just presented.
If you apply the proof to the function f(z) = 2? + 1, then we know the sequence
derived from Newton/Raphson cannot possibly converge. As we showed by computing
millions of terms, the sequence bounces all over the place. The inequality |f(z,)| <
M |xy41 — | is useful here because with our function we know that f(z) > 1 for
all z € R. Thus, if we restrict our attention to a particular interval, say [—1, 1], then
f'(z) =2z so that |f'(x)] < 2= M forallz € [—1,1]. Thus, 1 < f(x,) < 2 |Xp11—T4],

which implies that no two consecutive terms of the sequence can be within & of one

2
another.

Simplicio: Hmmm.

Exercise Set 11.5.

1. If p(x) = 2° + 23 — 1, then show that the method of Newton/Raphson can

always be used to compute the positive real root.

2. If p and ¢ are positive numbers and p(x) = 2 + px — ¢, then show that the
method of Newton/Raphson can always be used to compute the positive real

root.
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Chapter 12

Convergence Rates For Sequences

Galileo: While we have mentioned linear and quadratic convergence, we now turn to
the problem of making these ideas precise.

Simplicio: You mean you want to know why the method of Archimedes/Heron takes
5 or 6 iterations to compute /2, while the bisection method takes more than 307
Galileo: Correct.

Virginia: I think it is interesting that it might be possible to make these ideas precise.
It seems like you would only be able to compute a few simple examples and then hope
they are representative when ou are confronted by a new problem.

Galileo: T think you will be surprised how easy it is to understand the difference.
Simplicio: Easy is good.

Virginia: What do we have to know?

Galileo: The Mean Value Theorem will be the key for linear convergence, Taylor’s

Theorem will be the key for quadratic convergence,

12.1 Linear Convergence

Galileo: While the next discussion may appear a bit annoying at first, we now need
to define the Newton/Raphson method in terms of functions instead of sequences.

The reason for this increase in difficulty is to provide a context so we can present a

247
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careful discussion of the convergence rate.

Example 12.1.1. Galileo: Let us begin with the simple example T'(x) = %x Note
with this example, we have a root at x = 0. Better yet, we can find that root by letting

xp = 1 and making the following computations:

1. T — T(l‘o) =

N[

—

2. xy=1T(x) = 321 = 53, and

3. T3 = T(JIQ) = %CEQ = 2%

What do you notice about this sequence?

Simplicio: Well, it is obviously converging to zero.

Galileo: Sure, but how fast?

Simplicio: The error seems to be cut in half at each iteration.

Galileo: Your observation is on target.

Example 12.1.2. Galileo: Now, we present a slight variation on the previous example
by defining T'(x) = %x?

Simplicio: Well if we let oy = 1 and iterate, we see that

1. xlzT(,To):g,
2. g =T(x1) = %xl = (%)2, and
3. T3 = T(JIQ) = %CEQ = (%)3

Thus, the sequence {xy}32, converges to zero. However, this time the error is reduced

by only 33% at each iteration.

Galileo: Now I think you can see that these examples lead us to the following defini-

tion.
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Definition 12.1.1 (Linear Convergence). If a sequence {x;}3, converges to a
number L, then the rate of convergence is called linear or (13' — order) if there are
constants K > 0 and 0 < M < 1 and an integer N with the property that if & > N,
then |z — L] < KM*.

Galileo: In the examples given above, note that the limit L = 0, K = 1. In the

first example, M = %, while in the second M = % Note also for these examples
that lim, oM™ = 0. The next proposition will show that if 0 < M < 1, then this
will always be true. Actually, this proposition will be used on a number of different
occasions during our future discussions. In particular, we will need this fact when we

discuss the convergence of the Geometric Series.
Proposition 12.1.2. If |[M| < 1, then lim, .o M™ = 0.

Proof. If M = 0, then the proof is easy so let us assume that M # 0.
Step 1. (The Challenge) Let € > 0 be given.

Step 2. (The Choice of N.) Choose N > l(f;a(]\?‘).

Step 3. (The Check that N is sufficiently large.) If n > N, then n > l;;a(]\?‘).

Since |M| < 1,log(|M|) < 0. Note that the inequality changes signs when we
multiply both sides by log(|M]).
Thus, we know nlog(|M]) < log(e). By the properties of logarithms, log(|M|") <

log(€) and we are done. O

Simplicio: I hate to be annoying, but which log function did you use?
Galileo: I guess I was a bit sloppy on that point, but it really doesn’t matter. Re-
member that all log functions are the same up to some constant multiple.

The purpose of the next proposition is to establish sufficient conditions for when
we know a sequence converges linearly. Sometimes mathematicians actually use this
criterion as the definition for linear convergence. Since our first goal will be to show
that the bisection method produces a sequence which converges linearly to a root and
since it is not obvious that this criterion is satisfied for the bisection method, we will

use the weaker definition given above.
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Proposition 12.1.3 (Test for Linear Convergence for a Sequence). If |M| < 1
and {xy}32, is a sequence with the property that |vg.1 — L| < M|z — L] for all k > 0,
then the sequence {x,}5°, converges linearly to L. In particular, |v,—L| < |xo—L|M"

for alln > 0.
Proof. Since |xg41 — L| < M|z — L] for all k, we know
1. If k=0, then |z, — L| < M|zy — L.
2. If k =1, then |zy — L| < M|z, — L| < M?|zy — L.
3. It k =2, then |z3 — L| < M|zy — L| < M?|xo — L|.
4. If k =n —1, then |z, — L| < M|z, — L| < M™z — LJ.

In the definition of linear convergence, note that K = |zo — L|.

Since |M| < 1, we know that lim, oM™ = 0. Thus, lim, 2, = L. O

Virginia: Can you give us an example of a sequence, which converges but does not

converge linearly?

Example 12.1.3. Galileo: While the sequence xy = % converges to zero at a reason-
able rate, it does not converge linearly.

To show this we actually have to give a short proof by contradiction.

Proof. By way of contradiction, assume there are constants K and M so that 0 <
M <land|f—0/<KMFforallk=1,2,....
However, if this is true, then by computing the logarithms of both sides, we see

that
1
log(%) <log(K) +k log(M)

log(k)  log(K)

—log(M) <
og(M) < ’

Since 0 < M < 1, —log(M) > 0.
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log(k)
k

log(K)
k

Since limy,_, =0 and limy_,, = 0, we conclude that

0 < —log(M) <0,
a contradiction. O

Virginia: So [ guess this sequence is in the “slow” group.

Galileo: You got it.

Exercise Set 12.1.
1. Determine whether or not the sequence x,, = % converges linearly to zero.
2. Determine whether or not the sequence x, = nin converges linearly to zero.

3. Prove: The sequence xp = k—lz does NOT converge linearly to zero.

Tpy1—L

4. Prove: If limy, 0|22 57| = M < 1, then the sequence {w,};°, converges

linearly to L.

12.2 Linear Convergence for the Bisection Method

Galileo: Now let us now show that the bisection method converges linearly. All we

have to do is show that our error formula satisfies the definition for linear convergence.

Proposition 12.2.1 (Linear Convergence for the Bisection Method). Let
f(z) : [a,b] = R be a function, which is continuous at each x € [a,b] and either
fla) > 0 and f(b) < 0 or f(a) < 0 and f(b) > 0. If [ay,,b,] denotes a sequence of
intervals defined by the Bisection Method, 1 is a root of f(x) with the property that
r € lan, by, for all n, and E, = r — a, denotes the error between a, and r, then

Bl = law — ] < (0 — a) .

Proof. Let [ag, by] = [a, b]. Since r € [ay, b,] for all n, we know
|Ey| = Jay — 7| < (b — a1) < (bo — ag)3-
|Es| = |ag — 7| < (by — a) < (by —a1)5 < (bo — o) 3

|En| - |an - T| < (bn - a'n) ~ (bn 1 — Op— 1)2 (bO - a'O) U
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Galileo: Actually, we could have made a slightly smarter choice for the approximation
to the root if we had chosen the midpoint m, = % With this choice we see that
then |E,| < (b— a,)(%)”“.

Simplicio: Is that all there is to it?

Galileo: Some topics are easy.

12.3 Linear Convergence For Newton/Raphson

Galileo: I chose these examples because they provide insight into why the square root

and cube root algorithms converge.

Proposition 12.3.1 (Linear Convergence for Archimedes/Heron). If K >
K

0,20 > VK, and x4 = xn;“”” , then the sequence {x, }22, converges linearly to VK.

Moreover, |z, — VK| < (3)"z — VK].

Proof. If f(x) = 2 — K, where K > 0, the square root algorithm is given by the

function T'(z) = x — J{,((?) = — "”’22;[{ = Lo+ £ Since T(z) > VK for all z >

VK, the domain and range of this function can both be taken to be the interval
[VK,+00). Since T"(z) = £+ — & € [0, 1] for all z > VK, we can apply the Mean

Value Theorem to the function T'(z) at the values a = zy and b = 441 to get
tes1 = VE = T(a) = TWE) = T'(2) (- VE).

Thus, if we initialize our algorithm with a choice of z, > V'K, then for all integers
k> 1 we see that |21 — VK| = |T"(2)(zx — VK)| < |ox — VK|. Thus, by the Test
for Linear Convergence we see that the sequence {z,}>, converges linearly to VK

and |z, — VK| < (3)"zo — VK] O

Thus, the difference between the (n)” estimate and /K is less than 50% of the
difference between the previous estimate and v/K for all n.
Simplicio: I noticed that you suddenly changed the assumption in the Archimedes/Heron

algorithm from zy =1 to xy > VK. What is going on here?
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I 1 i 1 i 1 i
1 2 3 4 5 B 7 8 =] 10
The & Values

Figure 12.1: The Graph of y = T"(z) = 5 — 55 when T'(z) = 10+ &

Galileo: I tried to slip that past you, but you caught me. The reason is that |77(1)|
may exceed 1. Even though it will always be true that x; = T(xy) > VK, the
statement of the proposition is cleaner if we assume xy > VI . Maybe we should have
always initialized the algorithm with z, = % If K > 4, we will always know that

zo > VK.

Simplicio: What about the cube root algorithm?

1 1 i 1 i 1 i
1 2 3 4 5 B T g 2] 10
The & alues

Figure 12.2: The Graph of y =T"(z) = 2 — & when T'(z) = 22 + .5
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Galileo: Same game. Begin by letting f(x) = 23 — K. If we initialize our algorithm

with a choice of 2y > v/ K, then for all integers n > 1 we see that

fl@ P -K 2 K

fllz) v 322 3° T3

T(x)=x—

Thus, T"(z) = 2 — 25, By looking at the graph of the function we see that 1”(z) €
[0, 2] for all z > VK. By the Mean Value Theorem we can again apply the Linear
Convergence Criterion to make the estimate |z, — VK| = |T(2v, 1) — T(VK)| <
2z, — VK| < (3)"|zo — VK| so that the sequence converges linearly to VK.

Example 12.3.1. In our ezample where f(x) = (x — 1000)? and o = 1, recall that

the sequence of Newton/Raphson iterates converged to the root r = 1000. If we once

again let T(x) = x — J{,((?) = 2 4+ 500, then note that T(1000) = 1000 and T"(x) = 1.
Thus, |T'(x)| = &+ < 1 for all x € R. By the Mean Value Theorem, we can see
that if @, denotes the n' iterate generated by the method of Newton/Raphson, then
|z — 7| = |z — 1000 = |T(2n—1) — T'(1000)| = |3|[#n—1 — 1000| = $|zp_1 — 1000] for

all n. Thus,
1. |zy —1000| = %|x0 — 1000,
2. |zy — 1000] = %|x1 —1000| = (%)2|x0 —1000],

3. |5 — 1000 = L]y — 1000] = (1)3|zy — 1000,

4. |z4 —1000| = |z — 1000] = (3)*|zo — 1000],

6. |z, —1000] = |z,—y — 1000 = (5)"]zo — 1000,

Thus, our error is reduced by 50% for each iteration. Note also that the closer
the initial guess is to the final answer, the better the approximation. This example
should help make the Theorem on Linear Convergence for Newton/Raphson more

concrete.
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Let X be an interval in R. If the function f(z) € C*(X), then define a new

transformation by the rule T'(z) = = — J{,((‘?). If f'(x) # 0 for all z € X, then T'(x)

will be well-defined for all z € X. We assume f(z) € C?(X) because we will want to
compute T'(z) and f"(z) appears as a factor in the formula for T'(z). Also, if r is a

root of f(x), then T'(r) = r. Conversely, if T'(r) = r, then f(r) = 0. Note also that

the sequence of points generated by the method of Newton/Raphson can be written

22— K
2z

as Tx41 = T'(zy). For example, if f(x) = 2* — K, then T(z) = 2 —
Galileo: The first step is to compute the derivatives of T'(x). This information is

stored in the following proposition.

Proposition 12.3.2. Let X be an interval in R. Let T(x) : X — R be defined by
the formula T'(z) = v — L% where f(z) € C2(X) and f'(z) # 0 for all x € X, then

fr(x)?
T'(z) = W for all x € X.
Proof. Use the quotient rule from Calculus to compute the derivative of T'(z). O

Galileo: Note in the previous proposition that the minus sign in the formula T'(z) =

T — J{,((‘?) is the key to the simplification.

Simplicio: The minus sign?

Galileo: Note that if f(z) = 2? — K and T'(z) = z — J{,((?) = 12+ £ then the domain
and range of T(z) are the intervals [V/K,o0o). Thus, T(z) : [VK,o0) — [V, o).

The first derivative is 7(x) = 3 — 555, which has the property that 0 < 1"(z) < 3 for

et
all z € [VK,00). We showed earlier that if 2y € [VK,00) and .1 = T(z4), then
the sequence {x;}$2, converges to VK.

The next proposition provides general conditions which guarantee that the New-
ton/Raphson sequence will converge to a root. While it may appear a bit forbidding
at first, it is not so difficult to remember if you keep the previous examples in mind

when you read it. Better yet, the proof is no more difficult than the these examples

already discussed.

Theorem 12.3.3 (Linear Convergence for Newton/Raphson). Let X be an
interval in K. Let f(x) : X — X be a function with the property that the functions
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f(x), f'(z), and f"(x) are continuous at each v € X. If

1. © =1 is a root of f(x),

2. f'(x) #0 forallz € X,

4. T(x) € X forallz € X, and
5. |T"(x)| <M <1 forall xz € X,

then for any choice of xy € X the sequence defined by x,, = T (x,,) converges linearly

to the root r. Moreover, |z, —r| < M™xo — r| for all n.

Proof. Let xy € X.

For any integer n we know by the Mean Value Theorem that there is a point z
between zy and r such that T'(z,) — T(r) =1"(2)(x, — r).

Since T'(zy,) = xpy1 and T'(r) =1, 1 = r+71"(2) (2, —7). Since |T7(z)] < M < 1,
|z — 7| < M|z, — r| so that ,4; is not only between r and z,, but closer to r
than the previous estimate.

Since xp1 —r =T1"(2) (v, — 1), |1 — 7] < M|xg—7r|so that |vo—7r| < Mz, —r| <
M?|zy—r], |xs —7r| < M|zy—71| < M?|35—7|, etc. Thus, the general pattern emerges
that for all n |z, — r| < M"|zy — r|. Since M < 1, the sequence {M™}° , converges

to zero. Consequently the sequence {z,}°°, converges to 7. O

Simplicio: OK, the examples helped in following the proof, but what if M = 0.997
Galileo: If M = 0.99, then number of computations required to achieve a reasonable
degree of accuracy could be quite large. For example, if we would like to find the

number of iterations required to guarantee accuracy of 0.1, then we have to find an

integer n so that (0.99)" < 0.1. Solving for n we find that n > —2U% — 999 1053. If

10g(0.99)
—log(100) __

we would like accuracy of less than 0.01, then we would have to choose n > T09(099) —

458.2106.
Simplicio: What if M > 1.07
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Galileo: First, the proposition doesn’t allow for this case so from a technical point of
view your question is irrelevant. However, if the function 7'(x) has the property that

|T"(x)| > 1.0 for numerous points = € X, then the iterates may even diverge.

Example 12.3.2. Galileo: If f(z) = x5, then T(x) = —2x. Thus, if ¥y = 1 and

Tp1 = T(x,,), then we obtain the following sequence of iterates.

xp | 1.000000000000000

x1 | -2.00000000000000

T 4.00000000000000

x3 | -8.00000000000000

x4 | 16.00000000000000

x5 | -32.00000000000000

xg | 64.00000000000000

Table 12.1: Six Computations of z,, 11 = 1'(z,) = —2x

Simplicio: Fven I can see that this sequence is oscillating to +oo.

Virginia: Now that we have discussed all this theory, how about a simple question we
can all understand. In particular, we know that the Newton/Raphson method works
for all cubic polynomials of the form f(z) = 2* — K. Right?

Galileo: Correct.

Virginia: But what if we ask: Does Newton/Raphson work for any cubic polynomial?
In fact, let us make the question even easier by restricting our attention to polynomials
of the form f(x) = z® + pxr + ¢, where p > 0. Since we know that the Cardano
formulas can be used to write down an answer, it would be reassuring to know that
Newton/Raphson will also produce an answer. We also know by the examples we
have discussed that Newton/Raphson may fail. The reason the question interests me

is because if f(x) = 2> + px + ¢, then

B fl) 2’ +prtg
T(:r)—:r—f,(x)—:r BT
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Thus,
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f)f"(x) _ (z° +pz +q)(6z)
f'(z)? (322 +p)?

T'(z) =

For large = we know that |T"(z)| < 84+ € =< %+ { = I <1 so this problem seems to

fit the above Proposition if = is “out near infinity.” Of course, if x is near zero, T"(z)

could

be quite large so the condition that |T"(z)| < & < 1 will not always be satisfied.

Galileo: T don’t know the answer immediately.

Exercise Set 12.3.

. If f(z) = 2° — K, then find T'(z).

If f(x) = 2° — K and zp = 1, then show that the Newton/Raphson algorithm

converges linearly to the root v K.

If f(x) =27 — K and 2y = 1, then show that the Newton/Raphson algorithm

converges linearly to the root v K.

. If f(x) = (z — 10,000)? and zy = 1, then show that the Newton/Raphson

algorithm converges linearly to the root r = 10,000. How much is the error

reduced for each iteration?

If f(x) = (z — 10,000)® and 2, = 1, then show that the Newton/Raphson
algorithm converges linearly to the root r = 10,000. How much is the error
reduced for each iteration?

If f(x) = ze*", then find an interval (—a, a) so that the function T'(z) = :r—/{,((‘?)

has the property that |7"(z)| < 1.0 for all € (—a,a). Show also that the

Newton/Raphson algorithm converges linearly to the root x = 0 in that interval.

Compute 7"(z) for the functions f(z) = 2° — K, f(z) = 2" — K, and f(z) =
2" — K. What do you notice about T"(z) when z > r, where r = /K is a root?
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12.4 Quadratic Convergence For Newton/Raphson

Galileo: We now address two key issues associated with the Newton/Raphson method.
Since our computational experiments indicate that it converges rapidly, our first goal
is to understand exactly what the phrase “rapid convergence” means. Since the
method fails (with a poor choice of initial point) for functions as easy to define as
f(z) = ze~™ , the second issue is to determine an interval of convergence for the
method.

Again, we call on our friend Taylor to explain the issues involved with this analysis.
Taylor: We begin by defining two key functions, which generate sequences exhibiting

the difference between linear and quadratic convergence.

Ti(z) = %:r

Th(z) = ja°

Example 12.4.1. Sequences generated by T\(x) converge linearly to zero.

Using the function Ti(x) and a real number xq, define the following sequence:

) = Tl(.%'g) = %.7/'0

T2 = Tl(CEl) = %CE‘l = il‘o
I3 = T1($2) = %xz = %xo
Ty = T1 (.7}3) = %.7/'3 = 1—16.1‘0
trpr =Ti(ze) =336 = gz

Thus, for any choice of xqg the limit limg_, o xx = 0. If we define Ti(x) = Mz,
where M € (—1,1), then the resulting sequence also converges to zero. The closer M
is to zero, the faster the sequence converges. If the value of M is close to 1.0 (e.g.

M =0.99), then the sequence converges slowly.

Example 12.4.2. Sequences generated by To(x) converge quadratically to zero.

Using the function Ty(x) and a real number xy define the following sequence:
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T = TQ(JI()) = %JI%

o =T(r) =321 = g3

ry  =Ty(ry) =305 = Faf

zy  =D(r;) =333 =i
T = Tozy) = %xi = W%xgk

Note that if xg € (—2,2), then limg ooz, = 0. If zp = 1, then limg oz = 2.

If |xo| > 2, then the sequence {|xy|}52, becomes arbitrarily large and thus does not

converge.

Simplicio: OK, let’s see some numbers.

Galileo: Note that if o = 0.1, then the sequence will be within single precision accu-

racy (i.e. within 107°) after only 3 iterations and within double precision accuracy

(i.e. within 107'*) after only 4 iterations.

X

T = T1(90k71)

Ty = T2(5Uk71)

Zo

1.00000000000000

1.00000000000000

X

0.50000000000000

0.50000000000000

X2

0.25000000000000

0.12500000000000

€3

0.12500000000000

0.00781250000000

Lyg

0.06250000000000

0.00003051757812

X5

0.03125000000000

0.00000000046566

L

0.01562500000000

0.00000000000000

Table 12.2: Six Computations of x, ., = T\ (z,) = 52 and z,1, = Th(x,) =

Galileo: How about those numbers?

1 1,2
2 R

Simplicio: They sure look familiar. In fact, they are almost the same as the sequence

we computed for /2.

Galileo: You got it.
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Galileo: Let us summarize these two examples by making the following observations

for more general choices of the initial value xg.

1. If 2o € R and Ti(z) = 3z, then the sequence of points {z,}>>, generated

recursively by x,.; = T1(z,) always converges to zero.

2. If |zg| < 2 and Th(x) = 3% then the sequence of points {z,}°2, generated

recursively by x,.; = Ty(x,) always converges to zero.

3. If |zg| > 2, then the sequence of points {z,, }2°, generated by the function 75 (x)

always diverges.

4. If xy = 2, then the sequence of points {z, }°, generated by the function T5(x)

converges to one.

5. If &y = —2, then the sequence of points {z, }>° ; generated by the function T5(x)

oscillates between 1 and —1 (and thus diverges).

6. If |xo| < 2, then the sequence of points generated by T,(x) converges to zero

faster than the one generated by 77 ().

The rate of convergence associated with Ty(x) is called quadratic (or 2"¢-order)
convergence.

Taylor: We formalize the above concepts in the following definitions.

Definition 12.4.1 (Quadratic Convergence). If a sequence {x,}>° , converges to
a number L, then the rate of convergence is called quadratic (or 2™ — order) if there

is a constant M and an integer N such that if n > N, then |2, — L| < M|z, — L|*.

Example 12.4.3. Galileo: Let’s begin by showing the method of Archimedes/Heron
generates a quadratically converging sequence. Note the similarity between this dis-
cussion and the sequence generated by Ty(x).

IfK > 1, f(z) = 2> — K and 2o > VK, then the the method of Archimedes/Heron

generates a sequence, which converges quadratically to v K.
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Let T(x) = x — J{,((‘?) =x— $22;K. As we have noted many times before, the point

r =K is a root of f(z).
If v > VK and zo = r, then by Taylor’s Theorem we know there exists a point

z € [VK,00) with the property that
T(w) = T(r) + T'(0) (o — ) + = (5 — )2,

Since r = VK,
T(x)=TWVK)+T'(VK)xz - VK) + Téz) (z — VK)?
Since T'(x) =z — xZZ;K = i+ £ note that
1. T'(z) =1 — &5 and
2. T"(x) = 5.

Thus,
1. ifx € [VK,o0), then T(z) € [VK, 00),

2. T(VK) = VK,

J. T,(\/F) - % - 2(VE)? %
4. if K > 1, then |T"(z)| < |T"(VK)| =1
we see that for any x € [VK, +00),

=0, and

L
2

1.

IN

2=

Also, since T"(z) = %,
K 1
<1

T"(2)| < |T" \/E — - =
1"(z)| < [T"(VEK)] TR S
Thus, the constant M = 1 will have the property that |T"(x)| < M = 1, for any

v € [VK, o).
Thus, by Taylor’s Theorem there is a point z € [\/E, +00) with the property that

I(VE )+ TWE) e~ VE ) + (e - VE )

T(x) =
T i,
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Figure 12.3: The Graph of y = T"(z) = 3.

If n is any integer, v = x,, and x,+1 = T(x,), then there is a point

z =2, € VK,+o0) so that

[@ni1 = VK| = |T(2,) = T(VE) |

- el vE Y < L VE Y

To illustrate the power of what we have achieved, let’s consider the special case
when K = 3% = 9. Of course, this choice implies that the root r = /9 = 3. If the

initial guess is xg = 4, then

o1 = 3] 50 — 37 = -3 =5

o2 = 3] <3l — 3 < S =3 =3 (5 =)

o 3] <gles — 3P < S =3 =3 ()P =5
o1 = 3] <3l — 3 < Sl =37 =3 () = (5)"

In general,

L on
.= 3 < (=)L
20 —3] < ()

Simplicio: But wait a minute, what if I choose the initial guess to be xy = 57 With
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this choice, we see that

|x1—3|§%|x0—3|2: %(5—3)2:%22:2,
|x2—3|§%|x1—3|2§ %(ml—?)) :%22:2,
|x3—3|§%|x2—3|2§ %(:@—3) :%22:2,
|x4—3|§%|x3—3|2§ %(.703—3)2:%22:2

Galileo: Thus, if our initial guess that is far from the root, then these inequalities do
not provide any useful information.

Virginia: But the same is true of our function T5(x) = 32?. If we choose zy = 2, then
the sequence z,,41 = Ty(x,) diverges. Mr. Simplicio, you have simply pointed out
that poor initial choices lead to evil outcomes.

Galileo: The next theorem shows that this example generalizes to any function f(z).
Simplicio: This theorem looks complicated.

Galileo: Even though it has 6 separate hypotheses, they all say something you would

want to have happen with the function and its first and second derivatives.

Theorem 12.4.2 (Quadratic Convergence for Newton/Raphson). Let X be
a closed interval in R and let f(x) : X — X be a function. If

1. f(z), f'(x), f"(z), and f"(z) are all continuous at each x € X,

2. v =r¢€ X is aroot of f(x),

3. f'(x) #0 for all x € X,

4. T(x)=x— J{,((?) €X forallz e X
5. |T'(x)| < My <1 forall z € X, and
6. |T"(x)| < My for all x € X,
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then for any choice of xy € X the sequence defined by x,1 = T(x,) converges

quadratically to the root r. In fact, for all n we know that |vyiy — r| < 22|z, — r|%

Proof. If f(x) : [a,b] — R is a function with the property that f(x), f'(z), and f"(x)

are all continuous at each z € [a,b] and f'(z) # 0 for all z € X, then T(z) = z — 2

is differentiable and

ey 1 @@ = @) @)@

(f'(x) )? (f"(@))*

Since |T"(z)| < M; < 1 for all z € X, we know by the Mean Value Theorem that

the sequence defined by x,.; = T'(x,) converges linearly to the root x = r.

By Taylor’s Theorem we know that there is a point z € X such that

T”(Z)

T(x) =T(r)+T'(r)(x—7) + (@ —1)*.

Since f(r) =0,7(r) =r — Jf,((rr)) =71 —0=r. Since T"(z) = ’E;’fgg(ﬁ), T'(r) = 0.
(Thus, if r is a root of f(z), then r is a fixed point of 7'(z) and also a root of T"(x).)

Thus,

Tx)=Tr)+T(r)(z—7r)+

Hence, for any = € X, there is a point z € X so that

T(x)—r= TI2(Z) (x — )2

If |T"(x)| < M for all # € X, then
M
T(z) —r| < 7(1‘ —7)? for all 7 € X.

If n is any integer, x = x,,, and x,,.; = T'(x,), then just as in the special case with

Archimedes/Heron we see that
M.
|xn+1 - 7”| = |T(xn) - 7”| < 72(:5” - T)Z'

Since the sequence {x,,}°, converges to r, the convergence is quadratic. O
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Galileo: Actually, we can now compute an error formula for Newton/Raphson the

same way we did for the sequence {z,}° ; generated by the function T5(z).

Corollary 12.4.3 (Quadratic Error Formula for Newton/Raphson). If the hy-
potheses of the Quadratic Convergence Theorem for Newton/Raphson are all satisfied

and n 1s any integer n > 0, then

RS TR

Proof. Since

M.
|xn+1 - T| = |T(1‘n) - T| S 72(1‘71 - T)Q for all n,

|3L"1 - T| < 7@0 - T)2
M- M, M 2 M
[z — 7] < 72(351 —r)* < 72(72(900 r)?)? = E[TZ(% —r)]*
M- My, 2 M. 2 M
3 — 1] < 72(552 —r)* < 72(@[72(% —r)]")? = E[TZ(% —r))°

Example 12.4.4. Galileo: Note that we have already discussed this error formula
for the function f(z) = x* — 9 with initial guesses of Ty = 4 and xy = 5. In general,
if K> 1,f(z) = 2® — K, and xo > VK is arbitrary, then we still notice that the

constant My = 1 will dominate the 2"¢ derivative of T (x). Thus, we see that the root
r=+vK and
[ — VK| < =[5 (w0 = VK < 2[5 (w0 — VK"
My 2 2
Simplicio: So if we are smart enough to choose o close enough to VK so that
13(xo — VK) < 1, then the error estimate will tell us that the sequence will converge
rapidly to the root.

Galileo: Correct.
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Example 12.4.5. Galileo: If K > 1, f(z) = 2* — K, and zy > V'K is arbitrary, then

T(x)=2— ;,((I)) =o— ‘”;;ZK = 20445, Thus, T'(x) = 3 — 25 and T"(x) = 2%, Thus,
|T"(z)| < \/_ = \/_ < 2. Thus, we see that the constant My = 2 will dominate the

second derivative |T"(x)| and

2 M n 3
o — | = fro — VE] < <[5 0~ V)P < [0~ VE)P
2
Simplicio: Again, If we are smart enough to choose xy close enough to /K so that
((wg — VK) < 1, then the error estimate will tell us that the sequence will converge
rapidly to the root.

Galileo: Correct again.

Simplicio: OK, I understand this error formula now. However, I would like to ask
one simple question about that Quadratic Convergence Theorem.

Galileo: Yes.

Simplicio: Why do we have all those hypotheses? Can’t we just say that the conver-
gence is always quadratic?

Galileo: Actually, I am sorry to report that the answer to your question is: “No!”

Example 12.4.6. For example, the polynomial p(x) = (x — 5)? has a double root at
x = 5. If we apply Newton/Raphson to find this root, we discover that

While it is easy to show that the convergence rate is linear, the convergence rate fails
to be quadratic. The root cause of the problem (pardon the pun) is that the first
derivative p'(z) = 2(x — 5) happens to also have a root at x = 5. Thus, p'(5) =0 and
hypothesis 8 in the Quadratic Convergence Theorem is violated.

Simplicio: So?

Galileo: While the error is reduced by 50% at each iteration, the convergence never
speeds up the way it does for Archimedes/Heron. Make a few computations and you

will see that I am correct.
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Virginia: Murphy strikes once again!
Galileo: We now define the term simple root to make this distinction. For New-
ton/Raphson, the bottom line is that we are on firm ground as long as we have

simple roots.

Definition 12.4.4. If f(z) is a differentiable function defined on the interval (a,b)
with root x =1 € (a,b), then r is called a simple root if f'(r) # 0.

Taylor: Note that if K > 0, then the roots of p(z) = 2™ — K are simple.

Simplicio: Since p'(z) = na™", I can see that p'(V/K) = nVE" # 0.

Taylor: In general, a polynomial p,(x) will have a simple root if and only if it is not
repeated. For example, if p, (x) has a repeated root x = r implies the function p(z) has
a factor of (x—7)2. If the root is repeated three times, then p(z) has a factor of (x—7)3.
The Fundamental Theorem of Algebra states that any polynomial can be completely
factored. Gauss provided five different proofs of this intuitively obvious theorem
several hundred years ago. The proofs involve a knowledge of complex variables—a

beautiful subject you should know.

Theorem 12.4.5 (Fundamental Theorem of Algebra). If a, 1,a, »,...,a1,a9
are complex numers and p(x) = 2" +a,_12" 1 +. ..+ a1x +ag, then there are complex

numbers ri,ry, ..., 1, with the property that p(x) = (x —r)(x — 1) ... (T — ).

Taylor: The next proposition characterizes polynomials, which have a simple root at
x = r. In particular, a polynomial p(x) has a simple root if and only if it is divisible

by the factor (z —r) and not by (z — )%

Proposition 12.4.6. If a,_1,a,_2,...,a1,a9 are complex numers and p(x) = z™ +
U 12"+ .+ @y + ag, then p(z) has a simple root at x =1 if and only if p(x) =
(x —r)g(z), where ¢'(r) # 0.

Proof. By the Fundamental Theorem of Algebra we know that p(x) = (v — ry)(z —
r9)...(x — ry) so that p(z) = (z — r)g(z). By the product rule from Calculus, we
know p'(z) = (z — r)¢'(z) + g(x). Thus, p/(r) = g(r) so that p'(r) # 0 if and only if
g(r) #0. O
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Taylor: I hope you agree that we now completely understand the role of simple roots
and quadratic convergence when we use the method of Newton/Raphson to compute
roots of functions.

Virginia: Yes, I do. However, [ have one question. Namely, when used New-
ton/Raphson to compute a root of f(z) = x* — 0.000001, the convergence rate was
noticeably slower than when we computed a root of f(z) = x? — 2. This function has
simple roots. What is going on here?

Taylor: Excellent question. I think you will understand the answer when if you simply

compute the constant M. Give it a try.

Exercise Set 12.4.

1. Determine whether or not the sequence x,, = % converges quadratically to zero.
2. Determine whether or not the sequence x,, = ,%n converges quadratically to zero.

3. Show: If zy € R and T} (x) = 3z, then the sequence of points {z, }22, generated

recursively by x,.; = T1(z,) always converges linearly to zero.

4. Show: If |zy| < 1 and T5(x) = 22, then the sequence of points {z,}22 gener-

ated recursively by z,1 = Ti(z,) always converges quadratically to zero.

5. Show: If 2y € R and T1(2) = 3z, then the sequence of points {z,}32, generated
recursively by ,, 41 = T3 (x,,) fails to converge quadratically to zero. (Hint: This

problem requires a short proof by contradiction.)

1

=r. More specifically,

6. Determine the rate of convergence for the sequence z; =
first show the sequence converges linearly to zero, then decide whether or not it
1

converges quadratically to zero. Repeat this exercise for the sequence x; = o

7. Prove: If T'(x) : R — R is differentiable for each x € R, zo € R, M € [0, 1), the
sequence 1 = 1T'(x,) converges to L, and |T'(z)| < M for all x € R, then the

sequence {x,}> ; converges linearly to L.
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8.

10.

11.

12.

13.

14.

15.
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Show: If K > 1 and zy > v/K, then the method of Newton/Raphson produces
a sequence which converges quadratically to the root r = v/K of the function
f(xz) = 2° — K. (Compute the constants M; and M,.) Note that if K = 32,
then the root r = 2. If xy = 3, then compute the constant %MO —2|. How close
does the initial guess xy have to be chosen to the root » = 2 to guarantee that

Melwg — 2| < 17

. If f(z) = 2+ 3z +1, then show that the method of Newton/Raphson converges

quadratically to a root in the interval [—1,0].

If f(x) = 2°+ 3z +1, then show that the method of Newton/Raphson converges

quadratically to a root in the interval [—1,0].

If f(z) = (z — 1000)* and x; = 1, then show that the method of New-
ton/Raphson does NOT converge quadratically to the root r = 1000. Why
doesn’t the Quadratic Convergence Theorem apply? Which hypothesis is not

satisfied?

If f(z) = (z — 1000)® and x, = 1, then show that the method of New-
ton/Raphson does NOT converge quadratically to the root r = 1000. Why
doesn’t the Quadratic Convergence Theorem apply? Which hypothesis is not

satisfied?

Show: If f(z) = ze *" and 2, = 0.3, then Newton/Raphson converges quadrat-
ically. (Compute the constants M; and M,.)

If f(x) =2 or 2® and T'(z) = o — J{,((‘?), then show the sequence defined by
xy = 1, g1 = T(xy) converges to 0 at a linear, but not quadratic rate. Do
these examples contradict the quadratic convergence of the Newton/Raphson

method?

If f(z) = z* — 0.00001, then use the method of Newton/Raphson to compute

the constant M. What do you conclude about the Quadratic Error Formula for
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Newton/Raphson?

16. If p,(x) = 2™ + a, 12" ' + ...+ a1z + ag is a polynomial with a simple root at

x =r, then p,(z) = (x — r)g(z), where g(r) # 0.
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Chapter 13

The Contraction Mapping

Theorem

Stefan Banach (1892-1945)

Mathematics is the most beautiful and most powerful creation of the hu-

man spirit. Mathematics is as old as Man.-Stefan Banach

Galileo: We now turn to Stefan Banach’s (1892-1945) Contraction Mapping Theorem.
Simplicio: Who was this Banach guy?

Galileo: He was a hard drinking, heavy smoker, who liked to socialize with his friends
late into the night at the Scottish Café in Lvov, Ukraine. You probably would have

enjoyed his company.

273
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Simplicio: I think I should.

Galileo: His theorem constitutes an amazing generalization of Archimedes/Heron and
Newton/Raphson. Not only can this method be used to compute roots of non-linear
equations, but it also has applications to areas you would never expect.

Simplicio: Like what?

Galileo: The method can be used to solve a system of linear equations.

Simplicio: We have the technique of row operations. Isn’t that good enough?
Galileo: While row operations work fine for small systems, these alternative methods
work much better for large sparse systems.

Simplicio: What does “sparse” mean?

Galileo: A matrix is sparse if most of its entries equal zero. Recall that the idea
behind row operations is to transform the given matrix into an upper triangular (or
even diagonal) form. Thus, the goal is to generate a new matrix with most entries
equal to zero. Two problems may arise if the original matrix has most entries equal
to zero. The first problem is that we may be wasting our time if we make an entry
zero when it is already zero. If we are not careful, we might actually transform zero
entries into non-zero entries.

Simplicio: OK, how about another application?

Galileo: The Contraction Mapping Theorem can be used to show the existence and
uniqueness of solutions of differential equations.

Simplicio: I don’t want to hear math talk about existence and uniqueness.

Galileo: What if the problem you are trying to solve has no solution? You might
want to know if a solution exists. If you know a solution exists, you might want to
know if there is more that one solution. Uniqueness is useful because once you find a
solution, you can go home.

Simplicio: But I don’t like differential equations.

Galileo: Unfortunately, many of the most important real-world applications require
a differential equation as part of their model. If change occurs, a good bet is that

there is a differential equation lurking nearby. How about fractals?



275

Simplicio: What is a fractal?

Galileo: Fractals are sets with the property that any part of the set is similar to the
whole set. More specifically, the entire set can be translated, rotated, and shrunk to
fit on top of any subset. In other words, the set is self similar. Fractal techniques can
be used to produce beautiful pictures. The wallpaper in my bath is of fractal origin.
Virginia: I have seen the snowflake and the fern and agree they are captivating.
Galileo: Fractal methods can also be used to compress images.

Simplicio: Now that is an application even I can appreciate.

Galileo: As it turns out, the Contraction Mapping Theorem can often be used to
solve a problem written in the form 7'(z) = x, where |T"(z)| < M < 1, for all z. The
solution of such an equation will be a fixed point of T'(x).

Simplicio: What is a fixed point?

Galileo: A point z = F'is a fixed point for a function T'(z) if T'(F) = F.

Virginia: Just as F' = V/K is a fixed point of the function 7'(z) = z — xz;xK!

Galileo: Correct.

Virginia: I now understand why you began our discussion with the method of Archimedes/Heron.
The ideas of yesterday are the ideas of today.

Galileo: Correct again.

Simplicio: So how do we solve for this fixed point?

Virginia: How about if we begin by making an initial guess = xy and then iterate
by setting x,; = T'(x,). That strategy worked before. My hunch would be that the
sequence {x,}>, converges to the point F.

Galileo: You should be teaching this seminar.

Simplicio: What about the convergence rate? I like quadratic.

Galileo: While the convergence rate for Newton/Raphson usually turns out to be
quadratic, the convergence rate for the Contraction Mapping Theorem usually turns
out to be linear. The contraction factor M controls the rate of convergence. If
T'(F) = 0, then the argument we used for Newton/Raphson can be used to show the

convergence rate is quadratic.



276 CHAPTER 13. THE CONTRACTION MAPPING THEOREM

13.1 Contraction Mapping Examples

Galileo: We now turn to a more detailed discussion of the Contraction Mapping
Theorem.

Simplicio: How about if we begin with a simple example?

Galileo: Let us begin with the problem that you are to solve the equation x = %x+3.
Simplicio: But this problem is too easy. Obviously, the answer is x = 6.

Galileo: The answer is easy because you have an excellent understanding of algebra.
Remember that more than 1000 years passed between the geometry of the ancient
Greeks and the appearance of the commutative, associative, and distributive laws

from algebra.

Example 13.1.1. Solve the equation © = %x + 3.
If we let T'(x) = %x + 3, and xy = 0, then we can iterate in the same way we did
for the method of Newton/Raphson. Note that the last computation, namely 5.9766,

s beginning to approach the correct answer.

zy =T (x9) = 3

o =T(x1) = %3-{—3 = 45

g =T (19) = %4.5 +3= 525

74 = T(xs) = %5.25 +3= 5.625

w5 = T(x4) = %5.625 +3= 58125
e = T(x5) = %5.8125 1 3= 5.9062
7 = T(z6) = %5.9062 +3= 59531

1
1 =T(er) = 559531 +3= 5.9766

Simplicio: This method is too much work. After a million iterations, we still won’t

have the exact answer. I prefer using the laws of algebra for this problem.
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Galileo: We now repeat this technique to solve a simple non-linear equation.

Example 13.1.2. Solve the equation = % sin(z) + 13.
If we let T(z) = %sin(x) + 13, and xo = 0, then we can iterate in the same way
we did for the method of Newton/Raphson. Note that the sequence {x;}32, seems to

be converging to a number approximately equal to 13.35.

xy =T (z9) =13

g =T(xq1) = %sin(l?)) +13=13.21
xgzzzxe)::%snm1321)+-13==1330
24 = T(xs) = %sin(13.30) 413 =13.33

1
25 = T(2s) = 5 sin(13.33) + 13 = 13.35

Galileo: Note that no algebraic manipulation of the expression x = %sin(:r) + 13 can
be used to solve this equation for x.
Simplicio: Now I see the point of this example.
Galileo: One final remark is in order. Namely, the method is constructive.
Simplicio: What do you mean by constructive?
Galileo: The method doesn’t simply say a solution exists. Instead, the technique
provides a procedure to approximate the desired answer. As you might expect, engi-
neers vastly prefer methods where you simply make a guess, compute, and the answer
magically appears. The Contraction Mapping Theorem fits that mold exactly.

In fact, the technique can be implemented in the following four lines of computer
code:
Let © = xg be the initial guess.
forn=0,1,...,N

x = T(x);
end

Exercise Set 13.1.
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1. Use the above iterative technique to approximate a solution of the equation

x = 5 cos(x) + 3. Begin the process with o = 0.

2. Use the above iterative technique to approximate a solution of the equation

x = e~". Begin the process with xq = 0.

3. Use the above iterative technique to approximate a solution of the equation

x = e*. Begin the process with zy = 0.

13.2 The Contraction Mapping Theorem in R

Simplicio: That discussion contained many more technical details than I can tolerate.
Let’s move on to something more understandable.
Galileo: It isn’t as bad as you think, but OK. let’s get back to the Contraction
Mapping Theorem.
Cauchy: We now check a few technical propositions, which will be used to prove
the contraction mapping theorem. The first proposition is the familiar formula for
summing a finite geometric series.

The next proposition provides a bound on the difference between two successive

terms in a sequence.

Proposition 13.2.1. If |vp 1 — 2g| < M|z — x| for all k > 1, then |xgq — x| <

Mk|l'1 - 1‘0|.

Proof. If k =1, then |zy — 21| < M|z — x¢].
If k=2, then |3 — 25| < M?|z; — xy].
If k=3, then |z4 — x3| < M?|x1 — 9]
If k=4, then |5 — 24| < Mz, — 0]

Inductively, |zg1 — 2] < M¥|ay — xq]. O

The next proposition provides a bound on the difference between any two terms

in a sequence. This proposition is fundamental to proving the contraction mapping
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theorem. It is also the key to unlocking the rate of convergence, which is important

in real applications.

Proposition 13.2.2 (The Contraction Mapping Error Estimate). If0 < M <
1 and |zgyq — x| < Mg — 21| for all k > 1, then whenever n > N, |z, — zy| <

N
f\f—MkEl — £E0|.
Proof. By the triangle inequality and successive applications of the previous propo-
sition, we know that

[T — TN = |Tp — T 1+ Tp 1 — Tp 2+ Tp2 — ..+ TNy — TN

<y = Tpoa| + w01 — Tpoo| + (T2 — Tps| + ...+ 2N — 2N
< M" Hay — o] + M"2|zy — mo| 4+ ... 4+ MY |z — 20
= (M" '+ M2 4+ MY) |, — 20
= MN(M"NT 4 MR M+ 1) | — ).

Since 0 < M < 1,

1— MmN MN
Troar o ls

"= < MY
|z zy| < ST

|z — 2]
O

Proposition 13.2.3. If 0 < M < 1 and |vg41 — x| < M|z — x| for all k > 0,

then there exists a unique real number L such that limy_,.oxr = L.

Proof. Step 1. Let € > 0 be given.

Step 2. Choose N large enough that %L@l —xp| <€, foralli > j> N.

Step 3. By the previous proposition, we know |z, — zy| < %Wl — 1| < €.

Thus, the sequence {z;}72, is Cauchy. Since every Cauchy sequence converges,

there is a unique real number L such that limy_ oz = L. ]

Definition 13.2.4. If X is a closed interval in R and T : X — X, then T'(z) is called
a contraction if there is a number 0 < M < 1 such that |T(x) — T(y)| < M|z — y|
for all z,y € X.
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The constant M is called the contraction factor of T'(z).
Simplicio:: So what is this contraction factor?
Galileo: The intuitive idea of a contraction is exactly what the word implies. Namely,
if given any two points z,y € X, then the function 7'(x) always moves the two points
so that they are closer together. Since the absolute value function always produces
a measure of distance we know that dist(x,y) = |v — y| and dist(T(z),T(y)) =
|T(x) —T(y)|. This, if M < 1, then dist(T(x),T(y)) < Mdist(x,y). Thus, the points
x and y are moved closer together. If M = %, then they will be 50% closer than they
were before.
Simplicio:: What if the contraction factor equals 27
Galileo: If |T"(x) > 2 for many values of x, then we have an expansion rather than a
contraction. While these functions are sometimes studied, we will not consider them.
Simplicio:: How do we tell whether or not a function is a contraction?
Galileo: The purpose of the next proposition is to present a criterion for when a
function can be identified as a contraction. The answer is to simply compute the first
derivative and check to see if it is always less (in absolute value) than 1. Note that this

proposition already appeared in the discussion on the method of Newton/Raphson.

Proposition 13.2.5. If X is a closed interval in R and T(x) is a differentiable
function T : X — X with the property that |1"(z)| < M <1 for all v € X, then T'(x)

1s a contraction with contraction factor M.

Proof. 1f z,y € X, then by the Mean Value Theorem we know that there is a point
z € X such that T'(z) = %f(y) Since |T"(2)] < M < 1, |%§(y)| < M. Thus,
T'(x) = T(y)| < Mz —yl. O

Galileo: Before we turn to the next idea, we need to prove that contractions are
actually continuous functions. This detail will be needed in the proof of the Con-
traction Mapping Theorem, where we need to know that limits commute with con-
tinuous functions. In particular, we need to know that if lim, .2z, = P, then

limy oo () = T(limy_00ty,) = T(P). Another way to phrase this fact is to state
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that if a function is continuous at a point P, then limits can be evaluated at P by
simply substituting the point P in the function.
Simplicio: In other words, we didn’t need limits in the first place.

Galileo: You could say that.

Proposition 13.2.6 (Contractions are Continuous). If X is an interval and
T(x) : X — R is a contraction with contraction factor 0 < M < 1, then T(x) is

continuous at every x € X.

Proof. Let T € X.
Step 1. Let € > 0 be given.
Step 2. Choose § = e.

Step 3. Since T'(x) is a contraction, we know that if | —Z| < J, then

T(z) —T(T) < Mz —Z| < |z —T| <J =€ O

Galileo: We now turn to the second idea embedded in the Contraction Mapping

Theorem.

Definition 13.2.7. If T : X — X is a function and T(F) = F for some F € X,
then the point F € X is said to be a fixed point for T(z).

Galileo: Consider the following examples.

Example 13.2.1. If T\(2) = 3, then F = 0 is a fived point of Ty(x). Note that

Ti(x) has exactly one fized point,
Example 13.2.2. If T'(z) = x + 5, then T(x) has no fized points.

Example 13.2.3. If T5(x) = 22, then F = 0 and F = 1 are fized points for Ty(x).
Note that Ty(x) has two fizved points.

Example 13.2.4. If T3(z) = 23, then F = 0,F =0, and F =1 are all fized points
for Ts(x). Note that Ts(x) has three fized points.
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Example 13.2.5. If T(z) = z — “=X then T(VK) = VK. Thus, T(z) has VK for

2

a fized point. In Figure 13.1, this fived point is displayed as the intersection of the

2= K
2z

curves y =x and y =T (x) =z —

The ¥ Values

Figure 13.1: The Fixed Point for the Function T'(x) = x — xz;K.

Example 13.2.6. If T(z) = & — =K then T(Y/K) = /K. Thus, T(z) has VK for

32
a fized point. In Figure 13.2, this fived point is displayed as the intersection of the

3—K
32

curves y =x and y =T (x) =z —

Example 13.2.7. If we want to solve the equation If & = T(x) = § sin(x) + 13, then

the solution is the fized point F of T'(x). In Figure 13.5, this fized point is displayed

as the intersection of the curves y = x and y = T'(z) = 3 sin(z) + 13.

Example 13.2.8. If T'(x) = = — f(ﬂ;))

0y where f(r) =0, then T(r) = r. Thus, T(x)

has x = r as a fired point.
Galileo: We now prove the Contraction Mapping Theorem. Note that the proof mir-

rors exactly what we have discussed with the root finding method of Newton /Raphson.

Namely, begin with an initial guess xy and create a sequence of numbers by iteratively
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The ' "Values

Figure 13.2: The Fixed Point for the Function T'(x) = x — w;;f(

Figure 13.3: The Fixed Point for the Function 7'(z) = 3 sin(xz) + 13.
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computing T'(z,,) and defining z,,11 = T'(z,). Note that we actually produce a unique
fixed point.
Simplicio: But why should I care if [ only have one fixed point?

Galileo: If you only have one fixed point, then you only have to compute once.

Theorem 13.2.8 (The Contraction Mapping Theorem). If X is a closed in-
terval in R and T'(z) : X — X is a contraction, then T'(x) has a unique fived point
F € X. Moreover, if the contraction factor for T(x) is M, xy is any initial point
in X, and z, = T(xy_1), then the error at the n'* iteration is given by the formula

|z, — F| < M|z — ol

Proof. Let xy be any point € X. Let x5y = T(xy) for all & > 0. Since T'(x) is a
contraction, |41 — x| < M|zg —xk_1| for all £ > 1. Thus, the sequence {z;}32, con-
verges to some point F. Since the interval X is closed, the point F' € X. Since xp,1 =
T(xg) and T(x) is a continuous function, F' = limy_oo{zr} = limgeo{Tri1} =
limgoo{T (zx) } = T(limgoo{xk}) = T(F). Thus, F is a fixed point for T'(x).

The fact that the fixed point is unique follows from the fact that the function
T'(x) is a contraction. In particular, if F; and F; are two distinct fixed points of
T(x), then |Fy — Fy| = |T'(F)) — T(F)| < M|F, — F3| < |F} — F,|, which is a
contradiction. Thus, T'(z) has exactly one fixed point. The error estimate follows

from the contraction mapping error estimate. O

Simplicio: So what is the important information that I need to remember from this
discussion?

Galileo: Remember this:

1. The mapping T'(x) MUST be a contraction. (You can usually check this fact
by showing |7"(z)| < M < 1 for all z.)

2. The choice of initial point x; is arbitrary.

3. A sequence is created by computing zy = T(zx_1).
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4. The sequence {z,}% , always converges to some number F, which is a fixed

point of T'(x).

5. The convergence rate of the sequence {z,}>°, is linear and controlled by the

inequality: |z, — F| < 2|21 — xo|. (Thus the error can be precontrolled. )

Example 13.2.9. We will now show how the Contraction Mapping Theorem can
be used to solve the equation v = %sin(m) + 13 with the given prescribed accuracy of
0.00001. We begin by defining T(x) = % sin(x)+13. To show that T'(x) is a contraction,
all we have to do is to notice that T'(z) = ;cos(x) so that [T"(x)| < 5 for all
x € R. Thus, T'(x) is a contraction with contraction constant M = % If vy = 0,
then xy = T(x¢) = T(0) = 13 so that |xg — x1| = 13. Thus, to find an integer n with
the property that

Ty is within 0.00001 of the solution F = %sin(F) + 13 all we need to do is to
find an integer n with the property that |z, — F| < % * |zg — x| = (1%_); x13 =
(L)m*+! % 13 < 0.00001.

Taking natural logarithms of both sides of this last inequality we see that we should

choose n large enough that n +1 > ln(of?r??zl)/l?’) = _—104.60973719 = 20.3115. Thus, we must

choose n > 20.3115 — 1 = 19.3115.

Simplicio: So, the bottom line is that the formula tells us we get faster convergence
if we make a smart choice of xy and we are blessed with a small value for M.

Galileo: Correct.

Exercise Set 13.2.

1. Use the Contraction Mapping Theorem to solve the equation x = %COS(QJZ) -5
with error less than 0.000001. If xyg = 0, then how many iterative steps are

required to guarantee that the required accuracy.

2. Use the Contraction Mapping Theorem to solve the equation z = e 2% with
error less than 0.00001. If zy = 0, then how many iterative steps are required

to guarantee that the required accuracy.
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13.3 The Contraction Mapping Theorem in R”

Galileo: We begin this section with an example, which demonstrates an iterative
method for solving a system of linear equations. Compare this method with the
row operations you learned in linear algebra. Remember that this example is for
demonstration purposes only. In a real application, the matrix might be as large as

1000 x 1000 or even larger.
Example 13.3.1. Solve the following system.

2r+y=3

r+2y=3
Note that the answer is: © =1,y = 1.

To solve the problem using the technique of the contraction mapping theorem, we
begin by manipulating the equation until it is in the form x = T(x), where x is a
2-dimensional vector. This task can be completed by solving the first equation for x
and the second for y. When we do this manipulation, we obtain 2 equations: = = ?“Ty

and y = ?’_Tx These 2 equations can be written in vector/matrix form as:

3y 1 3
3 1 3
y 573 -3 0 y )
3
If we initialize the process be letting xo = , then x; = T(x,) = | *
0 2
3 9
x; =T (x)) = ; and x5 = T(x,) = Z
1 8

If we let x,,11 = T(Xy,), then the sequence of vectors {x,}2°, seems to be con-

1
verging to the vector

1
Simplicio: Magic!! This technique looks good to me.

Galileo: I am glad you like this method. Now let’s take a look at another example.
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Example 13.3.2. Solve the following system.

r+2y=3

2e+y=3

Note again that the answer is: x =1,y = 1.

Simplicio: But we just solved this problem.

Galileo: Solving for the variables x and y, we can again find the function T(z).

x 3—2y 0 -2 x 3
T = = _l_
Y 3— 2w -2 0 Y 3
o L : 0
We can again initialize the iterative process with the vector xq =
0

When we compute x; = T(xg),x2 = T(x1),xs = T(x2),, etc, notice what hap-

pens to the sequence of vectors.

3
Simplicio: I see that x; = ;
3
-3 9 —15
Xo = , Xg = 72111(1}{4:
-3 9 —15

The sequence of vectors seem to be oscillating their way out to infinity.

Galileo: Excellent observation.

Example 13.3.3. Now consider a system of three equations and three unknowns. In

particular, solve the following system.

4o +y=5
r+4y+2=6
y+4z2=5

Note that the answer is: t =1,y =1,z = 1.
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Again, these equations can be written in vector/matrix form as:

T 0 —i 0 T 2
_ 1 1 6
Tly =] =1 0 —1 y [T %
z 0 —i 0 z g
0
If we initialize the method with xo = | 0 | and define x,,,; = T(x,), then the
0

sequence of vectors again seems to converge to the correct answer.
Galileo: The beauty of the contraction mapping theorem is that it is valid in a
multitude of different settings. In particular, it works in R” as well as abstract
settings suitable for differential equations and fractals.

Even better, the proof just provided for the 1-dimensional case can be immediately
translated to a proof in any dimension. To accommodate the new setting in R", the

only changes that need to be implemented are:

1. The closed interval X must be replaced by a closed subset of R™. (Thus, we

need to define what it means for a set to be closed.)

2. The absolute value sign must be changed to a norm appropriate for the setting.

(Thus, we need to define what a norm is.)

Note that while norms can be defined in many different ways and can be quite
abstract, the underlying idea is always the same: measure the distance between two
points. Thus, if P, and P, are two points in ", then the distance between them is
the norm of P, — P,. This distance is usually written in an expression of the form
dist(Py, Py) = ||P, — Py||.

While the definition of a contraction can now be defined in terms of norms, it will
be helpful if we can establish a criterion, which can be used to show a given function
is a contraction. Since the condition |T'(x)| < M < 1 implies the function T'(z) is

a contraction for functions of one variable, the analogue for R" is the norm of the
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derivative dT'(z), where dT'(x) denotes the n x n matrix of derivatives. (Recall that
the matrix of derivatives is nothing but the matrix of partial derivatives.

To keep the discussion simple, let’s not waste mental energy defining what it
means for a subset of R" to be closed. Instead, let us consider only the set " and
then remark that it is, in fact, closed. While numerous different norms can be defined
on RN”, let us consider the one defined as the maximum of the absolute values of the

n coordinates. The next definition formalizes this in a more mathematical way.
Definition 13.3.1. Ifx € R®, then ||x||c = max{|xk| : xx is the k-th coordinate of x}.

Simplicio: I don’t like this notation, could you give me a simple example?
Galileo: The co—norm of the vector (1,—2,3, —4) is 4.
Simplicio: Why are we interested in knowing about norms?
Galileo: Because we can use them to compute the distance between two vectors (or
points) in K. In particular, if x,y € R", then the distance between x and y is
||x —¥||oo- Once we have the distance between two vectors defined, then we can define
what it means for a sequence to converge. In particular, with the co—norm it is easy
to show that a sequence of vectors converges to a particular vector if and only if it
converges in each coordinate. Thus, all the hard work we did in the 1—dimensional
case is immediately transferable to the setting in R".

We now define the term contraction for a function 7'(x) : R™ — R". This definition

is given in terms of the co—norm.

Definition 13.3.2. If T'(x) : R" — R", then T'(x) is called a contraction if there is
a real number M € [0,1) with the property that ||T'(x) — T'(X')||co < M||x — X'||s0 for

all x,x" € R™.

Simplicio: But how do I recognize a contraction when I see one?
Galileo: You simply show the norm of the function (or more formally “the operator”)
is less than one.

Simplicio: But what is the norm of an operator?
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Galileo: You ask the right questions. We begin with the definition of the norm of a

matrix.

Definition 13.3.3. If A € R™*", then the oco—norm of A is defined by

[Alloo = maz{[[aclly, lazll1; - - llan]l1},
where a, denotes the k™ row of A and ||ag||y = |ar| + |ak2] + - - - + |Ghm]-

Proposition 13.3.4. If A € R"™*" ||Allx = M, and T'(x) = Az + b, then for all
x, X' € R ||T(x) = T(x')||ooc < M||x — X||00-

Proof. This proof is left as an exercise. O

Simplicio: And we can see from this proposition that the matrix given in the previous
exercise has oco—norm equal to % and is thus a contraction.

Galileo: Very good. Now you are ready for a bit of formalism from Professor Cauchy.
First we give the definition of what it means for a sequence to converge. Second, we
give the definition of a C'auchy sequence. As in the 1—dimensional setting, these two

ideas are equivalent.

Definition 13.3.5. A sequence of vectors, {xx}32, in R" is said to converge to a
vector x;, € R"™ if for every € > 0 there is an integer N, such that if k > N, then

1%k — X1 |]00 < €.

Definition 13.3.6. A sequence of vectors {x;}32, in R" is said to be Cauchy if for

every € > 0 there is an integer N, such that if n > N, then ||x, — Xn||eo < €.

Theorem 13.3.7. If a sequence of vectors {x;}32, in R™ converges to a vector x;, €
R", then it is Cauchy. Conversely, if a sequence of vectors {xy}3>, in R" is Cauchy,

then it converges to some vector x;, € R".

Proof. While the proof of the first statement in the proposition is straightforward.
In particular, it is left as an exercise. The proof of the second statement is left for

another day. O
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Galileo: Thus, if a sequence of vectors in R” is Cauchy, then it is Cauchy on each

coordinate. Since the sequence of vectors converges on each coordinate, it converges.

Theorem 13.3.8 (The Contraction Mapping Theorem in ®"). If T : R" —
R"™ is a contraction, then T'(x) has a unique fized point x1, in R™. Moreover, if the
contraction factor for T(x) is M, xg is any initial vector, and x = T(xx_1), then the

error at the n'™ iteration is given by the formula ||x, — x1||oe < 2257 (1%0 — X1 ]oo-

Proof. Let xg € R™ and xx,1 = T(xx) for all £ > 0. Since the same argument used in
the 1-dimensional version can be used to show that the sequence {xx}32 is Cauchy
in R”, the sequence is Cauchy in each coordinate. Since the sequence converges on
each coordinate, it converges. The proof of the error estimate is virtually the same as
the proof given in the 1—dimensional case. The only difference is that each absolute

value sign must be replaced by the symbol for the infinity norm. O

Simplicio: Hey, I think I am beginning to get the hang of this theorem for R", but
I already know how to solve systems of linear equations using the method of row
operations or Gaussian elimination. Why would [ want to bother with this new

method?

Exercise Set 13.3.
1. Use the Contraction Mapping Theorem to solve the system of equations

4o +y=95

r +4y = 5.

Initialize the method with the vector

0
0

Xg =

How many iterations are required to guarantee an accuracy of less than 0.00001

on each coordinate?
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Chapter 14

Aitken’s Method

Alexander Craig Aitken (1895 - 1967)

Ever the road beneath

Changes: now night begins to fall,

And I see the last long road of all,

The road to dusty death.-Alexander Craig Aitken

Galileo: The purpose of the technique presented in this section is to speed up the
rate of convergence of a given sequence.

Simplicio: While the idea seems reasonable, how can that be possible?

Galileo: Alexander Craig Aitken (1895 - 1967) came up with the idea that if a sequence

converges linearly, then we can give it boost towards the ultimate answer. If we could

293
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improve the convergence rate from linear to quadratic, we would be quite satisfied
with the technique.

Simplicio: Who was this Aitken fellow?

Galileo: Professor Aitken was born in Dunedin, New Zealand and attended the Uni-
versity of Otago. He had an incredible memory being able to recite m to 2000 places.
He could also instantly multiply and divide large numbers. An excellent memory is
not always a blessing. He had trouble forgetting all the bad things that happened in
his life.

Simplicio: I can see the dark side in his poetry. I am not sure I want to compete with
him in any way.

Galileo: His idea is the following. If we assume the sequence {z,}>°, converges to L
(i.e. limy, 00, = L) and for large n enjoys the property

fL‘n+1—L
—— = M<1
T, — L ’

then we know the convergence will be linear. Thus, this condition is a bit stronger

than linear convergence. In any case, if limn%oox;ﬂ_f = M < 1, then both the
xn+1—L

quotient o and the quotient

Int2=l il be approximately equal to M.

xn+1—L

If we make this assumption about the two quotients, then we see that

Tn+1 — L -~ Tpt2 — L

.’L'n—L .l'n+1—L,

which implies that
(Tnt1 — L)2 ~ (Tni2 — L)(zn — L)

or
2 =2 L+ L*~ — (@, + )L+ L?
.l‘n+1 Tn+1 ~ Tp4+2Tn Tn Tn+42
or
2 ~
Ty —2 Tny1 - LR Tpyg - @y — (0 + Tng2) L.
Therefore,

2
L(—Zpio 4+ 2xp41 — &y) R Th ) — Tpgaly
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and

2 2

I ~ xn+1 — Tpt2 " Tn — (xn—l—l - xn)
~ _— n - .
—Tni2 + 2$n+1 — Ip Tpy2 — 2xn+1 + Zn

Therefore, we can (hopefully) accelerate convergence to L if we define a new

sequence by the rule:

Definition 14.0.9 (Aitken’s Method). If {z,}’2, is a sequence of numbers, then

($n+1*$n)2
Tp42—2Tp41+Tn "

the Aitken’s Method for accelerating the convergence is given by &,, = x,—
Definition 14.0.10. If {z, }5°, is a sequence, then the forward dif ference formula
is given by Awx, = Tni1 — T,. Higher powers are defined inductively by AFz, =

A(AFLg,).

Virginia: Is there any connection between this formula and the first derivative? They
look similar.

Galileo: In fact it is. If you think of the first derivative as a limit of the quotients

A)— . . ..
w, then the “derivative” of a sequence should be the “limit” of
T = SR = gy — @y, Of course, we can’t compute limits because we have

a discrete set of points. Instead, we simply think of the two points z,; and z, as

“close” to one another.

Example 14.0.4. The only reason we need higher powers of the forward difference
formula for Aitken’s Method is to compute the second forward difference A%x, =

A(Azy) = A(Tp1 — Tp) = Tpyo — 2241 + 2y

Virginia: This formula should represent the 2" derivative. Correct?

Galileo: You are correct.

Proposition 14.0.11 (Aitken’s Method). If {x,}°, is a sequence of numbers,

(Azp)?

then the Aitken’s Method for accelerating the convergence is given by T, = &y — 352

Simplicio: This formula looks suspiciously familiar.

Galileo: It should. Note the similarity between this formula and the formula 7'(z) =

f(z)
f'()

Aitken’s formula.

r — given by Newton/Raphson. This association should help you remember
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Example 14.0.5. Let us begin by applying Aitken’s method to the linearly convergent

Sequence T, = 2% With this special case, we see that

_ 2
.if?n =, — (xn-i-l xn)
Tp42 — 2xn+1 + Ty
1 (g — 37)°

1 1 1
2" o 2% too

1 B 2n+2(2n1+1 _ 2%)2

on 1—4+4
1 2n+2
:27_%
11
T on
= 0.

Thus, Aitken’s Method converts a linearly convergent sequence to one that converts

instantly!!

Simplicio: Hey, this method works great. Does it give any relief for the bisection
method?

Galileo: To answer your question properly, we must first decide how we are going to
implement the method. In the previous example, we were given a formula for the
n'™ term of the sequence. Unfortunately, nature is not so kind. The algorithm of
Johan Steffensen (1873-1961) computes two terms of the sequence and then makes
an Aitken’s computation. Try integrating this idea into a bisection algorithm and see

how it does when you compute V2.

Exercise Set 14.1.

1. Apply Aitken’s method to the sequence x,, = 3% How many steps does it take

to converge to zero?

2. Apply Aitken’s method to the sequence x,, = 3". What number does the se-

quence converge to? How many steps does it take to converge?

3. Apply Aitken’s method to the sequence z, = % Do you find any benefit by
applying Aitken’s method?
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4. Apply Aitken’s method to the sequence x,, = 22% How many steps does it take

to converge?

. Devise a hybrid Bisection/Aitken’s Method to find the positive root of the
function f(z) = 22 — K, where K > 1 and the initial interval is [1, K]. Apply
your algorithm to the function when K = 10%°. Does your algorithm provide a
significant improvement in the rate of convergence? While there are a multitude
of different ways to create a hybrid algorithm, you might begin by alternating
the two methods.

. Devise a hybrid Newton/Raphson/Aitken’s Method to find the positive root of
the function f(z) = 2? — K, where K > 1 and the initial guess is zo = K. Apply
your algorithm to the function when K = 10%°. Does your algorithm provide a
significant improvement in the rate of convergence? While there are a multitude
of different ways to create a hybrid algorithm, you might begin by alternating
the two methods.

. Devise a hybrid Contraction Mapping Theorem/Aitken’s Method to solve the
equation z = 1 sin(z) + 13. find the root of the function f(z) = z* — K, where
K > 0. Apply your algorithm to the function when K = 10'°. Does your
algorithm provide a significant improvement in the rate of convergence? While
there are a multitude of different ways to create a hybrid algorithm, you might

begin by alternating the two methods.



