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Remarks by the Author
Topis and ClienteleKeep the interests of the students in mind and the rest will work itselfout.{Bill Harris, NSFThe goal of this set of notes is to present mathematial topis seleted from numer-ial analysis, whih are suitable for a semester ourse at the upper level undergraduatelevel. The topis have been organized thematially under the headings of root �nd-ing and approximation theory. The disussion of root �nding tehniques inludesthe square root method of Arhimedes/Heron, the method of Newton/Raphson, thebisetion method, and the ontration mapping theorem. The disussion of approx-imation theory inludes the topis of Taylor's Theorem, polynomial approximation,least squares, Fourier Series, splines, and wavelets. The Pythagorean Theorem andthe onept of orthogonality provide a unifying overarhing theme whih appearsthroughout. The topis have been seleted with the idea that they will be partiu-larly relevant for students in omputer siene, eletrial engineering, and omputerengineering.Sine engineering students are typially inexperiened, untrained, and uninter-ested in formal mathematis, the subjet of numerial methods has a sad reputationfor being a dull, diÆult, and irrelevant requirement for graduation. In the numer-ous times I have taught this ourse, I have not infrequently enountered the atti-tude: \This is my last math ourse{hopefully." In partiular, I have found teahinga ourse on numerial methods a pedagogial hallenge beause students lak theix



x REMARKS BY THE AUTHORrequired mathematial training to appreiate the disussions. In one lass, I notiedthat one of my engineers was visibly resistant to the proof of a key theorem. Onfurther questioning it beame evident that he saw no justi�ation for his time beingwasted in suh an exerise. For some reason, I �nally asked "What is the di�erenebetween a de�nition and a theorem?" His response was \Aren't they the same?" I wasstartled to think that a student, who had passed three semesters of Calulus as wellas semester ourses in Linear Algebra and Di�erential Equations ould make suh astatement. Even the teahings of Eulid were beyond this fellow. Unfortunately, heis not alone. Sine that experiene, I now regularly onfront suh issues on the �rstday of lass by asking the following basket of questions:1. \Why do we have de�nitions and theorems?"2. \What is a onditional sentene?"3. \What is the struture of a theorem?"4. `What is the di�erene between the way a mathematiian and a statistiian usesthe word hypothesis?"5. \What is a mathematial system?"6. \Why should anyone are?" (This question is the most important!)I try to answer these questions by giving short expositions on basi propositional logiand the rami�ations of Eulid's famous 5th Postulate. After one suh introdution,a omputer siene student, a native of Southeast Asia, stated she was shoked bythe remedial level of the disussion. She left and never returned.In ase you are thinking I am prejudied against the engineering students, letme mention that my math majors also have de�ienies when taking more appliedourses. One extremely bright and talented student (also from Southeast Asia) earnedan almost perfet sore on every exam. However, when asked to write �ve lines ofomputer ode to approximate the square root of a number, she was helpless. In



xigeneral, the engineers omplain about the theory and lamor for more projets, whilethe mathematis students thrive on the theory and wish the projets were not a partof the ourse. Thus, I have found that the instrutor of an applied mathematisourse should be alert to the di�ering needs of the students, while at the same timenot getting derailed repairing too many de�its.In my experiene, the single most important reason students �nd numerial anal-ysis dull, boring, and diÆult is their lak of skill and knowledge in Logi, Geometry,and Linear Algebra. A seond reason is their inability to onnet the theory withsome aspet of their expeted future employment. The \Interview" has been inludedin an e�ort to address these issues. For students who have been away from math-ematis for a long time, I have inluded many other brief reviews throughout thenotes.While the fous of the disussion is on the mathematis, the goal is to present areadable aount of the thought behind the theory in a manner that will be appre-iated by a large subset of the students. The approah is to present the material asa historial progression of ideas motivated by key examples and easy-to-understandspeial ases. Hopefully, this approah will help neutralize negative attitudes andbetter meet the needs of the students.A Brief History of the Dialogue FormatMathematis is written for mathematiians. { Niolaus CoperniusWith a quik glane through the these notes, the reader will immediately notiethat they are written in a dialogue format. Surely the author must be joking. Whywould anyone waste his/her time writing a mathematis textbook in dialogue format?Why would anyone waste hard-earned money purhasing suh a volume? Galileo asa entral harater in the disussion? However, that is exatly what is o�ered: anallegorial presentation of real mathematial ideas.Let us begin our defense by noting that numerous books from antiquity were



xii REMARKS BY THE AUTHORwritten as dialogues. Plato (427-347 B.C.E.) wrote virtually all his works in thisdramati style. In his \Apology," he dramatizes the fatal onit between Soratesand his enemies Meletus, Anytus, and Lyon, who had aused him of \orrupting theyouth." For this rime, Sorates reeives the ultimate punishment. In his \Allegoryof the Cave," Plato tries to larify the onepts of intellet, belief, and knowledge.In this dialogue, he hains prisoners in an underground ave, where they see onlyshadows ast on the wall in front of them and hear only ehoes from behind. Thisallegory dramatizes the fundamental human onit that we an never know reality.His ommentaries on ethis, politis, astronomy, and mathematis were also writtenas dialogues.In 1632, Galileo (1564-1642) published his \Dialogue Conerning the Two ChiefWorld Systems: Ptolemai and Copernian," [3℄ where he dramatizes the sienti�onit between two di�erent mathematial models of the solar system. Simpliio,his spokesman for the Aristotle/Ptolemai earth-entri view of the universe, playsthe role of a foil to Salviati, who advoates the Copernian view that the sun is theenter of the solar system. A third harater, Sagredo, plays the role of the forwardlooking aristorat, who onsiders both sets of arguments, but onsistently ends upsiding with Salviati. In the narrative, Salviati presents observations of the oeantides, the moons of Jupiter, and the phases of Venus as evidene that the Earthmoves. The main reason for his use of the dialogue format was to present the asefor the Copernian view while pretending to be impartial. Of ourse, this ruse failedto protet him from the wrath of the Inquisition of Pope Urban VIII (1568-1644).On 22 June 1633, he was found guilty of heresy and sentened to house arrest for theremainder of his life.In 1638, Galileo published a seond dialogue \Dialogues Conerning Two NewSienes," [5℄. In this work he again presents the same three haraters in a four daydisussion of fundamental onepts in two key areas of modern Physis. The fousof the disussion for the �rst two days is on the strength of materials. The fous forthe seond two days is on the behavior of a falling objet. While Galileo's style is



xiiiagain engaging, the style of this seond volume is more mathematially hallengingthan the �rst. Muh of the writing is in an de�nition, theorem, proof format, wherethe reader is subjeted to numerous diÆult mathematial arguments. (Most of thesedisussions are geometri in nature.) On the �rst day, he even onsiders several of theparadoxes of in�nitesimals and in�nity, whih arise in his disussion of strength ofsuh materials as opper wire, glass, marble, and rope. At the beginning of the fourthday, his Proposition I onludes that the path of a falling objet desribes a parabola.Later in the same day, his Proposition VIII asserts the familiar physis/alulus fatthat a projetile �red from a annon at a 45 degree angle will travel farther than when�red at any other angle. While muh of the omplexity of these arguments an beredued if armed with a knowledge of modern alulus, the disussions remain freshto this day. For example, on the seond day Salviati argues that a giant annot bearbitrarily sized in the same proportion as a smaller reature unless the bones aremade from a stronger material. Thus, real physial reasons exist that explain whythe largest mammals reside in the great oeans of the world.A number of modern authors have also employed a dialogue format in their math-ematial writings. In 1895, Lewis Carroll (1838-1898) published \What the TortoiseSaid to Ahilles," where the disussion eluidates the subtleties of the logial argumentof modus ponens. In partiular, he addresses the logial problem of self-referening.(The easiest example of self-referening is to onsider the truth or falsity of thestatement: \I am lying." Think about it.) In 1963-64, the Hungarian mathemati-ian/eonomist/historian Imre Lakatos (1922-1974) published four artiles entitled\Proofs and Refutations." (The artiles were published as a book in 1976 [8℄.) In thissmall set of dialogues, the author reates a lassroom setting through onversationsbetween a teaher and a small group of students. The teaher is named Teaherand the students are named Alpha, Beta, Gamma, et. Through their interationsthe reader is drawn into the world of mathematial rigor. The onepts of axioms,de�nitions, and theorems are disussed through a question/answer format, where thefous of the mathematis is Euler's famous theorem that V � E + F = 2 for any



xiv REMARKS BY THE AUTHORpolyhedral 2�sphere, where V;E; F denote the number of verties, edges, and faes,respetively. While mathematial rigor, logi, proof, examples and ounterexamples(i.e. refutations) are entral, Lakatos teahes the proess of formulating arefullyworded de�nitions and theorems so that ambiguity or vagueness are removed. As thedisussion shows, if you are sloppy or areless with your wording, a ounterexampleto what you had expeted may be lurking nearby. Alfred Renyi (1921-1970) was oneof the outstanding Hungarian mathematiians and statistiians of the 20th Century.He even has an institute onstruted in his honor. In 1965, he published "Dialogueson Mathematis," [8℄ where Sorates, Arhimedes, King Hieron II, and Galileo arefeatured disussing suh subjets as \pure versus applied mathematis." On oasion,he even performed these works with his daughter. His best known quote is \A math-ematiian is a mahine for onverting o�ee into theorems." (Another Hungarian,Paul Erd�os, has also reeived redit for this quote.) In his 1974 dialogue \SurrealNumbers," [7℄ Donald Knuth strands two ex-students, Bill and Alie, on an isolatedbeah. Bored and lonesome, they �nd happiness in mathematis (and a touh ofromane) through a highly rigorous disussion of the properties of the real numbersystem. In 1979, Douglas Hofstadter expanded on Lewis Carroll's disussion of ofself-referening in his highly popular Pulitzer Prize winning book \G�odel, Esher,Bah" [4℄, where he makes onnetions between a myriad of subjets inluding logi,art, musi, omputer programming, the nature of language, the nature of thought,the repliation of our geneti ode, Turing mahines, arti�ial intelligene, and freewill. Dialogues between Ahilles, the Tortoise, the Anteater, the Crab, and CharlesBabbage interlae this book of ideas. Most reently, Keith Kendig has written thebook \Conis" [6℄, where a Teaher, a Philosopher, and a Student unover the prop-erties of the onis through an engaging and readable dialogue. The Philosopher islooking for unity and beauty, the student loves stories, and the teaher provides thedetails. Along the way, questions are asked and mathematial disoveries are made.The inspiration behind the dialogue format set forth in these notes is Dava Sobel'sbook \Galileo's Daughter," [10℄. While most books on Galileo (1564-1642) provide



xvan aount of his sienti� ahievements and/or his politial problems, the fous ofSobel's book is his relationship with his eldest daughter, Virginia (1600-1633). WhileGalileo had two other hildren, Virginia was probably his favorite. She was bright,beautiful, serious, and passionately devoted to her father. Sine she was illegitimate(as were his other two hildren), marriage was problemati. Thus, at the age of 16she followed the respetable alternative of the times by dutifully taking vows as SuorMaria Celeste at the onvent of St. Mateo in Padova, Italy. (The name Celeste isderived from elestial and is probably an indiret referene to Galileo's astronomialdisoveries.) Life at the onvent was dominated by prayer, never ending hores, andgrinding poverty. Despite their separation and diÆult irumstanes, the father anddaughter adored eah other. She provided him with aid and omfort when he wasill and wrote him ontinually during their extended separations. In return, Galileonever failed to respond to her requests for money. Sobel speulates that this dutifuldaughter may have assisted in the preparation of his dialogue \Two Chief WorldSystems." One an only wonder what she might have ahieved if she had been morefortunate in her birthright.A downside to the dialogue format is a lak of eonomy. Sine mathematis livesperfetly well in its own sparse setting, the experiened instrutor or reader may �ndthe onversational style not only unneessary, but also distrating and irritating. Ifthis is the ase, simply move on to a new topi. The author has no intention thatsomeone would teah word-for-word what is written in these notes. What is writtenhere ontains too muh of one individual instrutors own lassroom style.Cultural Impats on PedagogyWe note that a huge body of evidene attests to the fat that a soi-ety's values are passed from generation to generation through a proess oftransmission whih may be vertial (from parents) or oblique (from oth-ers in the prior generation) and involves a psyhologial internalization of



xvi REMARKS BY THE AUTHORvalues. {Karl MarxHow does soiety optimize the transfer of mathematial knowledge and skills fromone generation to the next? While the eduators, politiians, and media have spentinordinate quantities of time, thought, and ash trying to address this issue, my viewis that the answers lie in the ulture of the ommunity, the reward system for thoseinvolved, and the method of delivery. Needless to say these three fores are notunrelated.If a ommunity values �nane, fashion, and football more than mathematis andsiene, then guess what? The resoures and talent of the ommunity will ow intothose more preferred areas. Sometimes politial events hange the behavior of aommunity. Before the rise of the Nazis, mathematis training in Ameria was al-most nonexistent at every level. With the immigration of prominent sientists to theUnited States in the 1930's, interest in mathematis began to rise. In 1957 the Rus-sians hanged siene forever by launhing Sputnik. This event provided the impetusfor eduators to launh advaned siene and mathematis ourses in high shoolsthroughout the United States. The \New Math" was part of this Cold War e�ortto ath up. In 1962, John F. Kennedy's push to land a man on the moon reatedan exitement that boosted the prodution of PhD mathematiians to never beforeseen levels. The study of mathematis in Ameria was transformed from being worstto �rst. Students and young faulty now ame from all over the world to study inAmeria. Unfortunately, only a short time later the exitement began ebbing bakto the historial mean. In the 1970's, the onern beame: How are we going to�nd employment for all these mathematiians? In the 1990's, the onern refousedto: Why does a kid in a far-o� land perform better on standardized math examsthan those in Ameria? Reently, I quizzed a number of (exellent) Chinese graduatestudents on this issue. I asked whether or not their mothers pushed them to exel.Their response was that not only did their parents insist they study hard, but theexpetation was uniform among their friends so negotiation was not part of the equa-tion. When they performed well, they were rewarded. Their parents had also given



xviithem a hoie: They ould study or they ould work. In a ulture where eduationwas a privilege, not a right and where drudge labor was the norm, the onnetion waslear. Thus, parents, prestige, and pro�t ombined to reate an environment wherethey beame driven by internal fores. My students from Eastern Europe, Russia,India, and South Ameria are driven by similar pressures. In all these ultures, mathis easy when ompared with the alternatives.So what inentives are available for motivating students in today's world? Whilethe exitement of the spae rae and the new math have evaporated and the eonomiesof the world are doing reasonably well, a plethora of new gadgets, tehnologies, andissues have exploded in their plae. Calulators are everywhere. Imaging Sieneis a �eld that permeates mediine and the military. Environmental (e.g. globalwarming), publi safety (e.g. hurriane traking), and publi health issues (e.g. thespread of AIDS) abound. These new areas all require appropriately hosen numerialmethods and models. Sine engineers enjoy projets that impat soiety, a fous ofthis dialogue is to onnet the abstrat mathematial ideas to as many appliationsas possible.Pedagogy as a ProessKnowing something for oneself or for ommuniation to an expert ol-league is not the same as knowing it for explanation to a student. {HymanBassWhile mathematiians are expeted to write in a de�nition-theorem-proof stylethat is lear, rigorous, and lean, I have found few undergraduate (or even graduate)students, who an retain muh from this style of information transfer. Instead, I pre-fer to present modern mathematis as a naturally unfolding \Sorati proess," wheresimple questions and observations lead to fundamental insights. The key is to formu-late and answer learly stated questions, whih get to the heart of the problem. Ifyou \Begin with the easiest problem you don't understand," then the solution to one



xviii REMARKS BY THE AUTHORproblem often leads to new questions and new answers whih lead to new solutions.Simple observations evolve into ever more general and abstrat onepts. These ab-strat general results beome more aessible and easier to understand. The dialogueformat provides a mehanism whih an be used to apture this spirit of disovery.The question \What does it mean for a tehnique to work?" leads to a preise de�ni-tion of the rules of the game. In my experiene, students typially �nd de�nitions anunneessary and pedanti annoyane. A mathematiians attitude is that you an'tplay the game until you have a preise statement of the rules. The question \Doesthe tehnique always work?" frequently leads to examples demonstrating a negativeanswer. These examples lead to the question \When does the tehnique work?" Theresponse of the mathematiian is to formulate a theorem or proposition, whih pro-vides exat onditions when a positive result an be guaranteed. The question \Canthe method be generalized?" may lead to a tehnique that an be applied to a widerrange of problems. One a generalization has been formulated the proess repeatsitself.The Contration Mapping Theorem of Stephan Banah (1906-1960) is a notableexample of this evolution from simple to abstrat. Without referene to the anientArhimedes/Heron square root algorithm and the Newton/Raphson root �nding teh-nique 1700 years later, this theorem laks seems to emerge from nowhere. Approx-imation theory provides a seond progression of ideas, where the topis presentedinlude: polynomials, Fourier, splines, and wavelets. In eah ase, orthogonality (orlak thereof) is fundamental to the suess (or failure) of the tehnique. Sine orthog-onality is nothing but a fany way of saying perpendiular, the Pythagorean Theoremis at the heart of the disussion. The fat that root �nding and approximation tookseveral thousand years to unfold indiates the rihness of the ideas underlying thetehniques. Our approah is to use this rih history to drive the disussion. Armedwith an understanding of this mathematial proess, the hope is that the readershould be better able to evaluate, selet, and apply numerial methods in their ownendeavors.



xixWhile not as important as the development of mathematial ideas, I �nd that stu-dents also enjoy mathematial gossip. By introduing artoon versions of some thegreat ontributors to mathematis, I am hoping the reader an begin to appreiatesome of their quirky personalities. Probably my favorite story is Fourier's personalinterest in the heat equation. In short, after an enjoyable visit to sunny Egypt withNapoleon in 1798, Fourier returned to the miserable rain and snow of Grenoble'swinter, where he turned up the heat in his apartment to the highest setting. Thusstimulated, he developed stable methods for solving the heat equation. Suh ane-dotes lead to the questions: \Who ares?" and \Why would anyone be interested insolving these types of problems?" George Polya (1887-1985) also endorses this \jour-nalisti" approah to pedagogy when he remarks that your �ve best friends are What,Why, Where, When, and How [9℄. I would also add Who. Thus, the mathematialideas are embedded in an interative disussion of the bakground, signi�ane, andhistorial ontext of the subjet. In my experiene, I have found that my engineeringand medial students �nd this approah an agreeable alternative to the more tradi-tional one, where they are stu�ed with fats, formulas, and tehniques like the overfedgoose headed for the dinner table as \pat�e de foie gras."In addition to presenting the theoretial ideas as a proess, we have followed thelead of G. Polya in our disussion of examples and problems. In his book \How toSolve It," [9℄, he spells out a general four step proess for solving a mathemati'sproblem:1. understanding the problem,2. devise a plan,3. arry out the plan, and4. look bak and review what was done.This proess provides a student with a struture and framework for attaking a prob-lem. Probably the best example of this approah is our treatment of limit problems,



xx REMARKS BY THE AUTHORwhere we insist students are able to know and apply the de�nition of a limit. Inthe problems we onsider, the plan is always the same. Eah solution requires threesimple steps. While students argue that they should not be expeted to know thisskill, they soon �nd that they are far easier than the problems onneted with realappliations. As you will read many times in these notes: \Math is easy. It is lifethat is diÆult."Murphy's LawWhat an go wrong, will go wrong. {MurphyWhile logi and rigor are fundamental to the spirit of mathematis, omputersientists, engineers, and physiists turn to mathematis for tehniques to mathe-matially analyze and model real-world phenomena. Students from these �elds mayenjoy the study of mathematis, but are driven by the needs of their partiular appli-ation. Unfortunately, the urriulum has beome so rowded that most instrutionin these applied areas beomes \tehnique driven" rather than \proess driven." Inother words, the instrutor presents the formulas and tehniques, but hurries on to thenext topi before disussing history, insights, or aveats assoiated with the method.However, in my experiene, I have found Murphy's Law to be the one guiding prin-iple that rules the study of numerial methods. In these notes, key examples havebeen provided to help the student identify the numerous tar pits that are fored onthe subjet. Hopefully, the student will develop a wariness when employing these andother tehniques in their own investigations.A Final CommentAnd yet it moves. {GalileoWhile Galileo's book, \Two Chief World Systems," ontained thinly veiled politi-al statements not in aord with the dogma of his times, the dialogue strategy failed



xxito keep him out of harm's way. For on 22 June 1633 the wrath of Pope Urban VIIIdesended upon him when the Holy Inquisition onvited him of heresy and subjetedhim to life imprisonment (later ommuted to house arrest). If he had not been sofamous and had not abjured himself, he might have been burned at the stake as washis predeessor, the hereti Giordano Bruno (1548-1600). It was not until 31 Oto-ber 1992, after almost 13 years of investigation (inluding the testimony of PhysiistSteven Hawking), that a ommission appointed by Pope John Paul II admitted that\mistakes must be frankly reognized." And so it goes.
AknowledgmentsI doubt I would have ever taught a single mathematis lass if it were not for theexellent eduation I reeived at Ithaa High Shool. My mathematis teahers forgrades 9-12 were Miss Stenson, Miss DePew, and Miss Neighbour. (I have not inludedtheir �rst names beause I have listed their names the way they appear in my oldyearbooks. In a day when everyone is on a �rst name basis with their superiors, I�nd this formality refreshing.) In the 9th grade, Miss Stenson taught us the quadratiformula. In the 10th and 11th grades, Miss DePew taught us Eulidean Geometryand Solid Geometry. Miss Neighbour taught us Analyti Geometry and 6 weeks ofCalulus. While they were all exellent teahers, I adored Miss DePew. She alwaystold us stories about Arhimedes in the bathtub, the death of Arhimedes, Napierand his bones, the history of Eulid's �fth postulate, and the young Gauss adding upthe numbers from 1 to 100. She even tried to get us to disover the formula for thearithmeti series ourselves. (My reolletion is that this experiment didn't work outtoo well.) She loved Geometry, where mathematial rigor was front and enter. Nosloppy thoughts were allowed in her lass. She also had a fearsome intensity. When wedid poorly on an exam, she did not hesitate to let us know. Fortunately for me, I satnear the bak of the room and so ould hide from her wrath. Of ourse, when we didwell, her praise made you glow. In my 40 years of teahing several thousand students,



xxii REMARKS BY THE AUTHORI have found only a handful with the training in the fundamentals of mathematisthat equaled mine. She took her profession very seriously.I have also extrated a multitude of photographs, quotes, and omments from theMaTutor History of Mathematis arhive[2℄, whih is based at the Shool of Mathe-matial and Computational Sienes at the University of St Andrews, Fife, Sotland.I found their database ontaining more than 1000 biographies of mathematiians toontain a gold mine of information.Finally, I must also aknowledge my students, olleagues, friends, teahers, fam-ily, and assorted poets, who have unknowingly supplied muh of the language thatappears in these pages. I have stolen from them merilessly.
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Part I
Day 1. The Interview

1





Chapter 1
Introdutions

The universe annot be read until we have learned the language and be-ome familiar with the haraters in whih it is written. It is writtenin mathematial language, and the letters are triangles, irles and othergeometrial �gures, without whih means it is humanly impossible to om-prehend a single word. -Galileo Galilei (1564-1642)The Setting:The time is the present. Galileo sits at his desk absorbed in a manusript. Asmall glass of Chianti rests nearby. Enter Virginia and Simpliio. Galileo looks up.3



4 CHAPTER 1. INTRODUCTIONSGalileo: And what brings you to my oÆe?Virginia: We are interested in learning more siene and mathematis.Galileo: I submit that the study of these subjets is a noble and worthy goal. Virginia,who is this young fellow with you?Virginia: I would like you to meet my new friend Simpliio.Galileo: I am pleased to meet you Mr. Simpliio. I am sure you have found Virginiato be a graious lady with exquisite manners and harm. She is one of my favorites.Simpliio: Indeed I do enjoy her ompany.Galileo: And if I may ask, what areer goals do you have?Virginia: I am interested in teahing mathematis.Simpliio: I would like to beome more knowledgeable about important appliations.An understanding of numerial methods seems to be a requirement for my futureemployment.Galileo: Very interesting, but why?Simpliio: I am not sure, but several prospetive employers have mentioned data. Itseems they are overloaded with data and having trouble making any sense of it. Theyreommended I disuss these issues with you. It seems you are the master of data.Galileo: I am attered. Others have not been so kind. It sounds like you have talkedto someone, who requires a knowledge and skill in data aquisition, storage, andanalysis tehniques. Is that orret?Simpliio: One ompany builds devies, whih aquire and analyze signals for themilitary. One builds medial imaging equipment. One is in ommuniations. One isin the business of ompressing images.Galileo: So, you are ready to journey through a mathematially rigorous study ofthese topis?Simpliio: Unlike yourself, I do not enjoy the rigor of mathematis.Galileo: I am sorry to hear that. I �nd the beauty, oder, and larity of mathematialideas a refreshing ontrast to the sloppy thinking that surround us.



Chapter 2
Siene, Models, and Appliations

From the same priniples, I now demonstrate the frame of the System ofthe World.-Isaa NewtonA job is death without dignity. {Dylan ThomasSimpliio: While I have no objetion to rigor for others, my reason for this visit is tolearn tehniques useful in my employment.Galileo: Do I detet that \rigor" and \employment" are onepts separated by avoid?Simpliio: To be honest, I �nd mathematis to be diÆult, boring, and irrelevant. Isearh for a job, where the pay is good and the work not too stressful.Galileo: You are an honest man.Simpliio: I always make an e�ort to be diret. What skills do we need?Galileo: Over the ages, the anient thinkers have developed numerial tehniques toompute:1. solutions to systems of linear equations,2. solutions to systems of nonlinear equations,3. derivatives 5



6 CHAPTER 2. SCIENCE, MODELS, AND APPLICATIONS4. integrals,5. eigenvalues and eigenvetors,6. solutions to di�erential equations, and7. solutions to partial di�erential equations.While these methods are all useful, we are not going to have time to disuss them all.Choies must be made.Simpliio: Whih skills would an employer prefer?Galileo: The big piture is that all these tehniques are useful in setting up andsolving mathematial models of physial phenomena. In short, these tehniques arejoined as the omputational omponent of the sienti� method. This simple, butsevere test an be summarized as repeated iterations of the following proedure:1. observational and/or experimental data is aquired,2. a mathematial/statistial model is formulated, and3. the model and the data are tested for agreement.The reason for this proess is to make preditions, whih help answer the questions\when," \where," or \how muh." Interestingly, sometimes the data omes �rst andstimulates the searh for a model. The data I olleted on the motion of a fallingbody showed that the motion an be modeled by a quadrati equation. JohannesKepler (1571-1630) demonstrated that Tyho Brahe's data fored the onlusion thatthe orbit of Mars is an ellipse. Soon after, Isaa Newton proved that both thesemodels an be explained as onsequenes of his laws of motion. This tour de fore isunmathed in the history of siene. On the other hand, sometimes the theory omes�rst. Albert Einstein's speial theory of relativity wasn't on�rmed by data until morethan a deade after the disovery. In both senarios, on�rmation of agreement iskey. Eah time new data is aquired, the auray of the model is reevaluated. If onemodel provides better agreement and preditions than another, then it is preferred.



7This proess is ongoing. While the proess is imperfet, it is better than all itsompetitors. Needless to say, some models have greater preditive value than others.Aristotle asserted that the earth is the enter of the universe. The epiyle model ofPtolemy (Claudius Ptolemaeus, 87-150) was based on this assumption. For enturies,the hurh aepted this view as dogma. Even though this model provided reasonablyaurate preditions for the motion of the planets, the Newton/Kepler model is easierto understand and provides a lear explanation for suh anomalies as the apparentretrograde motion of Mars.Simpliio: The method seems to be intelligently designed.Virginia: Only if you play by the rules.Galileo: We now have suessful models for the motion of the planets, the motion of apendulum, the motion of a spring, uid ow, the nature of eletriity and magnetism,the nature of waves, and heat transfer. While many models are ompliated, thebest models are based on simple priniples that you sure are orret. Our on�denein many of these models is now so great we would be shoked if the unexpetedhappened. Every time you turn on one of your eletroni gadgets, you are using thelaws of eletriity and magnetism.Simpliio: What about hurrianes, oods, and beah erosion?Galileo: The models for uids are not as reliable as those for eletriity. While youan ritiize those making preditions based on less perfet models, you might thinkof them as an opportunity for employment. If you an aurately predit the future,you an make money. Better yet, you an begin to understand the world around you.Virginia: You an also get into trouble.Galileo: Sometimes my olleagues have been sloppy about their data. While myolleague Aristotle laimed the distane traveled by a falling body has a linear rela-tionship with the time of ight, he never tested his ideas properly. My data showsthe relationship is quadrati. In partiular, if you double the time of ight, then thedistane traveled will be quadrupled.Simpliio: I guess data is important, but is an employer going to hire me to expound



8 CHAPTER 2. SCIENCE, MODELS, AND APPLICATIONSon these already well-understood insights? Why would he are?Galileo: The tehniques of the anient masters are embedded in the tehnology of thepresent. For example, Fourier series tehniques used to solve partial di�erential equa-tions are now being used in a multitude of appliations inluding speeh reognition,image analysis, and signal ompression.Simpliio: So where do numerial methods fator into this senario?Galileo: If you an model a problem by an equation or system of equations, then thegoal of numerial analysis is to provide tehniques to �nd the solution (or solutions).If your model is linear, then Linear Algebra is your tool of hoie. Whenever possible,you should linearize your problem.Simpliio: What do you do if your problem is not linear?Galileo: If possible, you linearize your problem over a short period of time. Theunderlying onept in di�erential alulus is that the �rst derivative is the slope ofthe line that \best approximates" the urve. For us, the root �nding method of New-ton/Raphson is an example of a tehnique that repeatedly uses a linear approximationto solve a nonlinear problem.Simpliio: OK, so what skills do I need to work in this area?Galileo: If you �nd data fasinating, then I reommend you beome versed in thefollowing areas:1. mathematis,2. omputer siene,3. statistis,4. physis, and possibly5. a biomedial area.Virginia: I am worried about that omputer siene requirement. I have limitedprogramming experiene. My bakground in physis is a bit weak as well.



9Galileo: You need to have enough omputer skills to implement and test your ownideas. No one is going to do it for you. Otherwise, you will have no ability totest your ideas. You need to be omfortable with physis beause di�erent dataaquisition devies employ di�erent physial priniples. A tehnique that produesaurate estimates for one modality may be useless when applied to signals or imagesaquired on another system. Any numerial method for analyzing data should be insyn with the devie or method used to aquired it.Simpliio: What about statistis? The only word that omes to mind is: boring,boring, boring. My view is:I know not �;I know not square,Nor do I know,Why I should are.Galileo: Maybe you should reonsider this attitude. Statistiians are the gatekeepersto a multitude of today's sienti� questions beause they provide us with tools formaking sense of data. While the last entury was the entury of the hard sienes,the exiting new frontiers are now shifting to medial and biomedial appliations.Imaging siene will play a large role in these areas. Genomis with its terabytes ofdata may be a better example. In any ase, anyone who has the ability to make senseof the mountains of data that is generated daily will be employable. In a word: Data,Data, Data!Virginia: So that's why you mentioned biomedial appliations?Galileo: You got it.



10 CHAPTER 2. SCIENCE, MODELS, AND APPLICATIONS



Chapter 3
Topis for the Tutorial

He who does not understand motion, annot understand Nature.-GalileoVirginia: Good Sir, ould you give us an overview of the topis you will be disussingin this tutorial?Galileo: Certainly. The two main themes will be root �nding and approximationtheory. Sine root �nding has a long and distinguished history, we will begin withthis theme. The task of �nding a root is equivalent to that of solving a system ofnonlinear equations.Simpliio: Could you remind me about roots?Galileo: A root of a funtion is a point x = r; where the graph of funtion rosses thex�axis. The oÆial de�nition is:De�nition 3.0.1. If f(x) : [a; b℄ ! <; is a funtion and f(r) = 0; then x = r is aroot:Simpliio: Why would I are?Galileo: If you reall from your study of Calulus, the problem of maximizing and/orminimizing a funtion f(x) : [a; b℄! < is at the heart of a multitude of appliations.The strategy is to ompute the �rst derivative f 0(x) at eah ritial point x = r: Themaximum of the funtion y = f(x) on the interval [a; b℄ will equal the maximum ofthe values f(a); f(b); f(r1); f(r2); : : : ; f(rn); where r1; r2; : : : ; rn is the list of all the11



12 CHAPTER 3. TOPICS FOR THE TUTORIALritial points for f(x): A similar statement is true for omputing the minimum of thefuntion. The beauty of this strategy is that an in�nite problem has been redued toa �nite one.Simpliio: Forgive me, but it has been a long time sine I have su�ered throughCalulus. What is a ritial point?Virginia: A ritial point of a funtion is a point x = r; where the graph of the �rstderivative rosses the x�axis. In other words, a loation where the funtion has ahorizontal tangent line. The preise de�nition is:De�nition 3.0.2. If f(x) : [a; b℄! <; is a di�erentiable funtion and f 0(r) = 0; thenx = r is a ritial point for f(x):Galileo: Very good. Note that the ritial point always lies in the domain of thefuntion.Simpliio: And why should I are about ritial points?Galileo: If a ompany an represent their pro�ts by a funtion, then they an max-imize their pro�ts by simply omputing this funtion at all the ritial points. Thelargest value will be the maximum of the funtion. A similar statement holds forminimizing their osts.Simpliio: I must admit that I am having a bit of trouble visualizing this situation.Galileo: How about the example of the parabola? Calulus is nothing more thanthe reognition that onepts suh as veloity and aeleration assoiated with themotion of a falling body an be generalized to arbitrary funtions. If you understandthe parabola, you are a long way home.Simpliio: Sounds good.Galileo: If f(x) = ax2 + bx + ; then the �rst derivative is f 0(x) = 2ax + b: Theritial point x = r is ommuted by solving the equation f 0(x) = ax + b = 0: As anexpert in Algebra, you immediately reognize that the ritial point is r = x = � baand the ritial value is f(r) = f(� ba) = a(� ba)2 + b(� ba) +  = �2 ba + : In thespeial ase of a falling body, I found that the height an be modeled by the formulas(t) = �12gt2+ v0t+ s0; where g = �32 ftse2 = �9:8 mse2 ; v0 denotes the initial veloity,



13and s0 denotes the initial height. Sine this urve is onave down, the highestpoint of the ight of the ball will our when the veloity equals zero. Sine theveloity is the �rst derivative of the height funtion, the ritial point will ourwhen v(t) = s0(t) = �gt+ v0 = 0 or t = v0g :Virginia: If you toss the ball in a downward diretion, then the initial veloity isnegative. In this ase, the maximum value of f(x) will our at time t = 0:Galileo: Good point. I should have mentioned that we are assuming v0 > 0:While theritial points are easy to �nd for this problem, real-world problems require muh moregeneral tehniques. We will fous our disussion on the Newton/Raphson, bisetion,and Contration Mapping Theorem tehniques. The Newton/Raphson method isbased on �nding the root x = r for the linear funtion y = f(x) = mx + b: Siner = � bm ; the problem is not too diÆult. Right?Simpliio: These remarks help, but why are we disussing several di�erent methodsfor �nding roots? Why not simplify the disussion and just fous on one method?Galileo: Eah has its plae. Our disussions will be driven by suh questions as: Doesthe method always work? Whih onverges faster? Unfortunately, with numerialtehniques, you don't always get lear winners. We will often �nd that the appliationdrives the hoie of tehnique.Simpliio: And why would I are about the Contration Mapping Theorem?Galileo: This theorem is an elegant generalization of the method of Arhimedes/Heronand Newton/Raphson. While these extensions are easy to understand in retrospet,they took 2000 years to unfold.Simpliio: Do I need elegane?Galileo: This theorem an be used to solve linear systems of equations, non-linearequations, and di�erential equations. It is even used to generate fratal pitures andompress images. In other words, it an be used to solve a multitude of di�erenttypes of problems. In its most basi form, the tehnique is easy to understand, anbe implemented in only a few lines of omputer ode, and always works. I all thatelegant and I appreiate it when I �nd it.



14 CHAPTER 3. TOPICS FOR THE TUTORIALSimpliio: I like the idea of ompressing images.Virginia: I too have enjoyed the beautiful snowake example.Galileo: While we won't have time to disuss fratals, we will lay the foundation soyou an study that subjet on your own.Virginia: Are these all the topis we will over?Galileo: The seond theme of our tutorial is approximation theory, where we willdisuss the topis of Taylor's Theorem, polynomial approximation, Fourier Series,ubi splines, and wavelets. These methods are useful if you would like to approximatea funtion f(x) by a funtion with ertain desirable properties. For example, giventhe funtion f(x) = sin(x); we would like to approximate its value at a partiularpoint x = x0:We an do this with a Taylor polynomial of the form p1(x) = x; p3(x) =x� 16x3; p5(x) = x� 16x3+ 1120x5; et. Sine polynomials are easy to ompute and themethod always onverges to the orret answer, Taylor's Theorem is a great plae tostart. Taylor's Theorem provides a fundamental tool for the numerial approximationof �rst and seond derivatives. Virtually any problem involved with rates of hangerequires the estimation of veloity or aeleration. The formulas we will derive areused everywhere in di�erential equations, partial di�erential equations, and signaland image proessing.Simpliio: What's next?Galileo: After Taylor's Theorem, we turn to a seond tehnique for approximatingfuntions by polynomials. The advantage of this method is we use a sampling of thevalues of the funtion at sattered points rather than the values of the funtion andits derivatives at one partiular point.Simpliio: So?Galileo: Typially, when we are given a set of data points, we are not given anyinformation about the derivatives so Taylor's Theorem annot be applied. Thus, weneed a new tehnique.Simpliio: OK.Galileo: This topi also provides an exellent entry point into the modeling of data.



15Sine we usually have more data than we know what to do with, we usually try toredue the data to a form that is easy to understand. Straight lines and parabolas areoften a good plae to begin. The tehnique that gets us there is linear least squares.While least squares is usually assoiated with straight line approximations, it an alsobe used to approximate data with a parabola of the form p2(x) = a0 + a1x + a2x2:Our falling body problem is a good example, where a paraboli �t works. In 1958,Charles Keeling (1928-2005) began the olletion of data measuring the onentrationof arbon dioxide in the atmosphere. These measurements have been made monthlyever sine he began this e�ort. When least squares is used to �t a paraboli urveto this data, the �t is exellent. A urrent politial issue is whether or not the risingonentration of this gas auses global warming. Just beause the �t is good, doesn'tmean we an extrapolate out too many years. We shall see.Simpliio: Interesting.Virginia: Why would we worry about Fourier series?Galileo: Fourier made his mark in mathematis by reognizing that trigonometri ap-proximations produe muh more aurate results than polynomial ones when solvingthe heat equation. We will disuss that famous Runge example, whih shows thathigh degree polynomials are evil.Simpliio: Good and evil in a mathematis lass?Galileo: If you are an engineer making a alulation and your alulator gives you astupid answer, then your attitude is that the devie is evil.Simpliio: Even I understand that.Virginia: Why disuss polynomials at all?Galileo: As we mentioned, linear and quadrati �ts an often produe useful results.Least squares are used everywhere. However, probably the best reason is polyno-mial interpolation provides an exellent entry point to Fourier series. In fat, if youlook at the subjet properly, the disrete Fourier transform is exatly polynomialinterpolation. Thus, if you understand polynomials, you are a long ways towardsunderstanding Fourier. Better yet, waves and wavelike (i. e. periodi) motion are ev-



16 CHAPTER 3. TOPICS FOR THE TUTORIALerywhere in nature. While the motion of the pendulum is the �rst one that omes tomind, light, radio, oean, and sound waves are also examples. A wave with frequeny! an be written as a trigonometri funtion of the form os(!(t� t0)): Fourier seriesare nothing but linear ombinations of funtions of the form os(nx) and sin(nx): Notonly are they perfetly designed for modeling waves, but they also have remarkablemathematial properties.Simpliio: But I am not interested in their math properties.Galileo: You should be. As it turns out, engineers love Fourier tehniques beausethey are not only diretly onneted with wave phenomena, but beause they areomputationally stable. Thus, they an trust the answers. The fundamental reasonfor this trust takes us bak to Pythagoras.Simpliio: I an't wait.Virginia: What about ubi splines?Galileo: While they are not as useful in physis as Fourier series, they have the samestable harateristis as Fourier series but even better onvergene properties for the�rst and seond derivatives. This property is not neessarily true for Fourier series.Splines have another important property that Fourier series don't have. Namely,while funtions like sin(x) and os(x) osillate up and down forever, splines equalzero outside some �nite interval.Simpliio: Why is that property important?Galileo: When you ompute a linear ombination of a bunh of spline funtions ata partiular point x; you an ignore all the intervals not ontaining x: Typially,the point x will lie in no more than 5 intervals. Sine splines are pieewise ubipolynomials, they are almost instantaneous to ompute on eah interval and lie in asmall number of intervals, they are blazingly fast. For these reasons, they are oftenused in omputer graphis and omputer animations.Simpliio: I will have to pay attention when we disuss that topi.Galileo: You will enjoy the elegant theorems assoiated with splines as well.Virginia: And �nally, what are wavelets good for?



17Galileo: Wavelets represent the best of all possible worlds. If you think about thename a minute, you realize that the word wavelet implies \little wave," whih isexatly what they are. Wavelets osillate like sin(x) and os(x) so they are usefulfor modeling real physial phenomena. Like the trigonometri funtions, they enjoythe bene�ts of Pythagoras and so are stable to ompute. In addition, they have thesame �niteness properties that splines have so they are fast to ompute. Needlessto say, wavelets are very popular and are used in a multitude of appliations. Inpartiular, Jean Morlet used them to searh for intense, short term bursts in geologisonography data. They are also used in a multitude of imaging appliations inludingompression and analysis.Simpliio: If wavelets are so great, why don't we skip the other topis?Galileo: Beause you would be lost and onfused. We will try to let the story unfoldso the ideas beome more transparent.Simpliio: So that's it?Galileo: Sine the heat equation and the wave equation gave rise to the popularity ofFourier series, we really are required to disuss partial di�erential equations. Sine weknow your limits, we will make the disussions as brief as possible. Sine di�erentialequations are also everywhere in Nature, we will mention those topis as well.Simpliio: I never had a ourse in di�erential equations.Galileo: He who does not understand motion, annot understand Nature.Simpliio: Maybe I should beome a monk.Galileo: You an run, but you annot hide. Remember: Math is easy. Its life that isdiÆult. And young lady, why are you here?Virginia: I �nd all this talk about data and appliations quite exiting. Hopefully,this experiene will make me a better teaher.Galileo: If your students an see how mathematis onnets with the real world, thenmaybe they will be more motivated.Simpliio: Again, why would you want to teah?Virginia: I enjoy the logi, larity, and simpliity of mathematis. It all makes sense.



18 CHAPTER 3. TOPICS FOR THE TUTORIALI enjoy interating with young people. My material needs are few so I don't objetto the low pay.Galileo: (The phone rings. Galileo answers. After he mumbles \Yes." and \Hmmm."repeatedly, he gets up from his hair.) My benefator feels I should return to myresearh. So ends my atehism.Simpliio: One last question?Galileo: Yes?Simpliio: Every book on numerial methods I have looked at begins with a disussionof round-o� errors. Why haven't you mentioned this topi?Galileo: Round-o� errors are a detail. The big piture omes �rst. (Galileo sips fromhis glass of wine and departs.)Simpliio: What do you think? Should we enroll in this guy's tutorial or take someoneelse's lass? All he talks about is de�nitions, theorems, and proofs. Nothing but math,math, math. Worse yet, he seems to be a preaher teaher. I am not sure I an handleit.Virginia: You an always take the ourse with Professor Powertrip. You might preferto be with all those engineers. It is probably more your style.Simpliio: Not a hane. That guy is mean and will do whatever he an to make youfeel stupid.Virginia: How about Professor Poubelle's setion?Simpliio: At least he wouldn't expet muh from us.Virginia: While I am a bit worried about the omputer projets and the appliations,I have deided to enroll with the preahy guy.Simpliio: Tonight is ladies night at the \Math and Musi Bar." Interested?Virginia: Are you serious? I have to study.Simpliio: Tomorrow is another day, maybe.



Part II
Day 2. Bakground and Review
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21Let no one ignorant of geometry enter here." -insription above Plato'sAademyGalileo: You have returned?Simpliio: While I am not yet ertain this ourse of study is worth my time, I havedeided to give your tutorial a try.Galileo: My administrator will be pleased I have lients. This is good. In any ase,be ertain to pay your fees before you leave.Simpliio: What?Galileo: Don't you expet ompensation for your labors?Simpliio: I will have to disuss this problem with my father. What about her?Galileo: She has been awarded a sholarship.Virginia: Enough of this talk. Let's move on.Galileo: I plan to begin our tutorial by presenting several proofs of the PythagoreanTheorem.Simpliio: Why on Earth would you present a theorem we have seen in our youth?Galileo: Reall from our �rst onversation that the omputation of the square root isof fundamental importane in math, statistis, and engineering. The Linear Algebraversion is at the heart of the suess of Fourier series.The only prerequisite for this ourse is plenty between the ears.-WalterRudinSimpliio: What are the prerequisites for this tutorial?Galileo: Sine my funding requires that I sustain my researh program, let me bebrief. You only need to know one thing, but you have to �gure it out.Simpliio: (To Virginia) Is this guy serious? He speaks in tongues.Galileo: OK, let me rephrase my response. To sueed in mathematis or siene youneed to develop the ability to solve a problem on your own. Most never get it.Simpliio: But an I ask questions?



22Galileo: The math gene is what separates you from the other primates so you have thetalent. Do you really think that an employer is going to reward you with a high salaryto implement well understood ideas? Unfortunately, mathematis is not a spetatorsport. Just like an athleti ompetition, you have to put in the time and e�ort. Iam not interested in passive learners who just say \feed me." I expet you to run upand down the �eld like everyone else. Otherwise, we will both be wasting our time.Attitude is everything.Simpliio: How about if you just tell me what I need to know to survive this tutorial?Galileo: Sine we will not be disussing spei� issues in physis and biology, youan learn those subjets on another oasion. While statistis is important and wewill disuss the rudiments of least squares and lassi�ation, you will not need anytraining in statistis to follow our disussions. On the other hand, sine one of themain goals of this tutorial will be to develop algorithms, you will de�nitely need tohave basi skills in omputer programming. If you don't, you will be helpless whenasked to implement even the most rudimentary algorithm.Simpliio: I an handle those requirements.Virginia: I am worried.



Chapter 4
Geometry

There is no royal road to Geometry.{EulidEulid alone hath seen beauty.{Emma Talley ShawUnle Dave, Geometry is easy.{Carter MMillanSimpliio: What mathematis prerequisites are required for this tutorial?Galileo: A solid foundation in Eulidean Geometry is essential. You will �nd Pythago-ras (569-475 B.C.E.) everywhere in our disussions.Simpliio: Surely, you are joking Mr. Galileo. I found Eulid (325-270 B.C.E) dull,diÆult, and irrelevant.Virginia: Mr. Simpliio, I �nd that statement surprising. I loved Eulid with hispoints, angles, similar triangles, ongruent triangles, the area formulas for a paral-23



24 CHAPTER 4. GEOMETRYlelogram and rhombus, and ruler and ompass onstrutions. I partiularly enjoyedthe areful and rigorous logi he used when presenting his axioms, postulates, andtheorems. Side-angle-side was my favorite. He opened a whole new world for me.Galileo: As you will see, a multitude of ideas from Geometry have inspired omputa-tional algorithms. Our �rst algorithm will be introdued by my olleague Arhimedes(287-212 B.C.E.). He loved Geometry so muh he had his formula for the volume ofa sphere engraved on his tomb.Simpliio: Whoever heard of using a ruler and ompass to implement a mathematialtehnique on a omputer? Side-angle-side? Give me a break.Galileo: You will see.4.1 The Pythagorean Theorem

At its deepest level, reality is mathematial in nature.-PythagorasThere is geometry in the humming of the strings, there is musi in thespaing of the spheres.-PythagorasGalileo: In the spirit of the anients, we begin with the Pythagorean Theorem. Iknow you have seen it before.Simpliio: It is a theorem I learned in geometry many years ago. Why would youbegin our disussion with suh an old theorem?



4.1. THE PYTHAGOREAN THEOREM 25Galileo: Beause the Pythagorean Theorem provides a unifying theme for this tuto-rial. In fat, it ontains four important onepts that appear everywhere in modernmathematis. These onepts inlude:1. distane,2. roots,3. irrational numbers,4. orthogonality, and5. projetion.Can you state the theorem?Virginia: I remember it.Theorem 4.1.1 (Pythagorean Theorem). If the legs of a right triangle havelengths a and b and the hypotenuse has length ; then 2 = a2 + b2:Galileo: We begin by making some easy observations about the theorem that shouldhelp to make these themes more transparent. First, sine the length of the hypotenuseof a right triangle is the square root of the sum of the squares of the other two, itforms the basis for omputing the distane between two points. In fat, the formulafor the distane between two points P (x1; y1) and Q(x2; y2) in the plane is given bythe formula: dist(P;Q) =p(x2 � x1)2 + (y2 � y1)2:This rule is an immediate appliation of the Pythagorean Theorem. Note that wewill begin our tutorial with a disussion of the Arhimedes/Heron square root algo-rithm for approximating the square root of a number. As you will see, the ideas inthis algorithm are embedded in a number of important modern tehniques inludingNewton/Raphson and the Contration Mapping Theorem. Also, while lengths and



26 CHAPTER 4. GEOMETRYdistanes may seem too easy, the onept of omputing distanes between points reap-pears in Linear Algebra, Fourier series, orthogonal polynomials, splines, and wavelets.We will revisit this idea repeatedly during our quest. Are wavelets new enough?Simpliio: OK, OK.Galileo: A key assumption in the Pythagorean Theorem is that one of the angles hasto be a right angle. Without that assumption, the theorem is false. As we will see inour investigations, many numerial tehniques fail badly. Engineers do not like beingblind sided by a stupid result when they are in the middle of a projet. They likemethods that always produe aurate answers. The onept of orthogonality helpsful�ll this wish.Simpliio: I never heard of orthogonality before.Galileo: Orthogonality is just a fany way of saying right angle or perpendiular. Inthe Pythagorean Theorem, the two shorter sides of the triangle are assumed to beperpendiular (and thus orthogonal).Simpliio: It looks easy from here.Galileo: The fourth idea is that we an projet the hypotenuse of the triangle ontoeither of the other two sides. Note that the length of the hypotenuse is greater thanthe length of either of the other two sides.Simpliio: That's evident from the formula 2 = a2 + b2:Galileo: This desirable property is a onsequene of our assumption that the angleopposite the hypotenuse is assumed to be a right angle. While not all projetionshave this wonderful property, Fourier does. Suh projetions are alled orthogonal.Virginia: Sine I don't exatly understand Fourier series, I am not sure where youare going with this. In any ase I �nd these ideas interesting.Simpliio: So far, I like this disussion. Easy is good.Galileo: I like to begin with easy examples. Can you prove this theorem of Pythago-ras?Simpliio: I fear it has evaporated from my ranium.Galileo: Pythagoras of Samos (a:569� a:475 B.C.E.) is often desribed as the �rst



4.1. THE PYTHAGOREAN THEOREM 27pure mathematiian. While he is an extremely important �gure in the development ofmathematis, we know very little about his mathematial ahievements. Unlike manylater Greek mathematiians, we have nothing of Pythagoras's writings. The soietywhih he led was half religious and half sienti�. His theorem has been laimedby both the Chinese and Babylonians at least 1000 years before his birth so maybeothers deserve redit as well.Virginia: Isn't it time we prove it?Galileo: How about two proofs?Proof. The Pythagorean TheoremProof 1:After a ursory look at Figure 4.1, we see that the area of both squares equals(a + b)2: Sine the area of the square on the left is the sum of the square in themiddle and 4 triangles, A = 2 + 4(12ab) = 2 + 2ab: Sine the area of the square onthe right is the sum of two squares and two retangles, A = a2 + 2ab + b2: Thus,A = 2 + 2ab = a2 + 2ab+ b2: By subtrating the quantity 2ab from both sides of theequation, we arrive at the relation 2 = a2 + b2:Proof 2:A seond proof an be given using only the square on the left. Sine the area ofthe large square is (a+ b)2 = a2+2ab+ b2 and sine the whole is equal to the sum ofits parts, we see that a2 + 2ab + b2 = 2 + 4(12ab) = 2 + 2ab: Again, by subtrating2ab from both sides of the equation, we �nd 2 = a2 + b2:Galileo: That wasn't so bad was it?
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Figure 4.1: The Pythagorean Theorem



28 CHAPTER 4. GEOMETRYSimpliio: Even I an understand these proofs. What else did he do?Galileo: Pythagoras led a remarkable life. In about 535 B.C.E Pythagoras visitedEgypt, where he learned about their refusal to eat beans, wear even loths made fromanimal skins, and their quest for purity. In 525 B.C.E. Cambyses II, the king of Persia,invaded Egypt. Pythagoras was aptured and removed to Babylon. Eventually, hewas allowed to leave and returned to Samos. In about 518 B.C.E. he left Samos andwent to Croton in southern Italy, where he formed a mathematial/religious soiety.He and his followers believed that reality is mathematial in nature.Simpliio: Really?Galileo: They even believed that things are numbers and eah number has its ownpersonality.Simpliio: Bizaar.Galileo: They also believed that the Earth is a sphere at the enter of the Universeand that every number should be rational.Simpliio: Those ideas seem more reasonable.Virginia: What happened when they disovered the quantity p2 is not a rationalnumber?Simpliio: They probably started eating beans again.Galileo: And so it goes.Exerise Set 4.1.
1. Prove the Pythagorean Theorem for three dimensions. In partiular, if a; b; represent the lengths of the sides of a retangular box and d represents thelength of the diagonal, then show that d2 = a2 + b2 + 2: (Hint: Apply thePythagorean Theorem twie.)



4.2. GARFIELD'S PROOF OF THE PYTHAGOREAN THEOREM 294.2 Gar�eld's Proof of the Pythagorean Theorem

Ideas ontrol the world.-James Gar�eld

a
b

a

b

c

cFigure 4.2: President Gar�eld's Proof of the Pythagorean TheoremGalileo: While the Pythagorean theorem is of great interest to mathematiians, iteven inspired President James Gar�eld to provide his own proof. Let's take a look.Gar�eld: Instead of using a square, my proof based on the area of a trapezoid, wherethe two bases have lengths a and b and the height is a + b: A piture ontaining theidea of the proof is given in Figure 4.2.



30 CHAPTER 4. GEOMETRYProof. If we ompute the area of the trapezoid, we �nd:A = 12(a+ b)(a + b)= 12(a2 + 2ab+ b2)= 12a2 + ab+ 12b2Now omputing the same area as the sum of the areas of the three triangles thatomprise the trapezoid we �nd:A = 12ab + 12ab + 122= ab+ 122Setting these values for the area of the trapezoid equal to eah other we �nd:A = 12a2 + ab + 12b2 = ab + 122:Thus, by subtrating the quantity ab from both sides of the equation and multiplyingboth sides of the equation by 2 we have the desired result:a2 + b2 = 2:
Simpliio: I don't see that his proof is muh di�erent from the two we just disussed.Dividing everything by two adds little to my understanding. He should have beenshot.Galileo: He was.Exerise Set 4.2.1. Investigate Alexander Graham Bell's role in trying to save President Gar�eld'slife. What tehnology was used?



4.3. THE METHOD OF ARCHIMEDES/HERON 314.3 The Method of Arhimedes/Heron

Arhimedes (287-212 B.C.E.)Certain things �rst beame lear to me by a mehanial method, althoughthey had to be demonstrated by geometry afterwards beause their inves-tigation by the said method did not furnish an atual demonstration. Butit is of ourse easier, when we have previously aquired by the method,some knowledge of the questions, to supply the proof than it is to �nd itwithout any previous knowledge.-Arhimedes to EratosthenesNoli turbare irulos meos. Do not disturb my irles! Last words. Some-times reported as: Soldier, stand away from my diagram.-ArhimedesSimpliio: What are the topis for today's lesson?Galileo: The �rst topi will be the Arhimedes/Heron algorithm for omputing thesquare root of a positive number. This tehnique is easy to understand, alwaysworks, and onverges quikly. For an engineer this is the best of all possible worlds.To illustrate how the algorithm works, we will ompute a number of examples suhas p2;p3; and p5: These omputations should inrease your omfort zone.Simpliio: Sounds like a plan.Galileo: We now introdue one of the great masters of antiquity, Arhimedes ofSyrause. He was one of the great mathematiians of all time, who wrote expositionssolid geometry, pumps (the Arhimedes' helix-shaped srew), oating bodies, the



32 CHAPTER 4. GEOMETRYenter of gravity, and the area under a parabola. His proof of the formula for thevolume of a sphere is a gem. If he had the ideas of modern algebra, he would haveinvented Integral Calulus. Professor Arhimedes welome to our tutorial.Arhimedes: I am glad to be here.Galileo: Good sir, ould you enlighten us on your method for omputing square roots?Arhimedes: The underlying idea is quite simple: given a positive number K �nd twonumbers a and b that are lose together and have the property that ab = K: If theapproximations are not good enough, then replae a by the average a = a+b2 and b bythe produt b = Ka : Note that a � b = K:The square root method an now be implemented in the following steps:Let K > 0 be a given real number.Step 0. Begin the proess by setting a0 = 1 and b0 = K:Step 1. Set a1 = a0+b02 and b1 = Ka1 :Step 2. Set a2 = a1+b12 and b2 = Ka2 :Step n. Set an = an�1+bn�12 and bn = Kan :Note that for eah iteration n; we have the property that an � bn = K:Galileo: What an be more reasonable and elegant than omputing the average oftwo numbers?Simpliio: I like this method. It is easy to understand and easy to implement.Arhimedes: The algorithm an be simpli�ed. In partiular, if an is replaed by xnand bn is replaed by Kxn ; then the method beomes:Let K > 0 be a given real number.Step 0. Initialize the proess by setting x0 = 1:Step 1. Set x1 = x0+ Kx02 :Step 2. Set x2 = x1+ Kx12 :Step n. Set xn = xn�1+ Kxn�12 :Simpliio: I like this version even better.Example 4.3.1. Galileo: In Figure 4.3 we have displayed the loations of the �rstthree estimates on the real line.



4.3. THE METHOD OF ARCHIMEDES/HERON 33
Figure 4.3: The First Three Estimates of p2In Table 4.1 we have presented the �rst 6 estimates of the square root of 2 whenthe initial guess is x0 = 1: x0 1.000000000000000x1 1.500000000000000x2 1.416666666666667x3 1.414215686274510x4 1.414213562374690x5 1.414213562373095x6 1.414213562373095Table 4.1: Six Estimates of p2Simpliio: Amazing!! After only 6 iterations we have 15 digits of agreement. I likethis algorithm.Galileo: What do you notie about the terms of the sequene? Do they inrease orderease?Simpliio: Looks to me like they derease after the initial guess.Galileo: Why not try a few exerises to see how the method works?Virginia: Where did this algorithm ome from? What inspired you?Arhimedes: Geometry is the key. Consider Figure 4.4 where we suppose x2 � Kand we want to �nd a �x suh that (x +�x)2 = K:Arhimedes: Sine �x is small, �x2 is even smaller, so we an eliminate this shaded



34 CHAPTER 4. GEOMETRY

Figure 4.4: The Geometry Underneath the Square Root Algorithmpiee of the diagram. Doing so we �ndK = (x +�x)2= x2 + 2x�x +�x2� x2 + 2x�x;whih implies �x � K � x22x :Thus, x +�x = x� x2 �K2x :Rewriting x+�x as xn+1 and x as xn, we arrive at the equationxn+1 = xn � x2n �K2xn= xn + Kxn2= 12xn + 12 Kxn ;whih is exatly the previously disussed method. In partiular, the value of xn+1 isthe average of xn and Kxn :Simpliio: But I have one quik question. Will the algorithm eventually terminate orwill we have to ompute forever to get the exat answer?



4.3. THE METHOD OF ARCHIMEDES/HERON 35Galileo: Note that if K is a rational number (i.e. the quotient of two integers), theneah x1; x2; : : : ; xn must also be rational numbers. Thus, if pK = xn; for some n;then pK must also be rational. The bad news is that even our olleague Pythagorasnotied that the square root of 2 is irrational (i.e. not rational).Virginia: Thus, if we start the proess of approximating p2 with x0 = 1; then everysueeding estimate xn will be a rational number. And we are fored to make anin�nite number of omputations to get the exat answer.Galileo: As we have already learned, the anients found this knowledge quite upsettingand mystial. Arhimedes do you have any other thoughts on this tehnique?Arhimedes: Note also that division by 2 in a alulator (or omputer program) anbe implemented as a bit shift. Thus, the only serious omputation is the divisionbn = Kxn :Simpliio: I like that observation.Galileo: You an see that Arhimedes is keeping up with urrent advanes in teh-nology.Virginia: What is a bit shift?Simpliio: Instead of representing a number base ten by a sequene of digits hosenfrom the set f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g; you represent a number base two by a sequeneof digits from the set f0; 1g: For example, 6 = 22 + 1 � 2 + 0 = 110: If you divide 6by 2; you get 3 = 2 + 1 = 11: In other words, to divide by 2 you simply drop the 0:A omputer geek will say he has shifted the digits 110 one unit to 11:Example 4.3.2. Galileo: Let's use our algorithm to ompute the square root of zero.Simpliio: Your kidding! Everyone in the room knows the answer. Why bother?Galileo: I have an agenda. Simpliio: In any ase, it is easy. If K = 0; thenxn+1 = xn � x2n�K2xn = 12xn:Galileo: If x0 = 1; then what is x6?Simpliio: Sine the value of the estimate at one step in the proess is exatly halfthe estimate at the previous step, x6 = 126 :Galileo: How far is that from the �nal answer?



36 CHAPTER 4. GEOMETRYVirginia: Compared with the other examples we have just disussed, we are miles, nolight years, from the �nal answer.Galileo: How many iterations will we need to get 12 digits of auray?Simpliio: Sine 210 � 1000; we observe that 240 � 10004 = 1012: Thus, x40 � 11012 :Virginia: Forty iterations is a lot more than six.Simpliio: What's going on here?Galileo: Think about it. We will return to this issue shortly. If you work the homeworkproblems, you will see we have problems with very large numbers as well.Simpliio: We were doing so well. Now I am worried.Galileo: Before we leave the topi of omputing square roots, we should observe theidea underneath this method is to \linearize" the problem. More spei�ally, when aproblem is too diÆult to solve in general, simply disard the higher order terms andsolve the remaining linear part of the problem. With luk, the solutions to a sequeneof simple linear problems will onverge to the solution to the non-linear problem. Wewill see this strategy again with the method of Newton/Raphson.Exerise Set 4.3.1. Show that p2 is not a rational number.2. Let K = 5 and x0 = 1: Compute the �rst �ve iterations of the square root algo-rithm to estimate p5:What do you notie about the terms of the sequene? Dothey inrease or derease? What is the di�erene between your estimate and theexat answer? How many iterations does it take before the di�erene betweenxn and the exat answer is less than 0:000001? (Make your omputations with10 digits of auray.)3. Let K = 10 and x0 = 1: Compute the �rst �ve iterations of the square rootalgorithm to estimatep10:What do you notie about the terms of the sequene?What is the di�erene between your estimate and the exat answer? How manyiterations does it take before the di�erene between xn and the exat answer isless than 0:000001? (Make your omputations with 10 digits of auray.)



4.3. THE METHOD OF ARCHIMEDES/HERON 374. Let K = 100 and x0 = 1: Compute the �rst �ve iterations of the square rootalgorithm to estimate p100: What is the di�erene between your estimate andthe exat answer? How many iterations does it take before the di�erene be-tween xn and the exat answer is less than 0:000001? (Make your omputationswith 10 digits of auray.)5. Let K = 10; 000 and x0 = 1: Compute the �rst �ve iterations of the squareroot algorithm to estimate p10; 000: What is the di�erene between your es-timate and the exat answer? How many iterations does it take before thedi�erene between xn and the exat answer is less than 0:000001? (Make youromputations with 10 digits of auray.)6. Let K = 1; 000; 000 and x0 = 1: Compute the �rst �ve iterations of the squareroot algorithm to estimate p1; 000; 000: What is the di�erene between yourestimate and the exat answer? How many iterations does it take before thedi�erene between xn and the exat answer is less than 0:000001? Compare thenumber of iterations require for this problem and when you approximated p2:Whih is greater? (Make your omputations with 10 digits of auray.)7. Let K = 0 and x0 = 1: Compute the �rst �ve iterations of the square root al-gorithm to estimate p0: What is the di�erene between your estimate and theexat answer? How many iterations does it take before the di�erene betweenxn and the exat answer is less than 0:000001? Compare the number of itera-tions require for this problem and when you approximated p2 and p1; 000; 000:(Make your omputations with 10 digits of auray.)Simpliio: These exerises would have been a drag without my trusty programmablealulator.Galileo: While your alulator is �ne for these problems it will be woefully inadequatefor most real-life omputations. Get used to idea of implementing your methods inomputer software.



38 CHAPTER 4. GEOMETRYSimpliio: No problem.Galileo: Note that these exerises were designed to stress the algorithm. By omput-ing pK for large and small numbers we are heking two important aspets of thealgorithm. First, we are looking to see if we get the orret answers. Seond, we areheking the rate of onvergene. Both of these onsiderations will be addressed infuture disussions.Simpliio: I guess I had better redo these problems.4.4 Two Appliations of Square Roots

Figure 4.5: Heron of Alexandria (a:10� a:75)Galileo: While the Pythagorean Theorem provides one situation where the omputa-tion of a square root is needed, a ouple of others should also be mentioned. You doremember the formula for omputing the area of a triangle?Simpliio: Of ourse, the area is simply one half the base times the height.Galileo: OK, but would it not be more natural to have a formula, whih produesthe area in terms of the lengths of the three sides? This question is a natural onebeause the height may not be known.Simpliio: I don't reall any suh formula.



4.4. TWO APPLICATIONS OF SQUARE ROOTS 39Galileo: Leave it to the anient Greeks to not only have asked this question, but tohave answered it as well. While Heron of Alexandria (10 � 75) is frequently givenredit for its disovery, the formula was already known to Arhimedes of Syrause(287-212 B.C.E.). For the area of a triangle whose sides have lengths: a; b; and ; thearea is given by the formula:A =ps(s� a)(s� b)(s� );where s = a+b+2 denotes the semi-perimeter. Note that the omputation of a squareroot is required.Note that as long as you know how to ompute the square root of a number, theformula is straightforward to ompute. Do either of you see why the formula mightbe useful?Virginia: In fat good sir, I prefer this formula to the usual one given in Geometrybeause you frequently don't know the height of the triangle. This formula worksgreat if you simply know the lengths of the three sides?Simpliio: I like the formula, but how would anyone have ever thought of it?Galileo: While I an't answer that question, always remember that those anientfellows were smart and thought deeply.Virginia: How would suh a formula be proved?Galileo: In modern notation, simply represent the verties of a triangle by vetorsu = (a; b) and v = (; d) in the plane and ompute. It helps to use the fat that thearea of the triangle is the absolute value of 12(ad� b): However, it is still a bit of amess. We will leave this problem as an exerise.Simpliio: (To Virginia) That problem belongs to you.Galileo: A seond example is the golden mean (or ratio) �; whih the anient Greeksfelt had speial, even mystial, signi�ane. This quantity appeared in their art andarhiteture as well as their mathematis. The ratio of the height to the width of theParthenon equals this famous number. A pentagram is loaded with ratios equal to �:The golden ratio is de�ned as the ratio � = 1x ; where x is the point in a line segment



40 CHAPTER 4. GEOMETRY[0; 1℄ suh that x1 = 1�xx : In other words, the point x is hosen so that the ratio of thewhole segment to the longer subsegment equals the ratio of the longer segment to theshorter. When this proportion is solved for x, the answer is x = �1�p52 : Sine lengthsshould be positive quantities, we are only interested in the answer x = �1+p52 : Aneasy omputation shows that � = 1x = 1+p52 =� 1:61803 : : : : Thus, the Greeks had anatural interest in omputing the quantity p5:Virginia: If I remember orretly, this number an be approximated by omputingthe ratios of the terms in the Fibonai sequene 1; 1; 2; 3; 5; 8; : : : :Galileo: Very good.Simpliio: Is that why we have note ards of dimension 3� 5 and 5� 8?Virginia: You do the math.Exerise Set 4.4.1. Compute the golden mean to 8 deimal plaes.2. Compute the area of a triangle, whose sides have lengths 1; 1; and 1:3. Compute the area of a triangle, whose sides have lengths a; a; and a:4. Compute the area of a triangle, whose sides have lengths 1; 2; and 3:5. Compute the area of a triangle, whose sides have lengths 1; 2; and 4: Why doyou have an OOPS?6. Prove the Arhimedes/Heron formula for the area of a triangle, whose sideshave lengths a; b; :



4.5. RIGOR 414.5 Rigor

Figure 4.6: Kurt G�odel (1906-1978)The development of mathematis towards greater preision has led, as iswell known, to the formalization of large trats of it, so that one an proveany theorem using nothing but a few mehanial rules.-Kurt G�odelSimpliio: OK, what's next?Galileo: A solid understanding of Geometry is built on a foundation of mathematialrigor. I insist you are omfortable with logial arguments.Simpliio: I knew this disussion was going to deteriorate. Here it omes.Galileo: Before you an understand the strengths and weaknesses of a mathematialtehnique, you need to have an understanding of when it works and when it fails. Abit of logi and mathematial formalism will aid in the understanding of when youan trust a method. Key examples an be used to point out when you should besuspiious. The �rst requirement in formal mathematis is that you must understandthe di�erene between an axiom, a de�nition, and a theorem.Simpliio: Groan.Galileo: Unfortunately, the beauty of numerial analysis is that the subjet is ruled byMurphy's Law. Namely, \What an go wrong, will go wrong." A tehnique that works



42 CHAPTER 4. GEOMETRYwell for one appliation may fail for another. Worse yet, for any given tehnique, anexample an invariably be found, where it provides answers that make no sense. Itis important to understand why one method is preferred over another. De�nitionsand theorems an be used to make these thoughts preise. I now introdue ProfessorG�odel, who has agreed to help larify these issues for us. Professor G�odel.Virginia: I am pleased to meet you sir.Simpliio: Good day sir. (To Virginia) He looks mean. This meeting ould get ugly.G�odel: I am not sure I am welome. Maybe I should retreat to my oÆe.Galileo: Please enlighten these young people about the nature of mathematis.G�odel: I will try. First, every theorem onsists of two parts. The �rst is the hypoth-esis, while the seond is the onlusion. If the theorem is valid and the hypothesesare true, then we an onlude that the onlusion is also true. Symbolially, everytheorem is a onditional sentene of the form: If p, then q. If the theorem is trueand we know that the statement p is also true for our partiular situation, then weimmediately know that q is true as well. This bit of logi is alled modus ponens:Galileo: Let me note that our friends in statistis are also quite fond of onditionalsentenes. The theorem of the Presbyterian minister Thomas Bayes (1702-1761) isentral to any disussion of onditional probability. Thus, people other than my-self require you to understand the struture of language. In any ase, what is thehypothesis of the Pythagorean Theorem?Virginia: Atually, we have two hypotheses. The �rst hypothesis is that the geometriobjet we are dealing with is a triangle. The seond is that this triangle is of a speialtype. Namely, one of its three angles is 90 degrees.Galileo: Corret. Now what is the onlusion?Virginia: The relationship between the length of the hypotenuse and the lengths ofthe other two sides of the triangle. Namely, the equation 2 = a2 + b2:Galileo: Corret again.Simpliio: Why are you boring us with these disussions? I know the formula2 = a2 + b2 has been established. But if I know the formula, then isn't that good



4.5. RIGOR 43enough? What else matters?G�odel: How an this guy be so obtuse? Children are evil. (G�odel departs)Simpliio: This wizened little guy is mean.Virginia: Maybe he was a pediatriian and had you as a patient.Galileo: How about a bit less disrespet and a bit more disussion?G�odel: (G�odel returns) Has anyone seen a small blak valise? It ontained importantwork.Galileo: What if the triangle is not a right triangle? In partiular, what if the triangleis aute or obtuse? You need to know when it is appropriate to apply the formula.Virginia: Obviously, the formula does not apply for all triangles.Galileo: Corret again. If the hypothesis is not satis�ed, then the theorem does notapply and you annot pretend the onlusion holds.Simpliio: What do you do then?G�odel: This disussion is outrageous. Plato understood these issues 2500 years ago.These young people should have mastered logi and rigor when they studied Eulid.We should not be having these disussions.Galileo: Patiene good sir. However, my experiene has been that people in applia-tions tend to be sloppy in these matters. I �nd it is better to disuss them up front.Later, when the setting is more abstrat, a disussion of rigor might get lost in themud. We might as well address the issue now while we are in the familiar setting ofgeometry. You will be well served if you make the e�ort to larify these questions ofrigor and logi now. Don't worry, we will revisit these issues.G�odel: Let's just redue the disussion to the essentials.1. A theorem is a statement of the form: \If p; then q:"2. The onverse of the theorem \If p; then q:" is the statement \If q; then p:"3. The ontrapositive (modus tollens) of the theorem \If p; then q:" is a statementof the form \If � q; then � p:"



44 CHAPTER 4. GEOMETRY4. If a statement \If p; then q" and its onverse \If q; then p" are both true, thenp and q are onsidered equivalent. In this setting, the statements p and q areeither both true or both false.While politiians and preahers would like you to believe that a theorem and itsonverse are equivalent, nothing ould be further from the truth.Simpliio: What are those little squiggles \�" doing in this disussion?Virginia: Obviously, the symbol � p denotes the negation of p: In other words, if p istrue, then � p is false and vie versa.Simpliio: How about an example?G�odel: Consider the statement: "If you are Franklin Delano Roosevelt, then you arefamous."Simpliio: I would rather onsider the statement: "If you are Emmitt Smith, thenyou are famous."Virginia: Who is Emmitt Smith? Is he famous?Galileo: I think we are o� topi here. In any ase, let us assume the statement istrue.G�odel: The onverse of MY version of the statement is: "If you are famous, then youare Franklin Delano Roosevelt." Do you think this onverse is also true?Simpliio: No. Barbara Bush is famous and she is not even a male muh less apresident. In partiular, the two statements are not equivalent.Virginia: On the other hand, the ontrapositive of this statement is: \If you are notfamous, then you are not Franklin Delano Roosevelt." Note that this statement isindeed equivalent to the original statement.Galileo: Corret again.Simpliio: So why should I are?G�odel: I am done.Galileo: Good sir. Before you depart, ould you give us a quik summary of whatthese young people need to know.G�odel: All these truths are enapsulated in Table 4.2.



4.5. RIGOR 45p q p ^ q p _ q p! qT T T T TT F F T FF T F T TF F F F TTable 4.2: The Truth Table for \And," \Or," and \If."Simpliio: I don't understand all those symbols.Virginia: Obviously, T = True and F = False.Simpliio: I �gured that out. Also, while I assume the symbol p ! q represents theonditional statement \If p; then q:" What do the symbols ^ and _ represent?G�odel: The symbol ^ means \And," while _ means \Or."Virginia: Ok, I understand that if p and q are both true, then we should de�ne p ^ qto be true. However, if you are ordering a meal at a restaurant and the hoie is \teaor o�ee," then you surely don't get both.G�odel: Don't onfuse the \exlusive or" with the \inlusive or." In a restaurant, youwill get tea or o�ee, but not both. In Logi we are more generous and will give youboth.Simpliio: I guess that's why all the math restaurants have gone out of business.G�odel: The onept of a theorem is the most important idea to take away from Table4.2. In partiular, if a theorem p ! q is true and the hypothesis p is true, then theonlusion q is also true. This logi is exatly what use when we apply a generaltheorem to a spei� instane.Virginia: And if we don't satisfy the hypothesis, then we may be disappointed whenq turns out to be false.Galileo: Corret.G�odel: In Table 4.3 we observe that the 3rd olumn represents a statement and the4th olumn represents its onverse. Note that these two olumns are not the same.



46 CHAPTER 4. GEOMETRYVirginia: However, the 3rd and 7th olumns are the same.Galileo: Corret again.G�odel: I must be gone. (G�odel piks up his valise and departs.)p q p! q q ! p � p � q � q ! � pT T T T F F TT F F T F T FF T T F T F TF F T T T T TTable 4.3: The Truth Table for the Contrapositive.Galileo: Very good. Your observation is at the heart of a proof by ontradition. Inother words, we will assume that the statement q is false and then will show thatthe statement p is also false. In summary, an understanding of de�nitions, theorems,onverses, and ontrapositives is about all the logi you will need to know.Virginia: If I remember my Geometry orretly, we also onsidered lemmas, proposi-tions, and orollaries.Galileo: These three words all represent di�erent names for for small theorems. Alemma is interesting only beause it an be used to help prove a more importanttheorem. Sometimes they are alled helping theorems beause they help organizethe proof of an important theorem. A proposition is a small (but usually useful)theorem, whih is more of a stepping stone than a reservoir ontaining a big onept.A orollary will usually represent an easy onsequene of an important theorem. Forexample, the Mean Value Theorem has several important orollaries that we will usemore often than the theorem itself.Virginia: So when we are studying for an exam, we study the theorems �rst, theorollaries seond, and the propositions last.Simpliio: Do we get to forget the lemmas?



4.5. RIGOR 47Virginia: For you, the answer is probably yes. For the rest of us, a lemma helpsus organize and remember the proof. What do you have to say about axioms andde�nitions?Galileo: Axioms are something you assume true. For example, in algebra we assumethat equals added to equals are equal.Virginia: So, if a = b and  = d; then a +  = b + d:Galileo: While de�nitions are written in the same \If p, then q." format we use fortheorems, their purpose is to de�ne a new onept.Simpliio: An example please!Galileo: How about the de�nition of a right triangle?De�nition 4.5.1. If a triangle has the property that one of its angles is a right angle,then it is a right triangle.Note that while this de�nition is written as a statement of the form \If p; thenq;" it is understood that the p and q are equivalent.Virginia: In other words, there are no onverses for de�nitions. If the triangle doesn'thave a 90 degree angle, it annot be a right triangle.Galileo: Looks like you understand the hierarhy. I would only add that you payspeial attention to theorems with names suh as the Pythagorean Theorem, Taylor'sTheorem, the Mean Value Theorem, and the Intermediate Value Theorem. We willthink of a theorem as an item in a bookkeeper's ledger. Whenever you need to knowif something is true, you simply hek the list of theorems in the ledger. If you �ndone that you think might be relevant, all you have to do is hek the hypotheses. Ifthey are satis�ed, you get the onlusion for free. In other words, the hard work hasalready been done. Now, you have to admit that this logi and rigor is easy. All youhave to know is four logi rules and the di�erene between an axion, a de�nition, anda theorem.Simpliio: I should have gone to hurh this morning.Galileo: Remember, math is easy, it's life that's unertain.



48 CHAPTER 4. GEOMETRYSimpliio: Let's move on before I beome rigor-morti�ed.Galileo: We end with the de�nition of the inverse of a statement. I will leave it foryou to show the inverse of a statement is equivalent to the onverse.De�nition 4.5.2. The inverse of the statement \If p; then q:" is the statement "If� p; then � q:"Exerise Set 4.5.1. Use a truth table to show the inverse is equivalent to the onverse.2. Use a truth table to show the statement \If p; then � q:" is equivalent to thestatement \(� p) _ (� q):"



Part III
Day 3. Methods for Finding Roots
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Isaa Newton (1642-1727)Truth is ever to be found in the simpliity, and not in the multipliity andonfusion of things.-Isaa NewtonSimpliio: What are the topis for today's lesson?Galileo: The �rst topi will be an algorithm for omputing the ube root of a number.This tehnique is a natural an extension of the Arhimedes/Heron algorithm for om-puting the square root of a number. As before, this tehnique is easy to understand,always works, and onverges quikly. For an engineer this is the best of all possibleworlds. To illustrate how the algorithm works, we will ompute a number of examplessuh as 3p2:Simpliio: Wait a minute. I am a bit onfused here. The other day you talked aboutthe root of a funtion f(x): Today you are talking about the root of a positive numberK: Do I detet double talk here?Galileo: You have made a good observation. However, this onfusion an be quiklyexplained away beause the quantity r = pK is a root of the funtion f(x) = x2�K:Simpliio: Oh, I see all you have to do is substitute r = pK into the funtion f(x)and get f(r) = f(pK) = (pK)2 � K = K � K = 0: I now understand that point.What is next?Galileo: After the ube root algorithm, we introdue a similar algorithm for omput-



52ing nth roots.Simpliio: While I an understand why someone might be interested in omputing aube root, why in heaven's name would I are about nth roots?Galileo: What about musi? Reall that a piano has 12 keys for eah otave. Eahkey is represents a di�erent frequeny. The frequeny represented by C in one otaveis twie the frequeny for C in the previous otave. The 12th root of 2 is the key.Also, the formula for the nth root algorithm motivates the formula for the method ofNewton/Raphson. As it turns out, the square root, ube root, and nth root methodsare all speial ases of Newton/Raphson.Simpliio: Why would we bother with the speial ases then?Galileo: Now you are thinking like a mathematiian. If you have a general method,why not keep it simple and disard the speial ases? However, from a pedagogialpoint of view, we like to disuss the easy ases �rst. Building on the experiene wehave gained from the easy ases, the general ases should be more aessible. Weould begin our disussion with the method of Newton/Raphson. However, simpleexamples exist, whih demonstrate that this method doesn't always work. Our squareroot method doesn't have this problem.Simpliio: Now you have me worried.Galileo: Mathematiians always worry. However, after showing you how to omputesquare roots, ube roots, and nth roots, we present Cardano's formula for omputingthe roots of a ubi polynomial. This nifty formula requires that you are able toompute square roots and ube roots.Simpliio: That sounds �ne.Galileo: The next set of topis will be foused on di�erent root �nding tehniques.In partiular, we will present the Newton/Raphson, seant, and bisetion methods.Simpliio: Tehniques are good. I am sure I will enjoy it.Galileo: After we disuss these three algorithms, the story turns ugly. We �rstshow that Newton/Raphson fails in a fundamental way. Sometimes the algorithmprodues a sequene, whih diverges to in�nity. Sometimes the sequene onverges



53to an unexpeted answer. Oasionally, the sequene simply osillates.Simpliio: This is not the news I wanted to hear.Galileo: Unfortunately, the evil Mr. Murphy is lurking behind every lever algorithm.He will poune when you least expet it. In addition to we will mention a famousexample of James Wilkinson, whih shows that the roots of a 20 degree polynomialan lead to dangerous instabilities. In other words, you are insane if you model areal-world problem with a high degree polynomial.Simpliio: OK, OK.Galileo: The next disussion will fous on the suesses we an salvage from ourolletion of disasters. In an e�ort to understand and retify these issues, we turn tomathematis.Simpliio: Does this mean theory?Galileo: When you hit the square root button on your alulator, you would like toget the orret answer, wouldn't you?Simpliio: I have no argument with orret answers.Galileo: Atually, you are making too muh of a big deal about mathematial rigor.We did all the heavy lifting yesterday when we de�ned and disussed onvergene.We will show the method of Arhimedes/Heron \always works." The words boundedand inreasing will reappear.Virginia: I look forward to these insights.Virginia: What's next?Galileo: The next goal is to demonstrate mathematially why one method might bepreferred over another.Simpliio: What does the word \preferred" mean in this ontext?Galileo: If it takes 5 iterations to ompute the square root of a number with onemethod and 30 iterations with another, whih would you prefer?Simpliio: Hmmm.Galileo: Surprisingly, the Mean Value Theorem and Taylor's Theorem will drive thisdisussion. We are interested in the problem of when one sequene onverges faster



54than another.Simpliio: Wait a minute. What does it mean for one sequene to onverge fasterthan another?Galileo: Now you are thinking like a mathematiian. The �rst type of onvergeneis alled first order or linear: The seond is alled seond order or quadrati: TheMean Value Theorem is the tool for showing a sequene onverges linearly. Taylor'sTheorem is used to show Newton/Raphson (usually) onverges quadratially. As youwill see, quadrati onvergene is preferred.Virginia: So Newton/Raphson is preferred when it works!Galileo: Corret. If one is not areful, Murphy will get you.Virginia: What is next?Galileo: The proess of understanding the method of Newton/Raphson leads to theamazingly general Contration Mapping Theorem. One the terms ontration andfixed point have been de�ned, this theorem is easy to state, easy to prove, and eveneasier to implement. The method always works. Better yet, a multitude of appli-ations are onneted with this theorem inluding the solution of linear equations,non-linear equations, the solution of di�erential equations, and the reation of fratalpatterns. This tehnique represents the best of all possible mathematial worlds.Virginia: Great.Galileo: We will �nish the day with a disussion of Aitken's method. The goal of thistehnique is to speed up the rate of onvergene from linear to quadrati. While itworks well in some ases, it is not as useful as one might hope.Simpliio: What? You are going to waste our time by showing us methods that don'twork?Galileo: While Aitken has his plae in the world of numerial methods, his tehniquedoes little to speed up the bisetion method. This is just one example. The sad truthis that the highway of numerial tehniques is littered with good ideas that failed toperform as hoped.Virginia: Let me summarize today's agenda:



551. the square root tehnique of Arhimedes/Heron,2. general root �nding tehniques,3. failure of general methods,4. suess of general methods,5. analysis of onvergene rates,6. generalization of Newton/Raphson to the Contration Mapping Theorem, and7. Aitken's Method to improve the onvergene rate.Galileo: You got it.Simpliio: The program makes sense to me.
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Chapter 5
The Computation of nth Roots
5.1 Cube RootsGalileo: Sine we now understand how to ompute square roots, we now turn tothe problem of omputing ube roots. Our strategy will be to imitate the approahdesribed for square roots. This time we will again assume that the quantity x isa reasonably lose approximation of 3pK and now searh for the quantity �x suhthat (x + �x)3 = K: While the piture is more diÆult to draw than for the 2-dimensional ase, it an be visualized by simply replaing the square by a ube as wehave attempted in Figure 5.1.Again, if �x is small, then �x2 and �x3 are even smaller, so we �ndK = (x+�x)3= x3 + 3x2�x + 3x�x2 +�x3� x3 + 3x2�x:Thus, if we let �x = K�x33x2 and replae x by xn and x+�x by xn+1; we have thefollowing ube root algorithm:x0 = 1;xn+1 = xn � x3n�K3x2n ; n � 0:57



58 CHAPTER 5. THE COMPUTATION OF NTH ROOTSSimpliio: This disussion is quite familiar.

Figure 5.1: The Geometry Underneath the Cube Root AlgorithmExample 5.1.1. Galileo: OK, it is time to work an example. In Table 5.1 we displaythe �rst six approximations of 3p2:x0 1.000000000000000x1 1.333333333333333x2 1.263888888888889x3 1.259933493449977x4 1.259921050017770x5 1.259921049894873x6 1.259921049894873Table 5.1: Six Estimates of 3p2Simpliio: This set of omputations is amazing! One again, the 5th and 6th termsare idential out to 15 deimal plaes.Galileo: What else do you notie?Virginia: After the initial guess, the terms are dereasing.Galileo: In Figure 5.2 we one again display the loations of these estimates on thereal number line. As you have notied, the third estimate is less than the seond.



5.1. CUBE ROOTS 59
Figure 5.2: The First Three Estimates of 3p2Galileo: Very good. Now let's make a few remarks about the algorithm. Sine theformula for xn+1 an also be written asxn+1 = 2xn + Kx2n3 = 23xn + 13 Kx2n ;it beomes apparent that xn+1 is the weighted average of xn and Kx2n ; where the �rstweight is 23 and the seond weight is 13 :Arhimedes: While I get annoyed when others try to take redit for my ideas, I ama bit embarrassed that you are assigning this method to me. We didn't even thinkabout ube roots in those days.Galileo: While you are orret, you must admit the onept is the same. While thisgeneralization to the omputation of ube roots may seem like an easy generalizationof the method of Arhimedes/Heron, the time gap is in terms of millennia.Simpliio: Probably nobody ared.Galileo: You may be right. Even today, square roots are used muh more oftenthan ube roots. In any ase, the onept that bridged the gap was an improvedunderstanding of algebra and the binomial theorem.Exerise Set 5.1.1. Let K = 5 and x0 = 1: Compute the �rst �ve iterations of the ube rootalgorithm to estimate 3p5:What is the di�erene between your estimate and theexat answer? How many iterations does it take before the di�erene betweenxn and the exat answer is less than 0:000001? (Make your omputations with10 digits of auray.)



60 CHAPTER 5. THE COMPUTATION OF NTH ROOTS2. Let K = 10 and x0 = 1: Compute the �rst �ve iterations of the ube root algo-rithm to estimate 3p10: What is the di�erene between your estimate and theexat answer? How many iterations does it take before the di�erene betweenxn and the exat answer is less than 0:000001? (Make your omputations with10 digits of auray.)3. Let K = 1000 and x0 = 1: Compute the �rst �ve iterations of the ube rootalgorithm to estimate 3p1000: How many iterations does it take before the dif-ferene between xn and the exat answer is less than 0:000001? (Make youromputations with 10 digits of auray.)4. Let K = 1; 000; 000 and x0 = 1: Compute the �rst �ve iterations of the uberoot algorithm to estimate 3p1; 000; 000: How many iterations does it take beforethe di�erene between xn and the exat answer is less than 0:000001? Comparethe number of iterations with your answer for 2p1; 000; 000: Whih algorithmtakes more iterations? (Make your omputations with 10 digits of auray.)5. Let K = 109 and x0 = 1: Compute the �rst �ve iterations of the ube root algo-rithm to estimate 3p109: What do you notie? How lose is the last estimate tothe orret answer? How many iterations does it take before the di�erene be-tween xn and the exat answer is less than 0:000001? (Make your omputationswith 10 digits of auray.)6. Let K = 0 and x0 = 1: Compute the �rst �ve iterations of the ube rootalgorithm to estimate 3p0: How lose is the last estimate to the orret answer?How many iterations does it take before the di�erene between xn and the exatanswer is less than 0:000001? Compare the number of iterations require for thisproblem and when you approximated p0: (Make your omputations with 10digits of auray.)



5.2. NTH ROOTS 615.2 nth RootsGalileo: We now show how to generalize the method of omputing ube roots to amethod that an be used to ompute the nth root of a number.Simpliio: Why would we are about nth roots?Galileo: What about musi? Let's ask Pythagoras.Pythagoras: Long ago I observed that two blaksmith's striking di�erent anvils atthe same time an produe resonating frequenies when one is twie the size of theother. With string instruments two strings produe resonating sounds when one istwie (or three times) the length of another and under the same tension.Simpliio: How do you get the tensions to be the same?Pythagoras: If you plae the fret at the midpoint, the frequeny is doubled.Galileo: While we are at it, let me omment that a major onern of Fourier seriesis the problem of approximating funtions f(x) : [��; �℄! < by linear ombinationsof funtions of the form 1; os(x); sin(x); os(2x); sin(2x); : : : ; os(nx); sin(nx): Notethat the frequeny of os(2x) is twie that of os(x) and the frequeny of os(3x) istriple that of os(x): We will return to this topi.Simpliio: Interesting.Galileo: Sine my father was a musiian, I �nd this subjet of partiular interest andwould like to make a ouple of additional remarks. Every piano has 12 notes from oneotave to the next. As you progress up the sale, the frequeny hanges by the fator12p2: In the key of C, you begin with middle C as the �rst note, D is the seond note,E is the third, F is the fourth, and G is the �fth. Thus, if you strike the fourth whitekey to the right of middle C, you have the perfet �fth. The frequeny of middle Cis 252 Hertz so the frequeny of the perfet �fth is 252 � ( 12p2)7:Simpliio: What a strange way to tune an instrument? Why not simply tune the pianoso the frequenies are equally spaed? That method would seem more reasonable tome.Pythagoras: As I just remarked, if we were to use your strategy, then the frequeny



62 CHAPTER 5. THE COMPUTATION OF NTH ROOTSof C (or any other note) in one otave would not be twie the frequeny of C inthe previous. Thus, our notes would not be harmonious. On the other hand, if thefrequenies are spaed multipliatively, then harmony is preserved.Simpliio: I have another question. If the note G is alled the perfet �fth, then whyisn't it omputed as 252 � ( 12p2)5?Galileo: The modern piano has blak keys as well as white keys. These blak keys aretuned as half notes (also known as semitones). The perfet �fth is seven half stepsabove middle C.Pythagoras: And note that the quantity ( 12p2)7 � 32 :Simpliio: Interesting.Galileo: People frequently remark that musi and mathematis go together. Well,there it is.Now let's get bak to the mathematial issue of omputing the nth root of a numberK by following the strategy used for omputing ube roots. To that end, suppose wehave a number x whih is a reasonably lose approximation of npK: We now wouldlike want to approximate the quantity �x with the property that (x +�x)n = K:Again, if �x is small, then for any integer k > 1; the power �xk is even smaller.For example, if �x = 0:1; then �x2 = 0:01 and �x3 = 0:001: Thus, by the binomialtheorem we �nd thatK = (x +�x)n= xn + nxn�1�x + n(n� 1)2! xn�2�x2 + n(n� 1)(n� 2)3! xn�3�x3 + � � �+�xn� xn + nxn�1�x:Thus, a good hoie for the approximate �x is to set �x = K�xnnxn�1 : If we set xk = xand xk+1 = x+�x; then we have the following reursive algorithm for any K > 0 :x0 = 1;xk+1 = xk � xnk�Knxn�1k :



5.2. NTH ROOTS 63Simpliio: Given the previous disussions on square roots and ube roots, the teh-nique is quite understandable.Galileo: Again, note that we have taken a diÆult problem, non-linear in the variable�x; and made it linear in that variable.Virginia: Is that so the problem is easier?Galileo: Corret. Note also that we an again write xk+1 as the weighted sum of xkand Kxn�1k : In partiular, xk+1 = n� 1n xk + 1n Kxn�1k ;where the two weights are w0 = n�1n and w1 = 1n :Simpliio: OK, this disussion is getting all too familiar. How about an example?Example 5.2.1. Galileo:We have presented the �rst six approximations for 5p2 in Table 5.2.x0 1.000000000000000x1 1.200000000000000x2 1.152901234567901x3 1.148728886527325x4 1.148698356619959x5 1.148698354997035x6 1.148698354997035Table 5.2: Six Estimates of 5p2Simpliio: These omputations are getting boring. I an see that the questions andanswers are the same as for square roots and ube roots.



64 CHAPTER 5. THE COMPUTATION OF NTH ROOTSExample 5.2.2. Galileo: We have presented the �rst six approximations for 12p2 inTable 5.3. x0 1.000000000000000x1 1.083333333333333x2 1.062153572038919x3 1.059500262653840x4 1.059463101529905x5 1.059463094359296x6 1.059463094359295Table 5.3: Six Estimates of 12p2Simpliio: Finally something happened! At least we have a di�erene in the 15th digitfor the 5th and 6th estimates.Galileo: This algorithm is worthy.Exerise Set 5.2.1. Compute 5p2 using x0 = 1 to initialize the algorithm. How many iterationsdoes it take before the error is less than 0:000001? (Make your omputationswith 10 digits of auray.)2. Compute 7p2 using x0 = 1 to initialize the algorithm. How many iterationsdoes it take before the error is less than 0:000001? (Make your omputationswith 10 digits of auray.)3. Compute the �rst �ve iterations of the nth root algorithm to estimate 12p2 usingx0 = 1 to initialize the method. How many iterations does it take before theerror is less than 0:000001? (Make your omputations with 10 digits of auray.)4. Compute the �rst �ve iterations of the nth root algorithm to estimate 20p2 usingx0 = 1 to initialize the method. How many iterations does it take before the



5.2. NTH ROOTS 65error is less than 0:000001? Compare the number of iterations required with theprevious three problems. (Make your omputations with 10 digits of auray.)5. Compute the �rst �ve iterations of the nth root algorithm to estimate 12p0 usingx0 = 1 to initialize the method. How many iterations does it take before theerror is less than 0:0001? (Make your omputations with 10 digits of auray.)



66 CHAPTER 5. THE COMPUTATION OF NTH ROOTS



Chapter 6
Cardano's Method for CubiPolynomials

Girolamo Cardano (1501-1576)I wrote it out �ve times, may it last the same number of millennia.-Girolamo CardanoGalileo: Sine we now understand how to ompute square roots, ube roots, and nthroots, we now turn to the problem of omputing roots of ubi polynomials. First,let us remind you that the solutions of the quadrati equation Ax2+Bx+C = 0 aregiven by r = �B�pB2�4AC2A : 67



68 CHAPTER 6. CARDANO'S METHOD FOR CUBIC POLYNOMIALSSimpliio: Sure, I remember that formula. I learned it many years ago.Galileo: Well then, an you solve the general ubi equation Ax3+Bx2+Cx+D = 0?Simpliio: I must admit I have forgotten that formula.Galileo: Atually, the development of these formulas has a long and sometimes bitterhistory.While it may be true that the Babylonians were the �rst to solve quadrati equa-tions sometime around 400 B.C.E., this statement is a bit of an oversimpli�ationsine the Babylonians had no notion of \equation." What they did develop was analgorithmi approah to solving problems whih, in our terminology, would give riseto a quadrati equation. The method is essentially the tehnique of \ompletingthe square." Of ourse, the anient Greek mathematiians knew how to solve thequadrati formula by ruler and ompass.

Omar Khayyam (1048 - 1122)Algebras are geometri fats whih are proved.-Omar KhayyamNearly 1500 years later, we �nd the �rst suess at solving a ubi equation. Whiletrying to solve the problem of �nding a right triangle with the property that thehypotenuse equals the sum of one leg plus the altitude of the hypotenuse, the Persianmathematiian and poet, Omar Khayyam (1048 - 1131), found a positive root to theubi equation x3 + 200x = 20x2 + 2000: The mathematis world would have to waitanother 400 years for a solution to the general ubi equation and the solution would



69not ome easily. The Italian mathematiian Sipione del Ferro (1465-1526) designedalgebrai solutions to ubi equations of the form x3 +mx = n:Simpliio: Did del Ferro publish his work?Virginia: He made the mistake of showing his ideas to his student Antonio Fior.Simpliio: How so?Virginia: Didn't he ompete in a hallenge, where eah ontestant gave the otherthirty problems to solve?

Figure 6.1: Niolo Fontana (1499-1557), aka Tartaglia, the StuttererWhen the ube and the things togetherAre equal to some disrete number,Find two other numbers di�ering in this one.Then you will keep this as a habitThat their produt shall always be equalExatly to the ube of a third of the things.The remainder then as a general ruleOf their ube roots subtratedWill be equal to your prinipal thing.-Niolo Fontana



70 CHAPTER 6. CARDANO'S METHOD FOR CUBIC POLYNOMIALSGalileo: Corret. The other ontestant was another Italian mathematiian, NioloFontana (1499-1557), known as Tartaglia, the stutterer.Simpliio: Why was he alled the stutterer?Galileo: When he was a teenager, the Frenh invaded his home town. In the proess,a soldier bashed the young fellow in the head ausing suh severe and permanentinjuries he found it diÆult to speak.Simpliio: So what ontribution did Tartaglia make to the problem of solving ubis?Galileo: Tartaglia's methods were more general and were able to solve ubis of theform x3 + mx2 = n: Fior's methods old not handle this ase and Tartaglia wonthe hallenge. This hallenge between Fior and Tartaglia sparked the interest of yetanother Italian mathematiian, Girolamo Cardano (1501-1576).Simpliio: So who was Cardano?Galileo: Cardano was an unusually antankerous fellow, who was shooled in the�eld of mediine. However, beause of his reputation as a diÆult man he was notadmitted to the College of Physiians in Milan. This rejetion fored him to establisha small medial pratie of his own. Cardano's pratie, however, ould not pay hisgambling bills, so when a mathematis leturing position beame available at thePiatti Foundation in Milan, he took it. After hearing of Tartaglia's suess with a so-lution to the ubi equation, Cardano attempted, without suess, to learn Tartaglia'smethods. Cardano �rst ontated Tartaglia through an intermediary to request thathis method be inluded in Cardano's soon-to-be published book. Tartaglia delinedCardano's request stating that he intended to publish the method himself. Cardanothen persuaded Tartaglia to explain his method.Tartaglia did not just simply tell Cardano his results. Instead, he wrote them in apoem, so that if it were to fall into the wrong hands, they would still be safe. Further-more, he insisted that Cardano would not publish the results. Cardano, with the helpof Tartaglia's method, was able to �nd proofs for all ases of the ubi. He even solvedthe quarti equation. Some years later, Tartaglia still had not published his results.Cardano then learned that del Ferro, not Tartaglia, had been the �rst to solve the



71ubi. Cardano used this new information to justify publishing Tartaglia's method.While Cardano gave Tartaglia full reognition, Tartaglia never forgave Cardano.Virginia: I an understand why. The formulas are known as Cardano's formulas.Poor old Tartaglia is never mentioned.Galileo: There are many bitter stories like this one in aademis. The professionseems to attrat people who have a tendeny to involve themselves in this type ofpolitis.Simpliio: I think my deision to go into business may have been wise.Galileo: As we noted the general ubi equation an be redued to an equation of theform, where the quadrati term equals zero. Thus, we an assume that the ubi hasthe form: p(x) = x3 + px + q = 0:For a ubi equation of this form, Cardano's Formula 6.2 shows that one root an bewritten in the form:r = 13p2 3r�q +qq2 + 427p3 + 13p2 3r�q �qq2 + 427p3:Figure 6.2: Cardano's FormulaVirginia: I like this formula beause it shows the roots of a ubi equation an bewritten in terms of square roots and ube roots.Simpliio: I agree that Cardano and his friends have produed an amazing formula.Galileo: Not so fast. Note that are must be exerised when we atually apply theformula. A problem arises beause the square root always generates two answers andthe ube root funtion always generates three answers. (Of ourse, the square rootand ube root of zero is zero, so that number is an exeption.) Thus, this expressionfor r ould generate as many as 12 di�erent \answers." However, this problem willbe avoided if we assume p and q are real numbers and the expression q2 + 427p3 ispositive. In this setting, we an make the onvention that we hoose the positive



72 CHAPTER 6. CARDANO'S METHOD FOR CUBIC POLYNOMIALSsquare rootqq2 + 427p3 in both parts of the formula for r: Sine �q+qq2 + 427p3 > 0and �q �qq2 + 427p3 < 0; we an always �nd a unique real ube root of eah. Ifwe follow this onvention and thus avoid hoosing omplex numbers, then r will be aroot.Virginia: What if q2 + 427p3 is negative?Galileo: We then have to get distrated by the subjet of omplex numbers. Sinewe have many more topis to disuss, let us move on.Virginia: Are there similar formulas for polynomials of all degrees?Galileo: Unfortunately, the answer to that question is no. While the general quartiequation an also be solved using only square roots and ube roots, the Norwegianmathematiian Niels Henrik Abel (1802-1829) and the Frenh mathematiian EveristeGalois (1811-1832) showed that no suh formula exists for the equation x5+x+1 = 0:Of ourse, we should not forget that Gauss proved the Fundamental Theorem ofAlgebra around 1800. In fat, he produed �ve di�erent proofs. The beauty of thistheorem is that it states that every polynomialpn(x) = xn+an�1xn�1+an�2xn�2+ : : :+a1x+a0; where eah ak is a omplex number,has the property that it an be fatored as a produt of linear fators in its roots. Inother words, roots r1; r2; : : : ; rn an be found so that pn(x) = (x�r1)(x�r2) : : : (x�rn):If we ount multipliities, we see that every polynomial of degree n � 1 has exatlyn real roots. Unfortunately, the bad news is that the work of Abel and Galois showsthat we will be unable to �nd a tidy little formula for these roots.Simpliio: I notie that these two fellows Abel and Galois both died at an early age.Galileo: While Abel died of tuberulosis, Galois was shot and killed in a duel overpolitis or a woman. It seems that he had a penhant for getting into trouble. A yearbefore his death, he made threats against King Louis-Phillipe while at a dinner with200 Republians. While making his speeh, he may have been holding a dagger in hishand.Virginia: Is it not true that trouble seems to have followed you as well.Galileo: At least I left my daggers at home.



73Simpliio: Again, I think my deision to avoid a areer in aademis may have beenwise.Exerise Set 6.1.1. Compute a root of the equation x3 + x + 1 = 0:2. Find a root for Omar Khayyam's equation x3 + 200x = 20x2 + 2000:3. Show that the quantity r given by the Cardano Formula 6.2 atually produesa root for the equation x3 + px + q = 0: (Hint: Substitute x = r into p(x):)4. Compute a root of the equation x3 + x2 + 1 = 0:5. Find a formula for a root of the equation x3 +Ax2 +Bx+C = 0: (Suggestion:Surf the internet to see what others have done.)6. Show the equation x3 + x+ 1 = 0 has exatly one real root.



74 CHAPTER 6. CARDANO'S METHOD FOR CUBIC POLYNOMIALS



Chapter 7
Algorithms for Finding Roots

Isaa Newton (1642-1727)If I have been able to see further, it was only beause I stood on theshoulders of giants.-Isaa NewtonGalileo: We now introdue the English mathematiian Isaa Newton (1642-1727), whois one of the giants in physis and mathematis. His treatise, Prinipia; is probablythe most important siene book ever written beause it reated mathematial modelsthat explained the motion of the projetiles, planets, pendulums, uids, and the tides.These models are based on fundamental priniples onerning the nature of fore,inluding gravitational and entripetal. His Seond Law of Motion, F = ma and his75



76 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSinverse square law for gravitation are probably his most famous. The mathematialfoundation for this work was geometry, geometry, geometry.Simpliio: Wait a minute. What about Calulus?Galileo: If you atually open this magni�ent book, you will notie an abundane oftriangles, parallelograms, and ellipses. You will �nd no derivatives dydx : Old Is aa wastoo smart to justify his methods on mathematis that was not quite ready for primetime. Of ourse, the spirit of Calulus was present everywhere.Simpliio: Sounds like a lot of math theory to me. Did he inlude any data to supporthis theory?Galileo: In fat, he did. Remember that the idea that the orbits of the planets mightbe elliptial omes from Kepler. The basis for his ideas was the data set aquired byTyho Brahe (1546-1601). Newton atually inluded other astronomial data in his\Prinipia."Tell us about yourself, Sir Isaa.Newton: While I was interested in a variety of di�erent subjets inluding hemistryand theology, my main interest was in physis and mathematis. In physis, I madefundamental ontributions to dynamis, statis, optis, hydrodynamis, hydrostatis,and of ourse I disovered Calulus.Virginia: I thought GottfriedWilhelm von Leibniz (1646-1716) also invented Calulus.Newton: Yes, you might have heard about that ontroversy. However, as the presidentof the Royal Soiety, I appointed an \impartial" ommittee to deide whether Leibnizor myself was the sole inventor. The oÆial report of this illustrious ommitteeonluded that I deserve full redit for the Calulus as we know it. Of ourse, I usedthe Calulus to explain the motion of falling bodies, Kepler's three laws of planetarymotion, as well as the tides.Galileo: But who wrote the report?Newton: Well, I did.Galileo: Enough of that. Let us mention, however, that Joseph Raphson (1648-1715)was a ontemporary of yours, but used the same method to approximate roots of an



7.1. THE METHOD OF NEWTON/RAPHSON 77equation. Raphson, however, was one of the few people who you allowed to see yourmathematial papers.Newton: He took a lear position in favor of my laims over those of Leibniz. Iappreiated his support.(Newton leaves.)Virginia: I am not ertain that I would like to onverse with that Mr. Newton again.He is a most unpleasant fellow.Galileo: A great mind may possess a small personality. How about if we forgot allthat politis and refous our energies on his method. Sine has been suh a ad aboutthe e�orts of others, I think we should give Raphson equal redit?7.1 The Method of Newton/RaphsonGalileo: Professor Newton, ould you explain the ideas behind your method?Newton: Certainly. Let us begin this setion with the de�nition of the term root.De�nition 7.1.1. If X is an interval and f(x) : X ! < is a funtion, then a pointr 2 X is alled a root of f(x) if f(r) = 0:Newton: The fundamental priniple underlying the method is to \linearize the prob-lem" by approximating a non-linear funtion by a straight line. Thus, easiest startingpoint is to �nd the root of the funtion f(x) = m(x� x0) + b:Simpliio: Even I an do that. All you have to do is solve the equation 0 = m(r �x0) + b: As long as m 6= 0; the root r = x0 � bm :Newton: My method is not muh more diÆult. Sine the �rst derivative of a funtionis the slope of the line that \best approximates" the urve y = f(x) at a givenpoint (x0; f(x0)); we begin the proess by drawing a tangent line to the urve atthis point. Sine the tangent line to the urve y = f(x) at a point x0 is given byy = f(x0) + f 0(x0)(x� x0); and the root of this linear equation is found when y = 0;the x-interept is found by solving the equation 0 = f(x0) + f 0(x0)(x � x0); for x:



78 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSWhen we do this, we �nd that x = x1 = x0� f(x0)f 0(x0) : If xn represents the approximationat the nth iteration, then xn+1 = xn � f(xn)f 0(xn) :The Newton/Raphson Algorithm:x0 = an initial guess.xn+1 = xn � f(xn)f 0(xn) for all n � 0:The reursive part of the algorithm an be thought of as a generalization of theube root algorithm xn+1 = xn � x3n�K3x2n ; where the denominator of the frationalexpression is also the derivative of the numerator.Simpliio: Atually, I am quite omfortable with this algorithm.Example 7.1.1. Galileo: We now inlude a pratie problem. If we would like toapproximate the value of p2; then we an let x0 = 1 and begin omputing using thereursive formula stated in the algorithm. Notie that the �rst step is to think up afuntion f(x) whih has the property that r = p2 is a root.Virginia: How about the funtion f(x) = x2 �K?
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Figure 7.1: Five Steps Newton/Raphson Estimates for f(x) = x2 � 2



7.1. THE METHOD OF NEWTON/RAPHSON 79Galileo: The approximations provided by the �rst �ve steps of the method are displayedin Figure 7.1. Note that x2 is between the root r = pK and x1; x3 is between r = pKand x2; and x4 is between r = pK and x3: This pattern ontinues indiating thatthere is a strong probability that the sequene of x�interepts for the tangent lineswill onverge to the root.Virginia: Is the onavity of the urve important?Galileo: In fat, it is. But we will disuss that thought in more detail at a later time.Example 7.1.2. Galileo: A seond example is the polynomial p(x) = x5+x+1: Thisexample is of partiular interest beause our friends Abel and Galois showed we haveno option exept numerial omputation of the roots.Here is the algorithm. Step 0. x0 = 1:0Step 1. x1 = x0 � x50 + x0 + 15x40 + 1Step 2. x2 = x1 � x51 + x1 + 15x41 + 1Step n. xn+1 = xn � x5n + xn + 15x4n + 1The �rst seven estimates of the real root are listed in Table 7.1 when the algorithmis initialized with x0 = 1:Simpliio: What a great algorithm! While not quite as good as the square root andube root methods, this tehnique is still in my omfort zone.Galileo: The method of Newton/Raphson is popular.Virginia: I an see why.Simpliio: I do have one quik question. If this method inludes the square rootand ube root tehniques as speial ases, why not skip them? It ertainly wouldhave been more eÆient to simply disuss the Newton/Raphson Algorithm at thebeginning.



80 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSx0 1.000000000000000x1 0.500000000000000x2 -0.666666666666667x3 -0.768115942028985x4 -0.755162523060901x5 -0.754877799264274x6 -0.754877666246722x7 -0.754877666246693Table 7.1: Seven Estimates of a Root of p(x) = x5 + x+ 1Galileo: While we ould have, there is a di�erene between presenting mathematisin its most perfet �nal form and presenting onepts to someone unfamiliar with thesubjet. In my experiene, the human brain works indutively from partiular asesto more general ones. Mathematis is a proess, whih has been unfolding for severalthousand years. The pedagogi rule we will follow is to proeed from the partiularto the abstrat.Simpliio: I atually agree with this approah. Simple is good.Galileo: We will soon disuss examples, where the method of Newton/Raphson fails.These examples will enourage us to searh for algorithms, whih \always work." Thesquare root and ube root algorithms do in fat enjoy this omforting property.Exerise Set 7.1.1. Set up the Newton/Raphson algorithm to ompute 5p2: Test the method byusing x0 = 2 to initialize the method and ompute 6 iterations.2. Use the method of Newton/Raphson to ompute a root of the polynomialp3(x) = x3+x+1 with error less than 10�5: Initialize the method with x0 = 1:0:3. Use the method of Newton/Raphson to ompute a root of the the polynomialp3(x) = x3+x2+1 with error less than 10�5: Initialize the method with x0 = 1:0:



7.1. THE METHOD OF NEWTON/RAPHSON 814. Use the method of Newton/Raphson to ompute a root of the polynomialp5(x) = (x � 1)(x � 2)(x � 3)(x � 4)(x � 5) with error less than 10�5: Ini-tialize the method with x0 = 5:10:5. Use the method of Newton/Raphson to ompute a solution of Omar Khayyam'sequation x3+200x = 20x2+2000 with error less than 10�5: Initialize the methodwith x0 = 1:0: Compare your answer with the one produed by Cardano'sFormula 6.2.6. Use the method of Newton/Raphson to ompute a root of the funtion f(x) =x os(x) with error less than 10�5: Initialize the method with x0 = 10: Be sureto make your omputations using radians rather than degrees.7. Use the method of Newton/Raphson to ompute a root of the funtion f(x) =x ex with error less than 10�5: Initialize the method with x0 = 1:00 and x0 =�2:00:8. Use the Newton/Raphson method to approximate a root of the polynomialp7(x) = x7+x+1 with error less than 10�5: Initialize the method with x0 = 1:0:9. Use the method of Newton/Raphson to approximate a solution of the equationsin(x) = ex with error less than 10�5: Initialize with x0 = 0 and x0 = 5: Whatdo you notie?10. Use the method of Newton/Raphson to approximate a solution of the equationex = 3x2 with error less than 10�5: Initialize with x0 = 0 and x0 = 5: What doyou notie?11. Use the method of Newton/Raphson to approximate a solution of the equationloge(x) = � os(x) with error less than 10�5: Initialize the method with x0 = 0:5:If the initialization is hanged to x0 = 2:0; then what happens?12. Let p2(x) = (x� 1000)2 and q2(x) = x2� 1000000: Note that x = 1000 is a rootfor both p2(x) and q2(x): Use the method of Newton/Raphson to approximate



82 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSthis root for both polynomials. Initialize the method with x0 = 1001: Comparethe number of iterations required to ahieve an error of less than 10�5: Whatdo you notie? What is di�erent about the roots of the two polynomials?7.2 The Seant MethodGalileo: We now turn to a variant of Newton/Raphson known as the seant method,where the �rst derivative is approximated numerially as the slope of the line throughthe two previous approximations produed by the algorithm. This modi�ation isimportant in appliations, where the �rst derivative is diÆult to ompute usingthe usual rules of di�erential Calulus. Instead of having the term f 0(x) in thedenominator of the seond term, the approximation f(xn)�f(xn�1)xn�xn�1 is used.Thus, the (n + 1)st term beomes:xn+1 = xn � f(xn)f 0(xn)� xn � f(xn)f(xn)�f(xn�1)xn�xn�1= xn � f(xn)(xn � xn�1)f(xn)� f(xn�1) :Sine we require two values to initialize the algorithm, the seant method animplemented as:The Seant Algorithm:Step 0. x0; x1 = initial estimatesStep n. xn+1 = xn � f(xn)(xn � xn�1)f(xn)� f(xn�1) :Simpliio: OK, I see that the seant method has the advantage that you don't haveto ompute the �rst derivative. How about an example?Example 7.2.1. Galileo: While this example is a bit embarrassing beasue the �rstderivative is easy to ompute, why not begin by applying the seant method to reom-pute our old friend p2? For this omputation, we hoose f(x) = x2�2: If we initialize



7.2. THE SECANT METHOD 83the method with the points x0 = 1 and x1 = 2; the �rst seant line approximation isgiven by the equation y = �1 + 2+12�1(x� 1) = 3x� 4:Simpliio: I see that this seant line intersets the x�axis at x2 = 1:33333333333333:Galileo: Corret. A graph of the funtion y = f(x) = x2 � 2 and the �rst approxi-mating seant line are graphed in Figure 7.2.
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Figure 7.2: The First Seant Approximation for f(x) = x2 � 2Galileo: In addition, we display the �rst eight data points generated by the algorithmin Table 7.2. x0 1.00000000000000x1 2.00000000000000x2 1.33333333333333x3 1.40000000000000x4 1.41463414634146x5 1.41421143847487x6 1.41421356205732x7 1.41421356237310x8 1.41421356237310Table 7.2: Eight Seant Method Estimates of p2 Initialized by x0 = 1; x1 = 2Simpliio: While the algorithm seems to onverge quikly, it does appear to be a shade



84 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSslower than the method of Arhimedes/Heron.Galileo: Good observation. As it turns out, the onvergene rate for the seant methodis generally slower than the onvergene rate for Newton/Raphson. We will make thatstatement more preise on another oasion.Virginia: It doesn't look like the sequene of approximations is dereasing.Galileo: Another good observation. However, if we hange the initialization to x0 = 1and x1 = 2; then the algorithm behaves the way you might expet. We have listed thisdata in Table 7.3. x0 3.00000000000000x1 2.00000000000000x2 1.60000000000000x3 1.44444444444444x4 1.41605839416058x5 1.41423305925716x6 1.41421357508149x7 1.41421356237318x8 1.41421356237309Table 7.3: Eight Seant Method Estimates of p2 Initialized by x0 = 3; x1 = 2Virginia: Now the sequene is dereasing.Simpliio: Does that always happen?Galileo: Stik around and you will see.Virginia: Are there any disadvantages to this tehnique?Galileo: The �rst problem is that you need two starting points instead of one.Simpliio: Why should that matter?Galileo: If they aren't hosen lose to the answer, the estimates may fail to onvergeto the desired answer. Later, we will give an example illustrating this issue.Simpliio: Are there any other issues?



7.2. THE SECANT METHOD 85Galileo: You also have to be areful not to divide by zero. This problem is areal and dangerous possibility with the seant method whenever two suessive ap-proximations, f(xn) and f(xn�1) are approximately equal beause their di�erenef(xn)�f(xn�1) is lose to zero and is in the denominator. In fat, if we had omputeda few more terms with our approximations of p2; we would have had an explosionaused by a division by zero.Simpliio: I think I an program around that issue.Exerise Set 7.2.1. If K = 2; f(x) = x2 �K; x0 = 1; and x1 = K = 2; then use the seant methodto ompute x11 and x12: What happens?2. If K = 5; f(x) = x2�K; x0 = 1; and x1 = K = 5; then use the seant method toompute the root with an auray of 110;000 : How many iterations are required?Compare the estimates generated by the seant method with those generated bythe Newton/Raphson method when x0 = 1: Whih is faster: the seant methodor Newton/Raphson?3. If K = 1; 000; 000; f(x) = x2 � K; x0 = 1; and x1 = K = 1; 000; 000; then usethe seant method to ompute the root with an auray of 110;000 : How manyiterations are required? Compare the estimates generated by the seant methodwith those generated by the Newton/Raphson method when x0 = 1:4. If K = 2; x0 = 1; x1 = K = 2; and f(x) = x3 � K; then how many iterationswill be required for the seant method to estimate a root of f(x) to an aurayof 110;000 : Compare the number of iterations required for the seant method andthe number required by the Newton/Raphson method when x0 = 1:5. Use the seant method to ompute a root of the polynomial p(x) = x3+x+1 witherror less than 10�5: Initialize the method with x0 = 0:0 and x1 = 1:0: Comparethe number of iterations required for the seant method and the number requiredby the Newton/Raphson method when x0 = 1:



86 CHAPTER 7. ALGORITHMS FOR FINDING ROOTS6. Use the seant method to ompute a root of the polynomial p(x) = x5+x+1 witherror less than 10�5: Initialize the method with x0 = 0:0 and x1 = 1:0: Comparethe number of iterations required for the seant method and the number requiredby the Newton/Raphson method when x0 = 1:7. Use the seant method to ompute a root of the of the polynomial p(x) =(x � 1)(x � 2)(x � 3)(x � 4)(x � 5) with error less than 10�5: Initialize themethod with x0 = 0:5 and x1 = 1:5: Compare the number of iterations requiredfor the seant method and the number required by the Newton/Raphson methodwhen x0 = 0:58. Use the seant method to ompute a root of the Omar Khayyam's equationx3 + 200x = 20x2 + 2000 with error less than 10�5: Initialize the method withx0 = 0:0 and x1 = 1:0: Compare the number of iterations required for theseant method and the number required by the Newton/Raphson method whenx0 = 1:9. M�uller's Method: Determine a reursive formula that uses three suessivepoints to determine the next approximation to a root r for a funtion y = f(x):In other words, given three points x0; x1; x2; �nd a parabola p2(x) = A(x �x2)2 + B(x � x2) + C with the property that p2(x0) = f(x0); p2(x1) = f(x1);and p2(x2) = f(x2): After omputing the onstants A;B; and C; then use thequadrati formula to ompute an approximate root x3: Note further that sinethe quadrati formula provides two roots, the hoie with the largest denomi-nator is preferred.(Answer: A = (x1�x2)[f(x0)�f(x2)℄�(x0�x2)[f(x1)�f(x2)(x0�x2)(x1�x2)(x0�x1) ;B = (x0�x2)2[f(x1)�f(x2)℄�(x1�x2)2[f(x0)�f(x2)℄(x0�x2)(x1�x2)(x0�x1) ; and C = f(x2):)Simpliio: But wait a minute. The funtions in these exerises all have �rst derivativesthat are easy to ompute. Wouldn't we simply use Newton/Raphson?Galileo: To illustrate a situation, where you might want to hoose the seant methodonsider the polynomial p20(x) = (x � 1)(x � 2) : : : (x � 20): Note that the roots of



7.3. THE BISECTION METHOD 87p20(x) are the integers r = 1; 2; : : : ; 20: While the value of p20(x) an be omputedfor any value of x; the �rst derivative requires you to either expand the funtion asa 20 degree polynomial or ompute 20 produt rules. Take your pik. Better yet,implement the seant method for �nding a root for p20(x) and then test the methodfor two initial input points x0 and x1; where x0 and x1; are hosen near the root r = 1and near the root r = 20: Compare your results for two di�erent sets of inputs.Simpliio: I get the onept, but what about omputing p20(x) when x = 21? By myalulation, I get 20!; whih is a very large number. In fat, it turns out to be equalto about 2:4329� 1018:Galileo: You are very pereptive. We will see shortly that the omputation of the rootsof this polynomial lead to a fundamentally unstable problem. In fat, this problemo�ers a view into exatly the type of problem appliations people must either avoidor enter into at great risk.7.3 The Bisetion MethodGalileo: The bisetion method is probably the most basi method for �nding a root ofa ontinuous funtion. This method is a straightforward appliation of the Interme-diate Value Theorem 10.2 for the ase when y = 0: We now give the exat statementof the theorem.Theorem 7.3.1 (Intermediate Value Theorem). If f(x) : [a; b℄ ! < is ontin-uous at eah x 2 [a; b℄ and f(a) < y0 < f(b) (or f(a) > y0 > f(b) ); then there is apoint z0 2 [a; b℄ suh that f(z0) = y0:Simpliio: This theorem is muh too abstrat. Bring it down to earth.Galileo: The Intermediate Value Theorem states something quite natural about theway we pereive the world around us. For example, I ontend that at some point inyour life you were exatly 4 feet tall.Simpliio: No problem. Sine I was less than 2 feet tall when I was born and am nowover 5 feet, at some moment in time I must have been exatly 4 feet tall.



88 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSGalileo: While our friends in philosophy and physis might have objetions, that isthe answer I was looking for. Your reasoning is enapsulated by the IntermediateValue Theorem, where the funtion f(x) represents your height at time x:Simpliio: How about another example?Galileo: If the temperature is less than 50 degrees in the morning and more than80 degrees in the afternoon, then at some moment during the day, the temperaturemust have been exatly 70 degrees. For this example the funtion f(x) represents thetemperature at time x:Virginia: But why is this theorem alled the Intermediate Value Theorem?Galileo: In the examples just mentioned, the temperature 70 degrees is intermediatebetween 50 and 80 and the height of 4 feet is intermediate between 2 feet and 5 feet.Assuming temperature and height vary ontinuously with time, the IntermediateValue Theorem will guarantee that there is some instant in time when these valuesare attained exatly.Simpliio: But what if I was a midget and never got to be 4 feet tall?Virginia: If you don't satisfy the hypotheses, the theorem does not apply.Galileo: We will apply the theorem when f(x) is a ontinuous funtion on an interval[a; b℄ and f(a) and f(b) have opposite signs. (i.e. Either f(a) > 0 and f(b) < 0 orf(a) < 0 and f(b) > 0): In this setting the value y = 0 is intermediate between f(a)and f(b) so the funtion f(x) has a root between a and b: If we let a0 = a; b0 = b; andm0 = a0+b02 ; then we have two ases. If f(a0) and f(m0) have opposite signs, thende�ne a1 = a0 and b1 = m0: If not, then de�ne a1 = m0 and b1 = b0: Repeating thisproess, let m1 = a1+b12 : If f(a1) and f(m1) have opposite signs, then de�ne a2 = a1and b2 = m1: If not, then de�ne a2 = m1 and b2 = b1:Indutively, if ak�1 and bk�1 have been found, then de�ne mk�1 = ak�1+bk�12 : Iff(ak�1) and f(mk�1) have opposite signs, then de�ne ak = ak�1 and bk = mk�1: Ifnot, then de�ne ak = mk�1 and bk = bk�1:Note that a root will lie in the interval [ak; bk℄ and the length of the interval is b�a2k :Thus, the value mk = ak+bk2 will approximate the root with an error no more than



7.3. THE BISECTION METHOD 89b�a2k+1 : In fat, for any given funtion f(x) the onvergene rate only depends on thelength of the interval [a; b℄: Thus, this estimate of the onvergene rate is the samefor every funtion.

Figure 7.3: The Bisetion Method for the funtion f(x) = x2 � 2Galileo: In general, the tehnique an be stated as theBisetion Algorithm:1. Let f(x) be a ontinuous real-valued funtion on a losed bounded interval [a; b℄;whih has the property that f(a) and f(b) have opposite signs.2. Let m = a+b2 :3. If f(a) and f(m) have opposite signs, then set b = m:4. If f(a) and f(m) do not have opposite signs, then set a = m:5. Continue this proess (i.e. repeat steps 2-4) until the required auray hasbeen ahieved.



90 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSSimpliio: This method seems to be quite understandable.Galileo: If a funtion f(x) rosses the x�axis at some point in an interval [a; b℄ andf(a) and f(b) have opposite signs, then this method has the virtue that it \alwaysworks." While the method may always work, its downside is that the onvergenerate is slower than the method of Newton/Raphson.Simpliio: How about an example?Example 7.3.1. Galileo: Let's revisit our old friend f(x) = x2�2; where the methodis initialized with a = 1 and b = 2: The results of the bisetion algorithm's �rst eightestimates are listed in Table 7.4.x0 1.000000000000000x1 1.500000000000000x2 1.250000000000000x3 1.375000000000000x4 1.437500000000000x5 1.406250000000000x6 1.421875000000000x7 1.414062500000000x8 1.417968750000000Table 7.4: Eight Estimates of a Root of the p2Simpliio: You are right. The onvergene rate of this method is glaial in omparisonwith either the Newton/Raphson or seant method. With theses other methods we arealmost perfet after eight steps. Sine p2 = 1:414213562373095; we have ahievedonly two digits of auray with the bisetion method. Why would anyone use it?Galileo: The method is important beause it always works and beause it an be used inombination with other less stable methods suh as Newton/Raphson. In partiular,the bisetion method an sometimes be iterated enough times to guarantee onvergene.We will disuss this issue again in more detail. The ombination of two suh methods



7.3. THE BISECTION METHOD 91results in a hybrid, whih is sometimes better than eah used separately.Virginia: What an you say about the error?Galileo: Sine the midpoint m is half way between the points a and b; note that theerror is ut in half at eah iteration. Thus, the initial error is b � a and the �rsterror is b�a2 : The general formula for the error an be summarized in the followingproposition.Proposition 7.3.2 (Bisetion Error Formula). If f(x) is a ontinuous real-valuedfuntion de�ned on the interval [a; b℄ and f(a) and f(b) have opposite signs, then theerror En at the nth iteration satis�es the inequality jEnj < b�a2n :Proof. Sine a root of the funtion lies in the interval [a; b℄ whih has length b � a;the error E0 satis�es jE0j < b� a: Similarly, sine a root of the funtion lies in eitherthe interval [a; a+b2 ℄ or [a+b2 ; b℄ and both these losed intervals have length b�a2 ; theerror jE1j < b�a21 : Sine the length of the interval ontaining the root is halved at eahiteration of the proess, jEnj < b�a2n :Example 7.3.2. Galileo: How many iterations are required for the bisetion to guar-antee 14 digits of auray when omputing p2 on the interval [1; 2℄?Virginia: Simply �nd an integer n with the property that 12n < 51015 : When we takelogs of both side of this expression, we �nd that this inequality will be satis�ed ifn > 15log(10)=log(2) � log(5)=log(2) � 47:5: Thus, if we hoose n = 48; we willahieve the required auray.Simpliio: That's worse than I thought it would be.Galileo: In summary, while the method of Newton/Raphson may onverge faster thanthe bisetion method, the bisetion method has the advantage that it \works" as longas the funtion f(x) is ontinuous and satis�es the initial ondition that f(a) and f(b)have opposite signs.Simpliio: Something bothers me about the error formula jEnj � b�a2n : While it on-tains the initial endpoints a and b; it seems to be the same for every funtion.



92 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSGalileo: Yes, your observation is orret. While it is reliable, its onvergene rate isthe same for all funtions.Virginia: I would like to bak up and ask a question about the Intermediate ValueTheorem. While I have an intuitive idea what the word ontinuous means, I am notsure I ould de�ne what it means for a funtion to be ontinuous. Could you give memore preision here?Galileo: While we won't disuss that topi today, No worries. We will address allthese issues in detail when we disuss the theory underlying Calulus. We will evenprovide a proof.Simpliio: I an't wait.Exerise Set 7.3.1. If K = 2; 5; 20; 000; a = 1; b = K; and f(x) = x2 �K; x3 �K or x5 �K; thenhow many iterations will be required for the bisetion method to estimate aroot of f(x) to an auray of 110;000? Compare the number of iterations withthat needed by the Newton/Raphson method. Whih do you prefer?2. Using the bisetion method how many iterations will be needed to approximatethe real root of the funtion f(x) = x3 + x + 1 if a = �1; b = 0; and the erroris required to be less than 0.000001? Compare your answer with the answeryou get when the method of Newton/Raphson is used with x0 = 0 as the initialguess.3. If the bisetion method is used to ompute a root of the funtion f(x) = x2+1;then what goes wrong? Why does the bisetion method fail when we werepromised that it \always works."4. If the bisetion method is used to ompute a root of the funtion f(x) = xe�x2initialized by the points a = �2 and b = 3; then does the method work? Howmany iterations will be required to estimate the root of f(x) to an auray of110;000 .



Chapter 8
Problems With Root Finding

If anything an go wrong, it will.-MurphyNothing is ever as simple as it seems.-MurphyNature always sides with the hidden aw.-MurphyGalileo: We now devote a few minutes to a disussion of examples that require us tobe areful when omputing roots.Simpliio: Why disuss failure? Everything seems to be going well at the moment.Galileo: Nothing is ever as simple as it seems.8.1 Failure of Newton/RaphsonGalileo: Let us begin by reviewing the Newton/Raphson problems I assigned?Simpliio: Everything went well. I had no problems. I even seemed to get all theright answers.Galileo: How about if we take a more areful look at the method? What if we beginby omputing the square root of K, where we initialize the method with a value ofx0 = 0?Simpliio: Sine the method of Arhimedes/Heron is given by the reursive formulaxn+1 = xn+ Kxn2 = xn � x2n�K2xn ; a division by zero ours. Obviously, this event will not93



94 CHAPTER 8. PROBLEMS WITH ROOT FINDINGbe well-reeived in the mathematis ommunity.Galileo: Sine the general formulation of Newton/Raphson is given by the equationxn+1 = xn � f(xn)f 0(xn) ; the strategy will be to avoid roots of the �rst derivative f 0(x):Simpliio: Sine the probability of making suh a hoie is about zero, we should notworry too muh about that ase. Right?Galileo: While this avoidane task is easy for funtions like f(x) = x2 � K whenK > 0 and x0 = 1; it an atually happen in simple settings. For example, onsiderthe funtion f(x) = x2 + 1: While this polynomial has real oeÆients, its two rootsare the omplex numbers r = �i; where i = p�1: If the method of Newton/Raphsonis initialized with x0 = 1; then note that x1 = 0; whih leads to a division by zeroin the omputation of x2: Thus, the value for x2 an't even be omputed. However,even if we hoose another number, say x0 = 2; so that division by zero never ours,eah reursively omputed xn+1 will always be a real number. Thus, the method hasno hane to onverge to either r1 = i = p�1 or r2 = �i = �p�1:Simpliio: Suddenly omplex number have raised their ugly head, a worrisome situ-ation.Galileo: On the ontrary.Simpliio: You mean the method of Newton/Raphson an be used if the numbers areomplex? Your motivation and graphs only seemed to apply to real-valued funtions.Galileo: Not a problem. The key is that you an ompute the �rst derivative.The rules for derivatives are exatly the same as those you learned for real vari-able Calulus. The only di�erene is that you hange the letter x to the letterz = a + bi: For the funtion we just onsidered, we let f(z) = z2 � K: The deriva-tive turns out to be f 0(z) = 2z and the reursive step in the algorithm beomeszn+1 = zn� f(z)f 0(z) = zn� z2n�K2zn : An amazing feature of this example is that if the initialguess z0 is hosen to be any omplex number other than one of those on the real line,then the method in fat works. Work the �rst problem in the set of exerises listedbelow and you should begin to appreiate these remarks.Simpliio: Interesting. What is the next example you have in mind?



8.1. FAILURE OF NEWTON/RAPHSON 95Galileo: While dividing by zero is an obvious problem, we might also worry aboutfuntions with large derivatives near a root. For example, onsider the funtionf(x) = x 13 : Note that f(0) = 0 so x = 0 is a root. If we apply Newton/Raphson tothis funtion, we �nd that the reursive relation beomesxn+1 = xn � x 13n13x�23n = xn � 3xn = �2xn:Thus, unless your initial guess x0 = 0; you will have problems.Simpliio: Is that it?Galileo: As you might guess, the situation gets worse.Let us now onsider the di�erentiable funtion f(x) = x � e�x2 ; whih is graphedin Figure 8.1. This funtion illustrates a fundamental problem with the method ofNewton/Raphson. While the funtion f(x) has a unique root at x = 0 and has agraph whih is almost a straight line near zero, a poor initial guess an lead to asequene of points that onverge to in�nity.
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Figure 8.1: Failure of Newton/Raphson for the funtion f(x) = x � e�x2.Simpliio: How does that happen?Galileo: Sine the derivative is f 0(x) = (1 � 2x2)e�x2; f(x) has ritial points atx = �p22 ; whih are the loations of the minimum and maximum. Thus, if the initial



96 CHAPTER 8. PROBLEMS WITH ROOT FINDINGguess x0 for the Newton/Raphson method is hosen to the right of the loation ofthe maximum, then it is lear that the subsequent terms in the sequene eah befurther to the right than the previous. In other words, x0 � x1 � x2; et: We anatually show that the sequene onverges to in�nity. Similarly, if the initial guess x0is hosen to be to the left of the loation of the minimum, then the resulting sequenewill onverge to negative in�nity. On the other hand, if the initial point is hosenlose to zero, then Newton/Raphson onverges without a problem. Thus, the methodworks in some situations and not in others. One of our tasks will be to establishonditions whih will guarantee onvergene.Virginia: Looks like we have a theorem to look forward to.Galileo: Corret.Simpliio: Groan. These examples make me worry that the method of Newton/Raphsonis not as perfet as I had hoped.Galileo: Just another example, where Murphy's Law applies to numerial methods.However, our next disussion will fous on the suess of the method. As you willsee, a number of very smart people have thought about these issues for a very longperiod of time.Simpliio: Could you summarize the problems with Newtion/Raphson?Galileo: Sure, the previous examples indiate the types of trouble we an expet toenounter with Newton/Raphson. These potential problems an be summarized as:Example 8.1.1. (Division by Zero) The derivative f 0(xn) = 0 for some integer n:If f(x) = x2�2 and Newton/Raphson is initialized with x0 = 0; then f 0(x0) = f 0(0) =0 so x1 annot be omputed.If Newton/Raphson is initialized with any other real number x0 < 0; then thesequene xn onverges to �p2: If Newton/Raphson is initialized with any other realnumber x0 > 0; then the sequene xn onverges to p2:Example 8.1.2. (Unexpeted Answer) The initial guess x0 was not hosen suÆientlylose to the root x = r and the Newton/Raphson sequene onverges to an unexpetedanswer.



8.1. FAILURE OF NEWTON/RAPHSON 97If f(x) = sin(x) and Newton/Raphson is initialized with x0 = �2 + 0:001; then thesequene onverges to a root r: However, the root r is far to the right of the initialguess.Example 8.1.3. (No Answer) The funtion f(x) fails to have a real root.If f(x) = x2+1 and Newton/Raphson is initialized with any real number x0; then thesequene xn simply bounes around and never has any hope of onverging.Example 8.1.4. (First Derivative Problem) The �rst derivative f 0(x) does not existat the root and the Newton/Raphson sequene diverges.If f(x) = x 13 and Newton/Raphson is initialized with any real number x0 6= 0; thenxn+1 = �2xn and the sequene diverges to 1:Example 8.1.5. (Poor Initialization) The initial guess x0 was not hosen suÆientlylose to the root x = r and the Newton/Raphson sequene osillates.If f(x) = xe�x2 and Newton/Raphson is initialized with x0 = 0:5; then the sequenexn osillates between �0:5:Example 8.1.6. (Poor Initialization) The initial guess x0 was not hosen suÆientlylose to the root x = r and the Newton/Raphson sequene diverges to in�nity.If f(x) = xe�x2 and Newton/Raphson is initialized with x0 = 1; then the sequene xndiverges to +1:Simpliio: So if I am omputing my Newton/Raphson Algorithm for a partiularfuntion and it hasn't onverged in 200 iterations, then I need to take a seond lookat the problem to make sure the method has a hane of working.Galileo: Corret. And remember, the type of problem most likely to our is theone depited in Figure 8.1. In higher dimensional vetor spaes, this problem is soommon it is labeled \The Curse of Dimensionality."Exerise Set 8.1.1. Use the method of Newton/Raphson to ompute a root of the polynomial p(x) =x2 + 1: Begin by Initializing the method with x0 = 1 and ompute a thousand



98 CHAPTER 8. PROBLEMS WITH ROOT FINDINGterms. What do you observe? Can you deide whether or not the resultingsequene diverges to in�nity or is bounded? Initialize the method a seondtime with the omplex point x0 = 1 + i; where i = p�1: What do you notieabout this sequene of iterates?2. Use the method of Newton/Raphson to ompute a root of the funtion f(x) =x 13 : Note that x = 0 is a root of f(x): Initialize Newton/Raphson with valuesof x0 = 0:1; 0:2; : : : ; 1: What do you notie? How about if we initialize withx0 = 0:01 or x0 = 0:001?3. If f(x) = x � e�x2 ; then implement Newton/Raphson with the values x0 =0:25; x0 = 0:50; and x0 = 0:75: What do you observe with these three ex-amples? Find the largest real number L suh that if x0 2 (�L; L); then theNewton/Raphson sequene fxng1n=1 onverges to the root 0.4. If the seant method is used to ompute a root of the funtion f(x) = xe�x2with x0 = 1=2 and x1 = 1; then does the method work? How many iterationswill be required to estimate a root of f(x) to an auray of 110;000 : Compare thenumber of iterations required by the Newton/Raphson method when x0 = 1=2or x0 = 1:5. Use the method of Newton/Raphson to ompute a root of the funtion f(x) =sin(x): Note that x = 0 is a root of f(x): Initialize the method with values ofx0 = �2 + 0:1 and x0 = �2 + 0:001: Does the method onverge to a root? If so,�nd it.8.2 Newton/Raphson and Double RootsCirles to square and ubes to double would give a man exessive trouble.-Matthew Prior(1664-1721)Galileo: We would now like to mention some examples, whih reet on the the rate



8.2. NEWTON/RAPHSON AND DOUBLE ROOTS 99of onvergene for the method of Newton/Raphson. As it turns out, di�erent hoiesof funtions f(x) may produe di�erent rates of onvergene. In some of the exeriseswe assigned the onvergene took 6 iterations to ahieve as muh onvergene as youould want, while others took more than 30.Simpliio: Yes, I remember that omputing the square root of 5 worked great, whilethe square root of zero took muh longer. I wondered about that.Example 8.2.1. Galileo: Consider the example, where p2(x) = f(x) = x2 � 10002 =x2 � 1; 000; 000: Note that the roots are r1 = 1000 and r2 = �1000: The algorithmfor Newton/Raphson is given by the reursive expression xn+1 = xn � f(xn)f 0(xn) = xn �x2n�100022xn = 12xn+ 500;000xn : We have the output from this algorithm summarized in Table8.1, where the initialization was hosen to be x0 = 1001:x0 1001.00000000000x1 1000.00049950050x2 1000.00000000012x3 1000.00000000000Table 8.1: Three Estimates of p1; 000; 000Simpliio: Sine the method onverges in three steps, there is no problem.Galileo: Corret.Example 8.2.2. Galileo: Now let's ompute a seond example that looks almost thesame. If q2(x) = f(x) = (x � 1000)2; then the roots are r1 = 1000 and r2 = 1000:(We have a double root!) The algorithm for Newton/Raphson is given by the reursiveexpression xn+1 = xn � f(xn)f 0(xn) = xn � (xn�1000)22(xn�1000) = xn � xn�10002 = 12xn + 500: Theomputations from this algorithm are displayed in Table 8.2, where we again haveinitialized with the value x0 = 1001:Simpliio: Hey, this algorithm is as bad as the bisetion method. The error simplydrops by 50% for eah iteration. Not good.
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x0 1001.00000000000x1 1000.50000000000x2 1000.25000000000x3 1000.12500000000x4 1000.06250000000x5 1000.03125000000x6 1000.01562500000x7 1000.00781250000x8 1000.00390625000x9 1000.00195312500x10 1000.00097656250x11 1000.00048828125x12 1000.00024414063x13 1000.00012207031x14 1000.00006103516Table 8.2: Three Estimates of p1; 000; 000



8.2. NEWTON/RAPHSON AND DOUBLE ROOTS 101Galileo: In both these examples, we see that the sequene of numbers fxng1n=1 isonverging to the number 1000: In the �rst example we have a sequene that produes11 digits of auray after only three iterations. In the seond example, the algorithmhas produed ly 4 digits of auray after 15 iterations. It is getting there, but evenafter 30 iterations, we have x30 = 1:00000000000093; whih still isn't quite there.Simpliio: What seems to be the problem?Galileo: While the �rst example has distint roots that are far apart, the seond hasthe double root r1 = r2 = 1000: Double roots slow down the onvergene rate fromquadrati to linear.Simpliio: What are these quadrati and linear onvergene rates?Galileo: The sequene xn = 12n onverges linearly to zero. The sequene xn = 122nonverges quadratially to zero. These examples typify the di�erent onvergenerates. Make a few alulations and you will see the di�erene. You do the math.Virginia: Our initial guess x0 = 1001 is reasonably lose to the �nal answers. Whatif we had made a poor initial guess?Galileo: If we use x0 = 1 as our initial guess, then the method of Newton/Raphsonprodues x10 = 1296:191592707 for p2(x) and x10 = 999:024414063 for the root ofq2(x): However, after 14 iterations, the method produes x14 = 1000:000000000 forp2(x) and x14 = 999:939025879 for q2(x): Thus, our onvergene is omplete for theroot of p2(x); but still has an error of more than 0.939 for the root of q2(x): Thus,while the linearly onvergent sequene onverges better for the �rst ten terms, thequadratially onvergent sequene quikly overtakes it one it gets lose. The MeanValue Theorem will provide our main tool for showing linear onvergene. Taylor'sTheorem will provide our main tool for showing quadrati onvergene.Simpliio: I am not quite sure what is going on here.Galileo: Don't worry. We will return to this topi.Exerise Set 8.2.1. If p2(x) = f(x) = x2 � 108 and x0 = 10; 001; then how many iterations ofNewton/Raphson are required to ahieve an auray of 10 deimal plaes?



102 CHAPTER 8. PROBLEMS WITH ROOT FINDING2. If q2(x) = f(x) = (x � 10000)2 and x0 = 10; 001; then how many iterationsof Newton/Raphson are required to ahieve an auray of 10 deimal plaes?Compare your answer with your answer to problem 1.3. If f(x) = (x + 3)2 and x0 = 1; then ompute the �rst 30 iterations of theNewton/Raphson algorithm. Format your output in a olumn. How does theonvergene rate of the last �ve omputations ompare with the �rst 25?4. Compute 15 iterations in the Arhimedes/Heron/Newton/Raphson algorithmto approximate the square root of K = 1; 000; 000: Initialize the algorithm withx0 = 1: Format your output in a olumn. How does the onvergene rate of thelast �ve omputations ompare with the �rst 10?8.3 Instabilities With Root Finding

James Hardy Wilkinson (1919-1986)Mother Nature is a bith.-MurphyGalileo: Before moving on to the topi of the theory of onvergent sequenes, let ustake a loser look at the problem of omputing the roots of the polynomials. First, togive you an idea of where the problems lie, let us look at the graph of the polynomialsp4(x) = (x� 1)(x� 2)(x� 3)(x� 4) and p5(x) = (x� 1)(x� 2)(x� 3)(x� 4)(x� 5):



8.3. INSTABILITIES WITH ROOT FINDING 103These polynomials are of partiular importane beause the roots are simple (i.e. notdouble roots) and equally spaed. However, also note that the graphs are almost atbetween the roots. Thus, a small hange of one of the oeÆients an lead to a largehange in the plaement of the roots.

Figure 8.2: The Graph of the polynomial y = p4(x)The British mathematiian, James Wilkinson (1919-1986), notied that the rootsof the polynomial p20(x) = (x� 1)(x� 2) : : : (x� 20) have even more bazaar instabil-ities. First, he notied that if this polynomial is multiplied out, then the oeÆientof the 19th�degree term is �210:Simpliio: That alulation is easy beause that oeÆient is simply the sum of theintegers �1;�2; : : : ;�20: I know how to use the formula for the arithmeti sum toompute this quantity.Example 8.3.1. Galileo: Wilkinson also notied that if this oeÆient of x19 is
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Figure 8.3: The Graph of the polynomial y = p5(x)hanged by 2�23 � 10�7; then the roots beome1:0;2:0;3:0;4:0;5:0;6:0;7:0;8:0;8:9;10:1� 0:6i;11:8� 1:7i;14:0� 2:5i;16:7� 2:8i;19:5� 1:9i;20:8:



8.3. INSTABILITIES WITH ROOT FINDING 105In partiular, a very small hange in one oeÆient an lead to a large hange inthe values of the roots. Worse yet, half of the roots are omplex.Simpliio: That example is amazing!! Not only did the last root hange by 0.8, butten of the roots suddenly beame imaginary. It makes one worry about �nding theroots of any funtion.Galileo: I ouldn't agree more. The rule is: Small hanges in the oeÆients maylead to large hanges in the values of the roots. This type of problem ours when thefuntion is very \at" near the root. Try graphing the funtion loally near r = 20:Simpliio: Has anyone ever tried to build something using these high-degree polyno-mials?Galileo: Indeed, a group of my engineering olleagues tried to use 16 and 32 degreepolynomials in a mathematial model designed to ontrol the motion of an arm ofone of their robots. Their e�orts were a disaster. One of their students was almostkilled.Simpliio: So avoiding an unstable mathematial method ould save lives.Galileo: If you model a phenomenon with an unstable method, you are asking fortrouble. As always, the mantra for numerial analysis remains the same: \The nameof the game is ontrol."Exerise Set 8.3.1. Note that the polynomial of degree 9 with roots 1; 2; 3; 4; 5; 6; 7; 8; 9 an beexpanded into the form p9(x) = x9 � 45 � x8 + 870 � x7 � 9450 � x6 + 63273 �x5 � 269325 � x4 + 723680 � x3 � 1172700 � x2 + 1026576 � x � 362880: Usingavailable software, ompute the roots of the polynomials q9(x); r9(x); and s9(x)listed below.(a) q9(x) = x9 � (45 + 1105 ) � x8 + 870 � x7 � 9450 � x6 + 63273 � x5 � 269325 �x4 + 723680 � x3 � 1172700 � x2 + 1026576 � x� 362880;(b) r9(x) = x9 � (45 + 1104 ) � x8 + 870 � x7 � 9450 � x6 + 63273 � x5 � 269325 �x4 + 723680 � x3 � 1172700 � x2 + 1026576 � x� 362880; and



106 CHAPTER 8. PROBLEMS WITH ROOT FINDING() s9(x) = x9 � (45 + 1103 ) � x8 + 870 � x7 � 9450 � x6 + 63273 � x5 � 269325 �x4 + 723680 � x3 � 1172700 � x2 + 1026576 � x� 362880:How many real and how many imaginary roots do eah of these polynomialshave? What is the distane between orresponding roots of p9(x) and q9(x);p9(x) and r9(x); and p9(x) and s9(x)?



Part IV
Day 4. Advaned Calulus
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Chapter 9
Limits

Augustin Louis Cauhy (1789-1857)Men pass away, but their deeds abide.-Augustin Louis Cauhy [His lastwords?℄9.1 SequenesCalulus has its limits.-unknownGalileo: We now introdue Augustin Louis Cauhy (1789-1857) for an explanationof the theory underlying limits. His text \Cours d'analyse" (written in 1821) was animportant step towards bringing rigor to Calulus. Professor Cauhy grew up during109



110 CHAPTER 9. LIMITSthe Frenh Revolution so he knows how to bring order out of haos.Virginia: If I ount orretly, Newton's Prinipia was written in 1689 so it took morethan 100 years to bring rigor to Calulus.Galileo: Atually, this issue has been around sine Plato reorded the paradoxes ofZeno of Elea (490-450 B.C.E.) in his dialogue Parmenides.Simpliio: As far as I am onerned, in�nity has nothing to do with the real world.Why don't we just fous on algorithms. Something useful an employer would appre-iate.Virginia: Your goal is to earn a blue ollar wage?Galileo: Before we begin, we let us take a minute and have a brief quiz to make sureyou will follow eah nuane of the disussion.Quiz:1. What is a onditional sentene?2. What is the purpose of a de�nition?3. What is the di�erene between a de�nition and a theorem?If you an't answer these question, then there is no point ontinuing.Simpliio: But we just overed these issues?Galileo: I am never quite sure what you retain. Professor Cauhy, where should webegin?Cauhy: Let us begin by admitting we have a problem. Namely. some sequenesonverge and some do not. The issue is simple. We must get the language straight.Namely, we must make some arefully worded de�nitions that set the ground rulesfor what we want. Let us begin with two examples, whih enapsulate the issues.Example 9.1.1. First, the alternating sequene of points de�ned by fxng1n=1 =f(�1)ng1n=1 = �1; 1;�1; 1;�1; : : : ; auses trouble beause it seems to onverge totwo points at the same time, namely +1 and �1: However, if you are going to allowa sequene to onverge to two numbers, then why not three? Why not four? Now the



9.1. SEQUENCES 111situation is out of ontrol so we deided that we wanted a sequene to onverge to onlyone number.Example 9.1.2. Seond, while some people might want the �rst sequene o on-verge to both +1 and �1; I don't think anyone would allow a sequene to onvergeto in�nity. Thus, the sequenes fxng1n=1 = fng1n=1 = 1; 2; 3; 4; 5; : : : ; n; : : : andfyng1n=1 = fn2g1n=1 = 12; 22; 32; 42; 52; : : : ; n2; : : : marh o� to in�nity. The theoryand appliations work muh better if we simply rule them out. For example, lookingahead, we would like to have a theorem whih states that the limit of the sum equalsthe sum of the limits. However, if we had that theorem, we might try to ompute thelimit of the sequenelimn!1fzng1n=1 = limn!1fn� n2g1n=1 = limn!1fng1n=1 � limn!1fn2g1n=1 =1�1 =???Thus, we don't want to deal with unbounded limits-at least not at this time.Simpliio: How about something more positive?Cauhy: No matter what your attitude, the following three sequenes should onverge.Example 9.1.3. The sequene f 1ng1n=1 = 1; 12 ; 13 ; 14 ; 15 ; : : : ; should onverge to zero.Example 9.1.4. The sequene f (�1)nn g1n=1 = �1; 12 ;�13 ; 14 ;�15 ; : : : ; should also on-verge to zero.Example 9.1.5. The sequene fn�1n g1n=1 = 0; 12 ; 23 ; 34 ; 45 ; : : : ; should onverge to one.Cauhy: To retify the situation with the �rst two examples, we �rst need to deidewhat the word onvergene means.Simpliio: You mean you we get to make up the rules?Cauhy: You are in ontrol. But remember, one you have made a hoie, you haveto stik with it. You don't get to hange the rules.Virginia: But how do you make up a rule to test for something that goes on forever?Cauhy: First, we are given a sequene of numbers fxng1n=1:



112 CHAPTER 9. LIMITSSeond, we have an idea of what number the sequene is supposed to onverge to.Sine that number is going to be the LIMIT of a sequene, we will denote it by theletter L:Third, we need to devise a test (or riterion) to deide whether or not the sequeneonverges to the number L:Simpliio: What's wrong with the rule that the sequene simply stabilizes. Namely,a sequene onverges when ak = ak+1 = ak+2 = ak+3 = : : : : That idea worked �newhen we omputed square roots.Cauhy: Unfortunately, that idea only worked beause of the �nite preision of youralulator or omputer. The suessive terms just look equal. There are even exam-ples of sequenes that have the property that suessive terms are equal, while thesequene onverges to 1:Simpliio: Like what?Cauhy: Consider the sequene xn =Pnk=1 1k : Compute xn whenn = 100; 000; 000; 000; 000 and when n = 100; 000; 000; 000; 001 and then hek to seeif they are the same.Simpliio: But who would be dumb enough to ever ompute that many terms of thesequene.Virginia: We are not talking about omputing yet. We are simply trying to get thelanguage straight.Galileo: I an think of a number of situations, where you might want to omputeeven more terms.Cauhy: In any ase, there are valid mathematial and engineering reasons to proeedwith a bit of aution right at the beginning.Galileo: Proeed.Cauhy: The triky part about the de�nition of a limit is the test (or riterion). Thistest is given in terms of a onditional sentene.Galileo: Remember: \If p, then q."?Virginia: I do.



9.1. SEQUENCES 113Cauhy: This onditional sentene an be thought of as a hallenge, where I beginby giving you a distane and then you are expeted to show that almost all of theterms of the sequene are within this given distane of the limit L: Historially, thisdistane has been denoted by the Greek letter �: Sine distanes are always positive,we insist that � > 0: In other words, eventually all the terms of the sequene arewithin a distane of � from L:Galileo: Mr. Simpliio, let me ask you one last time: Are you lear about thedi�erene between a de�nition and a theorem?Simpliio: I know, I know. I was listening.Cauhy: We have two di�erent ways of measuring distane at our disposal. The �rstis the open interval. The seond is the absolute value funtion. These two di�erenttehniques are equivalent. In other words, it doesn't matter whih you hoose, theresults will be the same.Simpliio: Why not just give us the easiest one?Cauhy: The open interval de�nition is easier to visualize, while the absolute value isusually easier to ompute. The advantage of the absolute value funtion is that youare often able to ondense multiple ases in a mathematial argument into a singlease. Thus, the arguments are shorter.Galileo: And sometimes it provides a more oneptual framework beause you anthink in terms of distanes from the limit L:Cauhy: We begin by de�ning the terms interval, open interval, and losed interval.We also let the symbol < denote the set of real numbers.De�nition 9.1.1. A subset X of < is alled an interval if there are points a and bin < suh that one of the following four ases is true:1. X = (a; b) = fx 2 < : a < x < bg;2. X = (a; b℄ = fx 2 < : a < x � bg;3. X = [a; b) = fx 2 < : a � x < bg;



114 CHAPTER 9. LIMITS4. X = [a; b℄ = fx 2 < : a � x � bg:If a; b 2 <; then an open interval has the form (a; b); (a;1); (�1; b) or (�1;1)and a losed interval has the form [a; b℄; [a;1); (�1; b℄; or (�1;1): In partiular,the set < is onsidered both an open and losed interval. While the empty set isonsidered an interval, it will seldom be of interest. In fat, in the de�nition of limit,we will want to rule it out by assuming our open intervals U are non-empty.Simpliio: These ideas are easy so far. If someone gives you two points a and b; thenan interval de�ned by a and b will be all the points between a and b and possibly oneor both endpoints.Cauhy: Maybe now is a good time to give a formal de�nition of the absolute valuefuntion.De�nition 9.1.2 (The Absolute Value Funtion). If x 2 <; then the absolutevalue of x is de�ned by the rulejxj = 8<: x if x � 0�x if x < 0 :Cauhy: This funtion is intimately onneted with �nding the distane betweentwo points. The properties of the absolute funtion are summarized in the followingproposition.Proposition 9.1.3. If x; y 2 <; then1. jxj � 0;2. jxj = 0 if and only if x = 0;3. jx+ yj � jxj+ jyj; and4. jjxj � jyjj � jx� yj:Proof. The proofs of these items are straightforward.



9.1. SEQUENCES 115Cauhy: While we are at it, why don't we de�ne the distane between two realnumbers?De�nition 9.1.4 (Distane). If x; y 2 <; then the distane between x and y isde�ned to be dist(x; y) = jx� yj:Cauhy: The properties of the distane funtion are summarized in the followingproposition.Proposition 9.1.5. If x; y; z 2 <; then1. dist(x; y) � 0; and dist(x; y) = 0 if and only if x = y (positive de�nite),2. dist(x; y) = dist(y; x) (symmetry), and3. dist(x; y) � dist(x; z) + dist(z; y) (triangle inequality).Virginia: So, am I to understand that whenever I see the absolute value funtion, Ishould think length. Also, whenever I see the absolute value of the di�erene of twonumbers, I should think distane.Cauhy: Absolutely. Note also that while these propositions are important, we havenot labeled them as theorems. We will save that designation for the big boys like theMean Value Theorem and Fundamental Theorem of Calulus. We now o�er threeequivalent de�nitions for a sequene to onverge to a number L: The �rst de�nitionis oneptual. If you don't like it, ignore it. We won't use it often.De�nition 9.1.6 (Convergene of Sequene 1). A sequene of real numbersfxng1n=1 is said to onverge to a number L if for any non-empty open interval Uof the form U = (L� �; L + �); then all but a �nite number of terms of the sequenelie in U:Simpliio: I am not sure I understand that de�nition at all.Cauhy: In other words, for any open interval U ontaining L; there is an integer Nwith the property that if n � N; then xn 2 U: If you draw a piture with the �rst �ve



116 CHAPTER 9. LIMITSterms of the sequene x1; x2; x3; x4; x5 outside the interval, but x6; x7; x8; : : : all insidethe interval U; then you have the idea. Let's go bak to one our suessful examples.Simpliio: I �nd the use of that symbol � annoying.Cauhy: The use of the letter � has been around for a long time and probably won'thange any time soon. While any other letter or symbol ould be used, this letteris indelibly ethed in mathematial ulture. If it helps, think of it as a tolerane orpreision fored on you by your employer. For example, if you are expeted to buildsome struture within a ertain preision, then the amount of error you are allowedis �: If you prefer, you an use any symbol you want. However, we will follow ourultural traditions. Sorry.Example 9.1.6. We would now like to show the sequene f 1ng1n=1 = 1; 12 ; 13 ; 14 ; 15 ; : : : ;onverges to the limit L = 0: The proedure is as follows. If I give you an openinterval U = (� 110 ; 110); your job is to �nd an integer N; whih has the property thatwhenever n � N; then xn = 1n 2 U:Virginia: Obviously, if N = 11; then x11 = 111 ; x12 = 112 ; x13 = 113 ; x14 = 114 ; : : : all liein U: Sine all but 10 terms in the sequene lie in U; we are done.Cauhy: Very good. Now, how about a smaller interval? Say, U = (� 1100 ; 1100):Virginia: Obviously, if N = 101; then x101 = 1101 ; x102 = 1102 ; x103 = 1103 ; x104 = 1104 ; : : :all lie in U: Sine all but 100 terms in the sequene lie in U; we are done.Cauhy: Very good again. Now let's try the ase when � = 0:Simpliio: Even I an see that if � = 0; then the interval U = [0; 0℄ is simply a singlepoint and we will never have any terms of the sequene in U:Virginia: Now I see why made this annoying distintion between open and losedintervals. Obviously, we only want open intervals for these types of problems. Whilethe interval U = [0; 0℄ is losed, it is not open. Thus, we don't have to worry thisase.Cauhy: Exellent. Now let's try the ase when � = �1:Simpliio: But, if � = �1; then the interval U = (+1;�1) is the empty set and wewill never have any terms of any sequene in U:



9.1. SEQUENCES 117Virginia: And we now see why the de�nition only expets us to onsider NONEMPTYopen intervals.Galileo: I think we are getting somewhere.Cauhy: Of ourse, you realize that you haven't satis�ed the de�nition at all. These�rst few hoies of U were just for pratie. The real test omes when we hooseU = (��; �); where � > 0:Galileo: However, before we do that, let's follow the example of George Polya andthink in terms of his four steps to solving a problem. Do you know what they are?Virginia: I know:1. understanding the problem,2. devise a plan,3. arry out the plan, and4. look bak and review what was done.Cauhy: She is good. How do you reruit suh good students Professor Galileo? OK,so do you understand the problem?Simpliio: I am not sure.Galileo: So, now may be a good time to devise a general plan of attak.Cauhy: When using the de�nition to prove a sequene onverges to a partiularnumber L; the plan of attak is always the same and an be broken down into threesteps:1. The Challenge;2. The Choie; and3. The Chek:In the �rst example, we were onsidering the sequene xn = 1n and I Challengedyou with the interval U = (� 110 ; 110):



118 CHAPTER 9. LIMITSVirginia: We then notied that if we Choose the integer N = 11; then it might be agood andidate to separate the terms that are members of U and those that are not.We then had to Chek that if n � N = 11; then the term xn = 1n is a member of U:Simpliio: Even I an see that when you gave us the interval U = (� 1100 ; 1100); theproess was exatly the same. The same three steps work.Cauhy: OK, now I want you to onsider the fourth step in Professor Polya's plan.Namely, let's review what we have done and generalize the proess. As you will see,the �rst step is ALWAYS the same:Step 1. The Challenge: Let � > 0 be given.If you miss that step on an exam problem, your professor will lassify you as a slowlearner. As you an see in our pratie problems, the positive quantity � de�nes theendpoints of our open interval U = (��; �): This quantity has to be positive beause ifit equals zero, the interval is not open and if it equals a negative number, the intervalU is empty. We are only interested in nonempty open intervals. OK, what do you donext?Virginia: Now it is time to hoose the integer N: Obviously, for this problem,Step 2. The Choie: Choose N > 1� :Simpliio: How did you know to do that?Cauhy: In general, making an intelligent hoie for N is almost always the hardestof the three steps.Virginia: But, for this problem, we simply work bakwards from what we want.Namely, sine we would like 1n < �; then we assume what we want and solve forn: In this ase, this step is easy beause if we multiply the above expression by n anddivide by �; then we get n > 1� :Cauhy: To omplete the proess, we must now Chek that your Choie works.Virginia: For this problem, this last step is easy beause all we have to do is reversethe proess from Step 2.Step 3. The Chek: If n � N; then we must show xn = 1n 2 U = (��; �):



9.1. SEQUENCES 119For if n � N > 1� ; then 0 < 1n � 1N < �: Thus, xn = 1n lies in U = (��; �) and we aredone.Cauhy: Exellent. Professor Galileo, you should be proud.Galileo: I am.Simpliio: How did you �gure that out?Cauhy: Did you notie that we used a onditional sentene in step three? Namely,we only needed to hek that xn = 1n is in U for \large" n: Namely, those larger thanN: In fat, in the de�nition of onvergene, that's what we meant by the phrase \allbut a �nite number of terms of the sequene lie in U:."Example 9.1.7. Cauhy: In this next example we will show the sequene f (�1)nn g1n=1 =�1; 12 ;�13 ; 14 ;�15 ; : : : ; onverges to the limit L = 0: The proedure is the same as be-fore. If � = 110 ; then ould you outline the proess?Virginia: Step 1. The Challenge:We begin with the hallenge: Let 110 be given. Again, this quantity de�nes the openinterval U = (� 110 ; 110):Step 2. The Choie:We also hoose N as before. Namely, we hoose N = 11:Step 3. The Chek:We must now hek that whenever n � N; then xn = (�1)nn 2 U: However, x11 =� 111 ; x12 = 112 ; x13 = � 113 ; x14 = 114 ; : : : all lie in U = (� 110 ; 110): In general, if n �N = 11; then � 110 < (�1)nn < 110 :Cauhy: Very good. Now, how about a smaller interval? Say, U = (� 1100 ; 1100):Virginia: Obviously, if N = 101; then the disussion we just gave guides you throughthe three steps.Simpliio: Even I am beginning to get it.Cauhy: Very good again. As before, these �rst two hoies of U were just for pratie.Now let's attak the general ase, where I give you the followingStep 1. The Challenge: Let � > 0 be given.



120 CHAPTER 9. LIMITSHow do you show all but a �nite number of the terms of the sequene xn = (�1)nn liein U = (��; �): Note that I just did 33% of the problem for you!Virginia: Obviously, we an make the same hoie as before.Step 2. The Choie: Choose N > 1� :We now have to show that this hoie works by giving the following short proof.Step 3. The Chek: If n � N; then we must show xn = (�1)nn 2 U = (��; �):Proof. For if n � N > 1� ; then �� < � 1N � � 1n � (�1)nn and (�1)nn � 1n � 1N < �:Thus, xn = (�1)nn lies in U = (��; �) and we are done.Cauhy: Professor Galileo, where do you �nd suh exellent students?Galileo: I am a luky man.Simpliio: I think I am beginning to �gure it out. The open interval U needs tosurround the limit L so it traps terms of the sequene oming from both sides.Virginia: That's why the interval is nonempty and open.Cauhy: In the spirit of Polya's looking bak, I would like to omment on the phrase\all but a �nite number of terms of the sequene lie in U:," whih appears in thede�nition of a onvergent sequene. While this phrase makes sense, it is a bit of amouthful and it is not expressed mathematially.Virginia: But isn't that why we went to the trouble to �nd the integer N with theproperty that if n � N; then xn 2 U:Cauhy: Exatly. Note also that the phrase \if n � N; then xn 2 U" is a onditionalstatement. Thus, when we hek a sequene onverges, the Chek will always be atest phrased as a onditional sentene.Virginia: Now we understand why we disussed onditional sentenes when we re-viewed logi and rigor.Simpliio: I didn't say anything. Why are you looking at me?Cauhy: For pratial problems we have two standard hoies for �: To ensure thatour sequene is within single preision auray of the limit, we would hoose � = 1107 :



9.1. SEQUENCES 121To ensure that our sequene is within double preision auray of the limit, we wouldhoose � = 11014 : Thus, for single preision auray, we let U = (L� 1107 ; L+ 1107 ): Fordouble preision auray, we let U = (L� 11014 ; L+ 11014 ): Of ourse, � an representany positive number. Coneptually, � measures the distane from the enter of theinterval to the two endpoints of U: I think you an now see why we insist � MUSTalways be positive. If it were negative, the set U would represent the empty set. Also,sine it represents a distane, it must be positive.From an engineering point of view this de�nition an be thought of as an em-ployer/employee hallenge, where the employer gives the employee the spes (or tol-erane for error) on the projet and the employee is expeted to searh until he/shean guarantee that all the remaining terms of the sequene are within that spei�a-tion. The number � represents the tolerane fored by the employer on the employee.For example, if I wanted to build a house with 2500 square feet and I gave you atolerane of 10 square feet, I would be upset if I ended up with only 2450 square feet.We would now like to give a seond de�nition of onvergene.Simpliio: You have got to be kidding. One de�nition was bad enough, but now Ihave to deal with another one?Cauhy: The idea behind the �rst de�nition is to get the language as simple andnatural as possible. The only di�erene between the �rst and seond is the observationthat an open interval U = (L� �; L+ �) is equal to the set of all numbers x 2 < suhthat jx � Lj < �: For the sake of ompleteness, we formalize this bit of informationin the next proposition.Proposition 9.1.7. If L; �; x 2 Re; then x is a member of the set U = (L� �; L+ �)if and only if jx� Lj < �:Simpliio: Am I orret in noting in this proposition that if � � 0; then the set U isthe empty.Cauhy: True, but we aren't interested in negative values for �: The seond de�nitionof onvergene an be given as:



122 CHAPTER 9. LIMITSDe�nition 9.1.8 (Convergene of Sequene 2). A sequene of real numbersfxng1n=1 is said to onverge to a number L 2 < if for every � > 0 there is aninteger N with the property that if n � N; then jxn � Lj < �:Proposition 9.1.9. De�nition 1 for onvergene is equivalent to De�nition 2.Proof. By the previous proposition, we know x is a member of the set U = (L��; L+�)if and only if jx� Lj < �: Thus, we are done.Cauhy: While this last de�nition may be a bit less transparent, the test for onver-gene has hanged from open interval to distane. In other words, the test requiresthe distane between xn and the limit L is less than � for all but a �nite number ofthe terms of the sequene. Sine we now have the idea of distane, we see that thesequene fxng1n=1 onverges to L if for any positive distane �; we an �nd an integerN with the property that if n � N; then the distane between xn and L is less than�: If the limit of a sequene fxng1n=1 equals L; then we will write limn!1fxng = L:Simpliio: So, let's see if I an phrase the de�nition in engineering terms. First, theinputs are:1. a sequene fxng1n=1;2. a number L; and3. a tolerane � > 0:Seond, if the test for onvergene is suessful, the output is an integer N; whih hasthe property that if n � N; then jxn�Lj < �: Moreover, if your employer has insistedyour preision is within � = 11014 ; then you might as well have used my de�nitionthat a sequene onverges when you an �nd an integer N with the property that ifn � N; then xn = xn+1 = xn+2 = xn+3 = : : : :Galileo: I think he's got it!Cauhy: As with the �rst de�nition, eah argument an be broken down into threesteps.



9.1. SEQUENCES 123Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie of N :The seond step in the limit de�nition is to hoose an integer N that \work's" If youhave no idea how to hoose this integer, you might leave this step blank until afteryou have made a few preliminary mathematial alulations. These alulations areusually begin by assuming what you want to be true and working bakwards untilyou unover an expression for n in terms of �:Step 3. The Chek that N \works":The third step in the proess is to hek that your Choie of N has the property: Ifn � N; then jxn � Lj < �:Another tip: When �rst learning about a new type of mathematial argument, itis often a good idea to write down what you are expeted to do. For limits, a helpfulstarting point is to write the sentene: We MUST show: If whenever n � N; thenjxn � Lj < �:Galileo: OK, let's go through this proess to prove that limf 1ng = 0: I think you willagree that the limit should equal zero.Example 9.1.8. Cauhy: Using the de�nition of limit, show that limn!1f 1ng = 0:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie of N :Sine we want jxn� 0j = j 1n j < �; we an multiply both side of the inequality by n andobserve that we require n > 1� : Thus, our Choie for N is any integer larger than 1� :Step 3. The Chek that N works:Let us begin this step by writing down what we are expeted to do. Namely, we MUSTshow: If n � N; then jxn � Lj = j 1n � 0j = 1n < �:Sine we only have to test integers n � N; we know that n � N > 1� ; we known > 1� : By dividing both sides of the inequality by n and multiplying both sides by �;we see that 1n < �: Thus, jxn � 0j = 1n < � and we are done.



124 CHAPTER 9. LIMITSSimpliio: That argument was the same as for the �rst De�nition.Galileo: I think you have got it. Let's move on to the next example.Example 9.1.9. Cauhy: Using the de�nition of limit, prove that limn!1f 1n2 g = 0:Galileo: How about if you present the argument this time?Simpliio: To begin the disussion I simply write:Step 1. The Challenge:Let � > 0 be given.Is that orret?Galileo: Corret, you are 33% of the way to the goal. Moreover, you have absolutelyno exuse for getting this step wrong. It is the same for every problem of this type.Simpliio: But I have no idea how to hoose N:Galileo: No worries. Simply make the same hoie we made for the �rst problem andsee what happens.Simpliio: OK, I will simply repeat your hoie. Not having to think is good.Step 2. The Choie of N :Choose N > 1� :Step 3. The Chek:We MUST show: If n � N; then jxn � Lj = j 1n2 � 0j = 1n2 < �: If n � N > 1� ; thenn > 1� : When we divide by n and multiply by �; we �nd that 1n < � as before. Sine1 � n; n � n2: Thus, jxn � Lj = 1n2 < 1n < �:Cauhy: Note that this last sequene onverges to zero muh more quikly than thesequene limn!1f 1ng: The di�erene in the rate of onvergene will be disussed againwhen we ompare the bisetion and Newton/Raphson methods.Simpliio: I don't see any reason for this new de�nition. How about an example thatillustrates the bene�ts of this seond de�nition?Example 9.1.10. Cauhy: OK, how about if we prove the limn!1f2n�35n+1g exists.Virginia: Sine we aren't told what the limit should equal, we have a problem evengetting started. Maybe we should add an extra \Step" to the proess, where we make



9.1. SEQUENCES 125an eduated guess for L:. In this example, it isn't too diÆult to �gure out that L = 25 :Simpliio: How so?Virginia: If we divide both numerator and denominator by the integer n; then wesee that 2n�35n+1 = 2� 3n5+ 1n : Thus, if n is large, then the numerator is lose to 2 and thedenominator is lose to 5. Thus, the limit L should equal 25 :Step 0. The Candidate for L:Let L = 25 :Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie for N :Sine I have no idea how to hoose N; I will simply assume what I am trying to proveand set j2n�35n+1 � 25 j < �:Simpliio: Wait a minute. Even I know that that an't assume what you are tryingto prove.Virginia: The idea is that we will be able to make an \eduated guess" for a value ofN that might work. In other words, if we are lever, we will be able to reverse thesteps. All we are going to do is solve this inequality for n in the following steps:1. j2n�35n+1 � 25 j < �:2. j5(2n�3)�2(5n+1)5(5n+1) j < �:3. j �15�25(5n+1) j < �:4. j �175(5n+1) j < �:5. 175(5n+1) < �:6. 17� < 25n+ 5:7. 17� � 5 < 25n:8. 17� �525 < n:



126 CHAPTER 9. LIMITSNow hoose N to be any integer so that N > 17� �525 > 1725� :Note that if N > 1725� ; then 1725N < �:Thus, to �nd the integer N all you need to do is:1. Write down the absolute value of the di�erene between the limit L (in this aseL = 25) and the formula for xn (= 2n�35n+1);2. Determine a ommon denominator (= 5(5n+ 1));3. Simplify the numerator (= 17); and4. Solve for n:Step 3. Chek N works:If n > N; then j 2n� 35n+ 1 � 25 j = j5(2n� 3)� 2(5n+ 1)j5(5n+ 1)= j � 15� 2j5(5n+ 1)= j � 17j5(5n+ 1)= 175(5n+ 1) < 1725N < �:Galileo: For this example, De�nition 2 has a tehnial advantage over De�nition 1beause the absolute value funtion takes are of di�erent ases that you would havehad to separate. Thus, the argument is leaner. OK, Mr. Simpliio. How about ifyou try the next example. It is going to reappear many times before these gatheringare �nished.Example 9.1.11. Using the de�nition of limit, prove that limn!1f 12ng = 0:Simpliio:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Working bakwards again, how about if we hoose N so that 12N < �? If we solve this



9.1. SEQUENCES 127inequality, we see that 1� < 2N : Taking logarithms of both side of the inequality, we seethat � log(�) = log(1� ) < log(2N) = N log(2): Thus, we should hoose N > � log(�)log(2) :Step 3. The Chek:To omplete the problem, simply reverse the steps. In other words, if n � N; thenn � N > � log(�)log(2) so that n log(2) > � log(�): Thus, log(2n) > log(1� ); 2n > 1� ; and� > 12n :Cauhy: I think he has got it!Galileo: While not all limit problems an be solved in suh a straightforward fashion,at least we have a method for these. In the spirit of Professor Polya, we should lookbak at what we have done and generalize the method. The next proposition doesexatly that.Proposition 9.1.10. If x 2 < and jxj < 1; then limn!1 xn = 0:Proof. Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Working bakwards again, how about if we hoose N so that jxjN < �? If we takelogarithms of both side of this inequality, we see that Nlog(jxj) < log(�): Sinejxj < 1; log(jxj) < 0: Thus, when we divide both sides of the inequality by log(jxj);the sign of the inequality reverses and we �nd that N > log(�)log(jxj) :Step 3. The Chek:To omplete the problem, simply reverse the steps. In other words, show that ifn � N; then jxjn < �:Simpliio: I really like that proof,Virginia: Really?Simpliio: But, why is it important?Galileo: As you will soon see, we an use this fat to show that the square rootmethod of Arhimedes/Heron always onverges. For this appliation, x = 12 ; whihtells you that the error drops by 50% for eah iteration of the algorithm. For the ube



128 CHAPTER 9. LIMITSroot algorithm, x = 23 ; whih means that the error drops by 33% for eah iteration.This fat will also appear in the error formula for the Contration Mapping Theorem.Cauhy: One again following the ditums of Professor Polya, we should reviewwhat we have done and think bigger. At the beginning of our onversation aboutonvergene, we began by de�ning the absolute value funtion and a distane metri.Distane is a very general onept and works in all dimensions.Virginia: Pythagoras provides us with distane formulas for vetors in the plane andthree spae.Cauhy: Better yet, Pythagoras provides us with distane formulas in in�nite dimen-sional spaes.Simpliio: I bet those formulas are really ompliated.Galileo: Atually, no. The formula for <n generalizes in a ompletely natural way.De�nition 9.1.11. If f(x); g(x) : [a; b℄ ! < are ontinuous funtions, the distanebetween f(x) and g(x) is de�ned byd(f(x); g(x)) =sZ ba (f(x)� g(x))2 dx:If you think of the points x 2 [a; b℄ as oordinates, then this formula is exatlythe Pythagorean Theorem. Moreover, it satis�es the same symmetry and triangleinequality properties that the absolute value funtion does. Thus, we an now talkabout limits of funtions.Simpliio: OK, but why would we want to? How ould that formula be useful?Galileo: Sine a multitude of appliations are based on frequeny and sine frequeniesan be modeled by the trigonometri funtions os(nx) and sin(nx) de�ned on theinterval [��; �℄; we onfront these problems everywhere. The heat equation and thewave equation are just the beginning.Cauhy: True, but we are going to need to be more general than that. As it turnsout,Exerise Set 9.1.



9.2. THE GEOMETRIC SERIES 1291. Using either de�nition of limit, prove that limn!1f 1n3g = 0:2. Using the de�nition of limit, prove that limn!1f 1n4g = 0:3. Assume you have a sequene de�ned by the following rules:x0 = 2:xn+1 = xn� 1xn2 :After the �rst �fty terms are omputed, are you lose to onvergene yet? Whatan you onlude after the �rst million terms are omputed? Do they seem tobe bounded? Is the sequene inreasing?4. Using the de�nition of limit, prove the following limit exists: limn!1f3n�72n+5g:5. Using the de�nition of limit, prove the following limit exists: limn!1f2n+53n�7g:6. Prove: If limn!1 xn = L; then limn!1 jxnj = jLj: (Hint: This fat is easierto prove if you selet the right fat from the right proposition. Otherwise, youhave to onsider a number of speial ases.)7. Find a sequene fxng1n=1 with the property that the statementlimn!1 jxnj = jLj is true, but the statement limn!1 xn = L is false. (Remark:In other words, the onverse to the previous problem may not be true.)8. Using the de�nition of limit, prove that limn!1f 14ng = 0:9.2 The Geometri SeriesGalileo: Before we move on to more theoretial issues, we should disuss the Geo-metri series. This speial ase has played an important role in mathematis sineArhimedes used it to ompute the area under a parabola.Virginia: But isn't that a Calulus issue?Galileo: If that Roman soldier hadn't run the old man through with a spear, wewould have had integration several thousand years ago. Arhimedes was an amazingly



130 CHAPTER 9. LIMITSprodutive individual. When you read his proof of the volume of a sphere, all youan do is wonder at his imagination and energy. In any ase, we now turn from theproblem of omputing the limit of a sequene to omputing the sum of an in�niteseries.Simpliio: What is di�erene between a sequene and a series?Galileo: The sum of an in�nite series is a speial ase of a limit of sequene. Thus,any fat we prove about the limit of a sequene immediately translates into a fatabout series. However, before we do that, let's ompute the sum of a �nite series.This formula should be familiar.Proposition 9.2.1 (Sum Formula for the Finite Geometri Series). If x 2 <and x 6= 1 and Sn =Pnk=0 xk; then Sn = 1�xn+11�x :Proof. If Sn =Pnk=0 xk; then xSn = Pnk=0 xk+1: If we subtrat these two equations,then only two terms remain on the right hand side. Thus, (1� x)Sn = 1� xn+1 andthe result follows by dividing both sides of the equation by 1� x:Simpliio: That proof was too easy.Example 9.2.1. Galileo: How about the speial ase when x = 14? Arhimedes neededthis ase when he omputed the area under a parabola.Virginia: But that is easy. By the formula, we an see thatSn = 1 + 141 + 142 + 143 + � � �+ 14n = 1� 14n+11� 14 = 4� 14n3 :Galileo: So what number is this sum lose to?Virginia: If n is large, then 14n is small, whih implies Sn � 43 :Galileo: So, an you �nd a parabola with area 43 under the urve?Galileo: This example leads to the question: How do you sum an in�nite series?When we omputed in the proposition, note that we added up the �rst n terms ofthe sequene, whih we denoted by Sn:Virginia: We then observed the limit of this sequene of sums onverges to 43 :Galileo: We not make two de�nitions to formalize the ideas in this example.



9.2. THE GEOMETRIC SERIES 131De�nition 9.2.2. If P1k=0 xk is an in�nite series, then the sum Sn = Pnk=0 xk isalled the nth partial sum.De�nition 9.2.3. An in�nite series P1k=0 xk is said to onverge to a number S; ifthe limit of the nth partial sums onverges to S: More preisely, S =P1k=0 xk if andonly if limn!1 Sn = S; where Sn =Pnk=0 xk:Galileo: In other words, the in�nite sum S equals the limit of the sequene of partialsums. We are now in a position to ompute the in�nite version of the Finite Geometriseries.Proposition 9.2.4 (Sum Formula for the In�nite Geometri Series). If x 2 <and jxj < 1 and Sn =Pnk=0 xk; then P1k=0 xk = limn!1 Sn = 11�x :Proof. Step 1. The Challenge:Let � > 0 be given. Step 2. The Choie:Sine Sn = Pnk=0 xk = 1�xn+11�x ; we only need to �nd an integer n with the propertythat j 11� x � 1� xn+11� x j < �:Sine j 11�x � 1�xn+11�x j = jxn+11�x j; we only need to show that jxn+11�x j < �:Working bakwards, we see thatjxjn+1 < (1� x)�(n+ 1)log(jxj) < logf(1� x)�gn+ 1 > logf(1� x)�glog(jxj)n > logf(1� x)�glog(jxj) � 1Thus, we hoose N to be any integer with the property that N > logf(1�x)�glog(jxj) � 1:Step 3. The Chek:To hek that N works, simply assume n � N and reverse the above inequalities.



132 CHAPTER 9. LIMITSSimpliio: I notied you reversed inequalities in the middle of the argument, whereyou hose N:Galileo: Good observation. Sine we assumed that jxj < 1; the quantity log(jxj) isnegative. Thus, we must reverse the inequality.Simpliio: Does the argument work better if x > 1?Galileo: Unfortunately, the proposition is false if x > 1.Virginia: Whih log funtion did you use? Natural or base 10?Galileo: Choose your weapons. Either, in fat, any logarithm will work just �ne.Exerise Set 9.2.1. Sum the �nite series Sn = 1 + 2 + 22 + � � �+ 2n:2. Sum the terms in the �nite sequene Sn = 1 + 3 + 32 + � � �+ 3n:3. Sum the terms in the in�nite sequene S = 1 + 12 + 122 + � � �+ 12n : : : :4. Sum the terms in the in�nite sequene S = 1 + 13 + 132 + � � �+ 13n : : : :5. Sum the terms in the in�nite sequene S = 1� 12 + 122 � � � �+ (�1)n 12n + : : : :6. Sum the terms in the in�nite sequene S = 1� 13 + 132 � � � �+ (�1)n 13n + : : : :9.3 Limit Theorems For SequenesCauhy: We next turn to the idea of making limits a bit easier so we don't alwayshave to grind our way through this three step proess of proving limits. For example,if you try to show that limn!1 2n2+3n+57n2+1 = 27 ; you will �nd that annoying tehnialdiÆulties arise. Thus, while we still want to have the apability of using the de�nitionto prove a limit, we would also like to have more weapons at our disposal. The pointof our disussion will be to make limits and onvergene easier.Simpliio: I like easy.Cauhy: However, before we start, I would like remark that we are going to be provingtheorems and propositions. These proofs require that you understand the logi and



9.3. LIMIT THEOREMS FOR SEQUENCES 133rigor of a mathematial argument. Before we proeed, it is neessary that you ananswer the following questions.1. What is the triangle inequality for the absolute value funtion?2. What is the ontrapositive of the statement \If p, then q."?3. What is a proof by ontradition?4. What is the onnetion between a proof by ontradition and the ontrapositiveof a statement?Do you remember the ontrapositive and modus tollens?Virginia: Yes, I do.Simpliio: I'm not sure.Cauhy: Well, there is no point in proeeding until you know. Go bak and reviewthese onepts.Simpliio: I think we should move on before my brain melts.Virginia: I am ready.Cauhy: Good. Let us begin. While you should have already seen these ideas inyour previous study of Calulus, you may not have seen the proofs. The fats we willestablish are:1. The limit of the sum is the sum of the limit.2. The limit of the produt is the produt of the limit.3. The limit of the quotient is the quotient of the limit.4. The uniqueness of limits.5. Several squeezing propositions.The proofs of the �rst three fats will all have the same 3 step struture that wejust employed for our examples. For the sum, produt, and quotient proofs, we will



134 CHAPTER 9. LIMITSuse the absolute value funtion extensively. For the uniqueness and squeezing fatswe will use a proof by ontradition strategy. Let's now state and prove the �rstproposition.Proposition 9.3.1 (Limit Fats for Sequenes). Let fxng1n=1 and fyng1n=1 besequenes in <: If limn!1fxng = L and limn!1fyng =M; then1. limn!1fxn + yng = limn!1fxng+ limn!1fyng = L+M;(i.e. The limit of the sum equals the sum of the limits or LS = SL.)2. limn!1fxn � yng = limn!1fxng � limn!1fyng = L �M;(i.e. The limit of the produt equals the produt of the limits or LP = PL.)3. If M 6= 0; then limn!1fxnyn g = limn!1fxnglimn!1fyng = LM :(i.e. The limit of the quotient equals the quotient of the limits or LQ = QL.)Proof. 1. Let us begin by proving limn!1fxn + yng = L +M:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Sine we are assuming that limn!1fxng = L; we an �nd an integer N1 with theproperty that if n � N1; then jxn � Lj < �2 :Sine we are assuming that limn!1fyng =M; we an �nd an integer N2 with theproperty that if n � N2; then jyn � Lj < �2 :Sine we want both of these statements to be true, we hoose N to be any integerlarger than both N1 and N2: The best hoie is N = maxfN1; N2g:Step 3. The Chek:If n � N; then by the triangle inequalityjxn + yn � (L+M)j = j(xn � L) + (yn �M)j� jxn � Lj+ jyn �M j< �2 + �2= �:



9.3. LIMIT THEOREMS FOR SEQUENCES 1352. Next let us prove limn!1fxn � yng = L �M:While the proof of this proposition is often onsidered more diÆult than LS =SL, the approah is the same. The main di�erene is that we are onfronted by thedistributive law.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Sine we are assuming that limn!1fxng = L; we an �nd an integer N1 with theproperty that if n � N1; then jxn � Lj < �1:Sine we assume that limn!1fyng = M; we an �nd an integer N2 with theproperty that if n � N2; then jyn � Lj < �2:We again hoose N = maxfN1; N2g:After we make a ouple of omputations, we will �gure out reasonable hoies for�1 and �2: For LS = SL, it was easy to see that �1 and �2 should both be hosen equalto �2 :Step 3. The Chek:If n � N and we have been smart enough to hoose �2 so small that jxnj�2 < �2 and�1jM j < �3 ; then by the distributive law and the triangle inequality we see thatjxn � yn � (L �M)j = jxn � yn � xnM + xnM � LM j= jxn(yn �M) + (xn � L)M j� jxnjj(yn �M)j+ j(xn � L)jjM j� jxnj�2 + �1jM j< jxnj�2 + �1jM j< �2 + �3< �:Virginia: While I am not sure about �2; I an see that we should hoose �1 = 13jM j ;then �1jM j < �3 :



136 CHAPTER 9. LIMITSCauhy: But if M = 0; then you are dividing by zero. Bad idea.Virginia: You are orret. I guess I had better hoose �1 = �3jM j+1 so the denominatoran never equal zero AND the hoie of �1 will still have the property that �1jM j < �3 :Cauhy: Yes, you have now overed all the ases.Simpliio: But what about hoosing �2 so that jxnj�2 < �2? I don't see that hoie atall.Cauhy: We an begin addressing that question by observing that if we hoose �1 < 12 ;then we will know that jxnj < jLj+ 12 for all n � N1:Virginia: In other words, if we had hosen �2 = �3jLj+1 ; then we an guarantee thatjxnj�2 < (jLj + 12) � �3jLj+1 < �2 : Thus, to omplete the argument, we only need tohoose �1 =Minf12 ; �3jM j+1g:Cauhy: Corret.3. Next let us prove the quotient rule: If M 6= 0; then limn!1fxnyn g = LM :Sine the strategy for proof of LQ = QL is similar to LP = PL, we will leavethe proof as an exerise. However, sine we have just proved that the limit of theprodut equals the produt of the limit, note that we only need to prove the speialase: limn!1f 1yng = 1M :Simpliio: Thanks. I have had enough anyway. How about an example?Example 9.3.1. Cauhy: Suppose you are asked to show limn!1f2n2+3n+57n2+1 g = 27 : Ifyou try to use the de�nition, you will �nd the proess annoying. However, with theBasi Limit Fats, we simply make the following omputations:limn!1f2n2 + 3n+ 57n2 + 1 g = limn!1f2 + 3n + 5n2glimn!1f7 + 1n2g (LQ = QL)= 2 + 0 + 07 + 0 (LS = SL)= 27 :Cauhy: The next orollary shows that we an \pull" a onstant aross the limit sign.Corollary 9.3.2. If K is a real number and fxng1n=1 is a sequene of numbers suhthat limn!1 xn = L; then limn!1Kxn = K limn!1 xn = KL:



9.3. LIMIT THEOREMS FOR SEQUENCES 137Proof. This result follows immediately from the limit of the produt equals the prod-ut of the limits beause we an de�ne yn = K for all n: Sine the limit of the onstantsequene K;K; : : : ; K; : : : is K, we are done.Cauhy: We now give a seond proof of the sum formula for the Geometri series.Simpliio: A seond proof?Galileo: The result is useful and Repetition is a great teaher. You will see thisformula again.Proposition 9.3.3 (Sum Formula for the In�nite Geometri Series). If x 2 <;jxj < 1; and Sn =Pnk=0 xk; then P1k=0 xk = limn!1 Sn = 11�x :Proof. Sine we are assuming that jxj < 1; we know limn!1 xn = 0: By the limit ofthe sum equals the sum of the limits and the previous orollary we an see thatlimn!1Sn = limn!1 1� xn+11� x = 11� x limn!1(1� xn+1) = 11� x � 11� x limn!1xn+1 = 11� x:Cauhy: We now prove uniqueness for limits.Simpliio: Uniqueness? I have been patient until now, but this theory stu� is killingme.Cauhy: While you may not think uniqueness is important, engineers really do wantto know when there is only one answer. In some sense, the sequene xn = (�1)n hasboth �1 and +1 as it limits. Rather than deal with this ambiguity, the mathematisommunity has voted to say the sequene does not onverge. While these fats mayseem obvious, they require proof.Simpliio: But every test problem I ever did only had one answer. (To Virginia) Didyou ever bubble in more than one answer?Virginia: No, but few of my tests were multiple guess.Cauhy: OK, but quadrati polynomials usually have two roots. A multitude ofomputational problems have more than one answer. Life is easier when we haveuniqueness.



138 CHAPTER 9. LIMITSSimpliio: One wife, one mother-in-law?Proposition 9.3.4 (Uniqueness Theorem for Limits of Sequenes). Let fxng1n=1be a sequene of numbers in <: If limn!1fxng = L1 and limn!1fxng = L2; thenL1 = L2:Proof. Cauhy: By way of ontradition, we will assume the proposition is false.In other words, we will assume L1 6= L2: If you make a smart hoie of �{namely� = 12dist(L1; L2) = 12 jL1 � L2j; then you will �nd that all but a �nite number of theterms of the sequene must lie in both of the intervals (L1��; L1+�) and (L2��; L2+�):However, by the hoie of �; there are no points in both of these intervals. Thus, wehave a ontradition. Now, that wasn't so bad was it?Simpliio: Short is good. It was OK.Cauhy: Now it is time to squeeze.Simpliio: And I must ask again. What are these fats good for?Cauhy: A basi rule for appliations is that inequalities are more important thanequalities. As physiist Werner Heisenberg (1901-1976) pointed out, measurementsare not exat and we are thus fored to settle for approximate answers. Under theseirumstanes, we are omfortable if we an ontrol a sequene by squeezing it betweentwo onstants. Many of the algorithms we will be using an be ontrolled this way.Simpliio: How about an example.Cauhy: While root �nding method of Newton/Raphson and the Contration Map-ping Theorem are the �rst settings where we will need these ideas, we will also needtools of estimation everywhere in Fourier series. Squeezing helps.
Figure 9.1: The Uniqueness of Limits



9.3. LIMIT THEOREMS FOR SEQUENCES 139Proposition 9.3.5 (The Squeezing Theorem for Sequenes). Let fxng1n=1;fyng1n=1; and fzng1n=1 be sequenes in <; where xn � yn � zn:1. Fat 1. If limn!1fxng = L and limn!1fzng =M; then L �M:2. Fat 2. If the sequene fyng1n=1 onverges and yn �M for all n; then limn!1fyng �M:3. Fat 3. If limn!1fxng = L = limn!1fzng; then the sequene fyng1n=1 onvergesand limn!1fyng = L:Proof. Proof of Fat 1.The proof of the �rst squeezing fat, is again by ontradition. Thus, we beginby assuming that L > M: The next step is to let � = 12dist(L;M) = 12 jL�M j: SineL > M; we have the situation that all but a �nite number of the terms of the sequenefxng1n=1 lie in the interval (L � �; L + �) and all but a �nite number of the terms ofthe sequene fyng1n=1 are in the interval (M � �;M + �): Sine these two intervals aredisjoint and L > M; we have now reated the problem that all yn < xn for all buta �nite number of the integers n: Thus, we have a ontradition to our assumptionthat xn � yn for ALL n:Proof of Fat 2.This fat follows immediately from Fat 1 beause the onstant M an be thoughtof as a sequene where zn =M; for all n:Proof of Fat 3.Sine we are not assuming that the sequene fyng1n=1 onverges to any number,this fat doesn't immediately follow from Fats 1 or 2. However, we an go bak tobasis.Step 0. The Candidate:The only possibility is that the sequene fyng1n=1 should onverge to M:Step 1. The Challenge:Let � > 0 be given.



140 CHAPTER 9. LIMITSStep 2. The Choie:The integer N will be the maximum of the integers N1 and N2; where1. If n � N1; then xn 2 (M � �;M + �):2. If n � N2; then zn 2 (M � �;M + �):Step 3. The Chek:Thus, if n � N; then both xn and zn lie in the interval (M � �;M + �): Sine we areassuming xn � yn � zn; yn 2 (M � �;M + �):Exerise Set 9.3.1. Using limit fats, prove that limn!1f 1n3g = 0:2. Using limit fats, prove that limn!1f 1n4g = 0:3. Using limit fats, prove that limn!1f3n�72n+5g = 32 :4. Using limit fats, prove that limn!1f2n+53n�7g = 23 :5. Using limit fats, prove that limn!1f2n2+73n2�5g = 23 :6. Using limit fats, prove that limn!1f2n3+53n3�7g = 23 :9.4 Every Bounded Inreasing Sequene ConvergesNumbers are the free reation of the human mind.-Julius Wilhelm RihardDedekind (1831-1916)Galileo: We now turn to the problem of showing that every bounded inreasingsequene onverges.Simpliio: I hate to be preditable, but why should I are?



9.4. EVERY BOUNDED INCREASING SEQUENCE CONVERGES 141Galileo: The short answer is that if we an show an algorithm produes a sequeneof numbers whih is both bounded and inreasing, then the method will \work." Foran engineer, it is important that the method produe aurate answers reliably.Virginia: The long answer?Galileo: The long answer is that it took well over 2000 years to �gure out how to �llin the holes in the real numbers. Sine heking all the details of this onstrutionis really really boring, we are only going to present the avor of the ideas. Thistopi is probably the most theoretial we will enounter in this tutorial. If you donot remember our disussion of rigor and logi, it might be a good time to reviewde�nitions, ontrapositives, and proof by ontradition,Simpliio: I believe in the real numbers. Maybe I will take a short nap.Galileo: The following two examples should set the stage for the main theorem.Example 9.4.1. The sequene xk = k2 is inreasing, but not bounded.Example 9.4.2. The sequene xk = (�1)k is bounded, but not inreasing.Simpliio: And?Galileo: As we have already remarked, an engineer wants to have on�dene in hisanswers. In other words, if he hits the square root button on his alulator, he wouldlike to know the answer is orret. The beauty of the Arhimedes/Heron square rootmethod is that it always produes a bounded dereasing sequene. The beauty ofthe bisetion method is that it produes a sequene of losed intervals, where the leftendpoints are inreasing and the right endpoints are dereasing. Thus, the answeris always \trapped." Thus, if we an show that every bounded inreasing sequeneonverges, then we will have shown that these two methods \always work."Galileo: We now turn to a fasinating little problem that has aused 2000 years ofonsternation. Namely, how do we \�ll in" the \holes" in the real line so we an besure the irrational numbers suh as p2; e; �; and e� are well-de�ned.Simpliio: Wait a minute. What does the word \well-de�ned" mean?



142 CHAPTER 9. LIMITSGalileo: Julius Wilhelm Rihard Dedekind (1831-1916) went to great lengths toget arithmeti right. With his idea of a \ut" he showed that the assoiative,ommutative, and distributive laws for addition and multipliation an not onlybe extended from the positive and negative integers Z to the rational numbersQ = fpq : p; q 2 Z and q > 0g; but an also be extended to the real numbers <:A large part of this problem is the exat de�nition of a real number.De�nition 9.4.1. A non-empty subset S of Q is a alled a ut if the followingonditions hold:1. The set S is not equal to Q:2. If whenever p 2 S and q < p; then q 2 S:3. The set S ontains no largest rational number.Virginia: Thus, the number p2 an be represented by the setS = fpq : (pq )2 < 2 or pq < 0g: In general, a real number an be represented bya \onneted" open interval of rational numbers! And the real numbers < is theolletion of all suh onneted open intervals.Galileo: Corret.Simpliio: But I thought a real number was a point? Now you tell me it is a set.Galileo: No worries. You an go bak to thinking a real number is a point. While thisonstrution represents an important milestone in establishing the rigor of arithmeti,I agree that it an only be desribed as tedious. The details are guaranteed to puteven the sleep deprived into a sound slumber.Simpliio: I am a man of faith. Let's move on.
Figure 9.2: A Dedekind Cut Representing p2



9.4. EVERY BOUNDED INCREASING SEQUENCE CONVERGES 143Galileo: The Least Upper Bound Priniple is a onsequene of Dedekind's onstru-tion. The importane of this priniple is that it \�lls in" all the \holes" in the realnumber line.Virginia: When you use the word onsequene, I suspet you mean that this Prinipleis really a theorem whih must be proved from other more basi assumptionsGalileo: Corret again. While the Least Upper Bound Priniple is a theorem, whihan be proved from the properties of Dedekind's onstrution, we will not go there.In the interests of time, we will assume it is true.Virginia: Like an axiom, a postulate, or a de�nition?Galileo: Yes.Simpliio: As I said, let's move on.Galileo: Before we an state this important priniple, we must de�ne what it meansfor a set to have an upper bound.De�nition 9.4.2 (Bounded Above). A non-empty set S � < is bounded above ifthere is a number M 2 < with the property that x � M for all x 2 S: The number Mis alled an upper bound for the set S:Galileo: We now de�ne the least upper bound (lub) of a set of real numbers.De�nition 9.4.3 (Least Upper Bound). If a real number L is an upper bound fora non-empty set S � <; then L is alled the least upper bound (lub) of S if for anyupper bound M of the set S; it is always true that L � M:We now state the Least Upper Bound Priniple.Priniple 9.4.4 (The Least Upper Bound Priniple). If a non empty set S 2 <is bounded above, then it has a least upper bound.Simpliio: I failed to get that priniple at all. I need an example.Galileo: If we onsider the sequene xn = (�1)n; we notie that the terms osillatebetween +1 and �1: While the sequene has a multitude of upper bounds suh as2; 47; and 1001; the number +1 is not only an upper bound but, in fat, the least



144 CHAPTER 9. LIMITSupper bound. On the other hand, if we onsider the sequene xn = nn+1 ; we againnotie that the sequene has a multitude of upper bounds inluding 2; 47; and 1001:Again, the least upper bound of the sequene is +1:Simpliio: Why did you give us two examples with the same answer?Galileo: To point out that in the �rst example the least upper bound is equal to oneof the terms of the sequene, while the least upper bound in the seond ase neverequals any term in the sequene. If the least upper bound was always one of theterms in the sequene, it never would have been invented. In fat, if the least upperbound was always a rational number, it never would have been invented. In otherwords, the Least Upper Bound Priniple �lls in the \holes" in the real number systemvaated by numbers suh as p2; 3p2; e; �:Simpliio: Let's move on.Galileo: Certainly. We begin with two important onepts assoiated with sequenes:inreasing and bounded. These two ideas will provide a test for when a sequeneonverges. The de�nitions of these terms are now presented. We begin with thede�nition of an upper bound for a sequene.De�nition 9.4.5. A sequene fxkg1k=1 is bounded above if there is a number M 2 <suh that xk � M for all integers k � 1:De�nition 9.4.6. A sequene fxkg1k=1 is inreasing if xk � xk+1 for all k � 1:Theorem 9.4.7 (Every Bounded Inreasing Sequene Converges). If a se-quene fxng1n=1 is both bounded above and inreasing, then there is a number L suhthat limn!1fxng = L: In partiular, if M is any upper bound, then xn � L � M forall n:Proof. The reason we mention the least upper bound priniple is to identify the limitL: Step 0. The Candidate:Set L equal to the least upper bound of the set of points onsisting of all the termsof the sequene fxng1n=1: In partiular, L = lubfxn : n = 1; 2; 3; : : : ; n; : : : g: We must



9.4. EVERY BOUNDED INCREASING SEQUENCE CONVERGES 145now show that limn!1fxng = L:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Choose N so that xN > L� �:Simpliio: How do we know we an �nd suh an N?Galileo: Good question. One again, the only viable proof for the existene of suhan integer N is by ontradition. To this end, we assume that no suh integer Nexists. But, if we make this assumption, then xN � L� � for ALL integers N: Thus,L � � is also an upper bound for the sequene. Sine L < L � �; we would have aontradition of the assumption that L is the least (or smallest) upper bound.Step 3. The Chek:We must now show that if n � N; then xn 2 (L� �; L+ �): Sine n � N; and weare assuming the sequene is inreasing, we know that XN � xN+1 � xN+2 � : : : ; xn:Thus, L� � < xN � xn:Sine we are assuming that L is an upper bound for the sequene, xn � L < L+�:Thus, xn 2 (L� �; L+ �) and the sequene onverges to L:Galileo: Now that proof wasn't so bad, was it?Simpliio: This proof seems to have the same four steps as the others.Galileo: An equivalent formulation of this theorem (and the one that we will need)an be stated in terms of bounded dereasing sequenes.
Figure 9.3: Every Bounded Inreasing Sequene Converges



146 CHAPTER 9. LIMITSDe�nition 9.4.8. A sequene fxkg1k=1 is said to be bounded below if there is a numberM suh that xk �M for all integers k � 1:De�nition 9.4.9. A sequene fxkg1k=1 is said to be dereasing if xk � xk+1 for allintegers k � 1:Theorem 9.4.10. If a sequene fxng1n=1 is both bounded below and dereasing, thenthere is a number L suh that limn!1fxng = L:Galileo: For bounded dereasing sequenes, we will see that the sequene will atuallyonverge to the greatest lower bound.Simpliio: I have a question. In a real-world problem, you don't know the answer soyou an't begin to test if some number L is a limit. If you did, you wouldn't do allthis heking. Why waste your time when a lient wants the results yesterday.Galileo: You have a good point. All we have done so far is set the ontext. We willreturn to your question when we disuss Cauhy sequenes. His sequenes are theones engineers are about.Simpliio: Cauhy again?Exerise Set 9.4.1. Compute the least upper bound of the sequene f (�1)nn g1n=1: Compute the great-est lower bound. Does the sequene onverge to the least upper bound?2. Compute the least upper bound of the sequene f(�1)n n�1n g1n=1: Compute thegreatest lower bound. Does the sequene onverge to the least upper bound?3. Prove: If a sequene fxng1n=1 is both bounded below and dereasing, then thereis a number L suh that limn!1fxng = L:9.5 Cauhy SequenesGalileo: We now reall our friend Cauhy to provide a brief introdution to a riterionthat guarantees a sequene onverges.



9.5. CAUCHY SEQUENCES 147Simpliio: I dread the thought of more theory.Cauhy: The reason for de�ning this new onept is that we would like to be ertaina sequene onverges even when we have no idea what the limit will be. If we knowthe answer, then why waste time omputing limits!! Sine the limit is missing, thesetting is more like the situations engineers fae with real-world problems. Namely,they don't know the answer before they start. However, it will turn out that whilewe don't know the limit exatly, it an be ontained somewhere in a small interval.Galileo: Atually, Mr. Simpliio has already enountered these ideas in Caluluswhen he was introdued to the ratio and nth root tests.Simpliio: I liked the ratio test. It was easy beause all you had to do was omputer = limn!1 jan+1jjanj : If r < 1; then the series P1n=0 an onverges. If r > 1; then theseries diverges.Galileo: Very good.Simpliio: Atually, that is the only tehnique I remember on that subjet.Galileo: The only problem is that several ards were dealt from the bottom of thedek.Simpliio: How so?Galileo: The tehnique didn't atually give you the answer.Simpliio: You are orret. The answer to those problems was simply \onvergent"or \divergent."Virginia: But wait a minute. If you think about the proofs of the ratio test, you aredominating the given series by a Geometri series. That information ought to help.Simpliio: I do my best to avoid proofs and here she omes.Virginia: If we assume the series P1n=0 an has the property janjjan�1j � r for all integers



148 CHAPTER 9. LIMITSn = 0; 1; 2; : : : ; n; : : : ; then janj � jan�1jr for all n: Thus,ja0j �ja0jr0:ja1j �ja0jr1:ja2j �ja1jr � ja0jr2:ja3j �ja2jr � ja0jr3:ja4j �ja3jr � ja0jr4:...janj �jan�1jr � ja0jrn:Adding these quantities, we see by the sum formula for the Geometri series thatj 1Xn=0 anj � 1Xn=0 janj � ja0j 1Xn=0 rn = ja0j 11� r :We an always estimate the error by omparing the tails of seriesjEnj = j 1Xk=0 ak � nXk=0 akj = j 1Xk=n+1akj � 1Xk=n+1 jakj � ja0j 1Xk=n+1 rk = ja0j rn+11� r ;Sine limn!1 ja0j rn+11�r = 0; we have onvergene.Galileo: Very good! However, it isn't immediately lear that the symbol P1k=0 akatually represents a real number.Simpliio: But isn't that obvious?Galileo: Show me the sum.Virginia: If you think about it, the only general ondition we have that guarantees asequene onverges is that it is bounded and inreasing.Galileo: Corret. The reason for Cauhy sequenes is to guarantee onvergene. Onewe have ompleted this task, the ratio test will guarantee that the symbol P1k=0 akmakes sense. By the way, Cauhy is involved whenever we are apply any omparisontest. In partiular, the root test and the integral test are involved.Simpliio: OK, enough of these old tests, how about this Contration Mapping The-orem?



9.5. CAUCHY SEQUENCES 149Galileo: The strategy is the same with the Contration Mapping Theorem, Namely,you use an iterated funtion omputation xn+1 = T (xn) to reate an in�nite sequenefxng1n=0 of points. Sine T (x) is a ontration with ontration fator M < 1; wean use the same Geometri series argument Virginia just mentioned to show thatjxn � xN j � Mn1�M jx0 � x1j for all n � N: This inequality will be suÆient to showthat the sequene is Cauhy. Later we will see we have the same issues with Fourierseries. While it is easy to show the series P1n=0 1n3 os(nx) onverges for all x 2 <; itis not so easy to �gure out a tidy little formula for the funtion it represents.Simpliio: So where do we begin?Galileo: We begin with the de�nition, whih poses the following hallenge: If givena sequene fxng1n=1 and a tolerane � > 0; then �nd an integer N so that whenevern � N; the point xn will lie in the interval (XN � �;XN + �): In partiular, all but a�nite number of the terms in the sequene will lie in the interval (XN � �;XN + �):As we did with the seond de�nition for onvergene, we will use the absolute valuefuntion and distane in the de�nition of Cauhy Sequene.De�nition 9.5.1 (Cauhy Sequene). A sequene fxng1n=1 is alled Cauhy; if forevery � > 0; there is an integer N with the property that if n � N; then jxn�xN j < �:Cauhy: Note that this de�nition is exatly the same as the de�nition of limit exeptthere is no mention of the limit L: Consider the following examples.Example 9.5.1. The sequene xn = (�1)nn is Cauhy.The argument this statement is true is the same as we enountered for onvergentsequenes.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Choose N > 2� :Step 3. The Chek:If n � N; then j (�1)nn � (�1)NN j � j (�1)nn j+ j � (�1)NN j � 1N + 1N � 2N < �:



150 CHAPTER 9. LIMITSSimpliio: That argument is ertainly within my omfort zone.Example 9.5.2. The sequene xn = (�1)nn2 is Cauhy.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Choose N >q2� : Thus, N2 > 2� :Step 3. The Chek:If n � N; then j (�1)nn2 � (�1)NN2 j � 1N2 + 1N2 � 2N2 < �:Simpliio: So it looks like we need to hoose the integer N a bit larger than before.Cauhy: I knew you would like this topi.Galileo: The beauty of the situation is that onvergent sequenes are Cauhy andvie versa. Our �rst theorem is the observation that if a sequene is onvergent, thenit must also be Cauhy. Note that the format of the proof exatly parallels the proofsof the previous limit theorems. Note also, that the triangle inequality is evident.Theorem 9.5.2 (Convergent Sequenes are Cauhy). If a sequene of real num-bers fxkg1k=1 is onvergent, then it is a Cauhy sequene. In partiular, if there is anumber L so that limn!1xn = L; then fxkg1k=1 is Cauhy.Proof. Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Choose N so that if n � N; then jxn � Lj < �2 :Step 3. The Chek:We must show that if � > 0 is given, then we an always �nd an integer N suh thatwhenever n � N; then jxn � xN j < �:However, sine the sequene onverges to some limit L; we know by the de�nitionof limit that there is an integer N suh that if n � N; then jxn � Lj < �=2:Thus, jxn � xN j = jxn � L+ L� xN j � jxn � Lj+ jL� xN j < �2 + �2 = �:Thus, the sequene is Cauhy.



9.5. CAUCHY SEQUENCES 151Cauhy: We now prove the onverse of the previous theorem, whih shows that everyCauhy sequene onverges to some number.Simpliio: But I thought you said we ouldn't �nd the number.Cauhy: As you might have guessed, the answer omes to us as a least upper boundor a greatest lower bound of a set of numbers. While it is a bit theoretial, we dohave it trapped in an arbitrarily small losed bounded interval.Theorem 9.5.3 (Cauhy Sequenes Converge). If a sequene of real numbersfxng1n=1 is Cauhy, then there is a unique L suh that limn!1fxng = L:Proof. We will �nd two sequenes fang1n=1 and fbng1n=1 suh that:1. an�1 � an � bn � bn�1 for all integers n;2. bn � an � 2n for all integers n; and3. for eah integer n there is an integer Nn with the property that if k � Nn; thenxk 2 [an; bn℄:The essene of the argument is to simply set � equal to smaller and smaller numbersand then apply the de�nition of Cauhy sequene. While any sequene of numberswhih onverges to zero will do, we simply let � = 1n for larger and larger values of n:Case n = 1: Let � = 1:Find an integer N1 suh that if k � N1; then jxk � xN1 j < 1: Let a1 = xN1 � 1 andb1 = xN1 + 1: Note that b1 � a1 = 21 a1 � xk � b1 for all k � N1:Case n = 2: Let � = 12 :Find an integer N2 > N1 suh that if k � N2; then jxk � xN2 j < 12 : Let a2 =maxfa1; xN2 � 12g and b2 = minfb1; xN2 + 12g: Note that b2 � a2 � 22 and a1 � a2 �xk � b2 � b1 for all k � N2:Case n = 3: Let � = 13 :Find an integer N3 > N2 suh that if k � N3; then jxk � xN3 j < 13 :Let a3 = maxfa2; xN3 � 13g and b3 = minfb2; xN3 + 13g: Note that b3� a3 � 23 anda1 � a2 � a3 � xk � b3jleb2 � b1 for all k � N3:



152 CHAPTER 9. LIMITSCase n = n: Let � = 1n :Continuing indutively, �nd an integer Nn > Nn�1 suh that if k � Nn; then jxk �xNn j < 1n :Let an = maxfan�1; xNn� 1ng and bn = minfbn�1; xNn+ 1ng: Note that bn�an � 2nand a1 � a2 � a3 � � � � � an � xk � bn � � � � � b3 � b2 � b1 for all k � Nn:Sine the sequene fang1n=1 is bounded and inreasing, it onverges to some num-ber L: Sine the sequene fbng1n=1 is bounded and dereasing, it also onverges. Sinebn � an � 2n for all integers n; the sequenes must onverge to the same number L:Note that an � L � bn for all n:We now have to prove that the sequene fxng1n=1 onverges to L:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Choose N large enough that 2N < � and N large enough so that whenever n � N; thenaN � xn � bN in the above onstrution. In partiular, we know bN � aN � 2N < �:Step 3. The Chek:If n � N; then xn 2 [aN ; bN ℄: Sine L 2 [aN ; bN ℄; jxn � Lj � bN � aN � 2N < �:Thus, fxng1n=1 must onverge to L:Galileo: In the spirit of Professor Polya, let's think about the key omponents on-tained in this proof.1. Construt a nested sequene of losed bounded intervals f[an; bn℄g1n=1:2. Note that sine an � an+1 � bn+1 � bn for all n; both fang1n=1 and fbng1n=1onverge.3. If limn!1(bn � an) = 0; then both sequenes onverge to the same number. Inother words, there is a number L so that limn!1 an = limn!1 bn = L:4. Any sequene whih is frequently in eah of these intervals has a subsequenewhih onverges to L: In other words, if fxng1n=1 is a sequene with the property



9.6. SERIES 153that there are integers n1 < n2 < � � � < nk < nk+1 < : : : suh that xn1 2[a1; b1℄; xn2 2 [a2; b2℄; xn3 2 [a3; b3℄; et: then limk!1 xnk = L:5. Any sequene squeezed by these intervals also onverges to L: In other words,if fxng1n=1 is a sequene with the property that for every integer n there is aninteger Nn suh that whenever k � Nn; then xk 2 [an; bn℄; then limk!1 xk = L:The �rst three items in this onstrution an be enapsulated in a proposition.Proposition 9.5.4. If f[an; bn℄g1n=1 is a nested sequene of losed bounded intervalswith the property that limn!1(bn � an) = 0; then there is a unique point L whih isontained in every interval [an; bn℄: Moreover, limn!1 an = limn!1 bn = L:We will see this onstrution again when we disuss ompatness. We will needthis property when was show integrals of reasonable funtions exist.Exerise Set 9.5.1. Show the sequene xn = (�1)nn3 is Cauhy.2. If jxj < 1 and Sn =Pnk=0 xk; then show the sequene Sn is Cauhy.3. If jxj < 1 and Sn =Pnk=0(�x)k; then show the sequene Sn is Cauhy.4. If Sn =Pnk=0(�1)k 1k! ; then show the sequene Sn is Cauhy. (Hint: Think ratiotest.)5. If Sn =Pnk=0(�1)k 1kk ; then show the sequene Sn is Cauhy. (Hint: Think nthroot test.)9.6 SeriesGalileo: Let us return to the topi of series by reminding you of what it means for aseries to onverge. The idea is to bring preision to the addition of an in�nite numberof terms.



154 CHAPTER 9. LIMITSSimpliio: Where are we going to use these ideas?Galileo: Approximation theory is all about in�nite sums. Taylor series and Fourierseries are probably the most notable. We just want to make sure they make sense.9.6.1 Series FatsVirginia: As you mentioned earlier, we divide this de�nition into two piees. The�rst part is the de�nition of partial sum.De�nition 9.6.1. If P1k=0 xk is an in�nite series, then the sum Sn = Pnk=0 xk isalled the nth partial sum.Virginia: We now an de�ne the sum of an in�nite series to be the limit of thesequene of partial sums. Thus, the study of series simply redues to the study of aspeial type of sequene.De�nition 9.6.2. An in�nite series P1k=0 xk is said to onverge to a number S; ifthe limit of the nth partial sums onverges to S: More preisely, S =P1k=0 xk if andonly if limn!1 Sn = S; where Sn =Pnk=0 xk:Galileo: Corret.Virginia: Atually, if series are a subset of sequenes, life should be a bit easierbeause you don't have to prove theorems twie. For example, we immediately havethe Sum Theorem for In�nite Series.Theorem 9.6.3 (The Sum Theorem for In�nite Series). If S = P1k=0 xk andT =P1k=0 yk; then P1k=0(xk + yk) =P1k=0 xk +P1k=0 yk = S + T:Proof. Sine the limit of the sum equals the sum of the limits for sequenes 9.3.1,S + T = limn!1Sn + limn!1Tn = limn!1(Sn + Tn) = 1Xk=0(xk + yk):
Simpliio: We also an pull onstants aross the summation.



9.6. SERIES 155Theorem 9.6.4 (The Distributive Law for Series). If S =P1k=0 xk and C is areal numer, then P1k=0Cxk = CP1k=0 xk = CS:Proof. This theorem follows immediately from the fat that we an pull onstantsaross limits of sequenes. 9.3.1. Namely,1Xk=0 Cxk = limn!1( nXk=0 Cxk) = limn!1(C nXk=0 xk) = C limn!1( nXk=0 xk) = C 1Xk=0 xk = CS:
Galileo: Very good observation.Virginia: Don't forget uniqueness and squeezing.Theorem 9.6.5 (Uniqueness for In�nite Series). If S1 = P1k=0 xk and S2 =P1k=0 xk; then S1 = S2:Proof. This theorem follows immediately from the Uniqueness Theorem for Sequenes9.3.4.Theorem 9.6.6 (The Squeezing Theorem for Series). If S =P1k=0 xk;T =P1k=0 yk; and xk � yk for all k = 0; 1; 2; : : : ;1; then S =P1k=0 xk �P1k=0 yk =T:Proof. If Sn =Pnk=0 xk and Tn =Pnk=0 yk; then the assumption xk � yk implies thatSn � Tn for all n:Thus, by the Squeezing Theorem for Sequenes 9.3.5S = limn!1Sn � limn!1Tn = T:
Simpliio: How about an example?Example 9.6.1. Galileo: How about if we ompute P1k=0(2 13k + 7 15k )?



156 CHAPTER 9. LIMITSVirginia: How about if we deompose the sum into:1Xk=0(2 13k + 7 15k ) = 1Xk=0 2 13k + 1Xk=0 7 15k= 2 1Xk=0 13k + 7 1Xk=0 15k= 2 11� 13 + 7 11� 15 = 232 + 754 = 3 + 354 = 474 :Simpliio: That was easy. How about an example to illustrate the Squeezing Theoremfor series?Example 9.6.2. Galileo: How about if we show the series P1k=0 kk+1 13k onverges?Virginia: Easy. All we have to do is notie that kk+1 13k � 13k for all k = 0; 1; 2; : : : :Sine Sn =Pnk=0 kk+1 13k �Pnk=0 13k � 11� 13 = 32 ; the sequene of partial sums fSng1n=0is bounded.Sine eah term kk+1 13k is positive, the sequene fSng1n=0 is also inreasing.Thus, the sequene fSng1n=0 onverges.9.6.2 Euler's ConstantGalileo: We now turn to the important onstant e disovered by the Swiss mathemati-ian and astronomer Leonhard Euler (1707-1783). Professor Euler was probably themost proli� mathematiian of all time. He was amazingly produtive. Any ompleteolletion of his books is an inredible nuisane to the librarian in harge of �ndingshelf spae.Example 9.6.3. We begin with a de�nition of the onstant that bears his name.De�nition 9.6.7 (Euler's Constant). e =P1k=0 1k! :Simpliio: Even I remember that e = 2:71828182845905:Virginia: How do you remember all those numbers?Simpliio: Andrew Jakson (1767-1845) was eleted president of the United States in1828.Galileo: But, does the in�nite sum make any sense?



9.6. SERIES 157Theorem 9.6.8. There is a onstant e suh that e =P1k=0 1k! :Proof. Virginia: Sine e = P1k=0 1k! : = limn!1 Sn; where Sn = Pnk=0 1k! ; all we haveto do is show the sequene of partial sums fSng1n=1 is bounded and inreasing.Simpliio: But Sn+1 = Sn + 1(n+1)! so the sequene is inreasing.Virginia: Sine 1k! � 12k for all k = 0; 1; 2; : : : ;Pnk=0 1k! � 1+Pnk=0 12k � 1+ 2 = 3; forall n = 0; 1; 2; : : : ; Sine the sequene of partial sums Sn = Pnk=0 1k! is bounded andinreasing, there is a real number e with the property that e = limn!1 Sn:9.6.3 Convergene Tests for SeriesGalileo: In the spirit of Professor Polya, let's take a seond look at the argument thatthe number e is well de�ned. What do you observe about the series?Virginia: Sine the terms of the series are positive, the sequene of partial sums isinreasing.Simpliio: But that is obvious. The only hard part of the argument is to show thesepartial sums are bounded.Galileo: You have just generalized our example into a theorem.Theorem 9.6.9. If P1k=0 ak is a series with the property that ak � 0 for all k =0; 1; : : : ; and the partial sums Sn = Pnk=0 ak are bounded, then the series onverges.In partiular, if Sn �M for all n; then S =P1k=0 ak �M:Proof. Simpliio: Even I an see that this theorem is an obvious onsequene of thefat the sequene of partial sums Sn is bounded and inreasing. Thus, the seriesP1k=0 ak onverges.Galileo: Very good. Note that whenever we have identi�ed a series P1k=0 ak asonvergent, we have observed that limk!1 ak = 0: Let's enapsulate this observationinto a theorem.Theorem 9.6.10. If the series P1k=0 ak is onvergent, then limn!1 an = 0:



158 CHAPTER 9. LIMITSProof. Virginia: But this fat is easy to prove. All we have to notie is thatlimn!1 an = limn!1( nXk=0 ak � n�1Xk=0 ak)= limn!1(Sn � Sn�1) = limn!1Sn � limn!1Sn�1 = S � S = 0:Example 9.6.4. Galileo: Before we move on, let's onsider an example, whih showshow this theorem an be applied. Consider the series P1k=0(�1)k = 1 + (�1) + 1 +(�1) + � � �+ What do you think this series should be?Simpliio: Sine we an group the sum as1 + (�1 + 1) + (�1 + 1) + (�1 + 1) + � � � = 1 + (0) + (0) + (0) + � � � = 1;it looks to me like the series should equal 1:Virginia: Sine we an group the sum as(1 +�1) + (1 +�1) + (1 +�1) + (1 +�1) + � � � = 0 + (0) + (0) + (0) + � � � = 0;it looks to me like the series should equal 0:Galileo: Mathematiians deided a while bak that ertain expressions of symbolsshould be lassi�ed as nonsense. Sine the ontrapositive of Theorem 9.6.10 statesthat if the sequene fakg1k=0 does anything other than onverge to zero, then the seriesP1k=0 ak diverges.Virginia: In other words, the series is nonsense.Galileo: Corret.Simpliio: Wait a minute! I have a better theorem:If limn!1 an = 0; then the series P1k=0 ak onverges.I am sure it is true.Galileo: Whenever a mathematiian proves a theorem, he/she immediately asks thequestion: Is the onverse? Are you making a onjeture that the onverse of Theorem9.6.10 is true?Simpliio: I guess so.



9.6. SERIES 159Example 9.6.5. Galileo: How about if we sum the famous Harmoni Series givenby the formula P1k=1 1k? If we sum the �rst few billion terms, the series seems toonverge. In partiular, onsider the data in Table 9.1.N Harmoni Sum10 2.92896825396825100 5.18737751763961,000 7.4854708605503410,000 9.78760603604435100,000 12.090146129863341,000,000 14.3927267228649910,000,000 16.69531136585727100,000,000 18.997896413852551,000,000,000 21.3004815023485510,000,000,000 22.06477826202586100,000,000,000 22.06477826202586Table 9.1: The Sum of the Harmoni Series PNk=1 1kSimpliio: Looks to me like we have onvergene. The last two omputations areidential.Galileo: Sadly, while it looks like the series onverges to a number a bit larger than22.064778, our optimism is unjusti�ed. Consider the following proposition.Proposition 9.6.11 (The Harmoni Series Diverges). If N = 2n; thenPNk=1 1k > n2 : Thus, the series P1k=1 1k diverges.Proof. If n = 1; then N = 21 and PNk=1 1k = 1 + 12 > 12 :If n = 2; then N = 22 and PNk=1 1k = (1 + 12) + (13 + 14) > 12 + 12 = 212 :If n = 3; then N = 23 andPNk=1 1k = (1+ 12+ 13+ 14)+(15+ 16+ 17+ 18) > 212+ 12 = 312 :And so it goes.



160 CHAPTER 9. LIMITSSimpliio: OOPS! I was wrong.Galileo: No worries. Not all of our �rst thoughts are orret.Simpliio: So if n = 40; then N = 240 � 1:0995 � 1012: Thus, the sum of the �niteharmoni series is PNk=1 1k > n2 = 402 = 20: Hey, that's about right! Looks like myonjeture is out the window.Virginia: I don't quite understand this example yet. What will happen if you justkeep adding more numbers of the form 1k?Galileo: If you are above the preision of the omputer, you will simply be addingreal numbers of the form 1k : Sine k is \large," 1k = 0: In other words, the ativitywon't be very produtive.
Example 9.6.6. Now let's modify the de�nition of Euler's onstant and ask thequestion: Does the series P1k=0 (�1)kk! onverge?Simpliio: Can we ompare this series to the geometri series P1k=0 (�1)k2k ?Galileo: There are good ideas and bad ideas. Your idea does not work so well. Vir-ginia?Virginia: While the sequene of partial sums fail to be inreasing for these series, theyare still Cauhy. In partiular, we an hek this fat by following the steps in theusual program.Step 1. The ChallengeLet � > 0 be given.Step 2. The ChoieChoose N so that 12N < �:Step 3. The Chek



9.6. SERIES 161If n � N; then the di�erenejSn � SN j = j nXk=0 (�1)kk! � NXk=0 (�1)kk! j= j nXk=N+1 (�1)kk! j� nXk=N+1 j(�1)kk! j= nXk=N+1 1k!� nXk=N+1 12k < 12N+1 11� 12 = 12N+12 = 12N < �Thus, we have shown the sequene of partial sums is Cauhy.Galileo: Very good.Galileo: In the spirit of Professor Polya, let's take a seond look at this example andmake a number of observations about this example.1. The positive and negative signs don't make a di�erene.2. The omparison with a known series, the geometri series, does make a di�er-ene.We now generalize these examples and observations into a theorem.Simpliio: Why didn't you ompare the series P1k=0 (�1)kk! with the series for Euler'sonstant e =P1k=0 1k!?Galileo: Good observation. While we ould have done that, I thought you would bemore omfortable with the familiar geometri series. However, your observation isuseful beause it leads to a general theorem.Theorem 9.6.12 (Absolute Convergene). If the seriesP1k=0 jakj onverges, thenthe series P1k=0 ak onverges. In partiular, if P1k=0 jakj < 1; then P1k=0 ak on-verges.



162 CHAPTER 9. LIMITSProof. Virginia: Using the previous example as a guide, we need only show the se-quene of partial sums fSn =Pnk=0 akg1n=0 is Cauhy.Step 1. The ChallengeLet � > 0 be given.Step 2. The ChoieSine we are assuming the seriesP1k=0 jakj onverges, the partial sums Tn =Pnk=0 jakjare Cauhy 9.5.2. Thus, we an �nd an integer N with the property that if n � N;then jTn � TN j < �:Step 3. The ChekIf n � N; then the di�erenejSn � SN j = j nXk=0 ak � NXk=0 akj= j nXk=N+1 akj� nXk=N+1 jakj= jTn � TN j < �:Sine the sequene of partial sums fSng1k=0 is Cauhy, we know by Theorem 9.5.3that it onverges.Simpliio: How about an example?Example 9.6.7. Galileo: How about the series P1k=1 k�1k (�1)kk! ?Simpliio: Now that we have the Absolute Convergene Theorem 9.6.12 all we haveto do is show the series P1k=1 jk�1k (�1)kk! j is bounded.However, by the Squeezing Theorem for Series 9.6.6 we simply note that1Xk=1 jk � 1k (�1)kk! j = 1Xk=1 k � 1k 1k! � 1Xk=1 1k! = e� 1 <1:Thus, the series P1k=1 k�1k (�1)kk! onverges.Simpliio: Atually, we showed more. Namely, we showed the series P1k=1 k�1k 1k! alsoonverges.



9.6. SERIES 163Galileo: One again, we an enapsulate this speial ase as a new theorem alled theComparison Test 9.6.13.Theorem 9.6.13 (Comparison Test). . If ak and bk are real numbers for k =0; 1; 2; : : : ; suh that1. bk � 0 for k = 0; 1; 2; : : : ;2. jakj � bk for k = 0; 1; : : : ; and3. P1k=0 bk �M < +1;then the series P1k=0 ak onverges.Proof. Simpliio: But even an engineer an now prove this theorem. By the theSqueezing Theorem 9.6.6 P1k=0 jakj � P1k=0 bk � M < +1: By the Absolute Con-vergene Theorem 9.6.12, the series P1k=0 ak onverges.Galileo: Very good. Note that the Absolute Convergene Theorem 9.6.12 and Com-parison Test 9.6.13 inspire the following de�nition.De�nition 9.6.14 (Absolute Convergene). If a series of real numbers P1k=0 akhas the property that P1k=0 jakj onverges, then the series onverges Absolutely:As it turns out, whenever you suessfully apply a omparison test, you will beable to delare your series onverges absolutely. Most of your favorite tests will beomparison tests. What I have found through the ages is that students have a greatpreferene for the Ratio Test 9.6.15. It is easy to understand and easy to apply. Infat, it is easy to prove beause all you have to do is ompare a given series with theappropriately hosen Geometri Series.Corollary 9.6.15 (Ratio Test). If 0 � r < 1 and jak+1j � rjakj for k = 0; 1; 2; : : : ;then the series P1k=0 ak onverges. In partiular, jP1k=0 akj �P1k=0 jakj � ja0j1�r <1:If r > 1; a0 6= 0; and jak+1j � rjakj for k = 0; 1; 2; : : : ; then the series P1k=0 akdiverges.



164 CHAPTER 9. LIMITSProof. Sine1. ja0j = ja0j = r0ja0j2. ja1j � rja0j = r1ja0j3. ja2j � rja1j � r2ja0j4. ja3j � rja2j � r3ja0j5. ja4j � rja3j � r4ja0j6. ...7. jakj � rjak�1j � rkja0jand P1k=0 ja0jrk = ja0j1�r < 1; the series P1k=0 ak onverges by the Comparison Test9.6.13.If r > 1 and jak+1j � rjakj for k = 0; 1; 2; : : : ; then1. ja0j = ja0j = r0ja0j2. ja1j � rja0j = r1ja0j3. ja2j � rja1j � r2ja0j4. ja3j � rja2j � r3ja0j5. ja4j � rja3j � r4ja0j6. ...7. jakj � rjak�1j � rkja0j .Thus, limk!1 jakj = +1: By Theorem 9.6.10, the series P1k=0 ak diverges.Virginia: So the Ratio Test begins and ends with the Geometri Series?Galileo: Corret.Simpliio: How about an example?



9.6. SERIES 165Example 9.6.8. Galileo: How about if we show the seriesP1k=0 k�1k 12k is onvergent?Simpliio: No problem. All we have to do is observe that k�1k 12k < 12k for all k > 0 sothat P1k=0 k�1k 12k �P1k=0 12k = 2 <1:Galileo: Very good.Example 9.6.9. Virginia: What if we modify the previous problem so it reads: Showthe series P1k=0 k 12k is onvergent?Galileo: I like this question beause it fores us to rethink our hoie for r: We alsohave a problem making the omparison work for the �rst few terms.Virginia: How about if we hoose the ratio r somewhere between 0 and 1? Say, r = 23?Simpliio: I see that we have a problem with the �rst few terms. ak = k 12k < 23(k �1) 12k�1 = ak�1: For example, if we ompute the fration akak�1 = k 12k(k�1) 12k�1 ; then we �ndthat1. If k = 1; then akak�1 = a1a0 = 1 1210 120 = +1:2. If k = 2; then akak�1 = a2a1 = 2 1221 121 = 1:3. If k = 3; then akak�1 = a3a2 = 3 1232 122 = 34 :4. If k = 4; then akak�1 = a4a3 = 4 1243 123 = 23 :Virginia: But obviously, if k � 4; then 0 � akak�1 � 23 : Thus, after the �rst four termsof the series, our sum is dominated by the series1Xk=4(23)k = (23)4 1Xk=0(23)k = (23)4 11� 23 = 1681 � 32 = 2481 :Thus, the series onverges. Note that we shifted the indies in the summation by 4.Galileo: One again, in the spirit of Professor Polya let's onvert this example into atheorem.Theorem 9.6.16 (Ratio Test 2). If a series P1k=0 ak has the property thatlimk!1 jak+1jjak j = L < 1; then the series onverges. Moreover, if r is any real number



166 CHAPTER 9. LIMITSstritly between L and 1 (i.e. 0 � L < r < 1); then there is a onstant K > 0 so theseries is dominated by the series KP1k=0 rk = K1�r : If limk!1 jak+1jjak j = L > 1; then theseries P1k=0 ak diverges.Proof. Virginia: Sine the open interval (�r; r) ontains the limit L; all we have todo is �nd an integer N > 0 with the property that if n � N;then jan+1jjanj 2 (�r; r):The argument now repeats the exat same pattern disussed in the �rst RatioTest 9.6.15. The only di�erene is that we begin our omparisons farther out in theseries.1. jaN+0j = jaN j = r0jaN j2. jaN+1j � rjaN j = r1jaN j3. jaN+2j � rjaN+1j � r2jaN j4. jaN+3j � rjaN+2j � r3jaN j5. jaN+4j � rjaN+3j � r4jaN j6. ...7. jaN+kj � rjaN+k�1j � rkjaN j or (substituting n = N + k)janj � rjan�1j � rn�N jaN j:Thus, 1Xk=0 jaN+kj � 1Xk=0 rkjaN j = jaN j 1Xk=0 rk = jaN j 11� r :Simpliio: So the seret onstant K is equal to jaN j?Galileo: Almost, but don't forget the terms ak before aN : If they are larger thanaN ; then K wil have to be inreased so that the inequality jakj � rkK holds for allk = 0; 1; 2; : : : While the onstant K might have to be adjusted, it is the \tail" of theseries (i.e. the terms out "near" 1) that determine onvergene.Simpliio: How about if we ompute one easy example to show how to apply thisseond Ratio Test?



9.6. SERIES 167Example 9.6.10. Galileo: Moments ago we showed the series P1k=0 k2k onverges.Using Ratio Test 2, all we have to do is ompute the limitL = limk!1 ak+1ak = limk!1 (k+1)2k+1k2k = limk!1 12 (k + 1)k = 12 limk!1 (k + 1)k = 12 < 1:Sine L < 1; the series onverges.Example 9.6.11. Galileo: How about if we ompute one more example illustratinghow the Geometri Series an be used to show onvergene? Namely, let's show thatthe series P1k=1 1kk onverges.Virginia: This problem is easy beause 1kk � 12k for all k � 2:Galileo: True, but I don't want to do it that way. Instead, I want to ompute thekth root of 1kk and notie that kq 1kk = 1k � 12 for all k � 2: Thus, omputing thekth power of both sides of this inequality we see that 1kk � 12k for k � 2: Thus,P1k=2 1kk �P1k=2 12k = 122 P1k=0 12k = 122 11� 12 = 12 :Galileo: Now let's take a seond look at this proess and generalize it into a theorem.Virginia: Professor Polya again?Theorem 9.6.17 (nth Root Test). If a series P1k=0 ak has the property thatkpjakj � r < 1 for all k = 0; 1; 2; : : : ; then the series S = P1k=0 ak onverges.Moreover, jSj � 11�r <1:Proof. Sine kpjakj � r < 1 for all k = 0; 1; 2; : : : ; jakj � rk for all k = 0; 1; 2; : : : :Thus,1. ja0j � r0;2. ja1j � r1;3. ja2j � r2;4. ja3j � r3;5. ...



168 CHAPTER 9. LIMITS6. jakj � rk:Thus, P1k=0 jakj �P1k=0 rk = 11�r < +1:Simpliio: So, the seret to life is to ompare with the Geometri Series!Galileo: Not so fast.Virginia: Atually, I am a bit worried. It seems to me that we have negleted aspeial ase in Theorem 9.6.16 when the limit L = limk!1 jak+1jjakj = 1: I notied thatthe series P1k=1 1k has the property that L = limk!1 kk+1 = 1: Yet, it diverges. Canwe onlude that a series always diverges when this limit L = 1?Example 9.6.12. Galileo: The standard student mistake is to apply the Ratio Testto every series problem. For example, let's onsider the seriesP1k=1 1k2 : Using FourierSeries we an show that P1k=1 1k2 = �26 :Virginia: I will interested to learn why that is true.Galileo: However, if we apply the Ratio Test, we see thatL = limk!1 1(k+1)21k2 = limk!1 k2(k + 1)2 = ( limk!1 kk + 1)2 = 1:Simpliio: What does that tell us?Virginia: Sine we have observed there are both divergent and onvergent series withthe property that the limit L = 1; the Ratio Test provides no useful information inthis setting.Galileo: To be blunt, the Ratio Test annot be applied.Simpliio: So we need more tehniques?Galileo: Unfortunately, the answer to your question is yes.Simpliio: So, math is not so easy after all.Example 9.6.13. Galileo: Let's now turn to a slightly more deliate series1Xk=1 (�1)k+1k = 1� 12 + 13 � 14 + � � �+ (�1)k+1 1k + : : :



9.6. SERIES 169onverges. From a geometri point of view, this series must onverge beause for nequal to an even integer we see thatSn = nXk=1 (�1)k+1k = (1� 12) + (13 � 14) + � � �+ ( 1n� 1 � 1n):1. the di�erene 1� 12 equals the length of the interval [12 ; 1℄;2. the di�erene 13 � 14 equals the length of the interval [14 ; 13 ℄;3. the di�erene 15 � 16 equals the length of the interval [16 ; 15 ℄;4. the di�erene 1n�1 � 1n equals the length of the interval [ 1n�1 ; 1n ℄;Sine these intervals are pairwise disjoint, the partial sum is (at least for n even)Sn = nXk=1 (�1)k+1k = (1� 12) + (13 � 14) + � � �+ ( 1n� 1 � 1n) � 1:Thus, the sequene of partial sum fS2ng1n=1 is bounded and inreasing and thus on-verges to some number S:While the di�erene between Sn and Sn+1 is Sn+1�Sn = 1n+1and thus small, you have to be areful about about the di�erene Sn � SN beause itis possible that the sum of many small di�erenes ould aumulate into a large one.The argument is a bit leaner if we simply show the sequene is Cauhy.Virginia: I an �nish the argument.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Choose N to be an even number with the property that N > 2� :Step 3. The Chek:



170 CHAPTER 9. LIMITSIf n � N; then (again sine the intervals [ 1k+2 ; 1k+1 ℄ are disjoint)jSn � SN j = j nXk=1 (�1)k+1k � NXk=1 (�1)k+1k j= j nXk=N+1 (�1)k+1k j= ( 1N + 1 � 1N + 2) + ( 1N + 3 � 1N + 4) + ( 1N + 5 � 1N + 6) : : :+ ( 1n� 1 � 1n)= ( 1N + 1 � 1N + 2) + ( 1N + 2 � 1N + 4) + ( 1N + 4 � 1N + 6) : : :+ ( 1n� 2 � 1n)= 1N + 1 � 1n < 1N < �:Simpliio: What if the integer n is odd?Virginia: No worries. You simply get an extra opy of the fration 1n hanging out onthe end. That is why we hose N > 2� :Simpliio: Is there any way to add up the terms of this series?Galileo: Atually, we will see that ideas from Taylor Series an be used to show thatln(2) = loge(2) =P1k=1 (�1)k+1k :Galileo: In the spirit of Professor Polya, we would now like to generalize this exampleinto a theorem.Theorem 9.6.18 (Alternating Series Test). If fakg1k=0 is a sequene of real num-bers with the property that ak � ak+1 � 0 and limk!1 ak = 0; then P1k=0 ak(�1)konverges to a number less than a0:Proof. Virginia: I would like to work this problem. Following the outline providedby the example we just disussed, all we have to do is show the sequene of partialsums is Cauhy.Step 1. The Challenge:Let � > 0 be given.



9.6. SERIES 171Step 2. The Choie:Choose N to be an even number with the property that aN < �2 :Step 3. The Chek:If n is an even integer and n � N; thenjSn � SN�1j = j nXk=0 ak � N�1Xk=0 akj= j nXk=N akj= (aN � aN+1) + (aN+2 � aN+3) + (aN+4 � aN+5) + � � �+ (an � an�1)< (aN � aN+1) + (aN+1 � aN+3) + (aN+3 � aN+5) + � � �+ (an � an�1)= aN � an�1 < aN < �:Simpliio: In other words, if you inrease aN+2 to aN+1; aN+4 to aN+3; aN+6 to aN+5;et., then the sum Pnk=N ak ollapses to aN � an�1:
Figure 9.4: The Proof of the Alternating Series TestVirginia: Just like the piture in Figure 9.4.Simpliio: What if n is an odd integer?Virginia: If n is an odd, then we have one more term to deal with. Namely, the sumjPnk=N akj � aN � an�1 + an+1 � �2 + �2 = �:

Simpliio: So, are we done yet?Galileo: The fat that the series P1k=1 (�1)k+1k onverges, while the series P1k=1 1kdiverges leads to the onept of onditional onvergene, whih we now de�ne.



172 CHAPTER 9. LIMITSDe�nition 9.6.19. If the seriesP1k=0 ak onverges, while the seriesP1k=0 ak diverges,then the series is alled onditionally onvergent:Example 9.6.14. Galileo: Obviously the series P1k=0(�1)k+1 1k is onditionally on-vergent.Simpliio: What about our Geometri Series and our omparison tests?Galileo: Think about it. Whenever you apply a omparison test to show a seriesonverges, you ALWAYS prove absolute onvergene. If a series onverges absolutely,it NEVER onverges onditionally.9.6.4 Power SeriesGalileo: We now turn to the topi of Power Series. While Isaa Newton onsideredevery funtion to be a polynomial (�nite or in�nite) and while Power Series have alife of their own, we are not going to spend an exessive amount of time on this topi,Instead, our goal is to use this topi as a bridge between onvergene tests for seriesand Taylor Series.Simpliio: So, what is a Power Series?De�nition 9.6.20. A Power Series is a series of the form P1k=0 akxk:Simpliio: So a Power Series is a �nite or in�nite polynomial.Galileo: The next theorem is an immediate onsequene of the Ratio Test 29.6.16.Theorem 9.6.21. If a series P1k=0 ak has the property thatL = limk!1 jak+1jjakj ; then the Power Series P1k=0 akxk onverges for all jxj < 1L :Proof. If jxj < 1L ; thenlimk!1 jak+1xk+1jjakxkj = limk!1 jxj jak+1jjakj = jxj limk!1 jak+1jjakj = jxjL < 1LL < 1:Thus, the series onverges by the Ratio Test 2 9.6.16.Simpliio: How about some examples?



9.6. SERIES 173Example 9.6.15. Galileo: You have �ve friends:1. 11�x =P1k=0 xk = 1 + x+ x2 + x3 + : : : ; for jxj < 1;2. ex =P1k=0 xkk! = 1 + x+ x22! + x33! + : : : ; for x 2 <3. os(x) =P1k=0(�1)k x2k(2k)! = 1� x22! + x44! � x55! + : : : ; for x 2 <4. sin(x) =P1k=0(�1)k x2k+1(2k+1)! = x� x33! + x55! � x77! + : : : ; for x 2 < and5. ln(1� x) = loge(1� x) = �P1k=0 xk+1k+1 = �x� x22 � x33 � : : : ; for x 2 [�1; 1):Simpliio: Where did these formulas ome from? How am I going to be able toremember them?Galileo: While we will wait until our disussion of Taylor Series to justify these series,they should be in your omfort zone.1. The �rst equation is our old friend the Geometri Series.2. The seond is the exponential funtion, where you need only remember the k!in the denominator of the fration xkk! :3. The third is the osine funtion, whih is almost the same as the exponentialexept for the alternating sign. If you remember that the funtion os(x) is aneven funtion (i.e. f(x) = f(�x); for all x 2 <); then only the terms xk witheven exponents will appear.4. The fourth is the sine funtion, whih is almost the same as the osine. If youremember that the funtion sin(x) is an odd funtion (i.e. f(x) = �f(�x); forall x 2 <); then only the terms xk with odd exponents will appear.5. The funtion loge(x) is the integral of the Geometri Series.Simpliio: I see the �rst example is our old friend the Geometri Series. The othersexamples look familiar from my study of Calulus. Where did those formulas omefrom?



174 CHAPTER 9. LIMITSVirginia: These formulas are all speial ases of the Taylor Series formula:f(x) = 1Xk=0 f (k)(x0)k! (x� x0)k;where x0 is some point in <: Of ourse, we are assuming that the funtion f(x) hasin�nitely many derivatives f (k)(x):Galileo: Very good.Simpliio: Could we work out the oeÆients for one of these friends?Example 9.6.16. Galileo: If f(x) = ex; then reall that f 0(x) = ex for all x 2 <:Thus, all the higher derivatives f (k)(x) = ex for all x 2 <: If we let x0 = 0; thenf (k)(0) = e0 = 1 for all k = 0; 1; 2; : : : : Thus, the Taylor series isex = 1Xk=0 xkk! = 1 + x + x22! + x33! + : : :Simpliio: That omputation wasn't so bad.Galileo: The justi�ation for the equal sign takes more work, but we are going tododge that issue for the moment. Let's drive the remainder of our disussion byasking three key questions.1. Where and why does the series onverge?2. Can the series be di�erentiated term by term?3. Can the series be integrated term by term?For Power Series, the key to onvergene is a omparison with a Geometri Seriesand the assoiated radius of onvergene. In Examples 1 and 5, eah series has aradius of onvergene of R = 1: Examples 2, 3, and 4 eah series has a radius ofonvergene of R = +1: These radii an be omputed using Theorem 9.6.21.We now present the formal (and slightly more general) de�nition of radius ofonvergene.



9.6. SERIES 175De�nition 9.6.22. If x0 2 <; then radius of onvergene of the seriesP1k=0 ak(x� x0)k isR = lubfr 2 < : if jx� x0j < r; then 1Xk=0 jak(x� x0)kj <1g:Galileo: For all the examples we will onsider, R = 1L ; where L = limk!1 jak+1jjakj : Theinterval of onvergene is the set of all points x< with the property that the seriesP1k=0 ak(x� x0)k onverges.Simpliio: But is this set neessarily an interval? Couldn't it be disonneted?Galileo: No, by the Ratio Test/Geometri Series we know that if the seriesP1k=0 akrkonverges and jx� x0j < r; then the seriesP1k=0 ak(x� x0)k onverges. Thus, the setof onvergene points is always an interval of the form (x0 � R; x0 + R) plus eitherone or both endpoints x0�R or x0�R: Note that the interval of onvergene for thefuntion ln(x) is [�1; 1):Simpliio: Why did you make the de�nition more general to inlude powers of x�x0?Galileo: When we disuss the rate of onvergene of the Newton/Raphson algorithm,we will let x0 = r; where x = r is a root of the given funtion f(x): As you will see,this slight hange will appear in other appliations as well.Example 9.6.17. Galileo: By substituting y = 1 � x in ln(1 � x) we generate aseond representation for ln(x) entered at x0 = 1: In partiular,ln(x) = loge(x) = � 1Xk=0 (1� x)k+1k + 1 = 1Xk=0 (x� 1)k+1k + 1 for x 2 [0; 2):Note that the interval of onvergene has shifted to the interval [0; 2):Virginia: If we substitute x = 0 in the formula for ln(x) we getln(2) = 1Xk=0 (0� 1)k+1k + 1 = 1� 12 + 13 � 14 + : : : :Simpliio: Very interesting.Galileo: But, we do need theorems and proofs to justify these formulas.



176 CHAPTER 9. LIMITSVirginia: Speaking of formulas, I notied that if we ompute the derivative of theseries for ex we simply get bak ex: Similarly, if we ompute the derivatives of theterms of series for os(x) and sin(x) we get the appropriate series for the derivatives.Is that always true?Galileo: In fat, yes. As long as you stay inside the interval of onvergene, everythingis �ne.Simpliio: I notied that if we integrate the Geometri Series, we produe the seriesfor the log funtion.ln(1� x) = � Z x0 11� t dt = � 1Xk=0 Z x0 tk dt = � 1Xk=0 xk+1k + 1 ; :What about integration?Galileo: Again, as long as you stay inside the interval of onvergene, you an integratea series term by term. The next theorem summarizes these remarks.Theorem 9.6.23 (Di�erentiation of Power Series). If f(x) =P1k=0 akxk for allx 2 (�R;R); then f 0(x) =P1k=1 kakxk�1 for all x 2 (�R;R):Galileo: We have a similar result for integration.Theorem 9.6.24 (Integration of Power Series). If f(t) = P1k=0 aktk for allt 2 (�R;R) and x 2 (�R;R); then F (x) = R x0 f(t) dt =P1k=0 ak xk+1k+1 :Galileo: In every in�nite sum of the form f(x) = P1k=0 akxk the equal sign al-ways means that for a �xed value of x; the sequene of partial sums Sn = Sn(x) =Pnk=0 akxk forms a Cauhy sequene. (The Comparison Test 9.6.13 guarantees oursequene of partial sums fSn = Sn(x)g1n=0 will always be Cauhy.) Sine a Cauhysequene always onverges to some quantity, there is no problem denoting the limit bythe funtion f(x) = limn!1 Sn(x): A onsequene of these last two theorems 9.6.239.6.24 is that a funtion of the form f(x) = P1k=0 akxk an be di�erentiated andintegrated with impunity.Virginia: It all �ts together.



9.6. SERIES 1779.6.5 Trigonometri/Fourier SeriesGalileo: We now turn our disussion to Trigonometri Series of the forma02 + 1Xk=1fak os(kx) + bk sin(kx)g; for x 2 [��; �℄:Simpliio: Groan. More math?Galileo: Maybe so, but a multitude of engineering and real-world appliations areonneted with funtions of this type. In partiular, any appliation assoiated withwaves, vibrations, or periodi behavior an (and probably should) be modeled byfuntions of this form. Sound, light, radio waves, oean waves, and planetary motionare only the beginning. Physiists love these funtions. For the moment, however,let's limit our disussion to a few key questions.1. Where and why does the series onverge?2. Can the series be di�erentiated term by term?3. Can the series be integrated term by term?4. How do we ompute the oeÆients ak and bk?5. How an we use these series to ompute ertain in�nite sums?Simpliio: Sounds familiar.Galileo: Before we get started though, let's make a ouple of remarks about thebig piture. First, we are now in the position of looking at the olletion of allintegrable funtions on the interval [��; �℄: Sine the sum of two integrable funtionsis integrable and the produt of a salar (i.e a real number) and an integrable funtionis integrable, it is easy to show that the olletion of all integrable funtions on [��; �℄forms a vetor spae.Simpliio: I am not sure I remember the de�nition of a vetor spae.Virginia: A vetor spae is simply a olletion of points with two operations: additionand sale multipliation. These two operations obey the usual assoiative, ommu-



178 CHAPTER 9. LIMITStative, and distributive laws of Algebra. The additive operation also has an identityand inverses.Simpliio: But when I took Linear Algebra, our points were in the plane or threespae. I never thought of os(x) and sin(x) as vetors.Galileo: Hermann Grassmann (1809-1877), Giuseppe Peano (1858-1932), and DavidHilbert (1862-1943) hanged the equation, In partiular, they made the axioms of avetor spae general enough to inlude funtions as vetors?Simpliio: So, what do I need to know?Galileo: While we will give a more omplete disussion of Linear Algebra in a dayor so, the key idea hear is the notion of writing a vetor as a linear ombination ofvetors residing in a given basis.Simpliio: An example please.Galileo: Sine you like the plane let's start with the vetorse1 = 0�101A and e2 = 0�011A :Given a vetor v = 0�231A ; we an write v = 2e1 + 3e2: Thus, we have written thevetor v as a linear ombination of the vetors in the basis B = fe1; e2g:Simpliio: No issue here.Galileo: The polynomial p2(x) = 3x2 + 5x + 7 is a linear ombination of vetors inthe basis B = f1; x; x2g:Simpliio: So, you are thinking of the funtions 1; x; x2 and p2(x) as vetors?Galileo: You an add them; you an multiply them by a onstant; the assoiative,ommutative, and distributive laws apply. Now onsider the funtion T1(x) = 2 +3 os(x) + 5 sin(x):Virginia: This time we have the funtion T1(x) written as a linear ombination ofvetors in the basis B = f1; os(x); sin(x)g:Simpliio: I am not sure I like this disussion.



9.6. SERIES 179Galileo: As a software engineer, you do write your subroutines to be as general aspossible. Don't you?Simpliio: Sure. It is expeted.Galileo: Then you should appreiate the eonomy of having one onept over suha broad olletion of examples. Now let's think about the in�nite. If a partiularfuntion f(x) happens to have derivatives of all orders, the Taylor Series expansionshows that the funtion an be written as a linear ombination of members from thebasis BP = f1; x; x2; x3; : : : ; xn; : : : g:Simpliio: Exept that we now have the small problem that the sum is in�nite.Virginia: Fortunately, through our understanding of the onvergene of series, weknow what the sum of an in�nite numer of numbers means.Galileo: The goal now is to hange our representation form the basis BP to a newbasis BT = f1; os(x); os(2x); os(3x); : : : ; sin(x); sin(2x); sin(3x); : : : g:Simpliio: How about a ouple of examples to get started?Example 9.6.18. Galileo: Here are a ouple of series, where we have represented thepolynomial funtions x2 and x2 in terms of sines and osines. Note that this strategyis the opposite of the strategy invoked for Taylor Series.1. x2 =P1k=1(�1)k+1 1k sin(kx); for x 2 (��; �);2. x2 = �23 � 4P1k=1(�1)k+1 1k2 os(kx); for x 2 [��; �℄;3. jxj = �2 � 4�P1k=1 1(2k�1)2 os((2k � 1)x); for x 2 [��; �℄;Simpliio: I hope there is a formula for omputing the oeÆients for these series.Galileo: No worries. While we will eventually give you a tidy little formula, let's fouson the onvergene, di�erentiation, and integration issues �rst. What do you notie?Virginia: I notie with these examples that you gave an interval of onvergene.



180 CHAPTER 9. LIMITSGalileo: Sine the funtions os(x) and sin(x) are 2� periodi and x represents anangle (in radians of ourse), the interval of onvergene will almost invariably behosen to as [��; �℄ or [0; 2�℄:Simpliio: I notie that the funtion x2 is odd and is written as a linear ombinationof the odd funtions sin(kx); for k = 1; 2; 3; : : : A also that the funtions x2 and jxjare even and an be written as a linear ombination of the even funtions os(kx);for k = 1; 2; 3; : : :Galileo: In fat, you have noted a ompletely general property about Trigonometrifuntions.Simpliio: I also notied that we won't have to ompute the radius of onvergene forthis type of series.Galileo: Corret.Virginia: What about onvergene?Galileo: With Trigonometri Series, onvergene is a deliate issue. There is goodnews and bad news.Simpliio: I vote to hear the good news �rst.Galileo: OK, let's begin by looking at examples 2 and 3 above. What do you notieabout the series1Xk=1 ak = 1Xk=1(�1)k+1 1k2 and 1Xk=1 a2k�1 = 1Xk=1 1(2k � 1)2 ?Virginia: They both onverge absolutely.Galileo: Corret. So what does that tell you about the series1Xk=1(�1)k+1 1k2 os(kx) and �23 � 4 1Xk=1(�1)k+1 1k2 os(kx)?Simpliio: Sine jos(kx)j � 1 for any k and all x; they both onverge absolutely bythe Comparison Test 9.6.13. In partiular,1Xk=1 j(�1)k+1 1k2 os(kx)j � 1Xk=1 1k2 = �26 <1:Galileo: Corret. So, ould someone please state the next theorem?Virginia: I an.



9.6. SERIES 181Theorem 9.6.25. If 1Xk=1(jakj+ jbkj) < +1;then the series 1Xk=1fak os(kx) + bk sin(kx)gonverges absolutely for all x 2 [��; �℄:Proof. Galileo: So, how about a proof?Virginia: Easy.If x 2 [��; �℄; then1Xk=1fjak os(kx) + bk sin(kx)jg � 1Xk=1fjakj+ jbkjg < +1:
Galileo: Wathing the human mind extrapolate general theorems from a few speialases is a wonderful thing. How about some more good news?Simpliio: Good news is good.Galileo: If we let x = � in the equationx2 = �23 � 4 1Xk=1(�1)k+1 1k2 os(kx);then we see that�2 = �23 � 4 1Xk=1(�1)k+1 1k2 os(k�) = �23 � 4 1Xk=1(�1)2k+1 1k2 :Thus, 1Xk=1 1k2 = �26 :Simpliio: Magi!!Virginia: Its even a good way to ompute �:Galileo: Better than Arhimedes' method for omputing �:.Simpliio: With all this good news, what's the problem with these Trig Series?



182 CHAPTER 9. LIMITSGalileo: How about if we go bak to equation 1? If x = �; then�2 = 1Xk=1(�1)k+1 1k sin(k�) = 0 + 0 + 0 + � � � = 0:Simpliio: OOPS!Virginia: Now I understand why you didn't inlude �� in the interval of onvergene.Galileo: The news gets worse. What an you say about the onvergene of the series1Xk=1(�1)k+1 1k sin(kx)?Simpliio: Nothing.Galileo: That's right.Virginia: None of the Convergene Tests work. The Ratio, Root, and ComparisonTests an't be applied beause the series P1k=1 1k diverges.Simpliio: What about the Alternating Series Test?Virginia: Unfortunately, the sign of kth term ak = (�1)k+1 1k sin(kx) of the sequenealternates so irregularly (almost randomly) that no pattern emerges. Thus, there isno hope for the Alternating Series Test.Galileo: In fat, the argument that this series onverges for x 2 (��; �) is quite triky.Simpliio: I don't know if I an stand any more of this good news.Galileo: The prrof will be left for another day.Simpliio: Sounds like good news to me.Galileo: Quikly now. I am running out of time. Lets �nish with an observationabout di�erentiation and integration. Note that if we di�erentiate Equation 2, wearrive at Equation 1.Simpliio: And if we integrate Equation 1, we get Equation 2. What's the big deal?This tehnique worked �ne for Taylor.Galileo: Equation 2 has exellent onvergene properties. Equation 1 has poor on-vergene properties. Every time you di�erentiate a funtion of the formtk(x) = ak os(kx) + bk sin(kx);



9.6. SERIES 183you �nd that t0k(x) = �kak sin(kx) + kbk os(kx):Every time you integrate a funtion of the formtk(x) = ak os(kx) + bk sin(kx);you �nd that Z tk(x) dx = 1kak sin(kx)� 1kbk os(kx) + C:The fator k produed by di�erentiation retards onvergene. The fator 1k produedby integration improves onvergene. The bottom line is that integration is goodwhile di�erentiation is dangerous.Virginia: Wait a minute! I see a problem if the onstant C 6= 0: For example, ifC = 12 ; then if we integrate a seond time then we will have that unhappy series for x2appearing. I antiipate the formulas beoming more ompliated and the onvergenegetting worse.Example 9.6.19. Galileo: In fat, you are orret. While Mathematiians lust fortidy little formulas, Mother Nature does not always ooperate. Here are a ouple moreexamples:1. �2x�x312 =P1k=1(�1)k+1 1k3 sin(kx); x 2 [��; �℄2. x3�3�x2+2�2x12 =P1k=1 1k3 sin(kx); x 2 [0; 2�℄Simpliio: How about a quik hint at an appliation before we leave?Galileo: The First Harmoni (or Fundamental Overtone) of the series is the terma1 os(x) + b1 sin(x): The Seond Harmoni is given by a2 os(2x) + b2 sin(2x): Thesetwo harmonis are important in speeh reognition, �ltering, and a host of otherappliations. In signal ompression (e.g. JPEG), radio, and television the key idea isto �lter out the frequeny terms ak os(kx) + bk sin(kx); where k is large.Simpliio: How do you do that?



184 CHAPTER 9. LIMITSGalileo: If you ompute the Fourier Transform (i.e. ompute the ak and bk terms),delete the high frequeny omponents, and then ompute the inverse Fourier Trans-form, then this new signal is the �ltered version of the old.Simpliio: By the way, you promised to give us the formulas for the Fourier Transform.Galileo: OK, here are the formulas for the oeÆients.Theorem 9.6.26 (Fourier CoeÆients). If f(x) : [��; �℄! < is ontinuous, thenak = 1� Z ��� f(x) os(kx) dx for k = 0; 1; 2; 3; : : :bk = 1� Z ��� f(x) sin(kx) dx for k = 1; 2; 3; : : :Simpliio: But where did these formulas ome from?Galileo: Pythagoras.Simpliio: Pythagoras? Surely, you are joking, Professor Galileo. What did Pythago-ras know about Trigonometri Series?Galileo: We will explain. First, onsider the following proposition, whih e�etivelystates that that the funtions os(kx) and sin(kx) are orthogonal. This propositionwill get us half way to Pythagoras.Proposition 9.6.27 (Orthogonality of Cos(x) and Sin(x)). If m and n arepositive integers, then1. R ��� os(mx) dx = 0:2. R ��� sin(nx) dx = 0:3. R ��� os(mx) sin(nx) dx = 0:4. If m 6= n; then R ��� os(mx) os(nx) dx = 0:5. If m 6= n; then R ��� sin(mx) sin(nx) dx = 0:Proof. Galileo: What about proofs?1. R ��� os(mx) dx = 0:



9.6. SERIES 185Simpliio: This integral is zero beause when we draw the graph of the funtiony = os(x); it is obvious that the area under the urve is zero on both of the intervals[��; 0℄ and [0; �℄: If m is a positive integer, then the funtion os(mx) is the same asos(x) exept that it goes up and down m times.Virginia: You an also apply the Fundamental Theorem of Calulus 11.7.3 to observethat R ��� os(mx) dx = sin(mx)m j�x=�� = 0� 0 = 0:Simpliio: The Fundamental Theorem of Calulus works too.2. R ��� sin(nx) dx = 0:Simpliio: This integral is zero beause when we draw the graph of the funtiony = sin(nx) is an odd funtion on [��; �℄:Virginia: The Fundamental Theorem of Calulus also works.3. R ��� os(mx) sin(nx) dx = 0:Simpliio: Sine the funtion y = os(mx) is even and the funtion y = sin(nx) isodd, the produt is odd. Thus, integral is zero.4. If m 6= n; then R ��� os(mx) os(nx) dx = 0:Simpliio: I don't see how to prove this fat.Virginia: Neither do I.Galileo: A little trigonometry goes a long way here. Reall your sum formulas foros(x) and observe.1: os(A� B) = os(A) os(B) + sin(A) sin(B)2: os(A+B) = os(A) os(B)� sin(A) sin(B)3: os(A� B) + os(A+B) = 2 os(A) os(B)Note that the third equation is the sum of the �rst two. Thus,os(A) os(B) = 12fos(A� B) + os(A+B)g:Virginia: I see how to �nish the argument. All we have to do is let A = mx and



186 CHAPTER 9. LIMITSb = nx and substitute into the integral. Thus,Z ��� os(mx) os(nx) dx = Z ��� 12fos(mx� nx) + os(mx + nx)g dx= Z ��� 12fos((m� n)x) + os((m+ n)x)g dx= 12 Z ��� os((m� n)x) dx+ 12 Z ��� os((m + n)x) dx= 0 + 0 = 0:Simpliio: Looks like we used Fat 1 twie to get the last two zeros.5. If m 6= n; then R ��� sin(mx) sin(nx) dx = 0:Simpliio: One again, I don't see how to prove this fat.Virginia: I think I do. All we have to do is subtrat the equations we had before. Inpartiular,1: os(A�B) = os(A) os(B) + sin(A) sin(B)2: os(A +B) = os(A) os(B)� sin(A) sin(B)3: os(A�B)� os(A+B) = 2 sin(A) sin(B):Note that the third equation is equation 2 subtrated from eqation 1. Thus,sin(A) sin(B) = 12fos(A� B)� os(A+B)g:The rest of the argument is the same as before beauseZ ��� sin(mx) sin(nx) dx = Z ��� 12fos((m� n)x)� os((m+ n)x)g dx= 12 Z ��� os((m� n)x) dx� 12 Z ��� os((m + n)x) dx= 0 + 0 = 0:
Simpliio: While that proposition was a bit long, it really was quite understandablebeause it only require you know basi fats from Trigonometry and Calulus.



9.6. SERIES 187Galileo: The next proposition provides us with the lengths of the basis vetors1; os(nx); sin(nx):Proposition 9.6.28 (Fourier Equal Lengths Formulas for Cos(x) and Sin(x)).If n is a positive integer, then1. R ��� 1 dx = 2�;2. R ��� os2(nx) dx = �;3. R ��� sin2(nx) dx = �:Proof. Simpliio: What Trig fat do we need this time?Galileo: While the �rst integral is easy, the other two rely on the half angle formulasrelating the square of the funtions os(x) and sin(x) and os(2x): In partiular,1. os2(x) = 1+ os(2x)2 and2. sin2(x) = 1� os(2x)2 :Virginia: Thus,Z ��� os2(nx) dx = Z ��� 1 + os(2x)2 dx = Z ��� 12 dx+ Z ��� os(2x)2 dx = � + 0 = �:Simpliio: And,Z ��� sin2(nx) dx = Z ��� 1� os(2x)2 dx = Z ��� 12 dx� Z ��� os(2x)2 dx = � + 0 = �:
Galileo: Now that we have disussed the Orthogonality and Equal Lengths Proposi-tions 9.6.27, 9.6.28, we are ready to prove the Fourier CoeÆients Formula 9.6.26.Proof. Galileo: While the general proof of the Fourier CoeÆients Theorem 9.6.26 isdiÆult and requires a deep understanding of integration theory, we are now readyto prove it for the �nite dimensinal ase. To keep the subsripts and notation out ofthe disussion, let's onsider the speial ase when f(x) = a02 +a10�s(x)+a2 os(2x)+



188 CHAPTER 9. LIMITSb1 sin(x) + b2 sin(2x): How about if we show you how to ompute the formula for theoeÆient a2?Simpliio: Simple is good.Galileo: Step 1. Multiply both sides of the equation by the funtion os(2x):When we do this, we �nd thatf(x) os(2x) =(a02 + a1 os(x) + a2 os(2x) + b1 sin(x) + b2 sin(2x) ) os(2x)=a02 os(2x) + a1 os(x) os(2x) + a2 os(2x) os(2x)+ b1 sin(x) os(2x) + b2 sin(2x) os(2x):Step 2. Integrate both sides of the equation.When we do this, we �nd by the Orthogonality Property (Proposition 9.6.27) andthe Equal Lengths Property (Proposition 9.6.28)Z ��� f(x) os(2x) dx =Z ��� a02 os(2x) dx+ Z ��� a1 os(x) os(2x) dx+ Z ��� a2 os(2x) os(2x) dx + Z ��� b1 sin(x) os(2x) dx+ Z ��� b2 sin(2x) os(2x) dx= 0 + 0 + Z ��� a2 os(2x) os(2x) dx+ 0 + 0= a2 Z ��� os(2x) os(2x) dx = a2�:Thus, a2 = 1� Z ��� f(x) os(2x) dx:Simpliio: How about an example?Example 9.6.20. Galileo: If f(x) = 1 for x 2 [��; �℄; then a0 = 2 and ak = bk = 0for all k = 1; 2; : : : :Simpliio: That example was too easy. How about a more hallenging one?



9.6. SERIES 189Example 9.6.21. Galileo: Iff(x) = 8<: 1; x 2 [��; 0℄�1; x 2 [0; �℄Virginia: Sine the funtion f(x) is odd, we know that ak = 0 for all k = 0; 1; 2; 3; : : :Simpliio: On the other hand, sine f(x) is odd, the funtion f(x) sin(kx) is even.Thus, bk = 1� Z ��� f(x) sin(kx) dx = 2� Z �0 sin(kx) dx= 2� � os(kx)k ���x=0= � 2� (os(k�)� 1)= � 2� (�1)k � 1k :In partiular, bk = 8<: 4k� if k = 1; 3; 5; : : :0 if k = 2; 4; 6; : : :and f(x) = 4� (sin(x) + sin(3x)3 + sin(5x)5 + : : : )Example 9.6.22. Galileo: If f(x) = x for x 2 [��; �℄; then f(x) is an odd funtion.Thus, the funtion f(x) os(kx) = x os(kx) is an odd funtion for all k; whih impliesak = 0; for all k = 0; 1; 2; : : : : Sine the funtion x sin(kx) is the produt of twofuntions so you have to integrate by parts. While not a bad exerise for you, theantiderivative is Z x sin(kx) dx = �xos(kx)k + sin(kx)k2 :Sine the funtion f(x) sin(kx) = x sin(kx) is the produt of two odd funtions, it



190 CHAPTER 9. LIMITSis even. Thus,bk = 1� Z ��� f(x) sin(kx) dx = 2� Z �0 xsin(kx) dx= 2� (�xos(kx)k + sin(kx)k2 )j�x=0= 2� � � os(k�)k ��0os(0)k= (�1)k+1 2k :Simpliio: Atually, your answer agrees with the formula you posted at the beginningof the disussion.Exerise Set 9.6.Exerises on Convergene of Series1. Compute: P1k=0(3 15k + 2 17k ):2. Show the series P1k=1 k+1k 15k onverges.3. Show the series P1k=1 (�1)kkk onverges.4. Show the series P1k=0 (�1)k2k+1 onverges.5. Show: If the series P1k=1 ak diverges and ak � 0; then P1k=1 ak1+ak diverges.Exerises on Power/Taylor Series1. Determine the interval of onvergene of the series P1k=0 xkk! :2. Determine the interval of onvergene of the series P1k=0 k2xk:3. Determine the interval of onvergene of the series P1k=0 2kk! (x� 3)k:4. Determine the interval of onvergene of the series P1k=0 k35k (x� 7)k:5. Determine the interval of onvergene of the series P1k=0 k35k (x� 7)k:Exerises on Trigonometri/Fourier Series



9.7. LIMITS OF FUNCTIONS 1911. Use the Fourier CoeÆient Theorem to show:x2 = 1Xk=1(�1)k+1 1k sin(kx); for x 2 (��; �);2. Use the Fourier CoeÆient Theorem to show:x2 = �23 � 4 1Xk=1(�1)k+1 1k2 os(kx); for x 2 [��; �℄:3. Use the Fourier CoeÆient Theorem to show:jxj = �2 � 4� 1Xk=1 1(2k � 1)2 os((2k � 1)x); for x 2 [��; �℄:4. Show: 1Xk=1(�1)k+1 1k2 = �212 :5. Show: 1Xk=1 1(2k � 1)2 = �28 :9.7 Limits of FuntionsGalileo: We turn now to the topi of the limit of a funtion. I am sure you studiedthis topi in your Calulus ourses.Simpliio: It has been a long time sine I took Calulus. Muh knowledge has sineevaporated. So where are we headed?Galileo: The �rst theorem we will disuss is the Mean Value Theorem, whih ontainsthe idea that a funtion annot grow faster than the maximum of its �rst derivative.The seond key theorem is Taylor's Theorem, whih basially states that a smoothfuntion an be approximated by a polynomial.Simpliio: If we are interested in sequenes and data, why should we have to disussfuntions?Galileo: For the Arhimedes/Heron algorithm, an understanding of the funtionT (x) = x� x2�K2x beomes entral. Sine an easy alulation shows that jT 0(x)j � 12 for



192 CHAPTER 9. LIMITSall x � pK; we will be able to onlude that the di�erene between the nth approxi-mation xn and the answer pK drops by 50% for eah iteration. Suh a onvergenerate is known as linear (or �rst order) onvergene. These ideas are ompletely generaland apply to a wide range of problems inluding ube roots and beyond.Simpliio: A 50% improvement at eah iterations sounds good.Galileo: As you will see, we are atually doing better than 50%: Taylor's Theoremwill be the key to understanding why this algorithm onverges so rapidly. In fat,of all the theorems you visited in Calulus, Taylor's Theorem is probably the mostimportant for numerial omputations. This theorem allows us to ompute �rst andseond derivatives numerially. Thus, many di�erential equations and partial di�er-ential equations an be solved numerially inluding heat transfer, uid ow, airfoildesign, eletromagnetism, and weather modeling. The basi tehniques of signal andimage proessing also involve these methods. In other words, the appliations areeverywhere.Simpliio: I like these appliations.Galileo: Unfortunately, before we an even think about modeling a real-world prob-lem, we have to develop the requisite language. Sine the Intermediate Value Theo-rem, the Mean Value Theorem, and Taylor's Theorem have hypotheses where fun-tions are assumed ontinuous or di�erentiable, we begin our disussion with the def-inition of the limit of a funtion. We begin our disussion with the de�nition of alimit of a funtion.De�nition 9.7.1 (Limit of a Funtion). If X is an interval and f(x) : X ! <;then limx!af(x) = L; if for every � > 0; there is a Æ > 0 with the property that ifx 2 X; jx� aj < Æ; and x 6= a; then jf(x)� Lj < �:Simpliio: Brutal. For sequenes we had one Greek letter, now we are doubly blessed.I am onfused.Galileo: True, but the real problem is that the de�nition is bakwards. While thefuntion f(x) assigns a point x in the domain to a point f(x) in the range, the



9.7. LIMITS OF FUNCTIONS 193tolerane � > 0 is assoiated with a distane in the range of f(x); while the Æ > 0measures a distane in the domain of f(x): The � appears �rst, while the Æ is seond.Virginia: Hey, this de�nition is not so bad. In fat, it is almost the same as thede�nition for the limit of a sequene. The � funtions exatly as it did before, whilethe integer N is replaed by the quantity Æ:Galileo: In other words, a given an auray between f(x) and L an be assured if agiven preision between x and a is required.Simpliio: OK, but why do you have that little ondition that x 6= a?Galileo: Beause Calulus is the study of being lose. For example, if we ompute thederivative of the funtion f(x) = x2 at the point x = 2; then we must investigate thevalues of the di�erene quotient DQ(x) = x2�4x�2 lose to (but not at) the number 2.If we are areless and substitute x = 2 into this funtion, we get DQ(x) = x2�4x�2 = 00 :Sine division by zero is always evil, we must avoid that \bad" point x = 2: Howabout if we use the de�nition to show that limx!2DQ(x) = 4?Virginia: We simply follow the same \Challenge, Choie, and Chek" proess we didfor sequenes.Example 9.7.1. Using the DEFINITION of limit show: limx!2 x2�4x�2 = 4:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie of Æ :While I am not exatly sure how to hoose Æ; I will make the guess that Æ = �: If weare wrong, we will make adjustments and do it again.
Figure 9.5: The De�nition of a Limit



194 CHAPTER 9. LIMITSStep 3. The Chek that Æ works:If we an show the absolute value of the di�erene between DQ(x) = x2�4x�2 and 4 isless than �; then we are done. However, if we assume that x 6= 2 and jx� 2j < Æ = �;then we see thatjx2 � 4x� 2 � 4j = j(x� 2)(x+ 2)x� 2 � 4j = j(x+ 2)� 4j = jx� 2j < Æ = �:Thus, we are done.Galileo: Very good.Simpliio: How about another example?Example 9.7.2. Using the DEFINITION of limit show: limx!2(3x+ 5) = 11:Virginia: I bet you an do it.Simpliio: OK, I'll give it a try.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie of Æ :Sine I have no lue how to hoose Æ; I will simply follow your lead and let Æ = �:Step 3. (The Chek that Æ works)Again, following your lead, I will ompute the absolute value of the di�erene between3x+ 5 and 11: We �nd that j3x+ 5� 11j = j3x� 6j = 3jx� 2j < 3Æ < 3�:Simpliio: OOPS. Now I am stuk.Virginia: But think about it. If you had simply been a bit smarter and had hosenÆ = �3 ; you would have been �ne. With this hoie we now see that if jx� 2j < Æ; thenj3x+ 5� 11j = j3x� 6j = 3jx� 2j < 3Æ = 3 �3 = �: Now you are done.Simpliio: Atually, that wasn't so bad.Galileo: Note that there is a general strategy here. Namely, hooseÆ = �slope :Simpliio: Sounds good, but what if the slope equals zero?Virginia: And what if the slope is negative?



9.7. LIMITS OF FUNCTIONS 195Galileo: OK, hoose Æ = �jslopej+1:Virginia: Muh better. Now we know that Æ an never be negative or zero.Simpliio: However, I do have just one more question. When I took Calulus, wealways desribed limits by saying that if a sequene of points x1; x2; : : : ; xn; : : : getslose to a point a; then the sequene of points f(x1); f(x2); : : : ; f(xn); : : : gets loseto the limit L:Galileo: Good question. In fat, your idea turns out to be equivalent to the de�nitionI just gave you. A more areful statement of the de�nition of limits in terms ofsequenes is given in the following theorem.Theorem 9.7.2 (The Sequene De�nition for Limit of a Funtion). If X is aninterval, f(x) : X ! <; and limx!a f(x) = L; then for any sequene fxng1n=1 with theproperty that xn 2 X; limn!1 xn = a; and xn 6= a for all n; then limn!1f(xn) = L:Proof. The proof follows the same format as our other proofs that sequenes onverge..Begin by assuming we have a sequene fxng1n=1 with the property that limn!a xn = aand xn 6= a for all n:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie of N :Sine we don't have a formula for the funtion f(x); we are fored to use our hy-potheses to �nd N: However, sine we are assuming that limx!a f(x) = L; we knowthere is a Æ > 0 with the property that if jx� aj < Æ and x 6= a; then jf(x)� Lj < �:Sine Æ > 0 and sine limn!a xn = a; we an �nd an integer N with the property thatjxn � aj < Æ: This integer N is our hoie.Step 3. The Chek that N works:Sine jxn � aj < Æ and xn 6= a; we know immediately that jf(xn)� Lj < �:Galileo: Now that wasn't so bad was it?Simpliio: I guess the proof was similar to the others. But why would you bring upthis tangential topi?



196 CHAPTER 9. LIMITSGalileo: It may be tangential, but from a pedagogial point of view, sequenes areprobably a bit easier to visualize than funtions.Virginia: But, are sequenes good enough?Galileo: Atually, the onverse of the above theorem is also true so we have atuallyformulated an equivalent de�nition of limits that only involves sequenes.Virginia: Should we prove it?Galileo: While similar to the proof that every Cauhy sequene onverges, the proofis by ontradition and we have other topis to over. I will leave it as an exerise.Exerise Set 9.7.1. Using the de�nition of limit show: limx!3 x2�9x�3 = 6:2. Using the de�nition of limit show: limx!a(mx + b) = ma + b:3. Prove that the two De�nitions of Limit are equivalent.9.8 Limit Fats for FuntionsGalileo: Just as we assembled basi fats for limits of sequenes, we now mentionsimilar fats for limits of funtions. The same sum, produt, and quotient rules holdfor funtions as hold for sequenes. Note that the spirit of the proofs is the same.Theorem 9.8.1 (Basi Limit Fats for Funtions). If X is an interval, a 2 X;and f(x); g(x) : X ! < are funtions with the property that limx!a f(x) = L andlimx!a g(x) =M; then:1. Fat 1. limx!a(f(x) + g(x)) = L +M;(The limit of the sum equals the sum of the limits or LS = SL.)2. Fat 2. limx!a(f(x) � g(x)) = L �M; and(The limit of the produt equals the produt of the limits or LP = PL.)3. Fat 3. If M 6= 0; then limx!a(f(x)g(x) ) = LM :(The limit of the quotient equals the quotient of the limits or LQ = QL.)



9.8. LIMIT FACTS FOR FUNCTIONS 197Proof. Fat 1. The limit of the sum equals the sum of the limits.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Atually, we need to make two hoies.Choie 1: Sine limx!a f(x) = L; we know that there is a quantity Æ1 > 0 withthe property that if x 6= a and jx� aj < Æ1; then jf(x)� Lj < �2 :Choie 2: Sine limx!a g(x) = M; we know that there is a quantity Æ2 > 0 withthe property that if x 6= a and jx� aj < Æ2; then jg(x)�M j < �2 :Sine we want both of the statements jf(x) � Lj < �2 and jg(x) �M j < �2 to betrue, we hoose Æ to be the smaller of the two numbers Æ1 and Æ2:Step 3. The Chek:Thus, if x 6= a and jx� aj < Æ; thenjf(x) + g(x)� (L+M)j � j(f(x)� L) + (g(x)�M)j� jf(x)� Lj+ jg(x)�M j� �2 + �2 = �:

Figure 9.6: The Limit of the Sum Equals the Sum of the Limits



198 CHAPTER 9. LIMITSFat 2. The limit of the produt equals the produt of the limits.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Atually, we need to make three hoies.Choie 1: Sine limx!a f(x) = L; we know that there is a quantity Æ1 > 0 withthe property that if x 6= a and jx� aj < Æ1; then jf(x)� Lj < �3jM j+1 :Choie 2: Sine limx!a f(x) = L; we know that there is a quantity Æ2 > 0 withthe property that if x 6= a and jx� aj < Æ2; then jf(x)� Lj < 12 :Choie 3: Sine limx!a g(x) = M; we know that there is a quantity Æ3 > 0 withthe property that if x 6= a and jx� aj < Æ3; then jg(x)�M j < �3jLj+1 :Sine we want all three of the statements jf(x)�Lj < �3jM j+1 ; jf(x)�Lj < 12 ; andjg(x)�M j < �3jLj+1 to be true, we hoose Æ to be the minimum of the three numbersÆ1; Æ2 and Æ3:Step 3. The Chek:Thus, if x 6= a and jx� aj < Æ; then we know by the hoies for Æ1 and Æ2 thatjf(x) � g(x)� L �M j = jf(x) � g(x)� f(x) �M + f(x) �M � L �M j� jf(x) � g(x)� f(x) �M j+ jf(x) �M � L �M j� jf(x)j jg(x)�M j+ jf(x)� Lj jM j� jf(x)j �3jLj+ 1 + �3jM j+ 1M <� jf(x)j �3jLj+ 1 + �3 :Sine x 6= a and jx� aj < Æ2; we know by the seond hoie thatj jf(x)j � jLj j � j f(x)� L j < 12 ;whih implies j f(x) j � jLj+ 12 :



9.8. LIMIT FACTS FOR FUNCTIONS 199Thus, (jLj+ 12) �3jLj+ 1 < 23�andjf(x) � g(x)� L �M j < jf(x)j �3jLj+ 1 + �3 < (jLj+ 12) �3jLj+ 1 + �3 < 23� + �3 < �:Thus, the proof is omplete.Fat 3. The limit of the quotient equals the quotient of the limits.This proof is left as an exerise.Simpliio: But wait a minute, I don't quite see why we know(jLj+ 12) �3jLj+ 1 < 23�:Galileo: Whenever you are expeted to show one fration is less than another, simplyassume the relation holds, ross multiply, and simplify. More than likely, you an�gure it out.We now turn to a speial ase of the theorem that the limit of the produt is theprodut of the limits when one of the funtions is a onstant. We single out this asebeause it is one of the details that needs to be heked when we show the olletionof ontinuous funtions forms a vetor spae. In partiular, if f(x) : X ! < is afuntion whih is ontinuous at eah x 2 X and K 2 <; then the funtion Kf(x) isalso ontinuous.Corollary 9.8.2 (Pulling Constants Aross Limit Signs). If X is an interval,a 2 X; K is a real number, and f(x) : X ! < is a funtion with the property thatlimx!a f(x) = L; then limx!a(K � f(x)) = K � limx!a f(x) = K � L:Proof. This fat follows immediately from the limit of the produt equals the produtof the limit. (i.e. Fat 2, above.) You only have to set g(x) = K; for all x 2 X:Exerise Set 9.8.1. Using your limit fats, show: limx!a(mx + b) = ma+ b:



200 CHAPTER 9. LIMITS2. Using your limit fats, show: limx!a x2 = a2:3. Using your limit fats, show: limx!a x3 = a3:4. Using your limit fats, show: limx!2 xx2�4x�2 = 8:5. Using your limit fats, show: limx!3 xx2�9x�3 = 18:6. To omplete the proof that the limit of the produt equals the produt of thelimit, show: If L > 0; then L+ 123L+1 < 23 :7. Prove: The limit of the quotient equals the quotient of the limits.



Chapter 10
Connetedness and Compatness
Galileo: A solid understanding of Calulus is a must. While we will review the bignamed theorems, we do expet you to be able to ompute derivatives and skethgraphs. In partiular, you should know the produt rule, the quotient rule, and thehain rule.Simpliio: I have forgotten the hain rule. Remind me.Galileo: Go look it up.Simpliio: I sold my book.Galileo: Sorry, I don't have time to reteah all of Calulus.Virginia: What about those word problems? I found them diÆult.Galileo: Any skills you learned solving extrema (e. g. max/min) problems shouldhelp. Root �nding and data �tting are tehniques onneted to real appliations.Real appliations invariably involve transforming words into symbols.Simpliio: Atually, while I also found some of those problems to be hard, I enjoyedonneting the tehniques to something in the real world.Galileo: For Isaa Newton, Calulus was always onneted to veloity, aeleration,fore, mass, and volume. Unfortunately, while these appliations are the real reason tostudy Calulus, we are now going to take a major detour and disuss the theory. Youshould reall that the grandfather of all the theorems in Calulus is the FundamentalTheorem of Calulus, whih not only states that the two big ideas of Calulus are201



202 CHAPTER 10. CONNECTEDNESS AND COMPACTNESSrelated, but that they are atually inverse operations of one another. While we willprove this theorem along the way, our main goals are to prove the Intermediate ValueTheorem, the Mean Value Theorem, and Taylor's Theorem.Simpliio: And why do we are about these wondrous theorems?Galileo: The Intermediate Value Theorem is exatly the type of information we needto guarantee the existene of a root for a ontinuous funtion. This theorem assuresus that the bisetion algorithm always works.Simpliio: And the Mean Value Theorem?Galileo: The Mean Value Theorem provides a tool for showing ertain methods on-verge linearly.Simpliio: Linearly onvergene?Galileo: While the sequene f 1ng1n=1 onverges to zero, the rate is glaial. If you want6 digits of auray, you have to ompute more than a million terms. On the otherhand, the sequene f 12ng1n=1 onverges muh faster.Simpliio: Looks to me like you only need 20 terms this time.Galileo: Very good. In fat, the error drops by 50% for eah new term. The MeanValue Theorem helps us to unover when this preferred onvergene rate will our.In partiular, under reasonable onditions, the method of Newton/Raphson onvergeslinearly. This theorem also sets the stage for the algorithm assoiated with the Con-tration Mapping TheoremSimpliio: And Taylor's Theorem?Galileo: Consider the sequene f 122n g1n=1: How many terms do you have to omputebefore you have 6 digits of auray this time?Simpliio: Looks like you only need to ompute 5 terms this time.Galileo: Exellent! You should have been a omputer sientist. OK, now think aboutit. If you only have a paper and penil, whih sequene would you rather ompute.I think the answer is obvious. In any ase, as long as the funtion f(x) doesn't havemultiple roots, the Newton/Raphson algorithm usually provides quadrati onver-gene. Later, we will show how Taylor's Theorem provides a tehnique for omputing



10.1. CONTINUOUS FUNCTIONS 203derivatives numerially. Thus, they an be used to solve di�erential equations andpartial di�erential equations. These derivatives are also used extensively in signalproessing and image proessing appliations. You an �nd employment in theseareas.10.1 Continuous FuntionsGalileo: When we disussed the bisetion method, we mentioned that the Interme-diate Value Theorem an be used to show that the method always works. Sineontinuity of the funtion f(x) is not only a key hypothesis for this theorem, but alsofor the Fundamental Theorem of Calulus, the Mean Value Theorem, and Taylor'sTheorem, it is now time to nail the Jello to the wall. Before we an give areful proofsof these theorems, we need to prove a number of other theorems along the way inlud-ing the Extremum Theorem and the Intermediate Value Theorem for Integrals. Everyone of these theorems requires the assumption that the funtion f(x) is ontinuous.In fat, whenever we integrate a funtion, we will assume it is ontinuous to makesure the integral exists. The bottom line: ontinuity is an omnipresent assumptionthat insures good things will happen.Simpliio: I guess theory awaits us.Galileo: We now turn to the task of giving a areful de�nition of what it means fora funtion f(x) : X ! < to be ontinuous at a point a in an interval X: As we havealready mentioned, this idea is quite natural. Time is probably the best example of aontinuous phenomenon. At least, we would like to think time hanges ontinuously.A multitude of physial quantities are measured as funtions of time in a ontinuousway. Examples inlude: the distane a projetile has traveled, the distane from theearth to the sun, your age, your height, and your weight.Virginia: How does nature onnet with mathematis?Galileo: Sine we think of time as a linear progression, we an think of time as aopy of the real numbers. Sine we are giving ourselves the Least Upper Bound



204 CHAPTER 10. CONNECTEDNESS AND COMPACTNESSPriniple, we have no holes or jumps in the real numbers. The Intermediate ValueTheorem states that a funtion whih is ontinuous at every point in an intervalatually preserves this property.Virginia: In other words, the analogy is that time orresponds to the real numbersand measurements dependent on time orrespond to ontinuous funtions.Galileo: Deep in our hearts we believe atoms move through spae in a ontinuousfashion.Simpliio: I bet your olleagues in Quantum Mehanis would have something to sayabout this.Galileo: No doubt. But we don't have time for suh a diversion.Virginia: Let's get bak to the mathematis.Galileo: As you will soon notie, a ontinuous funtion will be one whose limits areEASY to ompute. Namely, limits are omputed by simple substituting. We nowgive the preise formulation of the de�nitionDe�nition 10.1.1. If a 2 X; where X � < is an interval, f(x) : X ! < is afuntion, and limx!a f(x) = f(a); then f(x) is ontinuous at x = a:Simpliio: How about a few examples?Galileo: Moments ago, we showed that limx!amx+ b = ma+ b: This exerise showedthat the funtion f(x) = mx + b is ontinuous at the point x = a: Thus, straightlines are always ontinuous. In fat, all your old friends inluding polynomials pn(x);trigonometri funtions (e.g. os(x) and sin(x)); and exponential funtions (suh asex) are ontinuous at every point x 2 <:. Any sum, produt, or quotient of thesefuntions will also be ontinuous. While funtions like f(x) = 1x and tan(x) = sin(x)os(x)are ontinuous at most points, they both shoot o� to 1 at points where the denom-inator equals zero. For example, the funtion f(x) = 1x heads o� to in�nity at x = 0and thus is not ontinuous at this point. However, they have the enjoyable propertythat they are ontinuous at every point where the denominator is di�erent from zero.During our disussions, we will frequently need to assume that the funtions underonsideration are ontinuous



10.1. CONTINUOUS FUNCTIONS 205Virginia: How about an example of a funtion, whih is not ontinuous?Example 10.1.1. Galileo: Consider the Heaviside funtionH(x) = 8<: 1 if x � 00 if x < 0 :Note that while it is ontinuous at every point exept x = 0; there is no point x withthe property that H(x) = 12 : Thus, the funtion H(x) tears apart the real numbersinto two sets. The �rst set is all the negative numbers, whih gets mapped to zero.The seond is the set of all the non-negative numbers, whih gets sent to 1. Thus,nothing gets mapped to 12 : This example will beome important when we disuss theIntermediate Value Theorem 10.2.The purpose of the next theorem is to formalize the fat that the sum, produt,and quotient of two ontinuous funtions is ontinuous.Theorem 10.1.2 (Sum, Produt, and Quotient of Continuous Funtions).If a 2 X; where X is an interval, and f(x); g(x) : X ! < are both ontinuous at thepoint x = a; then1. the funtion (f + g)(x) = f(x) + g(x) is ontinuous at x = a:2. the funtion (f � g)(x) = f(x) � g(x) is ontinuous at x = a:3. if g(a) 6= 0; then the funtion (fg )(x) = f(x)g(x) is ontinuous at x = a:Proof. If f(x) and g(x) are both ontinuous at x = a; then limx!a f(x) = f(a) andlimx!a g(x) = g(a):From the Basi Limit Fats for Funtion 9.8.1, we now make three observations:1. limx!a f(x) + g(x) = limx!a f(x) + limx!a g(x) = f(a) + g(a):2. limx!a f(x) � g(x) = limx!a f(x) � limx!a g(x) = f(a) � g(a):3. If g(a) 6= 0; then limx!a f(x)g(x) = limx!a f(x)limx!a g(x) = f(a)g(a) :



206 CHAPTER 10. CONNECTEDNESS AND COMPACTNESSSimpliio: OK, those three proofs are easy, but what an I do with them?Galileo: Sine f(x) = x is ontinuous, we now know that f(x) � f(x) = x2 and f(x) �f(x) � f(x) = x3 are also ontinuous. In general, we now know that any polynomialpn(x) = xn+ an�1xn�1+ an�2xn�2+ � � �+ a1x+ a0 is ontinuous at every point. Evenmore generally, we know that if pn(x) and qm(x) are two polynomials, then the rationalfuntion r(x) = pn(x)qm(x) is ontinuous at any point x = a; where qm(a) 6= 0: While wewon't take the time to show it now, the trigonometri funtions os(x) and sin(x)also turn out to be ontinuous. Thus, funtions like f(x) = 2x + 3 os(x) + x2 sin(x)will be ontinuous.Virginia: Wait a minute! I just notied that the funtionsos(�x); sin(�x); os(2�x); sin(2�x) are not overed by our Sums, Produts and Quo-tients Theorem. In other words, how do I know these funtions are ontinuous?Galileo: You aught me. I forgot to mention that the omposition of two ontinuousfuntions is ontinuous. Sine g(y) = os(y) and f(x) = 2�x are ontinuous at everypoint, then the next proposition justi�es the laim that the funtion h(x) = g(f(x)) =os(2�x) is ontinuous at every point x:Proposition 10.1.3 (The Composition of Continuous Funtions is Continu-ous). Let X; Y be intervals in <: Let f(x) : X ! Y and g(y) : Y ! < be funtions.If f(x) is ontinuous at a point a 2 X and g(y) is ontinuous at the point f(a) in Y;then the omposition g(f(x)) is ontinuous at x = a:Proof. Galileo: We an prove this proposition right from the de�nition. As usual,the proof is bakwards. Namely, we begin with the funtion g(y) and then with thefuntion f(x): The only idea is that we have to hoose two \Æ0s:" We �rst hoose Æ1for the funtion g(y) and then (depending on the size of Æ1) we hoose Æ:Step 1. The Challenge:Let � > 0 be given.Our job is to �nd a Æ > 0 with the property that if x 2 (a � Æ; a + Æ); theng(f(x) 2 (g(fa))� �; g(fa)) + �):



10.1. CONTINUOUS FUNCTIONS 207Step 2. The Choie:Sine g(y) is ontinuous at y = f(a) and � > 0; hoose Æ1 > 0 with the property thatif y 2 (f(a)� Æ1; f(a) + Æ1); then g(y) 2 (g(f(a))� �; g(f(a)) + �):Sine f(x) is ontinuous at x = a and Æ1 > 0; hoose Æ > 0 with the property thatif x 2 (a� Æ; a+ Æ); then f(x) 2 (f(a)� Æ1; f(a) + Æ1):Step 3. The Chek:If x 2 (a� Æ; a+ Æ); then f(x) 2 (f(a)� Æ1; f(a) + Æ1):Sine f(x) 2 (f(a)� Æ1; f(a) + Æ1); g(f(x) 2 (g(f(a))� �; g(f(a)) + �):Simpliio: Not so bad.Exerise Set 10.1.1. Disuss why the funtion f(x) = sin(x2 + 1) is ontinuous.2. Disuss where the funtion f(x) = x2+1x�9 is ontinuous. Justify your answer.3. Show the funtion f(x) = jxj is ontinuous.4. Explain why the funtion f(x) = 2x+57x+11 is ontinuous at x = 3:5. Evaluate the limit limx!3 2x+57x+11 :6. Show the funtion f(x) = 11�x is ontinuous. Where does it fail to be ontinu-ous?7. Explain why the funtion tan(x) = sin(x)os(x) is ontinuous at most points. Wheredoes it fail to be ontinuous?
Figure 10.1: The Composition of Continuous Funtions Is Continuous



208 CHAPTER 10. CONNECTEDNESS AND COMPACTNESS8. Explain why the funtion f(x) = sin(x2 + 3) is ontinuous. (You may assumethe funtion sin(x) is ontinuous.9. Prove: If T (x) : [a; b℄! < is a funtion with the property thatjT (x1) � T (x2)j � M jx1 � x2j for all x1; x2 2 [a; b℄; then show that T (x) isontinuous at eah x 2 [a; b℄:10.2 Intermediate Values and ConnetednessGalileo: We now return to the Intermediate Value Theorem, whih we already men-tioned when we presented the bisetion method.Simpliio: Remind my why I should are about this theorem?Galileo: The Intermediate Value Theorem is exatly what is needed to guaranteethe bisetion method always works. The �rst mathematiian/philosopher to attemptplaing these ideas on a �rm mathematial foundation was Bernard Bolzano (1781-1848). His goal was to make the idea of an in�nitesimal preise. While he publisheda proof in 1817, he ahieved little reognition for his e�orts until after his death.In fat, he had a rough time sine he lost his teahing position at the University ofPrague for his pai�st views. He was even put under house arrest and forbidden topublish.Virginia: I think you ould identify with the plight of this fellow.Galileo: Indeed I do. While unaware of Bolzano's ideas, Augustin Cauhy (1789-1857) published many of these results in 1821. We now state and prove a tehnialproposition, whih will help us prove the theorem. Intuitively, this proposition statesthat if a funtion f(x) maps a point x0 to a value above y0; then a whole open intervalof points must also be mapped above y0: A similar statement an be made if f(x)maps a point x0 to a loation below y0;Proposition 10.2.1. Let f(x) : (a; b) ! < be a funtion, whih is ontinuous at apoint x0 2 (a; b):



10.2. INTERMEDIATE VALUES AND CONNECTEDNESS 2091. If f(x0) > y0; then there is a Æ > 0 with the property that f(x) > y0 for allx 2 (x0 � Æ; x0 + Æ):2. If f(x0) < y0; then there is a Æ > 0 with the property that f(x) < y0 for allx 2 (x0 � Æ; x0 + Æ):Proof. 1. If f(x0) > y0; then let � = f(x0) � y0 > 0: Sine f(x) is ontinuous atx = x0; there is a Æ > 0 with the property that if x 2 (x0�Æ; x0+Æ); then f(x) 2(f(x0)� �; f(x0) + �): Thus, f(x) > f(x0)� � = y0 for all x 2 (x0 � Æ; x0 + Æ):2. If f(x0) < y0; then let � = y0 � f(x0) > 0: Sine f(x) is ontinuous at x = x0;there is a Æ > 0 with the property that if x 2 (x0 � Æ; x0 + Æ); then f(x) 2(f(x0)� �; f(x0) + �): Thus, f(x) < f(x0) + � = y0 for all x 2 (x0 � Æ; x0 + Æ):Simpliio: I didn't like that proposition. I hope I never see it again.Galileo: Unfortunately, we will see it again when we disuss extrema and ompatness.This proposition ontains useful onnetions between ontinuous funtions and openintervals.Virginia: Open intervals aren't so hard.Galileo: Let us now state and prove the Intermediate Value Theorem. If we use ourexample to illustrate the theorem, we should let the funtion f(x) be your height attime x: This funtion will be a ontinuous funtion of time. Sine you were less than2 feet tall when you were born, f(0) < 2: If b denotes your urrent age, f(b) > 5:Sine y0 = 4 is intermediate between 2 and 5; the theorem guarantees that there willbe a time z0 with the property f(z0) = 4: Now, for the theorem itself.Theorem 10.2.2 (Intermediate Value Theorem). If f(x) : [a; b℄! < is ontin-uous at eah x 2 [a; b℄ and f(a) < y0 < f(b) (or f(a) > y0 > f(b) ); then there is apoint z0 2 [a; b℄ suh that f(z0) = y0:Proof. The proof rests on the Law of Trihotomy, the Least Upper Bound Priniple,and the previous proposition.
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Figure 10.2: The Intermediate Value TheoremSimpliio: What the hek is the Law of Trihotomy?Galileo: The pre�x \Tri" indiates three possibilities. The Law of Trihotomy is afany way of saying that if someone gives you two real numbers x and y; then one ofthe following three possibilities must hold: x > y; x < y; or x = y:Simpliio: That Law is obvious.Galileo: Well OK, but it an be proved from basi priniples. In any ase, our strategyis going to be to �nd a number z0 with the property that if f(a) < y0 < f(b); thenthere is a number z0 2 [a; b℄ suh that the statements f(z0) > y0 and f(z0) < y0 areboth false.Virginia: So, by the Law of Trihotomy, there is no other possibility exept thatf(z0) = y0:Galileo: Corret.Virginia: But how do we �nd z0?Galileo: The point z0 will be de�ned as the least upper bound of all those points xin [a; b℄; suh that f(x) is \below" the line y = y0: To formalize this statement, wede�ne this set by the rule S = fx 2 [a; b℄ : f(x) � y0g: A detail that needs to beheked is that this set is non empty.Virginia: Sine f(a) < y0; we immediately know that a 2 S:



10.2. INTERMEDIATE VALUES AND CONNECTEDNESS 211Galileo: Corret. Now we simply identify z0 as the least upper bound of S:Virginia: And show the two other ases f(z0) > y0 and f(z0) < y0 are both false.Galileo: Corret.Case 1. Suppose the statement f(z0) > y0 is true.By the previous proposition we an �nd a Æ > 0 so that if x 2 (z0� Æ; z0+ Æ); thenf(x) > y0: Thus, if x 2 (z0�Æ; b℄; then x is NOT in the set S and the number z1 = z0�Æmust be an upper bound for S: Sine z1 = z0 � Æ < Æ; we have a ontradition tothe assumption that z0 is the smallest upper bound. This ontradition fores us toabandon the supposition that f(z0) > y0 is true.Case 2. Suppose the statement f(z0) < y0 is true.Again, by the previous proposition we an �nd a Æ > 0 so that if x 2 (z0�Æ; z0+Æ);then f(x) < y0: Thus, if x 2 (z0 � Æ; z0 + Æ); then x 2 S: In partiular, the pointx = z0+Æ2 is NOT in the set S: Thus, we have a ontradition to the assumption thatz0 is an upper bound of S:Galileo: Notie that the idea underlying this proof is that the problem of \breaks" or\jumps" in the urve y = f(x) is thrown bak to the problem of no \holes" in the realnumber line. Atually, what we are saying is that if X is an interval and the imageset Y = f(X) is de�ned by Y = f(X) = fy 2 < : y = f(x) for some x 2 Xg; then Yis an interval. In other words, the ontinuous image of a onneted set is onneted.Virginia: The Least Upper Bound Priniple is what makes it all work.Galileo: Before we leave this subjet, let's follow Professor Polya's ditum that weshould look bak at what we have aomplished. First, let me omment that the ideaof onnetedness is a ompletely general onept, whih is valid in any dimension.In our setting, the point y0 separates the real line into the two open intervals V1 =(�1; y0) and V2 = (y0;1): The proposition shows that the two sets S1 = fx 2 [a; b℄ :f(x) 2 V1g and S2 = fx 2 [a; b℄ : f(x) 2 V2g are unions of open intervals. Suh setsare alled open. Sine the sets V1 and V2 are disjoint, the sets S1 and S2 are disjoint.Thus, we have separated the interval [a; b℄ into the union two non-empty disjoint open



212 CHAPTER 10. CONNECTEDNESS AND COMPACTNESSsets. The point z0 we found shows this is impossible.Virginia: Why do we need the assumption that the funtion is ontinuous?Galileo: Reall the Heaviside exampleH(x) = 8<: 1 if x � 00 if x < 0 ;where there is no point x with the property that H(x) = 12 : Thus, the intermediatevalue 12 is never attained.Virginia: Where might we see these ideas again?Galileo: In Complex Variables you will immediately be onfronted by the JordanCurve Theorem, whih says that any simple losed urve C separates the plane intotwo open sets, an \inside" and an \outside." Thus, the set <2 � C is not onneted.Simpliio: That stu� sounds way too theoretial to be useful.Galileo: Not only is Complex Variables a beautiful subjet, but it is used everywherein engineering and physis appliations.Exerise Set 10.2.1. Show that the funtion f(x) = x5 + x+ 1 has a root in the interval [�1; 0℄:2. Show that the funtion f(x) = x� ex has a root in the interval [0; 1℄:3. Prove the following theorem: If f(x) : [0; 1℄ ! [0; 1℄ is a funtion that is on-tinuous at eah x 2 [0; 1℄; then there is a point z 2 [0; 1℄ with the propertythat f(z) = z: (Hint: Apply the Intermediate Value Theorem to the funtionh(x) = x� f(x):)10.3 Extreme Values and CompatnessGalileo: We now turn to the Extremum Theorem for ontinuous funtions. This the-orem states that a ontinuous funtion f(x) : [a; b℄! < always attains its maximum.



10.3. EXTREME VALUES AND COMPACTNESS 213In other words, there is a point z0 2 [a; b℄ with the property that f(z0) � f(x) for allx 2 [a; b℄:Simpliio: So, if I toss a ball into the air and ath it a few moments later, then atsome instant z0 in time, the ball will be at its highest. Seems obvious to me.Galileo: Not so fast. What about the funtion f(x) = 1x de�ned on the interval (0:1℄:While the funtion is ontinuous, the graph beomes arbitrarily high as x gets loseto zero.Simpliio: In other words, the ball just keeps on going up.Galileo: Corret.Virginia: How do we keep that from happening?Galileo: Our friend the Least Upper Bound Priniple will one again save us. Notethat the theorem states that not only is the funtion f(x) bounded above, but thatthere is a partiular point (or instant in time) z0 whih is the highest point on theurve.Theorem 10.3.1 (Extremum Theorem). If f(x) : [a; b℄! < is ontinuous at eahpoint x 2 [a; b℄; then there is a point z0 2 [a; b℄ with the property that f(z0) � f(x) forall x 2 [a; b℄: Similarly, there is a point z1 2 [a; b℄ with the property that f(z1) � f(x)for all x 2 [a; b℄:Proof. This theorem is proved in two steps.Our �rst step is to show the funtion f(x) must be bounded. In other words, thereis a onstantM with the property that f(x) �M for all x 2 [a; b℄: In partiular, f(x)annot be unbounded the way the funtion f(x) = 1x is.The seond step in the proof is to guarantee that there is a point z0 2 [a; b℄with the property that f(z0) = L; where L = lub(f([a; b℄)) = lubfy 2 < : y =f(x) for some x 2 [a; b℄g: By the de�nition of L; L � f(x) for all x 2 [a; b℄: If f(z0) =L; then f(z0) � f(x) for all x 2 [a; b℄:Step 1. There is a onstant M th the property that f(x) �M for all x 2 [a; b℄:Suppose this statement is false. If false, then for eah integer n the set Sn = fx 2[a; b℄ : f(x) � ng is nonempty. Note that eah Sn is nonempty and that Sn+1 � Sn for



214 CHAPTER 10. CONNECTEDNESS AND COMPACTNESSall n: If bn = lub(Sn); then a � bn+1 � bn � b; for all n: Thus, the sequene fbng1n=1 isa dereasing sequene, whih is bounded below by the number a: Hene the sequeneonverges to some number z0 2 [a; b℄: Note that z0 � bn for all n:Choose an integer n > f(z0): Sine the funtion f(x) is ontinuous at x = z0; weknow by Proposition 10.2.1 there is a Æ > 0 with the property that if x 2 (z0�Æ; z0+Æ);then f(x) < n: Sine no point x an be in both Sn and the interval (z0 � Æ; z0 + Æ);the number z0 � Æ is an upper bound for the set Sn: Sine z0 � Æ < z0 � bn; Thus,the number z0 � Æ is an upper bound for the set Sn; whih is smaller than its leastupper bound bn:This ontradition shows that there is a onstantM with the property that f(x) �M for all x 2 [a; b℄:Step 2. If L = lub(f([a; b℄)); then there is a point z0 2 [a; b℄ suh that f(z0) = L:Suppose this statement is false. If false, then de�ne the funtion g(x) = 1L�f(x) :Sine f(x) is ontinuous for all x 2 [a; b℄ and f(x) 6= L for all x 2 [a; b℄; we knowby Theorem 10.1.2 that the quotient g(x) = 1L�f(x) is also ontinuous. By Step 1,we know there is a onstant M > 0 with the property j 1L�f(x) j = jg(x)j � M for allx 2 [a; b℄:Sine L� f(x) > 0 for all x 2 [a; b℄; 1L�f(x) �M for all x 2 [a; b℄:Thus, 1M � L � f(x) for all x 2 [a; b℄ or f(x) � L � 1M for all x 2 [a; b℄: Thus,L� 1M is an upper bound for the set fy 2 < : y = f(x) for some x 2 [a; b℄g; whih issmaller than L:Thus, we have a ontradition to the assumption that L is the least upper boundfor the set f([a; b℄): Thus, there is a point z0 2 [a; b℄ with the property that f(z0) =L � f(x) for all x 2 [a; b℄:Galileo: In the spirit of Professor Polya let us think about what we have aomplished.Note that we have just onsidered two big ideas: onnetedness and ompatness.Simpliio: So?Galileo: So the ontinuous image of a losed bounded interval is a losed boundedinterval. Thus, ontinuous funtions preserve this type of interval. Note also that our



10.3. EXTREME VALUES AND COMPACTNESS 215proofs of both the Intermediate Value Theorem and the Extremum Theorem employProposition 10.2.1. What is the key idea embedded in this Proposition?Virginia: It seems to start with an open interval in the range of the funtion and thenwork bakwards to the domain.Simpliio: The resulting set in the domain turns out to be the union of a bunh ofopen intervals.Galileo: Exatly. If we introdue a bit of notation, we an larify the onept. Inpartiular, if we de�ne the open interval in the range of the funtion by the ruleV = fy 2 < : y > y0g; then we showed that the inverse image set U = f�1(V ) =fx 2 (a; b) : f(x) > y0g is the union of open intervals bak in the domain. Betteryet, if we ombine the two parts of Proposition 10.2.1 we have shown that the inverseimage of an open set is open.Simpliio: So why is this idea a big deal?Galileo: First, it throws all the problems bak to an open interval in the real line <:Thus, one we understand the real numbers, we are ready to go.Simpliio: I have understood the real numbers for a long time.Galileo: Maybe so, but it wasn't until Cantor and Dedekind ame along that peoplefelt the Jello was nailed to the wall. Two thousand years is a long time. While studentsthink that omplex numbers are weird, the real diÆulties lie in the real numbers,where Dedekind showed the assoiative, ommutative, and distributive laws an beextended from the rational numbers to this bigger set of numbers.Simpliio: Is that all?Galileo: A seond reason to think in terms of open intervals is that these ideasgeneralize to all dimensions. In partiular, the generalization of an open interval isan open disk in the plane and an open ball in three spae. An open set is the unionthese simple building bloks.Simpliio: So.Galileo: If we de�ne a ontinuous funtion to be one with the property that U =f�1(V ) is an open set whenever V is open then we an show that the properties of



216 CHAPTER 10. CONNECTEDNESS AND COMPACTNESSompatness and onnetedness are both preserved by ontinuous funtions.Simpliio: But that means we have to go through all that theory again. More proofs!Galileo: But this time the proofs are more oneptual and muh easier beause wedon't have all those �s, Æs, and limits. This branh of mathematis is alled Topology.Virginia: Why don't we do it?Galileo: We ould, but it would be a distration from our main mission.Simpliio: If this approah is easier, why didn't we skip all the limit stu� and just doTopology?Galileo: We ould have, but you would have found the disussions weird and abstrat.You would have onstantly been asking where this stu� ame from.Virginia: It is interesting that one little proposition ould lead to a whole new viewon a subjet.Galileo: Topology provides a wonderfully elegant framework for these ideas.Exerise Set 10.3.1. Identify the extreme values of the funtion f(x) = x2�1 on the interval [�1; 1℄:2. Identify the extreme values of the funtion f(x) = x2 � 5x + 6 on the interval[2; 3℄:3. Identify the extreme values of the funtion f(x) = x3 � 9x + 1 on the interval[�4; 4℄:



Chapter 11
Mean Value Theorems
11.1 Di�erentiationGalileo: While you have seen the de�nition of derivative and the di�erent rules foromputing the sum, produt, and quotient of di�erentiable funtions, we now providea quik review.Simpliio: It has been years sine I took Calulus. A review would be appreiated.Galileo: We will need the assumption of di�erentiability as an assumption in manyof our theorems. We will also need to ompute derivatives when we use the errorformulas to determine an upper bound on the error.Simpliio: But aren't ontinuous funtions good enough? Every ontinuous funtionis di�erentiable. I am sure that is true.Galileo: Sorry, but you are mistaken one again.Virginia: Don't you remember that the funtion f(x) = jxj is ontinuous at everypoint but has a sharp orner at x = 0?Simpliio: OK, OK.Galileo: Sine we have felt the impat of Murphy's �st when we disussed the failuresof Newton/Raphson, our goal now is to get the language exatly right. As a politereminder we begin with the familiar de�nition for a funtion f(x) to be di�erentiable.De�nition 11.1.1. If X is an interval, f(x) : X ! <; and the limit limh!0 f(x+h)�f(x)h217



218 CHAPTER 11. MEAN VALUE THEOREMSexists, then f(x) is said to be di�erentiable at the point x 2 X: The derivative is de-�ned by f 0(x) = limh!0 f(x+h)�f(x)h :Galileo: If y = f(x); we will sometimes write f 0(x) = dydx : Just as we remarkedfor ontinuous funtions, the assumption of di�erentiability will our in most of ourtheorems inluding the Fundamental Theorem of Calulus, the Mean Value Theorem,Taylor's Theorem, and the Lagrange Error Formula for polynomial interpolation.Example 11.1.1. If x 2 <; then reall the following derivatives.1. If f(x) = os(x); then f 0(x) = � sin(x):2. If f(x) = sin(x); then f 0(x) = os(x):3. If f(x) = ex; then f 0(x) = ex:4. If x > 0 and f(x) = loge(x); then f 0(x) = 1x :Simpliio: No problem, I think I remember seeing all those rules.Galileo: What about the derivative of h(x) = ex2?Simpliio: Hmmm. Not sure.Virginia: That derivative follows from the hain rule, where you ompute the deriva-tive of the omposition of two funtions as the derivative of the outside holding theinside �xed and then multiply by the derivative of the inside. For this example, yousimply think of the funtion h(x) as the omposition of the two funtions f(x) = x2and g(y) = ey: Sine h(x) = ex2 = g(f(x)); h0(x) = g0(f(x))f 0(x) = ex22x:Galileo: Very good. The important omputational fats about the sum, produt, quo-tient, and omposition of two di�erentiable funtions are summarized in the followingtheorem.Theorem 11.1.2 (Di�erentiation Rules). If X is an interval and f(x); g(x) :X ! Y � < are both di�erentiable at the point x 2 X and h(y) : Y ! Z � < isdi�erentiable at the point y = g(x); then



11.1. DIFFERENTIATION 2191. (f + g)0(x) = f 0(x) + g0(x);(The derivative of the sum equals the sum of the derivatives.)2. (f � g)0(x) = f(x) � g0(x) + f 0(x) � g(x);(The Produt Rule.)3. if g(x) 6= 0; then (fg )0(x) = g(x)f 0(x)�g0(x)f(x)(g(x))2 ; and(The Quotient Rule.)4. h(g(x))0 = h0(g(x))g0(x):(The Chain Rule.)Proof. Galileo: You should be familiar with these formulas so we will skip the proofs.Simpliio: Not a problem.Galileo: Just as we ommented for ontinuous funtions, we see by the �rst derivativerule that the sum of two di�erentiable funtions is di�erentiable. By the seondderivative rule, we see that onstants an pulled aross derivative signs.Simpliio: What?Virginia: In other words, dKf(x)dx = K df(x)dx :Simpliio: Why would I are?Virginia: Beause you now know that the olletion of all di�erentiable funtions onan interval [a; b℄ forms a vetor spae.Galileo: Corret.Simpliio: Why is this important?Galileo: The general rule is that the more smoothness you have in your data, the theeasier it is to �nd aurate approximations.Simpliio: Smoothness?Galileo: The more derivatives a funtion f(x) : [a; b℄ ! < has, the smoother it is.Let us make the following indutive de�nition for the nth derivative as the derivativeof the (n� 1)st derivative.



220 CHAPTER 11. MEAN VALUE THEOREMSDe�nition 11.1.3. If f(x) : [a; b℄! <; then the nth derivative of y = f(x) is de�nedas dnydxn = f (n)(x) = df(n�1)(x)dx ; where f (0)(x) = f(x); for all x 2 [a; b℄:Simpliio: So, if y = f(x) = sin(x); then dydx = f (1)(x) = f 0(x) = os(x) and d2ydx2 =f (2)(x) = f 00(x) = � sin(x):Galileo: Corret. In other words, not only is f (0)(x) = f(x); but also f (1)(x) = f 0(x)and f (2)(x) = f 0(f (1)(x)) = f 00(x); et. The purpose of the next de�nition is to gradea funtion by the number of derivatives it has. The more derivatives f(x) has, thesmoother it is. The smoother it is, the easier it is to �nd aurate approximations.De�nition 11.1.4. The symbol C0[a; b℄ denotes the olletion of all funtions on theinterval [a; b℄ with the property that f(x) is ontinuous at eah x 2 [a; b℄:De�nition 11.1.5. The symbol Cn[a; b℄ denotes the olletion of all funtions on theinterval [a; b℄ with the property that f(x); f 0(x); f 00(x); : : : ; f (n)(x) are all ontinuousat eah x 2 [a; b℄:The larger the integer n; the smoother the funtions in the olletion.The next proposition shows that if f(x) 2 C1[a; b℄; then f(x) 2 C0[a; b℄:Proposition 11.1.6. If f(x) : [a; b℄ ! < is di�erentiable at a point x = z 2 [a; b℄;then f(x) is ontinuous at x = z:Proof. We must show that limx!z f(x) = f(z):Sine the statement limx!z f(x) = f(z) is equivalent to limx!z(f(x)� f(z) ) = 0;we need only prove this last equality.We know by the limit of the produt equals the produt of the limits thatlimx!z(f(x)� f(z) ) = limx!z f(x)� f(z)x� z (x� z)= limx!z f(x)� f(z)x� z limx!z(x� z)=f 0(x) � 0 = 0:Thus, limx!z f(x) = f(z) and f(x) is ontinuous at x = z:



11.2. ROLLE'S THEOREM 221Exerise Set 11.1.1. If f(x) = sin(x2 ); then ompute f 0(x):2. If f(x) = ex2; then ompute f 0(x):3. If f(x) = ex2 ; then ompute f 0(x):11.2 Rolle's Theorem

Mihel Rolle (1652-1719)
Galileo: Let us begin by introduing the ideas of Mihel Rolle (1652-1719), a Frenhmathematiian, who lived during the rein of King Louis XIV. While we will notgive a formal proof of this theorem, an easy physis appliation an be used to helpvisualize where it omes from. In partiular, if the variable x represents time andf(x) represents the height of a ball thrown into the air, then the theorem states thatif the ball leaves your hand at 4 feet above the ground at time x = a and is aughtat this same height at a seond time x = b; then there will be some time z when theinstantaneous veloity is zero. as it turns out, that time is at the exat moment whenthe ball ahieves its greatest height.Simpliio: But what about a bungee jumper, who jumps o� a bridge at time x = aand returns to the same height a few seonds later at time x = b?



222 CHAPTER 11. MEAN VALUE THEOREMSGalileo: You are optimisti to think that the bungee jumper will return to his initialheight. However, if he does, then we an visualize the point z as the moment in timewhen a bungee jumper is at the bottom of his fall. Both situations are overed in histheorem.Theorem 11.2.1 (Rolle). If f(x) : [a; b℄ ! <; where f(x); f 0(x) are ontinuous,and f(a) = f(b); then there is a point z 2 (a; b) suh that f 0(z) = 0:Proof. Galileo: To ease your pain we will skip the diÆult part of the proof. Youmight be surprised to learn that the diÆulties lie in showing that the funtion atu-ally attains a highest (and lowest) value at some point z: However, if we an �nd apoint z 2 (a; b) with the property that f(z) � f(x) for all x 2 [a; b℄; then all we haveto do is ompute the di�erene quotient on eah side. The di�erene quotient will bepositive on the left and negative on the right. Thus, the derivative at the top of themountain must be zero.A more quantitative argument an be given by simply notiing when the numer-ator and denominator of the di�erene quotient are positive and negative. Sinef(z) � f(x) for all x 2 [a; b℄; the numerator of the di�erene quotient f(z+h)� f(z)is negative. If the point z + h is to the left of z; then the quantity h must also benegative. Thus the fration f(z+h)�f(z)h must be positive.Similarly, if the point z + h is to the right of z; then the quantity h must bepositive. Thus, the di�erene quotient f(z+h)�f(z)h equals a positive number dividedby a negative number and thus negative. Thus, f 0(z) is the limit of both a sequeneof positive numbers and a sequene of negative numbers. Thus, f 0(z) = 0:Galileo: An appliation of Rolle's Theorem is in the area of roof repair. For example,when you are in need of a hammer and all to your assistant to get one to you rightaway, what is the fastest method?Simpliio: The answer is simple. You simply throw it at him.Galileo: Very good. However, fewer injuries will our if the highest point of thetrajetory ours where you are standing on the roof. If the veloity is zero, then you



11.2. ROLLE'S THEOREM 223an simply pluk the hammer out of the air.Simpliio: I think I am beginning to see that loations where a funtion has zeroveloity might be useful.Galileo: Others have made this observation before you. The next de�nition makesthis idea oÆial.De�nition 11.2.2. If X � <; and f(x) : X ! < is di�erentiable at eah point inX; then a point  2 X is a ritial point of f(x) if f 0() = 0: The value y = f() isalled a ritial value.In other words, a ritial point is where the urve y = f(x) has a horizontaltangent.Simpliio: Ah! So the point x =  is nothing but a root of the �rst derivative. Whydo you all it a ritial point?Galileo: Beause something important might be happening at that point. For us,the word important means a maximum or minimum value of f(x) ours at thatloation. If you remember from Calulus, maxima and minima our at ritialpoints or endpoints. Finding a root of a funtion's �rst derivative f 0(x) is a big deal.Virginia: Aren't we talking about roots tomorrow?Galileo: Absolutely. However, our immediate need for Rolle's Theorem is that itprovides a quik proof of the Mean Value Theorem.

Figure 11.1: An Appliation of Rolle's Theorem



224 CHAPTER 11. MEAN VALUE THEOREMSExerise Set 11.2.1. If f(x) = �x2 + 3x� 2; then �nd a ritial point for f(x): What is the ritialvalue? (Graph the funtion y = f(x):)2. If f(x) = x3 + 2x; then show that f(x) has exatly one real root. (Graph thefuntion y = f(x):)3. Compute the ritial points and ritial values of the funtion f(x) = xe�x2 :(Graph the funtion y = f(x):)11.3 The Mean Value TheoremGalileo: Now we turn to the proof of the Mean Value Theorem.Simpliio: What is the idea underneath the Mean Value Theorem? How am I goingto remember it?Galileo: Sometimes we refer to this theorem as the \Highway Patrol Theorem."Simpliio: Why is that?Galileo: Suppose you deide to visit your grandmother, who lives 80 miles away. Sineyou have just purhased a new ar, you deide to drive. If you get there in one hour,then do you deserve a tiket?Simpliio: I am not sure. The time does sound a bit short.Galileo: Hopefully, the loal polie oÆer will be taking a lunh break. If not, youmight warrant a speeding tiket, whih ould ost you a serious amount of money.Simpliio: How so?Galileo: Sine the distane traveled in one hour was 80 miles, the average veloity is80mph. The Mean Value Theorem guarantees that at some time during the trip yourinstantaneous veloity will be exatly 80mph. If the maximum speed limit over theduration of the trip is 70mph, then you will need a very bright and energeti lawyerto get you o�.Simpliio: How about if I get a fuzz-buster?



11.3. THE MEAN VALUE THEOREM 225Galileo: Let's turn to the theorem.Theorem 11.3.1 (Mean Value Theorem). If f(x) : [a; b℄ ! < has the propertythat f(x); f 0(x) are ontinuous, then there is a point z 2 (a; b) suh that f 0(z) =f(b)�f(a)b�a :Proof. De�ne the funtion F (x) = f(x)� (f(a)+ f(b)�f(a)b�a (x� a)): Note that F (a) =f(a)� f(a) = 0 and F (b) = f(b)� f(a)� (f(b) � f(a)) = 0: Sine F 0(x) = f 0(x) �f(b)�f(a)b�a ; we an onlude from Rolle's Theorem that there is a point z 2 (a; b) suhthat F 0(z) = f 0(z)� f(b)�f(a)b�a = 0: Thus, f 0(z) = f(b)�f(a)b�a :Simpliio: I do not like that proof. How did some one think of that idea?Galileo: While the proof of the theorem may appear arti�ial, the basi idea is toredue the Mean Value Theorem to Rolle's theorem by subtrating the straight liney = f(a) + f(b)�f(a)b�a (x � a) from the funtion f(x): The next version of the MeanValue Theorem is rewritten into a form similar to Taylor's Theorem, whih we willonsider shortly.Theorem 11.3.2 (Mean Value Theorem 2). If f(x) : [a; b℄! < has the propertythat f(x); f 0(x) are ontinuous, then for every pair of points x; x0 2 (a; b) there is apoint z 2 (a; b) suh that f(x) = f(x0) + f 0(z)(x� x0):Proof. In the Mean Value Theorem 11.3.1 simply let x0 = a; x = b; and substituteinto the expression f 0(z) = f(b)�f(a)b�a to get f 0(z) = f(x)�f(x0)x�x0 : If we multiply both
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Figure 11.2: The Mean Value Theorem for f(x) = 4� (x� 2)2 on [0; 2℄



226 CHAPTER 11. MEAN VALUE THEOREMSsides of the equation by x0; we see that f(x)� f(x0) = f 0(z)(x � x0) and the resultfollows.Simpliio: So what is this Mean Value Theorem good for?Galileo: The next theorem allows us to estimate how muh a funtion expands orontrats.Corollary 11.3.3 (Corollary to the Mean Value Theorem). If f(x) : [a; b℄! <has the property that f(x); f 0(x) are ontinuous and M = maxfjf 0(x)j : x 2 [a; b℄g;then for every pair of points x; x0 2 [a; b℄ we know that jf(x)� f(x0)j �M jx� x0j:Proof. By Mean Value Theorem 2 11.3.2 we know that for any two points x; x0 2 [a; b℄;there is a point z 2 [a; b℄ so that f(x)� f(x0) = f 0(z)(x� x0):Thus, if M = maxfjf 0(x)j : x 2 [a; b℄g; then jf(x) � f(x0)j = jf 0(z)jjx � x0j �M jx� x0j:Galileo: From an intuitive perspetive, the Corollary states that if you drive yourrusty old ar from your house to a party at your grandmother's house 80 miles awayand the jalopy annot go faster than 45mph, then you had better leave in plenty oftime or you will be late.Simpliio: If you allow only an hour, then you will be assured of being late.Galileo: There it is, a mathematial fat.Example 11.3.1. If f(x) = sin(x); then we will show that j sin(x)� sin(y)j � jx� yjfor any two real numbers x and y:However, sine f 0(x) = os(x) for all x 2 < and os(x) � 1 for all x 2 <; we knowby the Mean Value Theorem 11.3.3 that j sin(x)� sin(y)j � jx� yj for all x; y 2 <:How about if you pratie on a ouple of the following problems?Exerise Set 11.3.1. If f(x) = x2 � 4; a = 0; and b = 1; then �nd the point z guaranteed by theMean Value Theorem 11.3.1. (Graph the funtion y = f(x):)



11.4. UNIFORM CONTINUITY 2272. If f(x) = x3 � 4; a = 1; and b = 5; then �nd the point z guaranteed by theMean Value Theorem 11.3.1. (Graph the funtion y = f(x):)3. If f(x) = ex and x; y 2 [0; 1℄; then show that jex � eyj � 3jx � yj: (Graph thefuntion y = f(x):)4. IfK > 0 and T (x) = x� x2�K2x = 12x+ K2x ; then show that jT (x)�T (y)j � 12 jx�yjfor any two real numbers x; y 2 [pK;1): (We will see this problem again whenwe analyze the Arhimedes/Heron square root algorithm. Graph the funtiony = T 0(x):)5. IfK > 0 and T (x) = x� x3�K3x2 = 23x+ K3x2 ; then show that jT (x)�T (y)j � 23 jx�yjfor any two real numbers x; y 2 [ 3pK;1): (We will see this problem again whenwe analyze the ube root algorithm. Graph the funtion y = T 0(x):)6. If T (x) = 13 os(2x) � 3; then show that jT (x) � T (y)j � 23 jx � yj for any tworeal numbers x and y:11.4 Uniform ContinuityGalileo: We now turn to the topi of uniform ontinuity.Simpliio: Yet a seond type of ontinuity? Isn't one enough?Galileo: It really isn't a new type of ontinuity, but rather is involved in the hoieof Æ when you have been hallenged by an �:Simpliio: I have no idea what you are talking about.Galileo: Let us begin with a ouple of examples.Example 11.4.1. If f(x) : < ! < is de�ned by the rule f(x) = 2x; x0 2 <; and � > 0is given, then how small must Æ > 0 be hosen to guarantee that if x 2 (x0�Æ; x0+Æ);then f(x) 2 (f(x0)� �; f(x0) + �)?Simpliio: Even I an answer that question. All we have to do is hoose Æ = �2 beauseto hek that this hoie works we simply note that jf(x) � f(x0)j = j2x � 2x0j =2jx� x0j < 2 �2 = �:



228 CHAPTER 11. MEAN VALUE THEOREMSGalileo: Very good. Now onsider a seond example.Example 11.4.2. If f(x) : < ! < is de�ned by the rule f(x) = x2; x0 2 <; and � > 0is given, then how small must Æ > 0 be hosen to guarantee that if x 2 (x0�Æ; x0+Æ);then f(x) 2 (f(x0)� �; f(x0) + �)?Simpliio: This question is a bit harder, but let's �gure it out. If we assume thatÆ < 1; then jxj < jx0j + 1: Thus, jf(x) � f(x0)j = jx2 � x20j = j(x � x0)(x + x0)j =jx � x0jjx + x0j < Æ(jxj + jx0j) < Æ(2jx0j + 1): Thus, if I hoose Æ > 0 less than theminimum of 1 and Æ < �2jx0j+1 ; then I am done.Galileo: You are getting good at these omputations. I am impressed. OK, what isthe di�erene between the hoie of Æ in these two examples?Virginia: In the �rst example, the hoie of Æ does not depend on the given point x0:Namely, Æ = �2 for any point x0: In the seond example, the hoie of Æ must be madesmaller for larger values of x0:Galileo: In other words, in the �rst example, the hoie of Æ is independent of thepoint x0; while in the seond example, the hoie of Æ depends on x0: Let's modifythe seond example and see if you an �gure out what the hoie should be this time.Example 11.4.3. If x0 2 [�100; 100℄ and � > 0 are given and f(x) : [�100; 100℄! <is de�ned by the rule f(x) = x2; then how small must Æ > 0 be hosen to guaranteethat if x 2 (x0 � Æ; x0 + Æ); then f(x) 2 (f(x0)� �; f(x0) + �)?Simpliio: This question is easy. If we hoose Æ = �200 ; then jf(x)�f(x0)j = jx2�x20j =j(x� x0)(x + x0)j = jx� x0jj100 + 100j < Æ(200) < �200200 = �:Thus, we are done.Galileo: Very good. Now, what is the di�erene between the seond and third exam-ples.Simpliio: Obviously, the only di�erene is that the interval in the third example islosed and bounded.Virginia: And you hoose Æ = �M ; where M � jf 0(x)j for all x in the interval.Galileo: Guess what! You have disovered two new theorems.



11.4. UNIFORM CONTINUITY 229Theorem 11.4.1 (Uniform Continuity 1). If X is an interval in < and f(x) :X ! < is a di�erentiable funtion with the property that jf 0(x)j < M for all x 2 X;then for any x0 2 X and any � > 0; there is a Æ > 0 with the property that ifjx� x0j < Æ; then jf(x)� f(x0)j < �:Proof. Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Choose Æ = �M+1 :Step 3. The Chek:If jx� x0j < Æ; then by the Mean Value Theorem 11.3.3jf(x)� f(x0)j �M jx� x0j < MÆ < M �M+1 = MM+1� < �:Galileo: The next theorem provides the generality we desire. Note the hypotheseshave been hanged so that it is no longer neessary to assume that the funtion isdi�erentiable. However, to make up for this weaker assumption, we must assume thatthe interval is losed and bounded.Theorem 11.4.2 (Uniform Continuity 2). If f(x) : [a; b℄! < is a funtion withthe property that f(x) is ontinuous at eah x 2 [a; b℄; then for any � > 0 thereis a Æ > 0 with the property that if x0; x 2 [a; b℄ have distane jx � x0j < Æ; thenjf(x)� f(x0)j < �:Proof. By way of ontradition, assume that there is no suh delta:If this is true, then we have the following ases.Case n = 1:For Æ1 = 11 = 1 we an �nd points y1; z1 2 [a; b℄ with the property that jy1 � z1j <Æ1 = 11 and jf(y1)� f(z1)j � �:Case n = 2:For Æ2 = 12 we an �nd points y2; z2 2 [a; b℄ with the property that jy2 � z2j < Æ2 = 12and jf(y2)� f(z2)j � �:



230 CHAPTER 11. MEAN VALUE THEOREMSCase n = 3:For Æ3 = 13 we an �nd points y3; z3 2 [a; b℄ with the property that jy3 � z3j < Æ3 = 13and jf(y3)� f(z3)j � �:Case n = n:For Æn = 1n we an �nd points yn; zn 2 [a; b℄ with the property that jyn� znj < Æn = 1nand jf(yn)� f(zn)j � �:Sine we have assumed the interval [a; b℄ is losed and bounded, the sequenefyng1n=1 has a onvergent subsequene. Without loss of generality, we an assume thesequene fyng1n=1 onverges to some point x0: Sine the funtion f(x) is ontinuous atx0; we an �nd a Æ > 0 with the property that if jx�x0j < Æ; then jf(x)�f(x0)j < �2 :Choose an integer N suÆiently large that if n � N; then jyn � x0j < Æ2 :Sine jyn � x0j < Æ2 < Æ; jf(yn)� f(x0)j < �2 :Sine jzn � x0j = jzn � yn + yn � x0j � jzn � ynj + jyn � x0j < 1n + Æ2 � 1N + Æ2 �Æ2 + Æ2 = Æ; jf(zn)� f(x0)j < �2 :Combining these last two piees of information, we see that jf(yn) � f(zn)j =jf(yn)� f(x0) + f(x0)� f(zn)j � jf(yn)� f(x0)j+ jf(x0)� f(zn)j < �2 + �2 = �:Thus, we have a ontradition to our assumption that jf(yn)� f(zn)j � � for allintegers n:Thus, the theorem is proved.Simpliio: I have the reepy feeling I have seen that argument before.Galileo: You have. As part of the proof of the Extremum Theorem, we showed thata ontinuous funtion on a losed bounded interval is bounded. The argument is thesame exept for the phrasing. In fat, our theorem on uniform ontinuity an beused to show a ontinuous funtion on a losed bounded interval is bounded. Theargument is straightforward.Simpliio: Well, why didn't you give us this argument before? It would have beenmore eonomial.Galileo: True, but it would have seemed a bit ontrived. In any ase, repetition is agreat teaher.



11.4. UNIFORM CONTINUITY 231Simpliio: I have one last question. Why did we go to the trouble to disuss uniformontinuity? It seems like a detail.Galileo: While you are orret that uniform ontinuity is a detail for an appliationsperson like yourself, it is the key idea in the proof that a ontinuous funtion on alosed bounded interval is integrable.Simpliio: As far as I am onerned, any funtion an be integrated.Galileo: The ontinuous funtions on a losed bounded interval form a generally wellbehaved olletion. They possess the extremum and intermediate value properties. Aswe will see momentarily, they are also integrable. Thus, they form an important subsetof the olletion of integrable funtions. In some sense the olletion of ontinuousfuntions are a nie subset of the olletion of integrable funtions. In an e�ort toisolate the onept of Uniform Continuity and unify the two theorems Theorem 11.4.1and Theorem 11.4.2, we make the following de�nition.De�nition 11.4.3. If X is an interval in < and f(x) : X ! < is a funtion with theproperty that � > 0 there is a Æ > 0 with the property that if x0; x 2 X have distanejx� x0j < Æ; then jf(x)� f(x0)j < �:Exerise Set 11.4.1. If f(x) = x3 + 3x is de�ned on the interval [�2; 2℄ and � > 0; then �nd aÆ > 0 with the property that if jx � x0j < Æ; then jf(x) � f(x0)j < � for allx; x0 2 [�2; 2℄:2. If f(x) = x4+x is de�ned on the interval [�3; 3℄ and � > 0; then �nd a Æ > 0 withthe property that if jx� x0j < Æ; then jf(x)� f(x0)j < � for all x; x0 2 [�3; 3℄:3. If f(x) = 5jxj + 3jx � 1j is de�ned on the interval [�2; 2℄ and � > 0; then �nda Æ > 0 with the property that if jx � x0j < Æ; then jf(x) � f(x0)j < � for allx; x0 2 [�2; 2℄:



232 CHAPTER 11. MEAN VALUE THEOREMS11.5 IntegrationGalileo: Sine our proofs of both Taylor's Theorem and the Fundamental Theoremof Calulus require the Intermediate Value Theorem for Integrals, I guess we have nohoie but to de�ne the integral of a funtion.Simpliio: More theory?Galileo: While you dislike the theory, the de�nition is in the same spirit as thede�nitions we gave for limits of sequenes and funtions. If you have forgotten thosedetails, go bak and look at your notes from those disussions.Virginia: You mean you an phrase the de�nition in terms of a hallenge?Galileo: Absolutely. First, we have to de�ne the ideas of a partition and a re�nementof a partition. These terms will appear in the de�nition of the integral.De�nition 11.5.1. A partition of an interval [a; b℄ is a �nite ordered set of pointsof the form P = fa = x0 < x1 < x2 < � � � < xn = bg:De�nition 11.5.2. If P and P 0 are two partitions of an interval [a; b℄; then P 0 is arefinement of P if every member of P 0 is a member of P:De�nition 11.5.3. A bounded funtion f(x) : [a; b℄ ! < is integrable with integralR ba f(x) dx if for every � > 0; there is a partition P with the property that if P 0 =fa = x0 < x1 < x2 < � � � < xn = bg is any re�nement of P and for any hoie ofpoints x�k 2 [xk; xk+1℄; thenj n�1Xk=0 f(x�k)(xk+1 � xk)� Z ba f(x) dxj < �:Sine we have an exess of notation, we will use the notationS(P ) = Pn�1k=0 f(x�k)(xk+1 � xk) to denote the sums approximating the integral. Wewill write this sum with the understanding that x�k 2 [xk; xk+1℄: With this notationwe an reformulate the de�nition a bit more suintly.De�nition 11.5.4. A bounded funtion f(x) : [a; b℄ ! < is integrable with integralR ba f(x) dx if for every � > 0; there is a partition P with the property that if P 0 is any



11.5. INTEGRATION 233re�nement of P; then jS(P 0)� Z ba f(x) dxj < �:Simpliio: This de�nition seems unneessarily ompliated.Virginia: Atually, no. I an already see that it an one again be phrased as a threestep proess with the usual suspets: Challenge, Choie, and Chek. If I hallengeyou with an � > 0; then you are required to �nd me a partition P (The Choie) withthe property that any \bigger" partition P 0 has the property that S(P 0) is within �of the integral R ba f(x) dx: One again the � is a measure of our distane from thedesired answer. Not ompliated at all.Galileo: The next proposition enapsulates the two most important fats onerningintegrals. The �rst states that the integrable of the sum is the sum of the integrals.The seond states that we an pull onstants aross the integral sign. Reall thatderivatives also had these two properties. Together these two properties state thatthe derivative and integral are linear transformations and thus lie under the purviewof Linear Algebra. More about this later.Proposition 11.5.5 (Linearity Property for Integrals). If f(x); g(x) : [a; b℄! <are integrable and K is a real number, then1. R ba f(x) + g(x) dx = R ba f(x) dx + R ba g(x) dx:(The integral of the sum equals the sum of the integrals.)2. R ba Kf(x) dx = K R ba f(x) dx:(Pulling onstants.)Proof. Fat 1. Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Choose a partition P with the property that if P 0 is any re�nement of P; then1. jSf(P 0)� R ba f(x) dxj < �2 and



234 CHAPTER 11. MEAN VALUE THEOREMS2. jSg(P 0)� R ba g(x) dxj < �2 ;where Sf (P 0) and Sg(P 0) denote the approximating sums assoiated with f(x) andg(x); respetively. (We assume that the hoie of x�k is the same for both approxima-tions.)Step 3. The Chek: Sine Sf (P 0) + Sg(P 0) = Sf+g(P 0);jSf+g(P 0)� (Z ba f(x) dx+ Z ba g(x) dx)j =jSf(P 0) + Sg(P 0)� (Z ba f(x) dx+ Z ba g(x) dx)j=jSf(P 0)� Z ba f(x) dx+ Sg(P 0)� Z ba g(x) dxj�jSf(P 0)� Z ba f(x) dxj+ jSg(P 0)� Z ba g(x) dxj<�2 + �2 = �:Proof of Fat 2.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Choose a partition P with the property that if P 0 is any re�nement of P; thenjSf(P 0)� R ba f(x) dxj < �jKj+1 :Step 3. The Chek:If P 0 is any re�nement of P; then jSKf(P 0)�K R ba f(x) dxj = jKSf (P 0)�K R ba f(x) dxj =jKjjSf(P 0)� R ba f(x) dxj < jKj �jKj+1 < �:Virginia: Those proofs weren't bad at all. They were almost the same as our limitfats.Simpliio: But why are they alled linearity properties? I don't see any proportions.Galileo: Do you remember the de�nition of linear transformation from your studiesof Linear Algebra?Simpliio: I am not sure what you are getting at.Galileo: If you remember, a transformation L : U ! V from a vetor spae U to avetor spae V is alled linear if it satis�es two properties:



11.5. INTEGRATION 2351. L(u1 + u2) = L(u1) + L(u2) for all u1;u2 2 U and2. L(Ku) = KL(u) for all u 2 U and K 2 <:Of ourse, the vetor spae of integrable funtions is in�nite dimensional.Simpliio: I have no use for in�nite dimensional vetor spaes and their transforma-tions.Galileo: But you will.Simpliio: Oh.Galileo: The global strategy will be to approximate in�nite dimensional spaes by�nite dimensional spaes and linear transformations by matries. You have heardof a matrix, haven't you? Derivatives, integrals, and Fourier Transformations alloperate in the in�nite dimensional arena. Fortunately, they all have �nite matrixrepresentations. Thus, Linear Algebra will be involved.Simpliio: OK, OK. An integration example please.Galileo: Before we present an example, I would like to present two more notationsfor the lower and upper sums.De�nition 11.5.6. If f(x) : [a; b℄! < is a bounded funtion, P is a partition of [a; b℄;and zk 2 [xk; xk+1℄ has been hosen with the property that mk = f(zk) � f(x) for allx 2 [xk; xk+1℄; then de�ne the lower sum on P by S(P ) =Pn�1k=0 f(zk)(xk+1 � xk) =Pn�1k=0 mk(xk+1 � xk):De�nition 11.5.7. If f(x) : [a; b℄! <; P is a partition of [a; b℄; and zk 2 [xk; xk+1℄has been hosen with the property that f(x) � f(zk) =Mk for all x 2 [xk; xk+1℄; thende�ne the upper sum on P by S(P ) =Pn�1k=0 f(zk)(xk+1�xk) =Pn�1k=0 Mk(xk+1�xk):Virginia: Atually, I hate to be piky, but I have a omplaint about these last twode�nitions. If we assume the funtion f(x) is ontinuous, we know we an �nd thepoints zk and zk: However, if we don't make this assumption about f(x); we mightnot be able to �nd suh points. What do we do then?Galileo: Good point. We would be on safer ground if we de�ned them more arefullyusing the onepts greatest lower bound and the least upper bound.



236 CHAPTER 11. MEAN VALUE THEOREMSDe�nition 11.5.8. If f(x) : [a; b℄ ! < is bounded and P = fa = x0 < x1 < x2 <� � � < xn = bg is any partition of [a; b℄; then de�ne the notation mk = glbff(x) : x 2[xk; xk+1℄ and Mk = lubff(x) : x 2 [xk; xk+1℄:Virginia: I see why you are assuming your funtions are bounded. If you had un-bounded funtions, the quantities mk and Mk ould be in�nite.Galileo: You are orret. We are trying to keep our disussion as simple as possible.Let us begin by making a number of observations.Proposition 11.5.9. If f(x) : [a; b℄! < is bounded and P is any partition of [a; b℄;then the lower and upper sums exist and S(P ) � S(P ) � S(P ):Proof. Sine mk � f(x�k) �Mk for all x 2 [xk; xk+1℄ and all k = 0; 1; : : : ; n� 1;S(P ) = n�1Xk=0 mk(xk+1 � xk) � S(P ) = n�1Xk=0 f(x�k)(xk+1 � xk)� n�1Xk=0 Mk(xk+1 � xk) = S(P ):Thus, we are done.Proposition 11.5.10. Let f(x) : [a; b℄ ! < be bounded. If P and P 0 are any twopartitions of [a; b℄ where P 0 is a re�nement of P; then S(P ) � S(P 0) � S(P 0) � S(P ):Proof. Simpliio: Even I an see that this proposition is true.Galileo: But, you might want to be a bit areful and inrease the partition P to P 0by adding one point at a time. This tehnique is alled indution.Simpliio: Our example please.Galileo: OOPS! We need to remind you of one more detail. We need the sum formulafor the arithmeti series.Proposition 11.5.11. Pnk=1 k = 1 + 2 + � � �+ n = n(n+1)2 :Proof. Virginia: I remember the proof.



11.5. INTEGRATION 237If we let Sn = 1 + 2 + � � �+ n; thenSn = 1 + 2 + : : : + nSn = n + (n� 1) + : : : + 12Sn = (n+ 1) + (n+ 1) + : : : + (n+ 1)Sine the quantity 2Sn is written as n sums of the number n + 1; we see that2Sn = n(n + 1): Thus, Sn = n(n+1)2 :Virginia: Now we should be ready for our example.Example 11.5.1. Galileo: How about if we ompute the area under the urve y =f(x) = x for x 2 [0; 1℄?Simpliio: Sure, but I already see the enlosed region is a right triangle with base andheight equal to one. The answer equals 12 :Galileo: We shall do as the young lady instruts.Virginia:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Begin by hoosing an integer n with the property that n > 1� :Now hoose the partition P to be n + 1 equally spaed points between 0 and 1:In other words, P = f0 = x0 < x1 < x2 < � � � < xn = 1g; where xk = kn ; fork = 0; 1; 2; : : : ; n:Step 3. The Chek:Let P 0 be any re�nement of P with x�k any hoie of points in the interval [xk; xk+1℄:Before we disuss P 0; let's make a ouple of observations about P: Sine xk+1�xk = 1nand mk = kn ; for all k = 0; 1; : : : ; n� 1;



238 CHAPTER 11. MEAN VALUE THEOREMS
S(P ) = n�1Xk=0 mk(xk+1 � xk)= n�1Xk=0 kn 1n= 1n2 n�1Xk=0 k= 1n2 (n� 1)n2=12 n� 1n :Similarly, sine Mk = k+1n ; for all k = 0; 1; : : : ; n� 1;S(P ) = n�1Xk=0 Mk(xk+1 � xk)= n�1Xk=0 k + 1n 1n= 1n2 n�1Xk=0(k + 1)= 1n2 n(n + 1)2=12 n + 1n :Thus, 12 n� 1n = S(P ) � S(P 0) � S(P 0) � S(P 0) � S(P ) = 12 n+ 1n :Sine we have hosen n > 1� and 12 n+1n � 12 n�1n = 22n = 1n ; we an see thatjS(P 0)� 12 j < 1n < �: Thus, R 10 x dx = 12 :Virginia: Sine eah estimate of the integral is squeezed between a bit less than 12and a bit more than 12 ; I see we have a squeezing type proess taking plae here.Simpliio: OK, but I knew before we started that a triangle with height and baseequal to one has area equal to 12 :



11.5. INTEGRATION 239Example 11.5.2. Galileo: OK, then how do you ompute the area under the parabolay = f(x) = x2; for x 2 [0; 1℄?Simpliio: I would use my antiderivatives from Calulus.Galileo: But, what if you were Arhimedes? He had no antiderivatives.Simpliio: I would be in trouble.Galileo: While we won't give his proof, the next proposition provides the key to a proofhe would appreiate. Virginia, how about if you lead the way again?Proposition 11.5.12. Pnk=1 k2 = 12 + 22 + � � �+ n2 = n(n+1)(2n+1)6 :Proof. Note the following speial ases.If n = 1; then 12 = 1(1+1)(2+1)6 :If n = 2; then 12 + 22 = 2(2+1)(2�2+1)6 :If n = 3; then 12 + 22 + 32 = 3(3+1)(2�3+1)6 :The formal proof is by indution.Virginia: Using the de�nition, we simply go through the same steps as before.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Begin by hoosing an integer n with the property that n > 1� :Now hoose the partition P to be n + 1 equally spaed points between 0 and 1:In other words, P = f0 = x0 < x1 < x2 < � � � < xn = 1g; where xk = kn ; fork = 0; 1; 2; : : : ; n:Step 3. The Chek:Let P 0 be any re�nement of P with x�k any hoie of points in the interval [xk; xk+1℄:Before we disuss P 0; let's make a ouple of observations about P: Sine xk+1�xk = 1nand mk = ( kn)2; for all k = 0; 1; : : : ; n� 1;
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S(P ) = n�1Xk=0 mk(xk+1 � xk)= n�1Xk=0(kn)2 1n= 1n3 n�1Xk=0 k2= 1n3 (n� 1)n(2n� 1)6=16 (n� 1)(2n� 1)n2 :Similarly, sine Mk = (k+1n )2; for all k = 0; 1; : : : ; n� 1;S(P ) = n�1Xk=0 Mk(xk+1 � xk)= n�1Xk=0(k + 1n )2 1n= 1n3 n�1Xk=0(k + 1)2= 1n3 n(n+ 1)(2n+ 1)6=16 (n+ 1)(2n+ 1)n2 :Thus, 16 (n� 1)(2n� 1)n2 =S(P )�S(P 0)�S(P 0)�S(P 0)�S(P )=16 (n + 1)(2n+ 1)n2 :



11.5. INTEGRATION 241Sine we have hosen n > 1� ;S(P 0)� S(P 0) �16 (n+ 1)(2n+ 1)6n2 � 16 (n� 1)(2n� 1)6n2=2n2 + 3n + 16n2 � 2n2 � 3n+ 16n2= 6n6n2 = 1n;and both S(P 0) and 26 are trapped between S(P 0) and S(P 0); these estimates show thatjS(P 0)� 26 j < 1n < �: Thus, R 10 x2 dx = 13 :Simpliio: These examples are not as bad as I would have expeted. However, howdid you know that mk = ( kn)2 and Mk = (k+1n )2?Virginia: Sine the funtion y = f(x) = x2 is inreasing on the interval [x;xk+1℄; thelowest point on the urve ours at the left endpoint xk: Thus, mk = (xk)2 = ( kn)2:Similarly, the value ofMk+1 is omputed at the right endpoint so thatMk = (xk+1)2 =(k+1n )2:Example 11.5.3. Galileo: How about if we show that R 10 x3 dx = 14? The only fatwe need is that Pnk=1 k3 = (n(n+1)2 )2:Simpliio: Holy Mother of Jesus, save me from this mania. Let's move on. I wouldrather we do it Isaa Newton's way.Galileo: So you do appreiate a good theorem when you see one! OK, we will leave itfor an exerise.Galileo: OK, now it is time to move on to inequalities. Note that the next proposi-tion is analogous to the squeezing theorem for sequenes. Unfortunately, just as theprevious squeeze involved a proof by ontradition, the urrent proof does as well.Simpliio: But, why an't we avoid new proofs?Galileo: Sadly, we did not de�ne the integral in terms of sequenes.Simpliio: I an smell that ontrapositive already.Proposition 11.5.13 (Monotone Property for Integrals). If f(x); g(x) : [a; b℄!< are bounded, integrable, and f(x) � g(x) for all x 2 [a; b℄; then R ba f(x) dx �R ba g(x) dx:



242 CHAPTER 11. MEAN VALUE THEOREMSProof. Begin by noting that if P is any partition of [a; b℄; then our assumption thatf(x) � g(x) for all x 2 [a; b℄; implies thatSf(P ) = n�1Xk=0 f(x�k)(xk+1 � xk) � n�1Xk=0 g(x�k)(xk+1 � xk) = Sg(P ):By way of ontradition assume that R ba f(x) dx > R ba g(x) dx: We will show thisassumption leads to the absurdity that the number Sf(P ) is stritly less than itself.Step 1. The Choie of epsilon:Let � = R ba f(x) dx�R ba g(x) dx2 > 0:(Sine we are proving the ontrapositive, we get to hoose � to be any number wewant. The smart hoie is half the distane between the integrals R ba f(x) dx andR ba g(x) dx:)With this hoie of �; we know 2� = R ba f(x) dx�R ba g(x) dx: If we write 2� = �+ �and move one integral to the other side of the equation, thenZ ba g(x) dx+ � = Z ba f(x) dx� �:Step 2. The Choie of the partition P :(We now get to hoose the partition based on the hoie of �:)Choose a partition P with the property that if P 0 is any re�nement of P; thenjSf(P 0)� R ba f(x) dxj < � and jSg(P 0)� R ba g(x) dxj < �:Step 3. The Contradition:(We now show that the number Sf(P 0) is less than itself.)Sine jSf(P 0)� R ba f(x) dxj < �; R ba f(x) dx� � < Sf(P 0):Sine jSg(P 0)� R ba g(x) dxj < �; Sg(P 0) < R ba g(x) dx+ �:Sine Sf(P 0) � Sg(P 0); we see thatSf(P 0) � Sg(P 0) < Z ba g(x) dx+ � = Z ba f(x) dx� � < Sf(P 0):Thus, Sf(P 0) < Sf (P 0); a ontradition sine no number an be less than itself.Don't let all the notation onfuse you. The proof is easier than it looks. Draw apiture.



11.5. INTEGRATION 243Simpliio: That proposition seems obvious to me. I don't see why it was neessaryto prove it.Galileo: The next orollary will provide the starting point in our proof of the MeanValue Theorem for Integrals.Corollary 11.5.14 (Integral Bounds). If f(x) : [a; b℄! < is bounded, integrable,and m � f(x) �M for all x 2 [a; b℄; then m(b� a) � R ba f(x) dx �M(b � a):Proof. This orollary follows immediately from the previous proposition.First, set g(x) =M for all x 2 [a; b℄: Thus, R ba f(x) dx � R ba M dx =M(b � a):Seond, set g(x) = m for all x 2 [a; b℄: Thus, m(b� a) = R ba m dx � R ba f(x) dx:Simpliio: I have a quik question. Why all this generality in the de�nition of theintegral? In other words, as soon as you deided to ompute, you immediately hoseyour partition to have equally spaed points. Why not always limit your partitionsto equally spaed points?Galileo: Exellent question! We have partitions with variable length intervals forboth pratial and theoretial reasons. A pratial reason is that the integral an beestimated more eÆiently and aurately if we have shorter intervals where the fun-tion y = f(x) is hanging rapidly and longer intervals where the funtion is hangingmore slowly. If the funtion happens to be di�erentiable, then the omputations willbe improved if the lengths of intervals are hosen relatively small in regions where thederivative is large and relatively long in regions where the derivative is lose to zero.This proess an be automated.Example 11.5.4. For example, our friends in statistis are always having to approxi-mate integrals like R 10�10 e�x2 dx: Sine the funtion f(x) = e�x2 and its �rst derivativeare virtually zero on the intervals [�10;�5℄ and [5; 10℄; our partitionP = f�10 = x0 < x1 < x2 < � � � < xn�1 < xn = 10g an be hosen so that x1 = �5:and xn�1 = 5: The intermediate points an be lustered in the interval [�5; 5℄:



244 CHAPTER 11. MEAN VALUE THEOREMSVirginia: And the theoretial reasons?Galileo: If we use the de�nition of integral we just gave, it is easy to prove the ruleR ba f(x) dx = R a f(x) dx + R b f(x) dx for  2 [a; b℄: We simply add the point  toan arbitrary partition P = fa = x0 < x1 < � � � < xn = bg to reate a re�nementP 0 = fa = x0 < x1 < � � � < xk <  < xk+1 < � � � < xn = bg: The proof of this fat is abit of a nuisane if we had only onsidered equally spaed partitions. We will provethis fat momentarily.Simpliio: Is that all?Galileo: As you will see during this disourse, many tehniques have diÆulty whenmaking approximations near the boundary. The Runge and Gibbs example stand outas examples of this type. Some of these problems an be alleviated when we hooseour partition so that most of the points are lustered out near the boundary of theinterval. For numerial integration, Gauss Quadrature provides an elegant way tomake this hoie.Simpliio: Any other thoughts?Galileo: While most of our disussions will be restrited to the 1-dimensional setting,most real appliations take plae in 2; 3; or even higher dimensional spaes. Whileupper sums and lower sums may not be well-de�ned in these settings, the expressionS(P ) = Pn�1k=0 f(x�k)(xk+1 � xk) makes sense as long as the value f(x�k) lies in areal vetor spae and the quantity (xk+1 � xk) is a real number. The other issue isonvergene for the partial sums. However, if we de�ne the metri on the range ofthe funtion so onvergene implies onvergene on eah oordinate, then we are bakto dimension one. Pythagoras does that for us. He is our man. This heavy-handeddisussion implies that when we integrate a funtion of the form r(t) = (x(t); y(t));we simply integrate the two oordinates separately.Simpliio: Hmmm.Virginia: I also have a question. When you omputed the examples, you immediatelyturned to the lower and upper sums. If you have equally spaed points, then thelower and upper sums are sequenes so you simply ould have de�ned Pn to be the



11.5. INTEGRATION 245partition of the interval [a; b℄ with n equally spaed points. The integral an now bede�ned simply as the limit of the sequene limn! S(Pn) = limn! S(Pn): While thesetwo limits might not be equal, I doubt that happens. Can these limits di�er?Example 11.5.5 (A non-Integrable Funtion). Galileo: Now you are asking fora bizarre example. However, the following funtion has the property that all the uppersums equal +1; while all the lower sums equal �1: Thus, it annot be integrable.De�nition 11.5.15 (A non-Integrable Funtion). De�ne the funtion f(x) :[0; 1℄! < by the rulef(x) = 8<: �1 if x is a rational number1 if x is not a rational number :Virginia: Yes, I an see that no matter what the hoie of the partition, P; it willalways be true that mk = �1 and Mk = 1:Simpliio: How so?Virginia: Sine there will always be a rational number x�k between xk and xk+1; mk =�1: Thus, S(P ) = �1 for any partition P: Sine there will always be an irrationalnumber x�k between xk and xk+1; Mk = 1: Thus, S(P ) = 1:Galileo: While this example makes the point that we should be areful, we won't useit muh. However, it does set the stage for a riterion that guarantees the existene ofthe integral. The riterion is similar to the Cauhy riterion we had for sequenes. Infat, the proof involves the same onstrution we went through for Cauhy sequeneswhere all but a �nite number of terms of a sequene are trapped in a nested sequeneof intervals [an; bn℄; where bn � an < 1n :Galileo: OK, now it is time provide onditions, whih guarantee the integral exists.Simpliio: This disussion will be for the math majors.Galileo: True, but it will reinfore your understanding of the de�nition of the integral.Theorem 11.5.16 (Cauhy Integrability Criterion). If f(x) : [a; b℄ ! < is abounded funtion, whih has the property that for every � > 0; there is a partition Psuh that Sf(P )� Sf(P ) < �; then f(x) is integrable.



246 CHAPTER 11. MEAN VALUE THEOREMSProof. The proof is onstrutive, where a sequene of partitions fPng1n=1 are foundwith the property that Pn+1 re�nes Pn and Sf(Pn)� Sf(Pn) < 1n :Case n = 1. Let � = 1:Choose a partition P1 with the property that Sf (P1)� Sf (P1) < 1:Case n = 2. Let � = 12 :Choose a partition P2 with the property that Sf(P2)� Sf(P2) < 12 : Sine re�nementonly fores the upper and lower sums to be loser, assume that P2 re�nes P1: (If itdoesn't, then add the points of P1 to P2:)Case n = 3. Let � = 13 :Choose a partition P3 with the property that Sf(P3)� Sf(P3) < 13 : Sine re�nementonly fores the upper and lower sums to be loser, assume that P3 re�nes P2: (If itdoesn't, then add the points of P2 to P3:)Continue in this manner for arbitrary integers n to obtain a sequene of partitionswith the property thatSf(P1) � Sf(P2) � � � � � Sf (Pn) � Sf(Pn) � � � � � Sf(P2) � Sf(P1)and Sf (Pn)� Sf(Pn) < 1n :Sine the sequene fSf(Pn)g1n=1 is bounded inreasing, it onverges to some num-ber, all it R ba f(x) dx:Sine the sequene fSf(Pn)g1n=1 is bounded dereasing, it also onverges to somenumber.Sine Sf (Pn)�Sf (Pn) < 1n ; the sequene fSf (Pn)g1n=1 also onverges to R ba f(x) dx:Thus, the funtion f(x) is integrable.Simpliio: But, wait a minute. Don't you have to go through the same Challenge,Choose, and Chek routine we did before?Galileo: Of ourse, you are orret. Sine you asked, here it is.Step 1. The Challenge:Let � > 0 be given.



11.5. INTEGRATION 247Step 2. The Choie:Choose an integer n with the property that n > 1� :Now hoose the partition P = Pn; where Pn denotes the partition we just on-struted.Step 3. The Chek:Let P 0 be any re�nement of P with x�k any hoie of points in the interval [xk; xk+1℄:Sine Sf(Pn) � Sf (P 0) � Sf(Pn) and Sf(Pn) � R ba f(x) dx � Sf(Pn);jSf(P 0)� R ba f(x) dxj � Sf(Pn)� Sf(Pn) < 1n < �:Simpliio: You told me more than I wanted to know.Virginia: But the argument really was the same as those given before. Namely, yousimply trap the two numbers Sf(P 0) and R ba f(x) dx in the interval [Sf(Pn); Sf(Pn)℄:Sine the length of this interval is less than �; the two points an't be separated bymore than �: Thus, we are done. Think visually.Virginia: What about the onverse?Galileo: The onverse is easy beause the integral is given to you for free. No in�niteproess is required.Proposition 11.5.17. If f(x) : [a; b℄ ! < is a bounded integrable funtion, then ithas the property that for every � > 0; there is a partition P suh that Sf (P )�Sf(P ) <�:Proof. Let � > 0 be given.Sine f(x) is integrable with integral R ba f(x) dx; there is a partition P with the prop-erty that if P 0 is any re�nement of P; then jSf(P 0)�R ba f(x) dxj < �2 : Sine the hoieof the point x�k is arbitrary in the approximating sum Sf(P ) =Pn�1k=0 f(x�k)(xk+1�xk);we see that jSf (P )� R ba f(x) dxj < �2 and jSf (P )� R ba f(x) dxj < �2 :Thus,Sf (P )� Sf (P ) = Sf (P )� Z ba f(x) dx+ Z ba f(x) dx� Sf(P ) � �2 + �2 = �:



248 CHAPTER 11. MEAN VALUE THEOREMS
Galileo: The next proposition provides us with onditions when we know there willnever be a problem integrating.
Theorem 11.5.18 (Continuous Funtions are Integrable). If f(x) : [a; b℄! <is a funtion whih is ontinuous at eah x 2 [a; b℄; then f(x) is integrable.
Proof. To prove this proposition all we have to do is hek the Cauhy IntegrabilityCriterion. As with the de�nition of the integral, we have the Challenge, Choie, andChek.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:By Theorem 11.4.2 we an �nd a Æ > 0 with the property that whenever jx� x0j < Æ;then jf(x)� f(x0)j < �b�a : Now hoose P = fa = x0 < x1 < � � � < xn = bg to be anypartition with the property that xk+1 � xk < Æ; for all k = 0; 1; : : : ; n� 1:Step 3. The Chek:By the Extremum Theorem 10.3.1 we know that there are points x�k; x��k 2 [xk; xx+1℄with the property that f(x�k) = mk and f(x��k ) =Mk:



11.5. INTEGRATION 249Thus, Sf (P )� Sf(P ) = n�1Xk=0 Mk(xk+1 � xk)� n�1Xk=0 mk(xk+1 � xk)= n�1Xk=0(Mk �mk)(xk+1 � xk)= n�1Xk=0(f(x��k )� f(x�k))(xk+1 � xk)� n�1Xk=0 �(b� a)(xk+1 � xk)= �(b� a) n�1Xk=0(xk+1 � xk)= �(b� a)(b� a) = �:
Galileo: There it is.Virginia: In fat, the argument is virtually the same as for the two examples wedisussed earlier. The main di�erene is that we replaed those triky summationformulas by Theorem 11.4.2, whih atually makes the argument easier.Galileo: And MUCH more general.Simpliio: But there is one di�erene. With the examples we knew the answers beforewe started. Now we don't.Galileo: True. However, for the speial ase when a funtion is di�erentiable, wean use Theorem 11.4.1 to help hoose your partition. In partiular, this theoremprovides a tool for measuring the di�erene Sf (P )� Sf (P ):Simpliio: How about an example?Galileo:Example 11.5.6. If f(x) = x2 on the interval [�3; 3℄ and � = 1106 ; then �nd apartition P = f�3 = x0 < x1 < � � � < xn = 3g with the property that Sf(P )�Sf(P ) <� = 1106 :



250 CHAPTER 11. MEAN VALUE THEOREMSSimpliio: Let me give this problem a try.First, ompute the �rst derivative f 0(x) = 2x:Seond, ompute the maximum value of jf 0(x)j = j2xj on the interval [�3; 3℄: Forthis funtion the maximum is M = 2 � 3 = 6:Third, hoose Æ > 0 suÆiently small that whenever jx � x0j < Æ; then jf(x) �f(x0)j � M jx� x0j < MÆ:Fourth, the di�ereneSf (P )� Sf (P ) = n�1Xk=0 Mk(xk+1 � xk)� n�1Xk=0 mk(xk+1 � xk)= n�1Xk=0(Mk �mk)(xk+1 � xk)= n�1Xk=0 MÆ(xk+1 � xk)�MÆ n�1Xk=0(xk+1 � xk)=6 Æ(3� (�3)) = 36 Æ:Fifth, if we hoose Æ < �36 = 136� = 136 1106 ; then we guarantee thatSf(P )� Sf(P ) < 1106 for any partition P = f�3 = x0 < x1 < � � � < xn = 3g with theproperty that xk+1 � xk < Æ for all k = 0; 1; : : : ; n� 1:Galileo: You should appreiate this ontrol.Simpliio: It might surprise you, but I do appreiate the ability to measure the error.Galileo: In the spirit of Professor Polya, let us take a seond look at this last example.Note that the key is being able to hoose a partition P with the property that Æ <�M(b�a) : The Mean Value Theorem 11.3.3 tells us the onstant M is needed in thedenominator.Simpliio: It still bugs me that only justi�ation for our disussion of Uniform Con-tinuity is one inequality in the middle of Theorem 11.5.18. Mathematiians are neu-roti.



11.5. INTEGRATION 251Galileo: It is hard to argue with your thought, but they have a need to get it right.At some point your future employer may apply the same test to your performane.If you like neuroti details, you will love this next proposition, whih states that if afuntion is integrable on a losed bounded interval, then it is integrable on any losedbounded subinterval.Proposition 11.5.19. If f(x) : [a; b℄ ! < is integrable and a �  � d � b; thenR d f(x) dx exists.Proof. The proof of this proposition depends on Theorem 11.5.16. In order to use thistheorem properly, we need to notate the funtion f(x) restrited to the subinterval[; d℄ by fR(x) : [; d℄! <: (i.e.fR(x) = f(x) for all x 2 [; d℄:) Now all that is requiredfor the proof is to show that for every � > 0 we an �nd a partition PfR = f = x0 <x1 < � � � < � � � < xn = dg with the property that S(P (fR))� S(P (fR)) < �:However, sine we are assuming that f(x) : [a; b℄! < is integrable, we an �nd apartition P of [a; b℄ with the property that S(P )�S(P ) < �: Sine re�nement alwaysmakes the upper and lower sums loser together, we might as well assume that thetwo points  and d are inluded in P: Now simply reate a partition P (fR) of [; d℄ asthe members of P with the points less than  and the points larger than d deleted.Thus, S(P (fR))� S(P (fR)) � S(P ))� S(P ) < � so we are done.OK, it is now time to mention a version of the distributive law for integration.Proposition 11.5.20. If f(x) : [a; b℄! < is integrable and  2 [a; b℄; then R ba f(x) dx =R a f(x) dx+ R b f(x) dx:Proof. Step 1. The Challenge:Let � > 0 be given.Step 2. The Choie:Sine we know by the previous proposition the funtion f(x) is integrable on theinterval [a; ℄; we an �nd a partition PL = fa = x0 < x1 < � � � < xn = g with theproperty that if P 0L is any re�nement of PL; then jS(P 0L)� R a f(x) dxj < �2 :



252 CHAPTER 11. MEAN VALUE THEOREMSSimilarly, we an �nd a partition PR = f = y0 < y1 < � � � < ym = bg with theproperty that if P 0R is any re�nement of PR; then jS(P 0R)� R b f(x) dxj < �2 :Choose P = PL [ PR = fa = x0 < x1 < � � � < xn =  = y0 < y1 < � � � < ym = bg:Step 3. The Chek:If P 0 is any re�nement of P; then note that the members of P 0 an be written asP 0 = P 0L[P 0R; where P 0L ontains all the members of P 0 to the left of  and P 0R ontainsall the members of P 0 to the right of : reate a partition of the left subinterval [a; ℄de�ned by P 0L = fa = x0 < x1 < � � � < xq = g and a partition of the right subintervalP 0R = f = xq < xq+1 < � � � < xn = bg: Thus,jS(P 0)� (Z a f(x) dx+ Z b f(x) dx)j =jS(P 0L)� Z a f(x) dx + S(P 0R)� Z b f(x) dxj(11.5.1)�jS(P 0L)� Z a f(x) dxj+ jS(P 0R)� Z b f(x) dxj(11.5.2)<�2 + �2 = �: (11.5.3)
Simpliio:Exerise Set 11.5.1. Using the DEFINITION of the integral, show that R 21 x dx = 32 :2. Using the DEFINITION of the integral, show that R 21 x2 dx = 73 :3. Using the DEFINITION of the integral, show that R 10 x3 dx = 14 :4. If f(x) = x3 + 3x is de�ned on the interval [�2; 2℄ and � > 0; then �nd apartition P with the property that jS(P )� R 2�2 f(x) dxj < �:5. If f(x) = x4+x is de�ned on the interval [�3; 3℄ and � > 0; then �nd a partitionP with the property that jS(P )� R 3�3 f(x) dxj < �:



11.6. THE INTERMEDIATE VALUE THEOREM FOR INTEGRALS 2536. If f(x) = 5jxj+ 3jx� 1j is de�ned on the interval [�2; 2℄ and � > 0; then �nd apartition P with the property that jS(P )� R 2�2 f(x) dxj < �:11.6 The Intermediate Value Theorem for Inte-gralsGalileo: We now turn to the Intermediate Value Theorem for Integrals. Some peopleall it the Mean Value Theorem for Integrals. Atually, its a bit of both.Simpliio: Isn't one Intermediate Value Theorem enough?Galileo: Well no. These theorems provide the key steps in the proofs of the Funda-mental Theorem of Calulus and Taylor's Theorem. While you are already familiarwith the Fundamental Theorem of Calulus 11.7.3 and 11.7.4, the remainder form ofTaylor's Theorem will probably require some work on your part. In my experiene,students are only visit Taylor Lite these days.Virginia: Even for me, it seems like we are a bit over the top on the theory. Why dowe need Taylor's Theorem?Simpliio: Looks like I am beginning to get some support from the rear.Galileo: The short answer is that this theorem will provide the key step in explain-ing why the method of Newton/Raphson onverges more quikly than the bisetionmethod. When we disuss this topi, we will make numerous omputations of rootsof funtions. For example, we will �nd that the method of Newton/Raphson willonly require six iterations to ahieve 14 deimal plaes of auray when approxi-mating p2: On the other hand, the bisetion method will require more than thirty.Even with today's speedy omputer's this di�erene ould beome important in a bigomputational projet where these omputations must be made millions of times.The long answer is that Taylor's Theorem will provide a systemati way to numer-ially ompute �rst, seond, and higher order derivatives. These numerial derivativesare used to numerially solve two point boundary value problems in di�erential equa-tions and partial di�erential equations. They are also used every where in image and



254 CHAPTER 11. MEAN VALUE THEOREMSsignal proessing. Taylor is a big deal.Simpliio: While I don't are anything about di�erential equations, I like the signalproessing onnetion.Galileo: Just as the derivative detets the amount of hange that is taking plae witha funtion, an edge detetor is designed to identify those pixels in an image, whererapid hange is ourring. Edge detetors are often onstruted from numerial �rstand seond derivatives. We now state and prove the Intermediate Value Theorem forIntegrals. Note that this theorem is a formal statement of the fat that the area underthe urve is the area of a retangle with base of length b � a and height somewherebetween the highest and lowest possible values of the funtion. For a visual of thegeometry see Figure 11.3. Note also that the key idea of the proof is that the meanof the funtion, 1b�a R ba f(x) dx; is intermediate between the lowest (i:e:f(z1)) andhighest values (i:ef(z0)): Thus, we named it the Intermediate Value Theorem forIntegrals.Theorem 11.6.1 (Intermediate Value Theorem for Integrals). If f(x) : [a; b℄!< is ontinuous at eah point x 2 [a; b℄; then there is a point z 2 [a; b℄ with the propertythat R ba f(x) dx = f(z)(b� a):Proof. Sine f(x) is ontinuous at eah x 2 [a; b℄; we know it is integrable. Thus, thesymbol R ba f(x) dx makes sense.By the Extremum Theorem 10.3.1 there are points z0; z1 2 [a; b℄ with the propertythat f(z1) � f(x) � f(z0) for all x 2 [a; b℄: Sine the numbers f(z0) and f(z1) areonstants (wrt x), we know by Integral Bounds Corollary 11.5.14 thatf(z1)(b� a) = f(z1) Z ba 1 dx � Z ba f(x) dx � f(z0) Z ba 1 dx = f(z0)(b� a):Thus, f(z1) � 1b� a Z ba f(x) dx � f(z0)so the value 1b�a � R ba f(x) dx is intermediate between f(z1) and f(z0): By the In-termediate Value Theorem 10.2, there is a point z 2 [a; b℄ with the property thatf(z) = 1b�a R ba f(x) dx:



11.6. THE INTERMEDIATE VALUE THEOREM FOR INTEGRALS 255Thus, R ba f(x) dx = f(z)(b� a):

Figure 11.3: The Intermediate Value Theorem for IntegralsGalileo: The next theorem is a generalization of the Intermediate Value Theorem forIntegrals.Simpliio: What!!!? Another one?Galileo: OK, I know you have had it with all this theory, but this theorem is exatlywhat we need to prove the error formula for Taylor's Theorem. This error formulais essential to our understanding of the onvergene rates of sequenes generatedby Newton/Raphson. Error formulas guide us when, where, and things go wrong.Remember, the name of the game is ontrol.Theorem 11.6.2 (Intermediate Value Theorem for Integrals 2). If f(t); w(t) :[a; b℄ ! < are ontinuous at eah point t 2 [a; b℄ and w(t) � 0 for all t 2 [a; b℄; thenthere is a point z 2 [a; b℄ with the property that R ba f(t)w(t) dt = f(z) R ba w(t) dt:Proof. Sine f(t) is ontinuous at eah t 2 [a; b℄; we know by the Extremum Theoremthat there are points z0; z1 2 [a; b℄ with the property that f(z1) � f(t) � f(z0) for



256 CHAPTER 11. MEAN VALUE THEOREMSall t 2 [a; b℄: Sine w(t) � 0 for all t 2 [a; b℄; f(z1)w(t) � f(t)w(t) � f(z0)w(t) for allt 2 [a; b℄: Sine the numbers f(z0) and f(z1) are onstants (wrt t), we knowf(z1) Z ba w(t) dt = Z ba f(z1)w(t) dt� Z ba f(t)w(t) dt� Z ba f(z0)w(t) dt=f(z0) Z ba w(t) dt:Thus, f(z1) � R ba f(t)w(t) dtR ba w(t) dt � f(z0)so the value R ba f(t)w)t) dtR ba w(t) dt is intermediate between f(z1) and f(z0): By the IntermediateValue Theorem 10.2, there is a point z 2 [a; b℄ with the property thatf(z) = R ba f(t)w(t) dtR ba w(t) dtThus, R ba f(t)w(t) dt = f(z) R ba w(t) dt:Virginia: If you think about it, not only is this last theorem a generalization of theFirst Intermediate Value Theorem for Integrals, but the proof is the same.Galileo: Corret.Virginia: But how are we going to use it to prove Taylor's Theorem?Galileo: While the funtion w(t) is ompletely general, the ase most interesting tous is when w(t) = (x� t)n; where t 2 [x0; x℄:Simpliio: But if x0 > x; then the interval [x0; x℄ has no points in it.Galileo: Tehnially, you are orret. However, we only are about values of t betweenx and x0:Virginia: OK, but if the integer n is odd and x < t < x0; then the quantity x � t isnegative so that w(t) will be a negative number. The theorem does not apply.Galileo: Tehnially, you are again orret. However, if you take a seond look at thetheorem, you will realize that the theorem is still true if we assume w(t) � 0 for all t:



11.7. THE FUNDAMENTAL THEOREM OF CALCULUS 257Exerise Set 11.6.1. If f(x) = x2 for x 2 [0; 2℄; �nd a point z 2 [0; 2℄ with the property thatf(z) = 12 R 20 x2 dx = 43 : Draw a graph of the funtion y = f(x): Indiate theplaement of the point (z; f(z)) on the graph.2. If f(x) = x3 for x 2 [0; 2℄; �nd a point z 2 [0; 2℄ with the property that f(z) =12 R 20 x3 dx: Draw a graph of the funtion y = f(x): Indiate the plaement ofthe point (z; f(z)) on the graph.3. If f(x) = x2 for x 2 [0; 2℄ and w(x) = (x� 2); then �nd a point z 2 [0; 2℄ withthe property that R 20 f(t)w(t) dt = f(z) R 20 w(t) dt:4. If f(x) = x3 for x 2 [0; 2℄ and w(x) = (x� 2)2; then �nd a point z 2 [0; 2℄ withthe property that R 20 f(t)w(t) dt = f(z) R 20 w(t) dt:11.7 The Fundamental Theorem of Calulus

If I have been able to see further, it was only beause I stood on theshoulders of giants.-Isaa NewtonGalileo: Let us now introdue our olleague Sir Isaa Newton (1642-1727). ProfessorNewton made more ontributions to our understanding of the world around us than



258 CHAPTER 11. MEAN VALUE THEOREMSalmost any other sientist. Not only was he an inventor of Calulus, but he also ap-plied it to real physial problems. His Seond Law of Motion F = ma is fundamentalto the understanding of the motion of a annonball dropped from the Leaning Towerof Pisa, the orbits of the planets around the sun, the motion of a pendulum, and themotion of a partile through a uid. His ontributions to optis were also remarkableand inluded building the �rst reeting telesope and his reognition that that whitelight an be refrated into the many beautiful olors we have in the visible spetrum.His Prinipia (1687) and Optiks (1704) are two of the greatest sienti� works everwritten.Newton: You forgot to mention that I served as the Luasian Professor of Mathemat-is at the University of Cambridge during the years 1669-1701 and I was president ofthe Royal Soiety during the years 1703-1727.Galileo: Thank you for reminding me of these details. Good sir, ould you give us afew insights into the Fundamental Theorem of Calulus?Newton: The Fundamental Theorem of Calulus provides the bridge that onnetsthe two main themes in alulus: derivatives and integrals.Simpliio: I must admit that the slope of a tangent line and an integral do not seemto have anything in ommon.Newton: But they do. Let us begin our disussion by visualizing the area of a regionand the length of its boundary. How about if we begin with a irle?Simpliio: From Geometry, I know the area of a irle is given by the formulaA = �r2;the irumferene is given by C = 2�r: So?Newton: But did you ever notie that dAdr = 2�r = C?Simpliio: Seems like an aident of nature to me.Newton: Not so. This simple observation points out the general fat that the rate ofhange of the area of a region is the length of the hanging part of the boundary.Simpliio: Sounds like double talk to me.Newton: How about a retangle with height h = 1 and base b = x: If we think of thearea as a funtion of the length of the base, then the area A = x and dAdx = 1; whih



11.7. THE FUNDAMENTAL THEOREM OF CALCULUS 259equals the height of the moving edge.Simpliio: A seond aident of nature?Newton: Atually, these two examples are ompletely general. For if we have afuntion f(t); [a; b℄ ! <; whih is ontinuous at eah t 2 [a; b℄; then the funtionF (x) = R xa f(t) dt; omputes the area under the urve at eah point x 2 [a; b℄: The�rst part of the Fundamental Theorem of Calulus states that F 0(x) = f(x):Virginia: Whih generalizes the example you just presented! Namely, the rate ofhange of the area under the urve y = f(t) equals the length of the right hand sideof the region, namely f(x):Galileo: Very good.Newton: But that observation is obvious. The �rst proposition is exatly what weneed to prove the seond part of the Fundamental Theorem of Calulus. It basiallystates that if you have no veloity, then you aren't going anywhere. Maybe some ofour students should ahieve a little veloity.Proposition 11.7.1. If f(x) : [a; b℄! < is di�erentiable at eah point x 2 [a; b℄ andf 0(x) = 0 for all x 2 [a; b℄; then f(x) = f(a) for all x 2 [a; b℄:Proof. If x 2 [a; b℄; then by the Mean Value Theorem 11.3.1 we know there is az 2 [a; b℄ with the property that f 0(z) = f(x)�f(a)x�a : Sine we are assuming f 0(x) = 0for all x 2 [a; b℄; f 0(z) = 0; whih implies the fration f(x)�f(a)x�a = 0: However, if afration equals zero, then the numerator also equals zero. Thus, f(x) � f(a) = 0;whih implies f(x) = f(a):De�nition 11.7.2. If f(x); F (x) : [a; b℄! < and F 0(x) = f(x) for all x 2 [a; b℄; thenthe funtion F (x) is alled an antiderivative of f(x):Example 11.7.1. If F (x) = x3 and f(x) = 3x2; then F (x) is an antiderivative off(x):Example 11.7.2. If F (x) = x3 + 1 and f(x) = 3x2; then F (x) is an antiderivativeof f(x):



260 CHAPTER 11. MEAN VALUE THEOREMSVirginia: From these last two examples, we see that a funtion may have manyantiderivatives.Galileo: Corret.Newton: The Fundamental Theorem of Calulus shows that there is a lose relation-ship between area and antiderivatives. For onveniene, the theorem is split into twoparts. The �rst part relates the derivative of the area under a urve and the height ofthe hanging boundary. The seond part is what every Calulus student remembersabout omputing areas.Theorem 11.7.3 (Fundamental Theorem of Calulus).1. If f(t) : [a; b℄ ! < is ontinuous at eah t 2 [a; b℄ and F (x) = R xa f(t) dt; thenF 0(x) = f(x):2. If f(t) : [a; b℄! < is ontinuous at eah t 2 [a; b℄ and G(t) is any antiderivativeof f(t); then R ba f(t) dt = G(b)�G(a):Proof. Part 1.If F (x) = R xa f(t) dt; then there is a z = z(h) (i.e. z depends on h) between x andx+ h so that F 0(x) = limh!0 F (x+ h)� F (x)h= limh!0 R x+ha f(t) dt� R xa f(t) dth= limh!0 R x+hx f(t) dth= limh!0 f(z(h)) R x+hx dth= limh!0 f(z(h))(x + h� x)h= limh!0 f(z(h) )hh= limz!x f(z) = f(x):Note that we used the Intermediate Value Theorem for Integrals 11.6.1 to justify theequality R x+hx f(t) dth = f(z(h)) R x+hx dth :



11.7. THE FUNDAMENTAL THEOREM OF CALCULUS 261Simpliio: Why did you write the point as z = z(h)?Newton: Sine the point z varies as the point h varies, the point z is atually afuntion of h: The last equal sign is valid beause the funtion f(x) is ontinuous atthe point x and the values of z(h) onverge to x as h onverges to 0:Part 2.Let H(x) = G(x)� F (x): Sine H 0(x) = G0(x)� F 0(x) = f(x)� f(x) = 0 for allx; we know by the previous proposition that H(x) = H(a) for all x 2 [a; b℄: Thus,G(x) = F (x) + H(a) for all x 2 [a; b℄: If G(t) is any antiderivative of f(t); thenG(b)�G(a) = F (b) +H(a)� (F (a) +H(a)) = F (b)� F (a) = F (b)� 0 = R ba f(t) dt:Newton: We now give a simpli�ed statement of the Fundamental Theorem of Calu-lus, whih is in the form we will need.Theorem 11.7.4 (Fundamental Theorem of Calulus 2). If x; x0 2 X; whereX is an interval in < and f(t) : X ! < is a funtion with the property that f 0(t) isontinuous at eah t 2 X; then R xx0 f 0(t) dt = f(x)� f(x0):Simpliio: I like simpli�ed.Virginia: What about Arhimedes' formula for the volume of a sphere?Simpliio: What about it?Virginia: If V = 43�r3; then dVdt = 4�r2; whih just happens to be the surfae area ofa sphere. Is that an aident?Newton: And now it beomes obvious where all those theorems in higher dimensionalCalulus ome from.Simpliio: Enough of all this theory. How about an example?Galileo: OK, let's begin with an easy one.Example 11.7.3. Compute R 10 x4 dx:Virginia: Sine F (x) = x55 is an antiderivative of f(x) = x4; we know by the Funda-mental Theorem of Calulus 11.7.3 thatZ 10 x4 dx = F (1)� F (0) = 155 � 055 = 15 :



262 CHAPTER 11. MEAN VALUE THEOREMSSimpliio: No fany summations. No partitions. Now I'm in my omport zone. Howabout another suh beast?Galileo: Don't think those old guys were any less delighted.Example 11.7.4. Compute R 10 xn dx:Virginia: Sine F (x) = xn+1n+1 is an antiderivative of f(x) = xn; we know by theFundamental Theorem of Calulus 11.7.3 thatZ 10 xn dx = F (1)� F (0) = 1n+1n+ 1 � 0n+1n+ 1 = 1n + 1 :Example 11.7.5. If F (x) = R x0 t2 dt; then ompute F 0(x):Simpliio: I an do this one too. Here goes. Sine the funtion G(t) = t33 is anantiderivative of f(t) = t2; we know F (x) = R x0 t2 dt = G(x)�G(0) = x33 � 033 = x33 :Thus, F 0(x) = x2:Virginia: But you forgot to pay attention when we disussed the �rst part of theFundamental Theorem of Calulus. You worked muh too hard. All you have to do issubstitute the upper limit of the integral, namely x; into the funtion f(t) = t2 to getF 0(x) = f(x) = x2: You are �nished with zero e�ort.Galileo: Theorems are good.Example 11.7.6. If F (x) = R 0x t2 dt; then ompute F 0(x):Virginia: Sine F (x) = R 0x t2 dt = � R x0 t2 dt; F 0(x) = �x2:Simpliio: I understand that example.Example 11.7.7. If F (x) = R ax f(t) dt; then ompute F 0(x):Virginia: Sine F (x) = R ax f(t) dt = � R xa f(t) dt; F 0(x) = �f(x):Example 11.7.8. If F (x) = R x20 t dt; then ompute F 0(x):Simpliio: An antiderivative of f(t) = t is the funtion G(t) = t22 ; whih of oursehas derivative G0(t) = t: Thus, by Theorem 11.7.3 F (x) = R x20 t dt = G(x2) � G(0):By the Chain Rule for derivatives, F 0(x) = dG(x2)dx � dG(0)dx = G0(x2)2x = x22x:



11.7. THE FUNDAMENTAL THEOREM OF CALCULUS 263Virginia: If you notie that the funtion F (x) an be written as the ompositionF (x) = G(H(x)); where G(y) = R y0 t dt and H(x) = x2; then F 0(x) = G0(H(x))H 0(x)and you are done.Simpliio: Your method was a lot easier.Virginia: Easy is good. The general method is summarized in the following proposi-tion.Proposition 11.7.5. If f(t) : [a; b℄! < is ontinuous at eah t 2 [a; b℄; and F (x) =R h(x)g(x) f(t) dx; then F 0(x) = f(h(x))h0(x)� f(g(x))g0(x):Galileo: How about one last example?Example 11.7.9. Compute R xx0(x� t) dt:Virginia: Sine the antiderivative of the funtion f(t) = x� t is � (x�t)22 ;Z xx0 (x� t) dt = �(x� t)22 jxt=x0 = 0� (�(x� x0)22 ) = (x� x0)22 :Simpliio: Why did you present this last example?Galileo: That omputation is exatly what we will need for the last step in the proofof Taylor's Theorem.Simpliio: How about a less abstrat example?Example 11.7.10. Galileo: OK, how about if we ompute R10 e�x dx?Simpliio: That's an easy one. By the Fundamental Theorem of Calulus, we knowthat Z 10 e�x dx = �e�xj1x=0 = 0� (�1) = 1:Galileo: Very good. we will see that integral again.Simpliio: How about another easy example?Example 11.7.11. Galileo: OK, how about if we ompute R ��� os2(x) dx?Simpliio: I am not sure about that problem.



264 CHAPTER 11. MEAN VALUE THEOREMSVirginia: If you remember your half angle formulas from trigonometry, then you reallthat os2(x) = 1+os(2x)2 : Thus,Z ��� os2(x) dx = Z ��� 1 + os(2x)2 dx = Z ��� 12 dx + Z ��� 12 os(2x) dx = � + 0 = �:Simpliio: Why did you hoose this last example?Galileo: We just showed that the length of the funtion f(x) = os(x) on the interval[��; �℄ is p�:Simpliio: Interesting. So there atually is a reason for omputing this example.Galileo: This piee of information will provide a key fat when we disuss FourierSeries.Exerise Set 11.7.1. Compute R ��� sin2(x) dx:2. If F (x) = R x0 t9 dt; then ompute F 0(x):3. If F (x) = R 0x t9 dt; then ompute F 0(x):4. If F (x) = R x20 t9 dt; then ompute F 0(x):5. If F (x) = R x0 sin(t2 + 1) dt; then ompute F 0(x):6. If F (x) = R x3x sin(t2 + 1) dt; then ompute F 0(x):7. Compute R xx0(x� t)2 dt:



11.8. INTEGRATION BY PARTS 26511.8 Integration By Parts

Brook Taylor (1685 - 1731)
Galileo: Let's now invite Professor Brook Taylor (1685-1731) to remind us aboutintegration by parts. Professor Taylor has many ahievements to his redit. Virginia,what an you tell us about Professor Taylor?Virginia: Professor Taylor was born into a family of ulture and means. His fatherprovided him with a �ne eduation in mathematis both at home and later at Cam-bridge. While his �rst wife was from a good family, she had little money and hisfather disapproved of the math. Unfortunately, she died in hildbirth. While hisfather approved of his seond marriage, she also died in hildbirth.Simpliio: He su�ered a sad life.Virginia: Life is unertain.Galileo: But he ahieved great mathematis! In addition to inventing the tehniqueof integration by parts, Professor Taylor also developed methods for approximatingfuntions by polynomials. These methods are now known as Taylor series. As youwill see, these methods an be used to numerially approximate derivatives. To thisday these methods are used in a multitude of appliations from the design of anairfoil to prediting the path of a hurriane. These tehniques are now known as�nite di�erene methods. We welome you Professor Taylor.



266 CHAPTER 11. MEAN VALUE THEOREMSTaylor: Let us begin our disussion of integration by parts by remarking that inte-gration generally has fewer tools than di�erentiation.Simpliio: How so?Taylor: With di�erentiation we have the produt, quotient, and hain rules. Unfor-tunately, integration has no suh rules.Simpliio: Whih means there is less to learn. I like that.Taylor: Maybe so, but then you are left with funtions whih an be di�erentiated, butnot integrated. For example, try integrating the funtions f(x) = log(x)ex; f(x) =11+x6 ; or f(x) = e�x2 : While omputing the derivatives of these funtions is straight-forward, they are impossible to integrate using the Fundamental Theorem of Calulus.Virginia: Is that beause you an't ompute their antiderivatives?Taylor: You got it. On the other hand, the tehnique of integration by parts is anattempt to resue a produt rule for integrals.Simpliio: What does that mean?Taylor: Sometimes it works, sometimes it doesn't.Simpliio: An example please.Taylor: We will show that the tehnique works great for the integral R �0 x os(x) dxand is helpless for the integral R 21 log(x)ex dx:Galileo: Let's move on to the theorem and its proof.Taylor: Sine we would like to be more formal, we state this method as a theoremwith de�nite integrals. The idea underneath the proof is to simply di�erentiate theprodut u(x)v(x) and then manipulate a bit.Theorem 11.8.1 (Integration by Parts). If u(x) and v(x) are di�erentiable fun-tions on an interval [a; b℄; where u0(x) and v0(x) are ontinuous at eah x 2 [a; b℄;then R ba u(x)v0(x)dx = u(x)v(x)jbx=a � R ba v(x)u0(x)dx:Proof. By the Produt Rule for Derivatives 11.1.2, we know thatdu(x)v(x)dx = u(x)dv(x)dx + v(x)du(x)dx :Thus,



11.8. INTEGRATION BY PARTS 267u(x)dv(x)dx = du(x)v(x)dx � v(x)du(x)dx :Integrating both sides of the equation on the interval [a; b℄; we �nd thatZ ba u(x)dv(x)dx dx = Z ba du(x)v(x)dx dx� Z ba v(x)du(x)dx dx:Sine the funtion u(x)v(x) is an antiderivative of du(x)v(x)dx ; the result follows.Simpliio: How about an example?Taylor: For atual omputations, we will simplify the theorem to R u dv = uv�R v du;where we understand the funtions u = u(x) and v = v(x) depend on x:Example 11.8.1. Compute the integral R 10 x(x� 1)3 dx:Simpliio: I an do that problem. All you have to do is expand the expressionx(x� 1)3 = x(x3 � 3x2 + 3x1� 1) = x4� 3x3 + 3x2� x and integrate eah one of thefour terms.Taylor: Instead, if we let u = x and dv = (x � 1)3; then du = dx and v = (x�1)44 wesee thatZ x(x� 1)3 dx = x(x� 1)44 � Z (x� 1)44 dx = x(x� 1)44 � (x� 1)520 :Thus, Z 10 x(x� 1)3 dx = x(x� 1)44 j1x=0 � (x� 1)520 j1x=0 = �(�1)(�1)520 = � 120 :The worst aspet of the tehnique is keeping trak of the minus signs.Simpliio: How about another example?Example 11.8.2. Compute the integral R �0 x os(x) dx:If we set u = x and dv = os(x); then du = dx and v = sin(x):Thus,Z �0 x os(x) dx = x sin(x)j�x=0 � Z �0 sin(x) dx = �(� os(x))j�x=0 = �2:



268 CHAPTER 11. MEAN VALUE THEOREMSExample 11.8.3. Compute the integral R 10 x ex dx:If we set u = x and dv = ex; then du = dx and v = ex:Thus, Z 10 x ex dx = xexj1x=0 � Z 10 ex dx = e� (e� 1) = 1:Example 11.8.4. Compute the integral R 21 log(x) ex dx:If we set u = log(x) and dv = ex; then du = 1xdx and v = ex:Thus, Z log(x) ex dx = log(x)ex � Z ex 1x dx:So, what do you do with the integral R ex 1x dx?Simpliio: I have no lue.Taylor: Exatly my point. The method provides no useful information.Virginia: What if you set u = ex and dv = log(x)?Taylor: You end up with an even bigger mess.Galileo: How about a set of guidelines for using your tehnique?Taylor: To redue the omplexity of the integral R u dv for the following examples,make the following hoies.1. If n is a positive integer and R xn os(x) dx; then hoose u = xn and dv = os(x):(This hoie will have to be repeated n times.)2. If n is a positive integer and R xn sin(x) dx; then hoose u = xn and dv = sin(x):(This hoie will have to be repeated n times.)3. If n is a positive integer and R xnex dx; then hoose u = xn and dv = ex:(This hoie will have to be repeated n times.)4. If n is a positive integer and R xnlog(x) dx; then hoose u = log(x) and dv = xn:5. If R ex sin(x) dx; then hoose u = ex and dv = sin(x):(This hoie will have to be repeated twie.)



11.9. TAYLOR'S THEOREM: DEGREE ONE POLYNOMIALS 2696. If R ex os(x) dx; then hoose u = ex and dv = os(x):(This hoie will have to be repeated twie.)Exerise Set 11.8.1. Compute the integral R �0 x sin(x) dx:2. Compute the integral R �0 x2 sin(x) dx:3. Compute the integral R �0 log(x)x dx:11.9 Taylor's Theorem: Degree One Polynomials

Brook Taylor (1685 - 1731)
Galileo: We now turn to the �nal topi in our review: Taylor's Theorem.Simpliio: Does this mean the pain of all this theory will soon lift?Galileo: Atually, no. Let us now invite Professor Taylor for a seond visit. Goodsir, ould explain your methods for approximating funtions by polynomials?Taylor: The idea behind these approximations is that alulus would be a lot easierif we onsidered only polynomial funtions. As you have notied, polynomials areattrative beause the omputation of derivatives and integrals is easy. Unfortunately,



270 CHAPTER 11. MEAN VALUE THEOREMSnumerous useful funtions suh as os(x); sin(x); ex; 11�x ; and ln(x) don't quite �t intothis setting. The beauty of my theorem is that it provides a strategy for approximatingthese funtions by polynomials.Simpliio: I like this idea. Calulus would ertainly be easier if every funtion was apolynomial.Taylor: That is the onept.Simpliio: Where do we start?Taylor: The idea is to write a funtion f(x) = pn(x) + En(x); where pn(x) is apolynomial of degree n and En(x) represents the error. In the next theorem, weapproximate a funtion f(x) by the straight line y = p1(x) = f(x0) + f 0(x0)(x� x0):The error is represented as the integral E1(x) = R xx0 f 00(t)(x� t) dt:Theorem 11.9.1 (Taylor Theorem 1). If x; x0 2 X; where X is an interval in <and f(t) : X ! < is a funtion with the property that f 00(t) is ontinuous at eaht 2 X; then f(x) = f(x0) + f 0(x0)(x� x0) + Z xx0 f 00(t)(x� t) dt:Proof. The idea of the proof is to apply integration by parts to the last term. Inpartiular, if we let u(t) = x � t and dv = f 00(t)dt; then du = �dt and v = f 0(t):Thus, by parts and the Fundamental Theorem of Calulus, we have the followingsequene of equalities.Z xx0 f 00(t)(x� t)dt = (x� t)f 0(t)jxt=x0 � Z xx0 f 0(t)(�dt)= �(x� x0)f 0(x0) + f(x)� f(x0):Thus, f(x) = f(x0) + (x� x0)f 0(x0) + R xx0 f 00(t)(x� t) dt:Simpliio: While the proof of this theorem is easier than I expeted, I don't like theformula for the error term.Galileo: Surprising you should mention this onern. I think you have someone whoagrees with you. Let me introdue Professor Joseph Louis Lagrange (1736-1813), who



11.9. TAYLOR'S THEOREM: DEGREE ONE POLYNOMIALS 271was a survivor of the Frenh Mathematiian. He did muh to explain and exploitProfessor Taylor's ideas. Welome Professor Lagrange, but please don't mumble.Lagrange: I agree that the form of the error term is a nuisane. If you reall the seondversion of Intermediate Value Theorem for Integrals 11.6.2, then we an present a formfor the error that is easier to remember.Simpliio: You mean we are atually going to use that theorem?Galileo: We disussed it for a reason.Lagrange: My version of Taylor's Theorem now beomes:Theorem 11.9.2 (Lagrange Form of Taylor's Theorem). If x; x0 2 X; whereX is an interval in < and f(t) : X ! < is a funtion with the property that f 00(t) isontinuous at eah t 2 X; then there is a point z 2 X so thatf(x) = f(x0) + f 0(x0)(x� x0) + f 00(z)2 (x� x0)2:Proof. To prove this theorem will apply the Intermediate Value Theorem for Integrals11.6.2 to the integral R xx0 f 00(t)(x� t) dt: To be ertain we an apply this theorem wehave to hek the funtion w(t) = x� t does not hange from positive to negative forvalues of t between x0 and x: One we have made this hek, the hypotheses hold.We have two ases to onsider.Case 1. If x > x0; then we are onsidering t 2 [x0; x℄:For this ase, the funtion w(t) = x� t � 0 for all t 2 [x0; x℄:Case 2. If x � x0 then we are onsidering t 2 [x; x0℄:For this ase, the funtion w(t) = x� t � 0 for all t 2 [x; x0℄:Now, we an apply the Intermediate Value Theorem for Integrals 11.6.2 to theintegral R xx0 f 00(t)(x� t) dt and to �nd a point z 2 [x; x0℄ so thatZ xx0 f 00(t)(x� t) dt = f 00(z) Z xx0 (x� t) dt = f 00(z)(x� t)2�2 jxt=x0 = f 00(z)(x� x0)22 :
Lagrange: Notie that we have written the funtion f(x) in the form f(x) = p1(x) +



272 CHAPTER 11. MEAN VALUE THEOREMSE1(x); where p1(x) = f(x0) + f 0(x0)(x � x0) and E1(x) = f 00(z)2 (x � x0)2: Thus, theerror term now has the form of a seond degree polynomial.Galileo: There it is. Both the statement and proof are elegant and easy to understand.Simpliio: I agree that this form of the remainder is easier to remember. How aboutan example?Galileo:Example 11.9.1. Use Taylor's Theorem to ompute p1(x) = f(x0) + f 0(x0)(x� x0)for the funtion f(x) = os(x); where x0 = 0:Simpliio: Even I an do this problem. All we have to do is ompute f 0(x) = � sin(x)and notie that f(0) = 1 and f 0(0) = 0:Thus, p1(x) = 1: I wish all problems were this easy.Galileo: What about a bound on the error?Virginia: Sine f 00(x) = � os(x); jf 00(x)j � 1 for all x 2 <:Thus, jE1(x)j � 12(x� x0)2 = 12x2 for all x 2 <:Galileo: You should now understand Taylor.Simpliio: Wait a minute. You promised that we would approximate a funtion bya polynomial of degree n: The only polynomial I see is the straight line p1(x) =f(x0)+ (x�x0)f 0(x0): Even I an see that a line y = 1 is not going to provide a loseapproximation to the funtion f(x) = os(x):Galileo: While you are orret, we only need this speial ase for our disussion of theNewton/Raphson method for omputing roots. No worries. We are going to inviteProfessor Taylor to return when disuss approximation theory. We will de�nitely seethe general ase then.Simpliio: You are making an assumption.Galileo: Well folks. We have now onluded our disussion of the bakground materialrequired for tomorrow's gathering.Virginia: Wait. What is tomorrow's topi?Galileo: We will show you how to ompute roots.



11.9. TAYLOR'S THEOREM: DEGREE ONE POLYNOMIALS 273Virginia: We have overed an enormous amount of material today. Could you sum-marize the essentials of what we need for tomorrow?Galileo: You must have aquired the following skill set.1. the ability to omprehend a mathematial argument,2. the ability to de�ne and apply limit fats,3. be able to state and apply the Mean Value Theorem 11.3.3, and4. be able to state and apply Taylor's Theorem 11.9.2.Tomorrow we will begin to see how all this theory impats �nding the root of afuntion.Simpliio: After disussing all these di�erent topis, we are only required to haveaquired four skills?Virginia: Math is easy.Exerise Set 11.9.1. Use Taylor's Theorem to ompute p1(x) = f(x0)+f 0(x0)(x�x0) for the funtionsf(x) = sin(x); ln(1� x) and ex at the point x0 = 0:2. Use Taylor's Theorem to ompute p1(x) for the funtion f(x) = ln(x) at thepoint x0 = 1:3. If f(x) = sin(x); for x 2 [��; �℄ and x0 = 0; then use Taylor's Theorem toestimate a bound on E1(x) = f 00(z)2 (x�x0)2: Repeat the exerise for the funtionf(x) = ex:4. If f(x) = ln(1� x) for x 2 [�0:5; 0:5℄; and x0 = 0; then use Taylor's Theoremto estimate a bound on E1(x) = f 00(z)2 (x� x0)2:Simpliio: But wait a minute, you never answered my question about approximationby polynomials of degree greater than one.Taylor: We will address that question at another gathering.
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Chapter 12
Suessful Root Finding
Galileo: Our next goal is to establish onditions when our root �nding methods\work." In partiular, we will show that the method always onverges when omputingthe bisetion method, square roots, ube roots, and nth roots. Of ourse, the squareroot methods and the ube root methods are speial ases of the nth root method,but they are worth doing beause the geometry and arguments are so lear. Atually,the three arguments are all based on the idea that a bounded dereasing sequeneonverges.Virginia: So that's where the idea for those theorems on onvergene sequenes amefrom.Galileo: Light bulb time.12.1 The Bisetion MethodGalileo: Showing that the bisetion method always works is easy. All we have to dois �nd a bounded inreasing sequene or a bounded dereasing sequene.Virginia: In fat, we have both. For if [an; bn℄ denotes the interval that has beenfound at the nth stage of the bisetion algorithm, then the sequene of points fang1n=0is bounded and inreasing, while the sequene fbng1n=0 is bounded and dereasing. Inother words, you have two sequenes from whih to hoose.277



278 CHAPTER 12. SUCCESSFUL ROOT FINDINGSimpliio: But what if they onverge to two di�erent points?Virginia: Remember that the error formula En � bn � an = b�a2n ; whih onverges tozero. Thus, limn!1 an = limn!1 bn:Simpliio: Good. So the method always works.Virginia: Well, you do have to remember that the funtion f(x) is ontinuous andthat f(a) > 0 and f(b) < 0; or vie versa. Other than that, you are in your omfortzone.Example 12.1.1. If f(x) = x + sin(x) � 13; for x 2 [0; 15℄; then we have to hektwo onditions to make sure that the bisetion method will �nd a root in the interval[0; 15℄:First, we have to hek that f(x) is ontinuous. However, sine f(x) is the sumof three ontinuous funtions, it is ontinuous.Seond, we must hek that f(0) and f(15) have opposite signs. However, sinef(0) = �13 < 0 and f(15) = 15+ sin(15)� 13 > 0; this ondition is satis�ed and weare done.Example 12.1.2. If f(x) = 3x2 + 2; for x 2 [�1; 1℄; the even though f(x) is ontin-uous, the signs of f(�1) and f(1) are the same. Thus, the bisetion method does notguarantee a root will be found.Simpliio: What about the funtion f(x) = 3x2 � 2; for x 2 [�1; 1℄?Galileo: Good point. Despite the fat that the funtion is ontinuous, the valuesof the funtion at the two endpoints do not have di�erent signs. In fat, we havef(�1) = f(1) = �1: Thus, the only problem with applying the bisetion method is apoor hoie of interval. If we had hosen the interval [0; 1℄; we would have been �ne.12.2 The Arhimedes/Heron AlgorithmGalileo: We now show that the square root method of Arhimedes/Heron alwaysprodues a bounded dereasing sequene. Reall that when we omputedp2; our data



12.2. THE ARCHIMEDES/HERON ALGORITHM 279showed this property. The proof that this property always holds will be ompleted inthree steps.1. The geometri mean is less than or equal to the arithmeti mean.2. The points generated by the algorithm are bounded from below by pK:3. The sequene is always dereasing.The next three propositions formalize these three statements.Proposition 12.2.1 (Geometri/Arithmeti Mean). If x1; x2 � 0 thenpx1x2 � x1+x22 :Proof. Sine (x1 � x2)2 � 0; the result follows by simply expanding the produt andmanipulating the fators.Proposition 12.2.2 (Boundedness). If K > 0; x0 = 1; xk+1 = xk+ Kxk2 ; and k � 1;then xk � pK:Proof. By the previous proposition, xk+1 = xk+ Kxk2 �qxk � Kxk = pK:Proposition 12.2.3 (Dereasing). If K > 0; x0 = 1; xk+1 = xk+ Kxk2 ; k � 0; andxk � pK; then xk+1 � xk:Proof. Sine xk � pK; x2k�K � 0: Sine xk+1 = xk+ Kxk2 = xk� x2k�K2xk and x2k�K � 0;the result follows.Galileo: The next theorem proves that the algorithm of Arhimedes/Heron alwaysworks.Theorem 12.2.4 (Square Root Convergene for Arhimedes/Heron). If K >0; x0 = 1; xk+1 = xk+ Kxk2 ; then the sequene fxkg1k=1 is bounded and dereasing and thusonverges. Moreover, if L = limk!1 xk; then L = 2pK:



280 CHAPTER 12. SUCCESSFUL ROOT FINDINGProof. Sine the sequene fxkg1k=0 bounded and dereasing, it onverges to somenumber L: Thus,L = limk!1fxk+1g = limk!1fxkg+ Klimk!1fxkg2 = L + KL2 ;whih implies that L = L+KL2 : Thus, 2L = L + KL and L2 = K:Virginia: Now I see why we proved that the limit of the sum is the sum of the limits.This argument is easy.Simpliio: While I do not have the disposition or time to endure many proofs, I agreethat this one isn't too bad.Exerise Set 12.2.1. Show the seant method produes a bounded dereasing sequene for the fun-tion f(x) = x2 �K; when the algorithm is initialized by the points x0 and x1;where pK < x1 < x0:12.3 Cube Roots

Joseph-Louis Lagrange (1736-1813)I regard as quite useless the reading of large treatises of pure analysis:too large a number of methods pass at one before the eyes. It is in the



12.3. CUBE ROOTS 281works of appliations that one must study them; one judges their abilitythere and one apprises the manner of making use of them.-Joseph-LouisLagrangeGalileo: We now turn to the problem of showing that the method for omputing uberoots always works. While it is virtually the same as the proof of the square rootmethod, it unfortunately has a new tehnial diÆulty.Virginia: What seems to be the problem?Galileo: For ube roots the proof that the geometri mean is less than the arithmetimean beomes a bit more ompliated. Let us introdue Joseph-Louis Lagrange(1736-1813). Though self taught, he was able to make signi�ant ontributions to theCalulus of Variations, Group Theory, the three body problem, di�erential equations(the Euler-Lagrange equations), and the theory of onstrained maxima and minima.Virginia, ould you tell us more about his life?Virginia: While he is always thought of as Frenh, Professor Lagrange was born inTurin in what is now a part of Italy. In 1755 he began a series of ollaborations withLeonhard Euler on problems related to the yloid. He also worked on the three bodyproblem, the motion of the moon, and the perturbations of the orbits of omets bythe planets. He made ontributions to algebra and number theory inluding the �rstproof of Wilson's theorem: If p is a prime number, then p divides (p � 1)! + 1: Inabstrat algebra, he proved that the order of a subgroup divides the order of a group.Galileo: In 1793, he almost lost his life during the Frenh Revolution. If the hemistLavoisier had not spoken on his behalf, he would have been exeuted. Unfortunately,Lavoisier was not so luky sine a revolutionary tribunal ondemned him to deaththe next year.Virginia: Need I reiterate, siene seems to be a most dangerous business.Simpliio: I think I am going to like this guy. He works on real-world problems.Galileo: I agree. You will also get to meet him again when we disuss the errorformulas for Taylor's Theorem and polynomial approximation. Joseph-Louis ouldyou provide us with a bit of insight into your method of onstrained maxima and



282 CHAPTER 12. SUCCESSFUL ROOT FINDINGminima? In partiular, we would like to show that the geometri mean never exeedsthe arithmeti mean.Lagrange: While this fat an be shown algebraially, my method of (Lagrange!)multipliers is more elegant. The tehnique an also be generalized to any number ofpoints.Proposition 12.3.1 (Geometri/Arithmeti Mean). If x1; x2; x3 � 0; then3px1x2x3 � x1 + x2 + x33 :Proof. An elegant way to prove this result is to reast the problem as a onstrainedoptimization problem, where the funtion F (x; y; z) = xyz is maximized subjet tothe onstraint x + y + z = M: By the method of Lagrange multipliers, we knowthat the solution to this problem will be found at a ritial point of the funtionG(x; y; z; �) = F (x; y; z)� �(x+ y+ z�M): In partiular, we must solve the systemof 4 equations and 4 unknowns:�G�x = yz � � = 0�G�y = xz � � = 0�G�z = xy � � = 0�G�� = �(x + y + z �M) = 0:From the �rst 3 equations, we see that the only non-zero solution of this systemis when yz = xz = xy or x = y = z: From the 4th equation we see that x + y + z =x + x + x = 3x = M: Sine the maximum value of F (x; y; z) = xyz ours atx = y = z =M=3 and never exeeds M3 �M3 �M3 = (x+y+z)3=27; xyz � (x+y+z)3=27:The result follows by taking the ube root of both sides of this expression.Simpliio: Unfortunately, I don't remember my Calulus well enough to appreiatethat proof. I think I will simply aept this proposition and ask that we move on.At least the statement is easy enough to understand. How did he ome up with thatompliated proof anyway?Galileo: He was a smart fellow. In any ase, you will be pleased to note that the restof the argument is virtually the same as the one provided for square roots.



12.3. CUBE ROOTS 283Proposition 12.3.2 (Boundedness). If K > 0; x0 = 1; xk+1 = xk � x3k�K3x2k ; thenxk+1 � 3pK:Proof. By the previous proposition, xk+1 = xk+xk+ Kx2k3 � 3qxk � xk � Kx2k = 3pK:Proposition 12.3.3 (Dereasing). If K > 0; x0 = 1; xk+1 = xk � x3k�K3x2k ; k � 0; andxk � 3pK; then xk+1 � xk:Proof. Sine xk � 3pK; x3k � K � 0: Sine xk+1 = xk � x3k�K3x2k and x3k � K � 0; theresult follows.We an now use these two propositions to prove the following onvergene theoremfor the ube root method.Theorem 12.3.4 (Cube Root Convergene). If K > 0; x0 = 1; xk+1 = xk� x3k�K3xk2 ;then the sequene fxkg1k=1 is bounded and dereasing and thus onverges. Moreover,limk!1 xk = 3pK:Proof. Sine the sequene fxkg1k=0 is bounded and dereasing, it onverges to somenumber L: Thus, we immediately observe that L = L� L3�K3L2 and L3 = K:Simpliio: Well, after we passed that initial tehnial detail, the ideas are not sodiÆult. In fat, the proof is virtually the same as the one you presented for thesquare root method.Galileo: You seem to be getting more omfortable with these proofs. Maybe youshould onsider beoming a mathematiian. You might like the profession.Simpliio: I fear my eonomi aspirations are higher than yours.Galileo: Good family, loyal friends, a glass of red wine, what more is there?Exerise Set 12.3.1. Show the seant method produes a bounded dereasing sequene for the fun-tion f(x) = x3 �K; when the algorithm is initialized by the points x0 and x1;where 3pK < x1 < x0:



284 CHAPTER 12. SUCCESSFUL ROOT FINDING12.4 nth RootsGalileo: Just as we were able to determine a method for �nding ube roots from thesquare root method, we an also determine a method for �nding nth roots. We havethe following reursive algorithm for nth roots of K; where K > 0 :x0 = 1;xk+1 = xk � xnk �Knxn�1k :This algorithm leads us to the onvergene theorem for the nth root method.Theorem 12.4.1. If K � 0; x0 = 1; and xk+1 = xk� xnk�Knxn�1k then the sequene fxkg1k=1is bounded and dereasing and thus always onverges to npK:Again, to prove the onvergene theorem we use the following three propositions.The �rst proposition states that the geometri mean is always less than or equal tothe arithmeti mean.Proposition 12.4.2 (Geometri/Arithmeti Mean). If x1; x2; x3; : : : ; xn � 0;then npx1x2x3 : : : xn � x1+x2+x3+���+xnn :Proof. The proof is the same Lagrange approah to the ube root ase. Just morevariables.Proposition 12.4.3 (Boundedness). If K > 0; x0 = 1; xk+1 = xk � xnk�Knxn�1k ; thenxk+1 � npK:Proof. By the de�nition of the sequene and the previous (i. e. Geometri/ArithmetiMean) proposition, xk+1 = xk � xnk �Knxn�1k= (n� 1)xk + Kxn�1kn� nsxn�1k � Kxn�1k= npK:



12.5. THE NEWTON/RAPHSON ALGORITHM 285
Proposition 12.4.4 (Dereasing). If K > 0; x0 = 1; xk+1 = xk � xnk�Knxn�1k ; k � 0 andxk � npK; then xk+1 � xk:Proof. Sine xk � npK for all k � 1; we see that xnk �K � 0: Sine xk+1 = xk� xnk�Knxn�1kand both the numerator and denominator of the expression xnk�Knxn�1k are both non-negative, xk+1 = xk� non-negative number. Thus, xk+1 � xk:Theorem 12.4.5 (nth Root Convergene). If K > 0; x0 = 1; xk+1 = xk � xnk�Knxkn�1 ;then the limk!1 xk exists and limk!1 xk = npK:Proof. Sine the sequene fxkg1k=0 is bounded and dereasing, it onverges to somenumber L: Thus, by the limit theorems we know that L = L� Ln�KnLn�1 : Simplifying thisexpression we see that Ln = K and the result follows.Exerise Set 12.4.1. Show that the method for omputing the �fth root of a number always on-verges. Use your method to ompute the 5th root of 10. How does the rateof onvergene ompare with the rate of onvergene when the square roots ofthese numbers are omputed? Repeat for the numbers 100,000 and 0.000001.12.5 The Newton/Raphson AlgorithmGalileo: We would now like to build on the suess of the method of Arhimedes/Heron.To do that, we need to onsider the key ingredients that guarantee the method willalways work.Virginia: In the disussions of the suess of eah of the square root, ube root, andnth root methods, we only had to worry about three issues:1. The geometri mean does not exeed the arithmeti mean.2. The sequene is bounded from below by the root we are seeking.



286 CHAPTER 12. SUCCESSFUL ROOT FINDING3. The sequene is always dereasing.Galileo: So how do these properties interat?Virginia: The only reason we need the geometri and arithmeti means is to showthat xn � r; where r = pK or r = 3pK is the root. We showed the sequene isdereasing by showing that xn+1 = xn�Qn; where Qn equals a positive number thatbeomes smaller for eah iteration.Galileo: How did we show Qn is positive?Simpliio: The quantity Qn = Q(xn) = f(xn)f 0(xn) is positive beause both f(x) and f 0(x)are positive for all x > r:Galileo: Is this suÆient?Virginia: I am not sure it will suÆe to only have f(x) > 0 and f 0(x) > 0: Think ofthe example f(x) = xex2 : If we initialize the method of Newton/Raphson with a pointjust to the left of the bump at x = p22 ; then the �rst iteration x1 will be negative andbe to the left of the root r = 0: For example if x0 = p22 � 0:001; then I suspet wewill have a problem.Galileo: Let's onsider the shapes of the urves y = f(x) = x2 �K and y = f(x) =xex2 : Reall from Calulus that onavity is one measure of the shape of a urve. Iff 00(x) > 0 for all x in some interval X; then the urve y = f(x) is onave up.Virginia: And thus holds water!Galileo: Corret. On the other hand, if f 00(x) < 0 for all x in some interval X; thenthe urve y = f(x) is onave down.Simpliio: And thus does not hold water!Galileo: Note that the �rst urve is onave up on the interval [0;1); while the seondis onave down on the interval [0;p32): Note further that when we use the methodof Newton/Raphson to �nd roots of these funtions, the approximations di�er.Virginia: In what way?Galileo: As we have established, the approximations for the positive root of f(x) =x2�K form a dereasing sequene whih is bounded from below by the root r = pK:However, for the funtion f(x) = xex2 with a hoie of x0 = 0:4; the sequene of



12.5. THE NEWTON/RAPHSON ALGORITHM 287iterates osillates between positive and negative estimates. The goal of this disussionis to build on the suess of Arhimedes/Heron. To this end we �rst state and provea small proposition, whih states that if the method Newton/Raphson produes asequene whih onverges to a number L; then L will be a root of the funtion.Proposition 12.5.1 (Newton/Raphson Convergene). Let f(x) : [a; b℄ ! <be a di�erentiable funtion with the property that jf 0(x)j � M for all x 2 [a; b℄: Ifa sequene of points fxng1n=1 in [a; b℄ is de�ned reursively by x0 2 [a; b℄; xn+1 =xn � f(xn)f 0(xn) ; and limn!1 xn = r; then f(r) = 0: (i.e. The point x = r is a root off(x):)Proof. We will prove this theorem by showing that if � > 0; then we an �nd aninteger N with the property that jf(xn)j < � for all n � N:Step 1. (The Challenge)Let � > 0 be given.Step 2. (The Choie of N)Choose N so that if n � N; then j xn � rj < �2M :Step 3. (The Chek)Sine xn+1 = xn� f(xn)f 0(xn) ; we begin by subtrating xn from both sides of the equationand multiplying by f 0(xn) so that f(xn) = �f 0(xn)(xn+1 � xn): Thus, jf(xn)j =jf 0(xn)j jxn+1 � xnj:However, if jf 0(x)j � M for all x 2 [a; b℄; then jf(xn)j � M jxn+1 � xnj �M(jxn+1 � r + r � xnj) �M(jxn+1 � rj+ jr � xnj) �M( �2M + �2M ) � 2 �2 = �:Simpliio: Atually, I think I an visualize this proposition in the following way. Ifthis proposition were to be false and f(r) > 0; then as the the points xn get lose to rthe slope of the tangent lines get steeper and steeper. Thus, the slope of the tangentline at x = r should be in�nite.Virginia: While a good idea, I think you have in mind the speial ase when xn � rfor all n and f(x) > 0 and f 0(x) > 0 for all x > r: In this setting, we know thatf(xn) � f(L) > 0 whih I agree would fore f 0(r) = +1:



288 CHAPTER 12. SUCCESSFUL ROOT FINDINGGalileo: The next theorem is a generalization of the proof of the onvergene ofArhimedes/Heron.Theorem 12.5.2 (Newton/Raphson Convergene 2). Let f(x) : [r;+1) ! <be a funtion with the following properties:1. f(x) has a root at x = r;2. f(x); f 0(x); and f 00(x) exists for all x 2 (r;+1);3. x0 is any point 2 (r;+1); and4. xn+1 = xn � f(xn)f 0(xn) :If f(x) > 0; f 0(x) > 0; and f 00(x) > 0 for eah x 2 (r;+1); then1. xn+1 � xn (dereasing),2. r � xn+1 (bounded below by r); and3. limn!1 xn = r: (onvergene)Proof. Step 1.If xn 2 (;+1); then xn+1 = xn � f(xn)f 0(xn) = xn � pospos = xn � pos � xn: Thus,xn+1 � xn and the sequene is dereasing.Step 2. If we suppose that xn > r; then we must show that xn+1 � r:If xn > r; then the vertial distane between the urve y = f(x) and the tangentline y = f(xn) + f 0(xn)(x� xn) at the point x = xn is dn = f(xn) + f 0(xn)(r� xn)�f(r) = f(xn) � f(r) + f 0(xn)(r � xn): But, by the Mean Value Theorem, there is apoint z 2 [r; xn℄ with the property that f(xn)� f(r) = f 0(z)(xn � r):Thus, dn = f 0(z)(xn � r) + f 0(xn)(r � xn) = f 0(z)(xn � r) � f 0(xn)(xn � r) =(f 0(z)� f 0(xn) )(xn � r) = �f 00(z2)(xn � z)(xn � r) < 0: Thus, the tangent line is anegative number at the point x = r and the approximation xn+1 must be between rand xn:Step 3.



12.5. THE NEWTON/RAPHSON ALGORITHM 289Sine the sequene fxng1n=1 is bounded from below and dereasing, it onvergesto some number L: By the previous proposition, we know that f(L) = 0: Sine weare assuming f(x) > 0; for all x > r; then we have a ontradition if f(L) > 0: Thus,it must be true that L = r:Simpliio: Despite your motivation, that proof was a bit over my head. How aboutan example?Galileo: Sure, how about the polynomial p(x) = x3 + x� 1?Example 12.5.1. If p(x) = x3 + x� 1; then note that1. p(0) = �1;2. p(1) = 1;3. p0(x) = 3x2 + 1 > 0 for all x; and4. p00(x) = 6x > 0 for all x > 0:Thus, the polynomial has a root x = r between 0 and 1: Sine both the �rst andseond derivatives are positive for x > 0; we know above theorem applies. Thus, if weinitialize Newton/Raphson with any point x0 � 1; the method will always onverge.Virginia: I was just thinking about the proof of the Proposition you just presented.If you apply the proof to the funtion f(x) = x2 + 1; then we know the sequenederived from Newton/Raphson annot possibly onverge. As we showed by omputingmillions of terms, the sequene bounes all over the plae. The inequality jf(xn)j �M jxn+1 � xnj is useful here beause with our funtion we know that f(x) � 1 forall x 2 <: Thus, if we restrit our attention to a partiular interval, say [�1; 1℄; thenf 0(x) = 2x so that jf 0(x)j � 2 =M for all x 2 [�1; 1℄: Thus, 1 � f(xn) � 2 jxn+1�xnj;whih implies that no two onseutive terms of the sequene an be within 12 of oneanother.Simpliio: Hmmm.Exerise Set 12.5.



290 CHAPTER 12. SUCCESSFUL ROOT FINDING1. If p(x) = x5 + x3 � 1; then show that the method of Newton/Raphson analways be used to ompute the positive real root.2. If p and q are positive numbers and p(x) = x3 + px � q; then show that themethod of Newton/Raphson an always be used to ompute the positive realroot.



Chapter 13
Convergene Rates For Sequenes
Galileo: While we have mentioned linear and quadrati onvergene, we now turn tothe problem of making these ideas preise.Simpliio: You mean you want to know why the method of Arhimedes/Heron takes5 or 6 iterations to ompute p2; while the bisetion method takes more than 30?Galileo: Corret.Virginia: I think it is interesting that it might be possible to make these ideas preise.It seems like you would only be able to ompute a few simple examples and then hopethey are representative when ou are onfronted by a new problem.Galileo: I think you will be surprised how easy it is to understand the di�erene.Simpliio: Easy is good.Virginia: What do we have to know?Galileo: The Mean Value Theorem will be the key for linear onvergene, Taylor'sTheorem will be the key for quadrati onvergene,13.1 Linear ConvergeneGalileo: While the next disussion may appear a bit annoying at �rst, we now needto de�ne the Newton/Raphson method in terms of funtions instead of sequenes.The reason for this inrease in diÆulty is to provide a ontext so we an present a291



292 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESareful disussion of the onvergene rate.Example 13.1.1. Galileo: Let us begin with the simple example T (x) = 12x: Notewith this example, we have a root at x = 0: Better yet, we an �nd that root by lettingx0 = 1 and making the following omputations:1. x1 = T (x0) = 12 ;2. x2 = T (x1) = 12x1 = 122 ; and3. x3 = T (x2) = 12x2 = 123 :What do you notie about this sequene?Simpliio: Well, it is obviously onverging to zero.Galileo: Sure, but how fast?Simpliio: The error seems to be ut in half at eah iteration.Galileo: Your observation is on target.Example 13.1.2. Galileo: Now, we present a slight variation on the previous exampleby de�ning T (x) = 23x?Simpliio: Well if we let x0 = 1 and iterate, we see that1. x1 = T (x0) = 23 ;2. x2 = T (x1) = 23x1 = (23)2; and3. x3 = T (x2) = 23x2 = (23)3:Thus, the sequene fxkg1k=0 onverges to zero. However, this time the error is reduedby only 33% at eah iteration.Galileo: Now I think you an see that these examples lead us to the following de�ni-tion.



13.1. LINEAR CONVERGENCE 293De�nition 13.1.1 (Linear Convergene). If a sequene fxkg1k=0 onverges to anumber L; then the rate of onvergene is alled linear or (1st � order) if there areonstants K > 0 and 0 � M < 1 and an integer N with the property that if k � N;then jxk � Lj � KMk:Galileo: In the examples given above, note that the limit L = 0; K = 1: In the�rst example, M = 12 ; while in the seond M = 23 : Note also for these examplesthat limn!1Mn = 0: The next proposition will show that if 0 � M < 1; then thiswill always be true. Atually, this proposition will be used on a number of di�erentoasions during our future disussions. In partiular, we will need this fat when wedisuss the onvergene of the Geometri Series.Proposition 13.1.2. If jM j < 1; then limn!1Mn = 0:Proof. If M = 0; then the proof is easy so let us assume that M 6= 0:Step 1. (The Challenge) Let � > 0 be given.Step 2. (The Choie of N:) Choose N > log(�)log(jM j) :Step 3. (The Chek that N is suÆiently large.) If n � N; then n > log(�)log(jM j) :Sine jM j < 1; log(jM j) < 0: Note that the inequality hanges signs when wemultiply both sides by log(jM j):Thus, we know nlog(jM j) < log(�): By the properties of logarithms, log(jM jn) <log(�) and we are done.Simpliio: I hate to be annoying, but whih log funtion did you use?Galileo: I guess I was a bit sloppy on that point, but it really doesn't matter. Re-member that all log funtions are the same up to some onstant multiple.The purpose of the next proposition is to establish suÆient onditions for whenwe know a sequene onverges linearly. Sometimes mathematiians atually use thisriterion as the de�nition for linear onvergene. Sine our �rst goal will be to showthat the bisetion method produes a sequene whih onverges linearly to a root andsine it is not obvious that this riterion is satis�ed for the bisetion method, we willuse the weaker de�nition given above.



294 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESProposition 13.1.3 (Test for Linear Convergene for a Sequene). If jM j < 1and fxkg1k=0 is a sequene with the property that jxk+1�Lj �M jxk�Lj for all k � 0;then the sequene fxng1n=0 onverges linearly to L: In partiular, jxn�Lj � jx0�LjMnfor all n � 0:Proof. Sine jxk+1 � Lj �M jxk � Lj for all k; we know1. If k = 0; then jx1 � Lj �M jx0 � Lj:2. If k = 1; then jx2 � Lj �M jx1 � Lj �M2jx0 � Lj:3. If k = 2; then jx3 � Lj �M jx2 � Lj �M3jx0 � Lj:4. If k = n� 1; then jxn � Lj �M jxn�1 � Lj �Mnjx0 � Lj:In the de�nition of linear onvergene, note that K = jx0 � Lj:Sine jM j < 1; we know that limn!1Mn = 0: Thus, limn!1xn = L:Virginia: Can you give us an example of a sequene, whih onverges but does notonverge linearly?Example 13.1.3. Galileo: While the sequene xk = 1k onverges to zero at a reason-able rate, it does not onverge linearly.To show this we atually have to give a short proof by ontradition.Proof. By way of ontradition, assume there are onstants K and M so that 0 �M < 1 and j 1k � 0j � KMk for all k = 1; 2; : : : :However, if this is true, then by omputing the logarithms of both sides, we seethat log(1k ) � log(K) + k log(M)or �log(M) � log(k)k + log(K)k :Sine 0 �M < 1;�log(M) > 0:



13.2. LINEAR CONVERGENCE FOR THE BISECTION METHOD 295Sine limk!1 log(k)k = 0 and limk!1 log(K)k = 0; we onlude that0 < �log(M) � 0;a ontradition.Virginia: So I guess this sequene is in the \slow" group.Galileo: You got it.Exerise Set 13.1.1. Determine whether or not the sequene xn = 1n! onverges linearly to zero.2. Determine whether or not the sequene xn = 1nn onverges linearly to zero.3. Prove: The sequene xk = 1k2 does NOT onverge linearly to zero.4. Prove: If limn!1jxn+1�Lxn�L j = M < 1; then the sequene fxng1n=0 onvergeslinearly to L:13.2 Linear Convergene for the Bisetion MethodGalileo: Now let us now show that the bisetion method onverges linearly. All wehave to do is show that our error formula satis�es the de�nition for linear onvergene.Proposition 13.2.1 (Linear Convergene for the Bisetion Method). Letf(x) : [a; b℄ ! < be a funtion, whih is ontinuous at eah x 2 [a; b℄ and eitherf(a) > 0 and f(b) < 0 or f(a) < 0 and f(b) > 0: If [an; bn℄ denotes a sequene ofintervals de�ned by the Bisetion Method, r is a root of f(x) with the property thatr 2 [an; bn℄; for all n; and En = r � an denotes the error between an and r; thenjEnj = jan � rj � (b� a) 12n :Proof. Let [a0; b0℄ = [a; b℄: Sine r 2 [an; bn℄ for all n; we knowjE1j = ja1 � rj � (b1 � a1) � (b0 � a0)12 :jE2j = ja2 � rj � (b2 � a2) � (b1 � a1)12 � (b0 � a0) 122 :jEnj = jan � rj � (bn � an) � (bn�1 � an�1)12 � (b0 � a0) 12n :



296 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESGalileo: Atually, we ould have made a slightly smarter hoie for the approximationto the root if we had hosen the midpoint mn = an+bn2 : With this hoie we see thatthen jEnj � (b� a)(12)n+1:Simpliio: Is that all there is to it?Galileo: Some topis are easy.13.3 Linear Convergene For Newton/RaphsonGalileo: I hose these examples beause they provide insight into why the square rootand ube root algorithms onverge.Proposition 13.3.1 (Linear Convergene for Arhimedes/Heron). If K >0; x0 � pK; and xn+1 = xn+ Kxn2 ; then the sequene fxng1n=0 onverges linearly to pK:Moreover, jxn �pKj � (12)njx0 �pKj:Proof. If f(x) = x2 � K; where K > 0; the square root algorithm is given by thefuntion T (x) = x � f(x)f 0(x) = x � x2�K2x = 12x + K2x : Sine T (x) � pK for all x �pK; the domain and range of this funtion an both be taken to be the interval[pK;+1): Sine T 0(x) = 12 � K2x2 2 [0; 12 ℄ for all x � pK; we an apply the MeanValue Theorem to the funtion T (x) at the values a = xk and b = xk+1 to getxk+1 �pK = T (xk)� T (pK) = T 0(z)(xk �pK):Thus, if we initialize our algorithm with a hoie of x0 � pK; then for all integersk � 1 we see that jxk+1�pKj = jT 0(z)(xk�pK)j � 12 jxk�pKj: Thus, by the Testfor Linear Convergene we see that the sequene fxng1n=0 onverges linearly to pKand jxn �pKj � (12)njx0 �pKj:Thus, the di�erene between the (n)th estimate and pK is less than 50% of thedi�erene between the previous estimate and pK for all n:Simpliio: I notied that you suddenly hanged the assumption in the Arhimedes/Heronalgorithm from x0 = 1 to x0 � pK: What is going on here?
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Figure 13.1: The Graph of y = T 0(x) = 12 � K2x2 when T (x) = 12x+ K2xGalileo: I tried to slip that past you, but you aught me. The reason is that jT 0(1)jmay exeed 1: Even though it will always be true that x1 = T (x0) � pK; thestatement of the proposition is leaner if we assume x0 � pK: Maybe we should havealways initialized the algorithm with x0 = K2 : If K � 4; we will always know thatx0 � pK:Simpliio: What about the ube root algorithm?

Figure 13.2: The Graph of y = T 0(x) = 23 � Kx3 when T (x) = 23x+ K3x2



298 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESGalileo: Same game. Begin by letting f(x) = x3 � K: If we initialize our algorithmwith a hoie of x0 � 3pK; then for all integers n � 1 we see thatT (x) = x� f(x)f 0(x) = x� x3 �K3x2 = 23x + K3x2 :Thus, T 0(x) = 23 � 2K3x3 : By looking at the graph of the funtion we see that T 0(x) 2[0; 23 ℄ for all x � 3pK: By the Mean Value Theorem we an again apply the LinearConvergene Criterion to make the estimate jxn � 3pKj = jT (xn�1) � T ( 3pK)j �23 jxn�1 � 3pKj � (23)njx0 � 3pKj so that the sequene onverges linearly to 3pK:Example 13.3.1. In our example where f(x) = (x � 1000)2 and x0 = 1; reall thatthe sequene of Newton/Raphson iterates onverged to the root r = 1000: If we oneagain let T (x) = x� f(x)f 0(x) = x2 + 500; then note that T (1000) = 1000 and T 0(x) = 12 :Thus, jT 0(x)j = 12 < 1 for all x 2 <: By the Mean Value Theorem, we an seethat if xn denotes the nth iterate generated by the method of Newton/Raphson, thenjxn� rj = jxn� 1000j = jT (xn�1)� T (1000)j = j12 jjxn�1� 1000j = 12 jxn�1� 1000j forall n: Thus,1. jx1 � 1000j = 12 jx0 � 1000j;2. jx2 � 1000j = 12 jx1 � 1000j = (12)2jx0 � 1000j;3. jx3 � 1000j = 12 jx2 � 1000j = (12)3jx0 � 1000j;4. jx4 � 1000j = 12 jx3 � 1000j = (12)4jx0 � 1000j;5. ...6. jxn � 1000j = 12 jxn�1 � 1000j = (12)njx0 � 1000j;Thus, our error is redued by 50% for eah iteration. Note also that the loserthe initial guess is to the �nal answer, the better the approximation. This exampleshould help make the Theorem on Linear Convergene for Newton/Raphson moreonrete.



13.3. LINEAR CONVERGENCE FOR NEWTON/RAPHSON 299Let X be an interval in <: If the funtion f(x) 2 C2(X); then de�ne a newtransformation by the rule T (x) = x � f(x)f 0(x) : If f 0(x) 6= 0 for all x 2 X; then T (x)will be well-de�ned for all x 2 X: We assume f(x) 2 C2(X) beause we will want toompute T 0(x) and f 00(x) appears as a fator in the formula for T 0(x): Also, if r is aroot of f(x); then T (r) = r: Conversely, if T (r) = r; then f(r) = 0: Note also thatthe sequene of points generated by the method of Newton/Raphson an be writtenas xk+1 = T (xk): For example, if f(x) = x2 �K; then T (x) = x� x2�K2x :Galileo: The �rst step is to ompute the derivatives of T (x): This information isstored in the following proposition.Proposition 13.3.2. Let X be an interval in <: Let T (x) : X ! < be de�ned bythe formula T (x) = x� f(x)f 0(x) ; where f(x) 2 C2(X) and f 0(x) 6= 0 for all x 2 X; thenT 0(x) = f(x)�f 00(x)[f 0(x)℄2 for all x 2 X:Proof. Use the quotient rule from Calulus to ompute the derivative of T (x):Galileo: Note in the previous proposition that the minus sign in the formula T (x) =x� f(x)f 0(x) is the key to the simpli�ation.Simpliio: The minus sign?Galileo: Note that if f(x) = x2�K and T (x) = x� f(x)f 0(x) = 12x+ K2x ; then the domainand range of T (x) are the intervals [pK;1): Thus, T (x) : [pK;1) ! [pK;1):The �rst derivative is T 0(x) = 12 � K2x2 ; whih has the property that 0 � T 0(x) < 12 forall x 2 [pK;1): We showed earlier that if x0 2 [pK;1) and xk+1 = T (xk); thenthe sequene fxkg1k=0 onverges to pK:The next proposition provides general onditions whih guarantee that the New-ton/Raphson sequene will onverge to a root. While it may appear a bit forbiddingat �rst, it is not so diÆult to remember if you keep the previous examples in mindwhen you read it. Better yet, the proof is no more diÆult than the these examplesalready disussed.Theorem 13.3.3 (Linear Convergene for Newton/Raphson). Let X be aninterval in <: Let f(x) : X ! X be a funtion with the property that the funtions



300 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESf(x); f 0(x); and f 00(x) are ontinuous at eah x 2 X: If1. x = r is a root of f(x);2. f 0(x) 6= 0 for all x 2 X;3. T (x) = x� f(x)f 0(x) ;4. T (x) 2 X for all x 2 X; and5. jT 0(x)j �M < 1 for all x 2 X;then for any hoie of x0 2 X the sequene de�ned by xn+1 = T (xn) onverges linearlyto the root r: Moreover, jxn � rj �Mnjx0 � rj for all n:Proof. Let x0 2 X:For any integer n we know by the Mean Value Theorem that there is a point zbetween x0 and r suh that T (xn)� T (r) = T 0(z)(xn � r):Sine T (xn) = xn+1 and T (r) = r; xn+1 = r+T 0(z)(xn�r): Sine jT 0(z)j �M < 1;jxn+1 � rj � M jxn � rj so that xn+1 is not only between r and xn; but loser to rthan the previous estimate.Sine xn+1�r = T 0(z)(xn�r); jx1�rj �M jx0�rj so that jx2�rj � M jx1�rj �M2jx0�rj; jx3�rj �M jx2�rj �M3jx0�rj; et. Thus, the general pattern emergesthat for all n jxn � rj � Mnjx0 � rj: Sine M < 1; the sequene fMng1n=0 onvergesto zero. Consequently the sequene fxng1n=0 onverges to r:Simpliio: OK, the examples helped in following the proof, but what if M = 0:99?Galileo: If M = 0:99; then number of omputations required to ahieve a reasonabledegree of auray ould be quite large. For example, if we would like to �nd thenumber of iterations required to guarantee auray of 0:1; then we have to �nd aninteger n so that (0:99)n < 0:1: Solving for n we �nd that n > �log(10)log(0:99) = 229:1053: Ifwe would like auray of less than 0:01; then we would have to hoose n > �log(100)log(0:99) =458:2106:Simpliio: What if M > 1:0?



13.3. LINEAR CONVERGENCE FOR NEWTON/RAPHSON 301Galileo: First, the proposition doesn't allow for this ase so from a tehnial point ofview your question is irrelevant. However, if the funtion T (x) has the property thatjT 0(x)j > 1:0 for numerous points x 2 X; then the iterates may even diverge.Example 13.3.2. Galileo: If f(x) = x 13 ; then T (x) = �2x: Thus, if x0 = 1 andxn+1 = T (xn); then we obtain the following sequene of iterates.x0 1.000000000000000x1 -2.00000000000000x2 4.00000000000000x3 -8.00000000000000x4 16.00000000000000x5 -32.00000000000000x6 64.00000000000000Table 13.1: Six Computations of xn+1 = T (xn) = �2xSimpliio: Even I an see that this sequene is osillating to �1:Virginia: Now that we have disussed all this theory, how about a simple question wean all understand. In partiular, we know that the Newton/Raphson method worksfor all ubi polynomials of the form f(x) = x3 �K: Right?Galileo: Corret.Virginia: But what if we ask: Does Newton/Raphson work for any ubi polynomial?In fat, let us make the question even easier by restriting our attention to polynomialsof the form f(x) = x3 + px + q; where p > 0: Sine we know that the Cardanoformulas an be used to write down an answer, it would be reassuring to know thatNewton/Raphson will also produe an answer. We also know by the examples wehave disussed that Newton/Raphson may fail. The reason the question interests meis beause if f(x) = x3 + px+ q; thenT (x) = x� f(x)f 0(x) = x� x3 + px + q3x2 + p :



302 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESThus, T 0(x) = f(x)f 00(x)f 0(x)2 = (x3 + px + q)(6x)(3x2 + p)2 :For large x we know that jT 0(x)j � 69 + � =� 69 + 19 = 79 < 1 so this problem seems to�t the above Proposition if x is \out near in�nity." Of ourse, if x is near zero, T 0(x)ould be quite large so the ondition that jT 0(x)j � 79 < 1 will not always be satis�ed.Galileo: I don't know the answer immediately.Exerise Set 13.3.1. If f(x) = x5 �K; then �nd T (x):2. If f(x) = x5 �K and x0 = 1; then show that the Newton/Raphson algorithmonverges linearly to the root 5pK:3. If f(x) = x7 �K and x0 = 1; then show that the Newton/Raphson algorithmonverges linearly to the root 7pK:4. If f(x) = (x � 10; 000)2 and x0 = 1; then show that the Newton/Raphsonalgorithm onverges linearly to the root r = 10; 000: How muh is the errorredued for eah iteration?5. If f(x) = (x � 10; 000)3 and x0 = 1; then show that the Newton/Raphsonalgorithm onverges linearly to the root r = 10; 000: How muh is the errorredued for eah iteration?6. If f(x) = xe�x2 ; then �nd an interval (�a; a) so that the funtion T (x) = x� f(x)f 0(x)has the property that jT 0(x)j � 1:0 for all x 2 (�a; a): Show also that theNewton/Raphson algorithm onverges linearly to the root x = 0 in that interval.7. Compute T 0(x) for the funtions f(x) = x5 � K; f(x) = x7 � K; and f(x) =xn�K: What do you notie about T 0(x) when x � r; where r = npK is a root?



13.4. QUADRATIC CONVERGENCE FOR NEWTON/RAPHSON 30313.4 Quadrati Convergene For Newton/RaphsonGalileo: We now address two key issues assoiated with the Newton/Raphson method.Sine our omputational experiments indiate that it onverges rapidly, our �rst goalis to understand exatly what the phrase \rapid onvergene" means. Sine themethod fails (with a poor hoie of initial point) for funtions as easy to de�ne asf(x) = xe�x2 ; the seond issue is to determine an interval of onvergene for themethod.Again, we all on our friend Taylor to explain the issues involved with this analysis.Taylor: We begin by de�ning two key funtions, whih generate sequenes exhibitingthe di�erene between linear and quadrati onvergene.T1(x) = 12xT2(x) = 12x2Example 13.4.1. Sequenes generated by T1(x) onverge linearly to zero.Using the funtion T1(x) and a real number x0; de�ne the following sequene:x1 = T1(x0) = 12x0x2 = T1(x1) = 12x1 = 14x0x3 = T1(x2) = 12x2 = 18x0x4 = T1(x3) = 12x3 = 116x0...xk+1 = T1(xk) = 12xk = 12k+1x0Thus, for any hoie of x0 the limit limk!1 xk = 0: If we de�ne T1(x) = Mx;where M 2 (�1; 1); then the resulting sequene also onverges to zero. The loser Mis to zero, the faster the sequene onverges. If the value of M is lose to 1.0 (e.g.M = 0:99), then the sequene onverges slowly.Example 13.4.2. Sequenes generated by T2(x) onverge quadratially to zero.Using the funtion T2(x) and a real number x0 de�ne the following sequene:



304 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESx1 = T2(x0) = 12x20x2 = T2(x1) = 12x21 = 18x40x3 = T2(x2) = 12x22 = 127x80x4 = T2(x3) = 12x23 = 1215x160...xk+1 = T2(xk) = 12x2k = 122k+1�1x2k0Note that if x0 2 (�2; 2); then limk!1 xk = 0: If x0 = �1; then limk!1 xk = 2:If jx0j > 2; then the sequene fjxkjg1k=0 beomes arbitrarily large and thus does notonverge.Simpliio: OK, let's see some numbers.Galileo: Note that if x0 = 0:1; then the sequene will be within single preision au-ray (i.e. within 10�10) after only 3 iterations and within double preision auray(i.e. within 10�14) after only 4 iterations.x xk = T1(xk�1) xk = T2(xk�1)x0 1.00000000000000 1.00000000000000x1 0.50000000000000 0.50000000000000x2 0.25000000000000 0.12500000000000x3 0.12500000000000 0.00781250000000x4 0.06250000000000 0.00003051757812x5 0.03125000000000 0.00000000046566x6 0.01562500000000 0.00000000000000Table 13.2: Six Computations of xn+1 = T1(xn) = 12x and xn+1 = T2(xn) = 12x2Galileo: How about those numbers?Simpliio: They sure look familiar. In fat, they are almost the same as the sequenewe omputed for p2:Galileo: You got it.



13.4. QUADRATIC CONVERGENCE FOR NEWTON/RAPHSON 305Galileo: Let us summarize these two examples by making the following observationsfor more general hoies of the initial value x0:1. If x0 2 < and T1(x) = 12x; then the sequene of points fxng1n=0 generatedreursively by xn+1 = T1(xn) always onverges to zero.2. If jx0j < 2 and T2(x) = 12x2; then the sequene of points fxng1n=0 generatedreursively by xn+1 = T2(xn) always onverges to zero.3. If jx0j > 2; then the sequene of points fxng1n=0 generated by the funtion T2(x)always diverges.4. If x0 = 2; then the sequene of points fxng1n=0 generated by the funtion T2(x)onverges to one.5. If x0 = �2; then the sequene of points fxng1n=0 generated by the funtion T2(x)osillates between 1 and �1 (and thus diverges).6. If jx0j < 2; then the sequene of points generated by T2(x) onverges to zerofaster than the one generated by T1(x):The rate of onvergene assoiated with T2(x) is alled quadrati (or 2nd-order)onvergene.Taylor: We formalize the above onepts in the following de�nitions.De�nition 13.4.1 (Quadrati Convergene). If a sequene fxng1n=0 onverges toa number L; then the rate of onvergene is alled quadrati (or 2nd� order) if thereis a onstant M and an integer N suh that if n � N; then jxn+1�Lj �M jxn�Lj2:Example 13.4.3. Galileo: Let's begin by showing the method of Arhimedes/Herongenerates a quadratially onverging sequene. Note the similarity between this dis-ussion and the sequene generated by T2(x):If K > 1; f(x) = x2�K and x0 > pK; then the the method of Arhimedes/Herongenerates a sequene, whih onverges quadratially to pK:



306 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESLet T (x) = x� f(x)f 0(x) = x� x2�K2x : As we have noted many times before, the pointr = pK is a root of f(x):If x > pK and x0 = r; then by Taylor's Theorem we know there exists a pointz 2 [pK;1) with the property thatT (x) = T (r) + T 0(r)(x� r) + T 0(z)2 (x� r)2:Sine r = pK;T (x) = T (pK) + T 0(pK)(x�pK) + T 0(z)2 (x�pK)2:Sine T (x) = x� x2�K2x = 12x + K2x ; note that1. T 0(x) = 12 � K2x2 and2. T 00(x) = Kx3 :Thus,1. if x 2 [pK;1); then T (x) 2 [pK;1);2. T (pK) = pK;3. T 0(pK) = 12 � K2(pK)2 = 12 � 12 = 0; and4. if K > 1; then jT 00(x)j � jT 00(pK)j = KK 32 = 1pK � 1:Also, sine T 00(x) = Kx3 ; we see that for any x 2 [pK;+1);jT 00(x)j � jT 00(pK)j = KK 32 = 1pK � 1:Thus, the onstant M = 1 will have the property that jT 00(x)j � M = 1; for anyx 2 [pK;1):Thus, by Taylor's Theorem there is a point z 2 [pK;+1) with the property thatT (x) = T (pK ) + T 0(pK)(x�pK ) + T 00(z)2 (x�pK )2= pK + T 00(z)2 (x�pK )2:
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Figure 13.3: The Graph of y = T 00(x) = 2x3 :If n is any integer, x = xn; and xn+1 = T (xn); then there is a pointz = zn 2 [pK;+1) so thatjxn+1 �pKj = jT (xn)� T (pK) j= jT 00(zn)j2 (xn �pK )2 � 12(xn �pK )2:To illustrate the power of what we have ahieved, let's onsider the speial asewhen K = 32 = 9: Of ourse, this hoie implies that the root r = p9 = 3: If theinitial guess is x0 = 4; thenjx1 � 3j �12 jx0 � 3j2 = 12(4� 3)2 = 12jx2 � 3j �12 jx1 � 3j2 � 12(x1 � 3)2 = 12 (12)2 = (12)3jx3 � 3j �12 jx2 � 3j2 � 12(x2 � 3)2 = 12 ((12)3)2 = (12)7jx4 � 3j �12 jx3 � 3j2 � 12(x3 � 3)2 = 12 ((12)7)2 = (12)15In general, jxn � 3j � (12)2n�1:Simpliio: But wait a minute, what if I hoose the initial guess to be x0 = 5? With



308 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESthis hoie, we see thatjx1 � 3j �12 jx0 � 3j2 = 12(5� 3)2 = 12 22 = 2;jx2 � 3j �12 jx1 � 3j2 � 12(x1 � 3)2 = 12 22 = 2;jx3 � 3j �12 jx2 � 3j2 � 12(x2 � 3)2 = 12 22 = 2;jx4 � 3j �12 jx3 � 3j2 � 12(x3 � 3)2 = 12 22 = 2:
Galileo: Thus, if our initial guess that is far from the root, then these inequalities donot provide any useful information.Virginia: But the same is true of our funtion T2(x) = 12x2: If we hoose x0 = 2; thenthe sequene xn+1 = T2(xn) diverges. Mr. Simpliio, you have simply pointed outthat poor initial hoies lead to evil outomes.Galileo: The next theorem shows that this example generalizes to any funtion f(x).Simpliio: This theorem looks ompliated.Galileo: Even though it has 6 separate hypotheses, they all say something you wouldwant to have happen with the funtion and its �rst and seond derivatives.Theorem 13.4.2 (Quadrati Convergene for Newton/Raphson). Let X bea losed interval in < and let f(x) : X ! X be a funtion. If1. f(x); f 0(x); f 00(x); and f 000(x) are all ontinuous at eah x 2 X;2. x = r 2 X is a root of f(x);3. f 0(x) 6= 0 for all x 2 X;4. T (x) = x� f(x)f 0(x) 2 X for all x 2 X5. jT 0(x)j �M1 < 1 for all x 2 X; and6. jT 00(x)j �M2 for all x 2 X;



13.4. QUADRATIC CONVERGENCE FOR NEWTON/RAPHSON 309then for any hoie of x0 2 X the sequene de�ned by xn+1 = T (xn) onvergesquadratially to the root r: In fat, for all n we know that jxn+1 � rj � M22 jxn � rj2:Proof. If f(x) : [a; b℄! < is a funtion with the property that f(x); f 0(x); and f 00(x)are all ontinuous at eah x 2 [a; b℄ and f 0(x) 6= 0 for all x 2 X; then T (x) = x� f(x)f 0(x)is di�erentiable andT 0(x) = 1� f 0(x)f 0(x)� f 00(x)f(x)(f 0(x) )2 = f(x)f 00(x)(f 0(x))2 :Sine jT 0(x)j �M1 < 1 for all x 2 X; we know by the Mean Value Theorem thatthe sequene de�ned by xn+1 = T (xn) onverges linearly to the root x = r:By Taylor's Theorem we know that there is a point z 2 X suh thatT (x) = T (r) + T 0(r)(x� r) + T 00(z)2 (x� r)2:Sine f(r) = 0; T (r) = r � f(r)f 0(r) = r � 0 = r: Sine T 0(x) = f(x)f 00(x)(f 0(x) )2 ; T 0(r) = 0:(Thus, if r is a root of f(x); then r is a �xed point of T (x) and also a root of T 0(x):)Thus, T (x) = T (r) + T 0(r)(x� r) + T 0(z)2 (x� r)2 = r + T 0(z)2 (x� r)2:Hene, for any x 2 X; there is a point z 2 X so thatT (x)� r = T 0(z)2 (x� r)2:If jT 00(x)j �M for all x 2 X; thenjT (x)� rj � M2 (x� r)2 for all x 2 X:If n is any integer, x = xn; and xn+1 = T (xn); then just as in the speial ase withArhimedes/Heron we see thatjxn+1 � rj = jT (xn)� rj � M22 (xn � r)2:Sine the sequene fxng1n=0 onverges to r; the onvergene is quadrati.



310 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESGalileo: Atually, we an now ompute an error formula for Newton/Raphson thesame way we did for the sequene fxng1n=0 generated by the funtion T2(x):Corollary 13.4.3 (Quadrati Error Formula for Newton/Raphson). If the hy-potheses of the Quadrati Convergene Theorem for Newton/Raphson are all satis�edand n is any integer n � 0; thenjxn � rj � 2M2 [M22 (x0 � r)℄2n :Proof. Sine jxn+1 � rj = jT (xn)� rj � M22 (xn � r)2 for all n;jx1 � rj � M22 (x0 � r)2jx2 � rj � M22 (x1 � r)2 � M22 (M22 (x0 � r)2)2 = 2M2 [M22 (x0 � r)℄4jx3 � rj � M22 (x2 � r)2 � M22 ( 2M2 [M22 (x0 � r)℄4)2 = 2M2 [M22 (x0 � r)℄8
Example 13.4.4. Galileo: Note that we have already disussed this error formulafor the funtion f(x) = x2 � 9 with initial guesses of x0 = 4 and x0 = 5: In general,if K � 1; f(x) = x2 � K; and x0 > pK is arbitrary, then we still notie that theonstant M2 = 1 will dominate the 2nd derivative of T (x): Thus, we see that the rootr = pK and jxn �pKj � 2M2 [M22 (x0 �pK)℄2n � 2[12(x0 �pK)℄2n :Simpliio: So if we are smart enough to hoose x0 lose enough to pK so thatj12(x0 �pK) < 1; then the error estimate will tell us that the sequene will onvergerapidly to the root.Galileo: Corret.



13.4. QUADRATIC CONVERGENCE FOR NEWTON/RAPHSON 311Example 13.4.5. Galileo: If K � 1; f(x) = x3�K; and x0 > 3pK is arbitrary, thenT (x) = x� f(x)f 0(x) = x� x3�K3x2 = 23x+ K3x2 : Thus, T 0(x) = 23� 2K3x3 and T 00(x) = 2Kx4 : Thus,jT 00(x)j � 2K3pK4 = 23pK � 2: Thus, we see that the onstant M2 = 2 will dominate theseond derivative jT 00(x)j andjxn � rj = jxn � 3pKj � 2M2 [M22 (x0 � 3pK)℄2n � [(x0 � 3pK)℄2n :Simpliio: Again, If we are smart enough to hoose x0 lose enough to 3pK so thatj(x0 � 3pK) < 1; then the error estimate will tell us that the sequene will onvergerapidly to the root.Galileo: Corret again.Simpliio: OK, I understand this error formula now. However, I would like to askone simple question about that Quadrati Convergene Theorem.Galileo: Yes.Simpliio: Why do we have all those hypotheses? Can't we just say that the onver-gene is always quadrati?Galileo: Atually, I am sorry to report that the answer to your question is: \No!"Example 13.4.6. For example, the polynomial p(x) = (x� 5)2 has a double root atx = 5: If we apply Newton/Raphson to �nd this root, we disover thatT (x) = x� p(x)p0(x) = x� (x� 5)22(x� 5) = x� 12(x� 5) = 12x + 52 :While it is easy to show that the onvergene rate is linear, the onvergene rate failsto be quadrati. The root ause of the problem (pardon the pun) is that the �rstderivative p0(x) = 2(x� 5) happens to also have a root at x = 5: Thus, p0(5) = 0 andhypothesis 3 in the Quadrati Convergene Theorem is violated.Simpliio: So?Galileo: While the error is redued by 50% at eah iteration, the onvergene neverspeeds up the way it does for Arhimedes/Heron. Make a few omputations and youwill see that I am orret.



312 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESVirginia: Murphy strikes one again!Galileo: We now de�ne the term simple root to make this distintion. For New-ton/Raphson, the bottom line is that we are on �rm ground as long as we havesimple roots.De�nition 13.4.4. If f(x) is a di�erentiable funtion de�ned on the interval (a; b)with root x = r 2 (a; b); then r is alled a simple root if f 0(r) 6= 0:Taylor: Note that if K > 0; then the roots of p(x) = xn �K are simple.Simpliio: Sine p0(x) = nxn�1; I an see that p0( npK) = n npKn�1 6= 0:Taylor: In general, a polynomial pn(x) will have a simple root if and only if it is notrepeated. For example, if pn(x) has a repeated root x = r implies the funtion p(x) hasa fator of (x�r)2: If the root is repeated three times, then p(x) has a fator of (x�r)3:The Fundamental Theorem of Algebra states that any polynomial an be ompletelyfatored. Gauss provided �ve di�erent proofs of this intuitively obvious theoremseveral hundred years ago. The proofs involve a knowledge of omplex variables{abeautiful subjet you should know.Theorem 13.4.5 (Fundamental Theorem of Algebra). If an�1; an�2; : : : ; a1; a0are omplex numers and p(x) = xn+an�1xn�1+ : : :+a1x+a0; then there are omplexnumbers r1; r2; : : : ; rn with the property that p(x) = (x� r1)(x� r2) : : : (x� rn):Taylor: The next proposition haraterizes polynomials, whih have a simple root atx = r: In partiular, a polynomial p(x) has a simple root if and only if it is divisibleby the fator (x� r) and not by (x� r)2:Proposition 13.4.6. If an�1; an�2; : : : ; a1; a0 are omplex numers and p(x) = xn +an�1xn�1 + : : :+ a1x+ a0; then p(x) has a simple root at x = r if and only if p(x) =(x� r)g(x); where g0(r) 6= 0:Proof. By the Fundamental Theorem of Algebra we know that p(x) = (x � r1)(x �r2) : : : (x � rn) so that p(x) = (x � r)g(x): By the produt rule from Calulus, weknow p0(x) = (x � r)g0(x) + g(x): Thus, p0(r) = g(r) so that p0(r) 6= 0 if and only ifg(r) 6= 0:



13.4. QUADRATIC CONVERGENCE FOR NEWTON/RAPHSON 313Taylor: I hope you agree that we now ompletely understand the role of simple rootsand quadrati onvergene when we use the method of Newton/Raphson to omputeroots of funtions.Virginia: Yes, I do. However, I have one question. Namely, when used New-ton/Raphson to ompute a root of f(x) = x2 � 0:000001; the onvergene rate wasnotieably slower than when we omputed a root of f(x) = x2� 2: This funtion hassimple roots. What is going on here?Taylor: Exellent question. I think you will understand the answer when if you simplyompute the onstant M2: Give it a try.Exerise Set 13.4.1. Determine whether or not the sequene xn = 1n! onverges quadratially to zero.2. Determine whether or not the sequene xn = 1nn onverges quadratially to zero.3. Show: If x0 2 < and T1(x) = 12x; then the sequene of points fxng1n=0 generatedreursively by xn+1 = T1(xn) always onverges linearly to zero.4. Show: If jx0j < 1 and T2(x) = 12x2; then the sequene of points fxng1n=0 gener-ated reursively by xn+1 = T1(xn) always onverges quadratially to zero.5. Show: If x0 2 < and T1(x) = 12x; then the sequene of points fxng1n=0 generatedreursively by xn+1 = T1(xn) fails to onverge quadratially to zero. (Hint: Thisproblem requires a short proof by ontradition.)6. Determine the rate of onvergene for the sequene xk = 17k : More spei�ally,�rst show the sequene onverges linearly to zero, then deide whether or not itonverges quadratially to zero. Repeat this exerise for the sequene xk = 132k :7. Prove: If T (x) : < ! < is di�erentiable for eah x 2 <; x0 2 <; M 2 [0; 1); thesequene xn+1 = T (xn) onverges to L; and jT 0(x)j �M for all x 2 <; then thesequene fxng1n=0 onverges linearly to L:



314 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCES8. Show: If K > 1 and x0 > 5pK; then the method of Newton/Raphson produesa sequene whih onverges quadratially to the root r = 5pK of the funtionf(x) = x5 � K: (Compute the onstants M1 and M2:) Note that if K = 32;then the root r = 2: If x0 = 3; then ompute the onstant M22 jx0�2j: How losedoes the initial guess x0 have to be hosen to the root r = 2 to guarantee thatM22 jx0 � 2j < 1?9. If f(x) = x3+3x+1; then show that the method of Newton/Raphson onvergesquadratially to a root in the interval [�1; 0℄: (Suggestion: Use a graphingprogram to show that jT 0(x)j � 0:9 for all x 2 [�10; 10℄:)10. If f(x) = (x � 1000)2 and x0 = 1; then show that the method of New-ton/Raphson does NOT onverge quadratially to the root r = 1000: Whydoesn't the Quadrati Convergene Theorem apply? Whih hypothesis is notsatis�ed?11. If f(x) = (x � 1000)3 and x0 = 1; then show that the method of New-ton/Raphson does NOT onverge quadratially to the root r = 1000: Whydoesn't the Quadrati Convergene Theorem apply? Whih hypothesis is notsatis�ed?12. If f(x) = x2 or x3 and T (x) = x � f(x)f 0(x) ; then show the sequene de�ned byx0 = 1; xk+1 = T (xk) onverges to 0 at a linear, but not quadrati rate. Dothese examples ontradit the quadrati onvergene of the Newton/Raphsonmethod?13. If f(x) = x2 � 0:00001; then use the method of Newton/Raphson to omputethe onstant M2:What do you onlude about the Quadrati Error Formula forNewton/Raphson?



Chapter 14
The Contration MappingTheorem

Stefan Banah (1892-1945)Mathematis is the most beautiful and most powerful reation of the hu-man spirit. Mathematis is as old as Man.-Stefan BanahGalileo: We now turn to Stefan Banah's (1892-1945) Contration Mapping Theorem.Simpliio: Who was this Banah guy?Galileo: He was a hard drinking, heavy smoker, who liked to soialize with his friendslate into the night at the Sottish Caf�e in Lvov, Ukraine. You probably would haveenjoyed his ompany. 315



316 CHAPTER 14. THE CONTRACTION MAPPING THEOREMSimpliio: I think I should.Galileo: His theorem onstitutes an amazing generalization of Arhimedes/Heron andNewton/Raphson. Not only an this method be used to ompute roots of non-linearequations, but it also has appliations to areas you would never expet.Simpliio: Like what?Galileo: The method an be used to solve a system of linear equations.Simpliio: We have the tehnique of row operations. Isn't that good enough?Galileo: While row operations work �ne for small systems, these alternative methodswork muh better for large sparse systems.Simpliio: What does \sparse" mean?Galileo: A matrix is sparse if most of its entries equal zero. Reall that the ideabehind row operations is to transform the given matrix into an upper triangular (oreven diagonal) form. Thus, the goal is to generate a new matrix with most entriesequal to zero. Two problems may arise if the original matrix has most entries equalto zero. The �rst problem is that we may be wasting our time if we make an entryzero when it is already zero. If we are not areful, we might atually transform zeroentries into non-zero entries.Simpliio: OK, how about another appliation?Galileo: The Contration Mapping Theorem an be used to show the existene anduniqueness of solutions of di�erential equations.Simpliio: I don't want to hear math talk about existene and uniqueness.Galileo: What if the problem you are trying to solve has no solution? You mightwant to know if a solution exists. If you know a solution exists, you might want toknow if there is more that one solution. Uniqueness is useful beause one you �nd asolution, you an go home.Simpliio: But I don't like di�erential equations.Galileo: Unfortunately, many of the most important real-world appliations requirea di�erential equation as part of their model. If hange ours, a good bet is thatthere is a di�erential equation lurking nearby. How about fratals?



317Simpliio: What is a fratal?Galileo: Fratals are sets with the property that any part of the set is similar to thewhole set. More spei�ally, the entire set an be translated, rotated, and shrunk to�t on top of any subset. In other words, the set is self similar. Fratal tehniques anbe used to produe beautiful pitures. The wallpaper in my bath is of fratal origin.Virginia: I have seen the snowake and the fern and agree they are aptivating.Galileo: Fratal methods an also be used to ompress images.Simpliio: Now that is an appliation even I an appreiate.Galileo: As it turns out, the Contration Mapping Theorem an often be used tosolve a problem written in the form T (x) = x; where jT 0(x)j < M < 1; for all x: Thesolution of suh an equation will be a �xed point of T (x):Simpliio: What is a �xed point?Galileo: A point x = F is a �xed point for a funtion T (x) if T (F ) = F:Virginia: Just as F = pK is a �xed point of the funtion T (x) = x� x2�K2x !Galileo: Corret.Virginia: I now understand why you began our disussion with the method of Arhimedes/Heron.The ideas of yesterday are the ideas of today.Galileo: Corret again.Simpliio: So how do we solve for this �xed point?Virginia: How about if we begin by making an initial guess x = x0 and then iterateby setting xn+1 = T (xn): That strategy worked before. My hunh would be that thesequene fxng1n=0 onverges to the point F:Galileo: You should be teahing this seminar.Simpliio: What about the onvergene rate? I like quadrati.Galileo: While the onvergene rate for Newton/Raphson usually turns out to bequadrati, the onvergene rate for the Contration Mapping Theorem usually turnsout to be linear. The ontration fator M ontrols the rate of onvergene. IfT 0(F ) = 0; then the argument we used for Newton/Raphson an be used to show theonvergene rate is quadrati.



318 CHAPTER 14. THE CONTRACTION MAPPING THEOREM14.1 Contration Mapping ExamplesGalileo: We now turn to a more detailed disussion of the Contration MappingTheorem.Simpliio: How about if we begin with a simple example?Galileo: Let us begin with the problem that you are to solve the equation x = 12x+3:Simpliio: But this problem is too easy. Obviously, the answer is x = 6:Galileo: The answer is easy beause you have an exellent understanding of algebra.Remember that more than 1000 years passed between the geometry of the anientGreeks and the appearane of the ommutative, assoiative, and distributive lawsfrom algebra.Example 14.1.1. Solve the equation x = 12x+ 3:If we let T (x) = 12x + 3; and x0 = 0; then we an iterate in the same way we didfor the method of Newton/Raphson. Note that the last omputation, namely 5.9766,is beginning to approah the orret answer.x1 = T (x0) = 3x2 = T (x1) = 123 + 3 = 4:5x3 = T (x2) = 124:5 + 3 = 5:25x4 = T (x3) = 125:25 + 3 = 5:625x5 = T (x4) = 125:625 + 3 = 5:8125x6 = T (x5) = 125:8125 + 3 = 5:9062x7 = T (x6) = 125:9062 + 3 = 5:9531x8 = T (x7) = 125:9531 + 3 = 5:9766Simpliio: This method is too muh work. After a million iterations, we still won'thave the exat answer. I prefer using the laws of algebra for this problem.



14.1. CONTRACTION MAPPING EXAMPLES 319Galileo: We now repeat this tehnique to solve a simple non-linear equation.Example 14.1.2. Solve the equation x = 12 sin(x) + 13:If we let T (x) = 12 sin(x) + 13; and x0 = 0; then we an iterate in the same waywe did for the method of Newton/Raphson. Note that the sequene fxkg1k=0 seems tobe onverging to a number approximately equal to 13.35.x1 = T (x0) = 13x2 = T (x1) = 12 sin(13) + 13 = 13:21x3 = T (x2) = 12 sin(13:21) + 13 = 13:30x4 = T (x3) = 12 sin(13:30) + 13 = 13:33x5 = T (x4) = 12 sin(13:33) + 13 = 13:35Galileo: Note that no algebrai manipulation of the expression x = 12 sin(x) + 13 anbe used to solve this equation for x:Simpliio: Now I see the point of this example.Galileo: One �nal remark is in order. Namely, the method is onstrutive.Simpliio: What do you mean by onstrutive?Galileo: The method doesn't simply say a solution exists. Instead, the tehniqueprovides a proedure to approximate the desired answer. As you might expet, engi-neers vastly prefer methods where you simply make a guess, ompute, and the answermagially appears. The Contration Mapping Theorem �ts that mold exatly.In fat, the tehnique an be implemented in the following four lines of omputerode:Let x = x0 be the initial guess.for n = 0, 1, . . . , Nx = T(x);endExerise Set 14.1.



320 CHAPTER 14. THE CONTRACTION MAPPING THEOREM1. Use the above iterative tehnique to approximate a solution of the equationx = 12 os(x) + 3: Begin the proess with x0 = 0:2. Use the above iterative tehnique to approximate a solution of the equationx = e�x: Begin the proess with x0 = 0:3. Use the above iterative tehnique to approximate a solution of the equationx = ex: Begin the proess with x0 = 0:14.2 The Contration Mapping Theorem in <Simpliio: That disussion ontained many more tehnial details than I an tolerate.Let's move on to something more understandable.Galileo: It isn't as bad as you think, but OK. let's get bak to the ContrationMapping Theorem.Cauhy: We now hek a few tehnial propositions, whih will be used to provethe ontration mapping theorem. The �rst proposition is the familiar formula forsumming a �nite geometri series.The next proposition provides a bound on the di�erene between two suessiveterms in a sequene.Proposition 14.2.1. If jxk+1� xkj �M jxk � xk�1j for all k � 1; then jxk+1� xkj �Mkjx1 � x0j:Proof. If k = 1; then jx2 � x1j �M1jx1 � x0j:If k = 2; then jx3 � x2j �M2jx1 � x0j:If k = 3; then jx4 � x3j �M3jx1 � x0j:If k = 4; then jx5 � x4j �M4jx1 � x0j:Indutively, jxk+1 � xkj �Mkjx1 � x0j:The next proposition provides a bound on the di�erene between any two termsin a sequene. This proposition is fundamental to proving the ontration mapping



14.2. THE CONTRACTION MAPPING THEOREM IN < 321theorem. It is also the key to unloking the rate of onvergene, whih is importantin real appliations.Proposition 14.2.2 (The Contration Mapping Error Estimate). If 0 �M <1 and jxk+1 � xkj � M jxk � xk�1j for all k � 1; then whenever n � N; jxn � xN j �MN1�M jx1 � x0j:Proof. By the triangle inequality and suessive appliations of the previous propo-sition, we know thatjxn � xN j = jxn � xn�1 + xn�1 � xn�2 + xn�2 � : : :+ xN+1 � xN j� jxn � xn�1j+ jxn�1 � xn�2j+ jxn�2 � xn�3j+ : : :+ jxN+1 � xN j�Mn�1jx1 � x0j+Mn�2jx1 � x0j+ : : :+MN jx1 � x0j= (Mn�1 +Mn�2 + : : :+MN )jx1 � x0j=MN (Mn�N�1 +Mn�N�2 + : : :+M + 1)jx1 � x0j:Sine 0 � M < 1;jxn � xN j �MN 1�Mn�N1�M jx1 � x0j � MN1�M jx1 � x0j:Proposition 14.2.3. If 0 � M < 1 and jxk+1 � xkj � M jxk � xk�1j for all k > 0;then there exists a unique real number L suh that limk!1xk = L:Proof. Step 1. Let � > 0 be given.Step 2. Choose N large enough that MN1�M jx1 � x0j < �; for all i � j � N:Step 3. By the previous proposition, we know jxn � xN j � MN1�M jx1 � x0j < �:Thus, the sequene fxkg1k=1 is Cauhy. Sine every Cauhy sequene onverges,there is a unique real number L suh that limk!1xk = L:De�nition 14.2.4. If X is a losed interval in < and T : X ! X; then T (x) is alleda ontration if there is a number 0 � M < 1 suh that jT (x)� T (y)j � M jx � yjfor all x; y 2 X:



322 CHAPTER 14. THE CONTRACTION MAPPING THEOREMThe onstant M is alled the ontration fator of T (x):Simpliio:: So what is this ontration fator?Galileo: The intuitive idea of a ontration is exatly what the word implies. Namely,if given any two points x; y 2 X; then the funtion T (x) always moves the two pointsso that they are loser together. Sine the absolute value funtion always produesa measure of distane we know that dist(x; y) = jx � yj and dist(T (x); T (y)) =jT (x)� T (y)j: This, if M < 1; then dist(T (x); T (y)) � Mdist(x; y): Thus, the pointsx and y are moved loser together. If M = 12 ; then they will be 50% loser than theywere before.Simpliio:: What if the ontration fator equals 2?Galileo: If jT 0(x) � 2 for many values of x; then we have an expansion rather than aontration. While these funtions are sometimes studied, we will not onsider them.Simpliio:: How do we tell whether or not a funtion is a ontration?Galileo: The purpose of the next proposition is to present a riterion for when afuntion an be identi�ed as a ontration. The answer is to simply ompute the �rstderivative and hek to see if it is always less (in absolute value) than 1. Note that thisproposition already appeared in the disussion on the method of Newton/Raphson.Proposition 14.2.5. If X is a losed interval in < and T (x) is a di�erentiablefuntion T : X ! X with the property that jT 0(x)j �M < 1 for all x 2 X; then T (x)is a ontration with ontration fator M:Proof. If x; y 2 X; then by the Mean Value Theorem we know that there is a pointz 2 X suh that T 0(z) = T (x)�T (y)x�y : Sine jT 0(z)j � M < 1; jT (x)�T (y)x�y j � M: Thus,jT (x)� T (y)j �M jx� yj:Galileo: Before we turn to the next idea, we need to prove that ontrations areatually ontinuous funtions. This detail will be needed in the proof of the Con-tration Mapping Theorem, where we need to know that limits ommute with on-tinuous funtions. In partiular, we need to know that if limn!1xn = P; thenlimn!1T (xn) = T (limn!1xn) = T (P ): Another way to phrase this fat is to state



14.2. THE CONTRACTION MAPPING THEOREM IN < 323that if a funtion is ontinuous at a point P; then limits an be evaluated at P bysimply substituting the point P in the funtion.Simpliio: In other words, we didn't need limits in the �rst plae.Galileo: You ould say that.Proposition 14.2.6 (Contrations are Continuous). If X is an interval andT (x) : X ! < is a ontration with ontration fator 0 � M < 1; then T (x) isontinuous at every x 2 X:Proof. Let x 2 X:Step 1. Let � > 0 be given.Step 2. Choose Æ = �:Step 3. Sine T (x) is a ontration, we know that if jx� xj < Æ; thenjT (x)� T (x) �M jx� xj < jx� xj < Æ = �:Galileo: We now turn to the seond idea embedded in the Contration MappingTheorem.De�nition 14.2.7. If T : X ! X is a funtion and T (F ) = F for some F 2 X;then the point F 2 X is said to be a �xed point for T (x):Galileo: Consider the following examples.Example 14.2.1. If T1(x) = 12x; then F = 0 is a �xed point of T1(x): Note thatT1(x) has exatly one �xed point,Example 14.2.2. If T (x) = x + 5; then T (x) has no �xed points.Example 14.2.3. If T2(x) = x2; then F = 0 and F = 1 are �xed points for T2(x):Note that T2(x) has two �xed points.Example 14.2.4. If T3(x) = x3; then F = 0; F = 0; and F = 1 are all �xed pointsfor T3(x): Note that T3(x) has three �xed points.



324 CHAPTER 14. THE CONTRACTION MAPPING THEOREMExample 14.2.5. If T (x) = x� x2�K2x ; then T (pK) = pK: Thus, T (x) has pK fora �xed point. In Figure 14.1, this �xed point is displayed as the intersetion of theurves y = x and y = T (x) = x� x2�K2x :

Figure 14.1: The Fixed Point for the Funtion T (x) = x� x2�K2x :Example 14.2.6. If T (x) = x� x3�K3x2 ; then T ( 3pK) = 3pK: Thus, T (x) has 3pK fora �xed point. In Figure 14.2, this �xed point is displayed as the intersetion of theurves y = x and y = T (x) = x� x3�K3x2 :Example 14.2.7. If we want to solve the equation If x = T (x) = 12 sin(x) + 13; thenthe solution is the �xed point F of T (x): In Figure 14.3, this �xed point is displayedas the intersetion of the urves y = x and y = T (x) = 12 sin(x) + 13:Example 14.2.8. If T (x) = x � f(x)f 0(x) ; where f(r) = 0; then T (r) = r: Thus, T (x)has x = r as a �xed point.Galileo: We now prove the Contration Mapping Theorem. Note that the proof mir-rors exatly what we have disussed with the root �nding method of Newton/Raphson.Namely, begin with an initial guess x0 and reate a sequene of numbers by iteratively
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Figure 14.2: The Fixed Point for the Funtion T (x) = x� x3�K3x2 :

Figure 14.3: The Fixed Point for the Funtion T (x) = 12 sin(x) + 13:



326 CHAPTER 14. THE CONTRACTION MAPPING THEOREMomputing T (xn) and de�ning xn+1 = T (xn): Note that we atually produe a unique�xed point.Simpliio: But why should I are if I only have one �xed point?Galileo: If you only have one �xed point, then you only have to ompute one.Theorem 14.2.8 (The Contration Mapping Theorem). If X is a losed in-terval in < and T (x) : X ! X is a ontration, then T (x) has a unique �xed pointF 2 X: Moreover, if the ontration fator for T (x) is M; x0 is any initial pointin X; and xk = T (xk�1); then the error at the nth iteration is given by the formulajxn � F j � Mn1�M jx1 � x0j:Proof. Let x0 be any point 2 X: Let xk+1 = T (xk) for all k � 0: Sine T (x) is aontration, jxk+1�xkj �M jxk�xk�1j for all k � 1: Thus, the sequene fxkg1k=1 on-verges to some point F: Sine the interval X is losed, the point F 2 X: Sine xk+1 =T (xk) and T (x) is a ontinuous funtion, F = limk!1fxkg = limk!1fxk+1g =limk!1fT (xk)g = T (limk!1fxkg) = T (F ): Thus, F is a �xed point for T (x):The fat that the �xed point is unique follows from the fat that the funtionT (x) is a ontration. In partiular, if F1 and F2 are two distint �xed points ofT (x); then jF1 � F2j = jT (F1) � T (F2)j � M jF1 � F2j < jF1 � F2j; whih is aontradition. Thus, T (x) has exatly one �xed point. The error estimate followsfrom the ontration mapping error estimate.Simpliio: So what is the important information that I need to remember from thisdisussion?Galileo: Remember this:1. The mapping T (x) MUST be a ontration. (You an usually hek this fatby showing jT 0(x)j �M < 1 for all x:)2. The hoie of initial point x0 is arbitrary.3. A sequene is reated by omputing xk = T (xk�1):



14.2. THE CONTRACTION MAPPING THEOREM IN < 3274. The sequene fxng1n=0 always onverges to some number F; whih is a �xedpoint of T (x):5. The onvergene rate of the sequene fxng1n=0 is linear and ontrolled by theinequality: jxn � F j � Mn1�M jx1 � x0j: (Thus the error an be preontrolled.)Example 14.2.9. We will now show how the Contration Mapping Theorem anbe used to solve the equation x = 12 sin(x) + 13 with the given presribed auray of0:00001:We begin by de�ning T (x) = 12 sin(x)+13: To show that T (x) is a ontration,all we have to do is to notie that T 0(x) = 12 os(x) so that jT 0(x)j � 12 for allx 2 <: Thus, T (x) is a ontration with ontration onstant M = 12 : If x0 = 0;then x1 = T (x0) = T (0) = 13 so that jx0 � x1j = 13: Thus, to �nd an integer n withthe property thatxn is within 0:00001 of the solution F = 12 sin(F ) + 13 all we need to do is to�nd an integer n with the property that jxn � F j < Mn1�M � jx0 � x1j = ( 12 )n1� 12 � 13 =(12)n+1 � 13 < 0:00001:Taking natural logarithms of both sides of this last inequality we see that we shouldhoose n large enough that n + 1 > ln(0:00001=13)� ln(2) = �14:0779�0:6931 = 20:3115: Thus, we musthoose n > 20:3115� 1 = 19:3115:Simpliio: So, the bottom line is that the formula tells us we get faster onvergeneif we make a smart hoie of x0 and we are blessed with a small value for M:Galileo: Corret.Exerise Set 14.2.1. Use the Contration Mapping Theorem to solve the equation x = 13 os(2x)� 5with error less than 0.000001. If x0 = 0; then how many iterative steps arerequired to guarantee that the required auray.2. Use the Contration Mapping Theorem to solve the equation x = e� 12x witherror less than 0:00001: If x0 = 0; then how many iterative steps are requiredto guarantee that the required auray.



328 CHAPTER 14. THE CONTRACTION MAPPING THEOREM14.3 The Contration Mapping Theorem in <nGalileo: We begin this setion with an example, whih demonstrates an iterativemethod for solving a system of linear equations. Compare this method with therow operations you learned in linear algebra. Remember that this example is fordemonstration purposes only. In a real appliation, the matrix might be as large as1000� 1000 or even larger.Example 14.3.1. Solve the following system.2x+ y = 3x + 2y = 3Note that the answer is: x = 1; y = 1:To solve the problem using the tehnique of the ontration mapping theorem, webegin by manipulating the equation until it is in the form x = T(x); where x is a2-dimensional vetor. This task an be ompleted by solving the �rst equation for xand the seond for y: When we do this manipulation, we obtain 2 equations: x = 3�y2and y = 3�x2 : These 2 equations an be written in vetor/matrix form as:T0� xy 1A = 0� 32 � y232 � x2 1A = 0� 0 �12�12 0 1A0� xy 1A+0� 3232 1A :If we initialize the proess be letting x0 = 0� 00 1A ; then x1 = T(x0) = 0� 3232 1Ax2 = T(x1) = 0� 3434 1A and x3 = T(x2) = 0� 9898 1A :If we let xn+1 = T(xn); then the sequene of vetors fxng1n=0 seems to be on-verging to the vetor 0� 11 1A :Simpliio: Magi!! This tehnique looks good to me.Galileo: I am glad you like this method. Now let's take a look at another example.



14.3. THE CONTRACTION MAPPING THEOREM IN <N 329Example 14.3.2. Solve the following system.x + 2y = 32x + y = 3Note again that the answer is: x = 1; y = 1:Simpliio: But we just solved this problem.Galileo: Solving for the variables x and y; we an again �nd the funtion T(x):T0� xy 1A = 0� 3� 2y3� 2x 1A = 0� 0 �2�2 0 1A0� xy 1A+0� 33 1A :We an again initialize the iterative proess with the vetor x0 = 0� 00 1A :When we ompute x1 = T(x0);x2 = T(x1);x3 = T(x2);, et, notie what hap-pens to the sequene of vetors.Simpliio: I see that x1 = 0� 33 1A ;x2 = 0� �3�3 1A ; x3 = 0� 99 1A ; and x4 = 0� �15�15 1A :The sequene of vetors seem to be osillating their way out to in�nity.Galileo: Exellent observation.Example 14.3.3. Now onsider a system of three equations and three unknowns. Inpartiular, solve the following system. 4x + y = 5x + 4y + z = 6y + 4z = 5Note that the answer is: x = 1; y = 1; z = 1:



330 CHAPTER 14. THE CONTRACTION MAPPING THEOREMAgain, these equations an be written in vetor/matrix form as:T0BBB� xyz 1CCCA = 0BBB� 0 �14 0�14 0 �140 �14 0 1CCCA0BBB� xyz 1CCCA+0BBB� 546454
1CCCA :

If we initialize the method with x0 = 0BBB� 000 1CCCA and de�ne xn+1 = T(xn); then thesequene of vetors again seems to onverge to the orret answer.Galileo: The beauty of the ontration mapping theorem is that it is valid in amultitude of di�erent settings. In partiular, it works in <n as well as abstratsettings suitable for di�erential equations and fratals.Even better, the proof just provided for the 1-dimensional ase an be immediatelytranslated to a proof in any dimension. To aommodate the new setting in <n, theonly hanges that need to be implemented are:1. The losed interval X must be replaed by a losed subset of <n: (Thus, weneed to de�ne what it means for a set to be losed.)2. The absolute value sign must be hanged to a norm appropriate for the setting.(Thus, we need to de�ne what a norm is.)Note that while norms an be de�ned in many di�erent ways and an be quiteabstrat, the underlying idea is always the same: measure the distane between twopoints. Thus, if P1 and P2 are two points in <n; then the distane between them isthe norm of P1 � P2: This distane is usually written in an expression of the formdist(P1; P2) = kP1 � P2k:While the de�nition of a ontration an now be de�ned in terms of norms, it willbe helpful if we an establish a riterion, whih an be used to show a given funtionis a ontration. Sine the ondition jT 0(x)j � M < 1 implies the funtion T (x) isa ontration for funtions of one variable, the analogue for <n is the norm of the



14.3. THE CONTRACTION MAPPING THEOREM IN <N 331derivative dT (x); where dT (x) denotes the n � n matrix of derivatives. (Reall thatthe matrix of derivatives is nothing but the matrix of partial derivatives.To keep the disussion simple, let's not waste mental energy de�ning what itmeans for a subset of <n to be losed. Instead, let us onsider only the set <n andthen remark that it is, in fat, losed. While numerous di�erent norms an be de�nedon <n; let us onsider the one de�ned as the maximum of the absolute values of then oordinates. The next de�nition formalizes this in a more mathematial way.De�nition 14.3.1. If x 2 <n; then kxk1 =maxfjxkj : xk is the k-th oordinate of xg:Simpliio: I don't like this notation, ould you give me a simple example?Galileo: The 1�norm of the vetor (1;�2; 3;�4) is 4:Simpliio: Why are we interested in knowing about norms?Galileo: Beause we an use them to ompute the distane between two vetors (orpoints) in <n: In partiular, if x;y 2 <n; then the distane between x and y iskx�yk1: One we have the distane between two vetors de�ned, then we an de�newhat it means for a sequene to onverge. In partiular, with the 1�norm it is easyto show that a sequene of vetors onverges to a partiular vetor if and only if itonverges in eah oordinate. Thus, all the hard work we did in the 1�dimensionalase is immediately transferable to the setting in <n:We now de�ne the term ontration for a funtion T (x) : <n ! <n: This de�nitionis given in terms of the 1�norm.De�nition 14.3.2. If T (x) : <n ! <n; then T (x) is alled a ontration if there isa real number M 2 [0; 1) with the property that kT (x)� T (x0)k1 �Mkx� x0k1 forall x;x0 2 <n:Simpliio: But how do I reognize a ontration when I see one?Galileo: You simply show the norm of the funtion (or more formally \the operator")is less than one.Simpliio: But what is the norm of an operator?



332 CHAPTER 14. THE CONTRACTION MAPPING THEOREMGalileo: You ask the right questions. We begin with the de�nition of the norm of amatrix.De�nition 14.3.3. If A 2 <m�n; then the 1�norm of A is de�ned bykAk1 = maxfka1k1; ka2k1; : : : ; kank1g;where ak denotes the kth row of A and kakk1 = jak1j+ jak2j+ : : :+ jakmj:Proposition 14.3.4. If A 2 <m�n; kAk1 = M; and T (x) = Ax + b; then for allx;x0 2 <n kT (x)� T (x0)k1 �Mkx� x0k1:Proof. This proof is left as an exerise.Simpliio: And we an see from this proposition that the matrix given in the previousexerise has 1�norm equal to 12 and is thus a ontration.Galileo: Very good. Now you are ready for a bit of formalism from Professor Cauhy.First we give the de�nition of what it means for a sequene to onverge. Seond, wegive the de�nition of a Cauhy sequene. As in the 1�dimensional setting, these twoideas are equivalent.De�nition 14.3.5. A sequene of vetors, fxkg1k=0 in <n is said to onverge to avetor xL 2 <n if for every � > 0 there is an integer N , suh that if k � N , thenjjxk � xLjj1 < �:De�nition 14.3.6. A sequene of vetors fxkg1k=1 in <n is said to be Cauhy if forevery � > 0 there is an integer N , suh that if n � N , then jjxn � xN jj1 < �:Theorem 14.3.7. If a sequene of vetors fxkg1k=1 in <n onverges to a vetor xL 2<n; then it is Cauhy. Conversely, if a sequene of vetors fxkg1k=1 in <n is Cauhy,then it onverges to some vetor xL 2 <n:Proof. While the proof of the �rst statement in the proposition is straightforward.In partiular, it is left as an exerise. The proof of the seond statement is left foranother day.



14.3. THE CONTRACTION MAPPING THEOREM IN <N 333Galileo: Thus, if a sequene of vetors in <n is Cauhy, then it is Cauhy on eahoordinate. Sine the sequene of vetors onverges on eah oordinate, it onverges.Theorem 14.3.8 (The Contration Mapping Theorem in <n). If T : <n !<n is a ontration, then T (x) has a unique �xed point xL in <n: Moreover, if theontration fator for T (x) is M; x0 is any initial vetor, and xk = T (xk�1); then theerror at the nth iteration is given by the formula kxn � xLk1 � Mn1�M kx0 � x1k1:Proof. Let x0 2 <n and xk+1 = T(xk) for all k � 0: Sine the same argument used inthe 1-dimensional version an be used to show that the sequene fxkg1k=0 is Cauhyin <n; the sequene is Cauhy in eah oordinate. Sine the sequene onverges oneah oordinate, it onverges. The proof of the error estimate is virtually the same asthe proof given in the 1�dimensional ase. The only di�erene is that eah absolutevalue sign must be replaed by the symbol for the in�nity norm.Simpliio: Hey, I think I am beginning to get the hang of this theorem for <n; butI already know how to solve systems of linear equations using the method of rowoperations or Gaussian elimination. Why would I want to bother with this newmethod?Exerise Set 14.3.1. Use the Contration Mapping Theorem to solve the system of equations4x+ y = 5x+ 4y = 5:Initialize the method with the vetorx0 = 0�001A :How many iterations are required to guarantee an auray of less than 0:00001on eah oordinate?
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Chapter 15
Aitken's Method

Alexander Craig Aitken (1895-1967)Ever the road beneathChanges: now night begins to fall,And I see the last long road of all,The road to dusty death.-Alexander Craig AitkenGalileo: The purpose of the tehnique presented in this setion is to speed up therate of onvergene of a given sequene.Simpliio: While the idea seems reasonable, how an that be possible?Galileo: Alexander Craig Aitken (1895 - 1967) ame up with the idea that if a sequeneonverges linearly, then we an give it boost towards the ultimate answer. If we ould335



336 CHAPTER 15. AITKEN'S METHODimprove the onvergene rate from linear to quadrati, we would be quite satis�edwith the tehnique.Simpliio: Who was this Aitken fellow?Galileo: Professor Aitken was born in Dunedin, New Zealand and attended the Uni-versity of Otago. He had an inredible memory being able to reite � to 2000 plaes.He ould also instantly multiply and divide large numbers. An exellent memory isnot always a blessing. He had trouble forgetting all the bad things that happened inhis life.Simpliio: I an see the dark side in his poetry. I am not sure I want to ompete withhim in any way.Galileo: His idea is the following. If we assume the sequene fxng1n=1 onverges to L(i.e. limn!1xn = L) and for large n enjoys the propertyxn+1 � Lxn � L � M < 1;then we know the onvergene will be linear. Thus, this ondition is a bit strongerthan linear onvergene. In any ase, if limn!1 xn+1�Lxn�L = M < 1; then both thequotient xn+1�Lxn�L and the quotient xn+2�Lxn+1�L : will be approximately equal to M:If we make this assumption about the two quotients, then we see thatxn+1 � Lxn � L � xn+2 � Lxn+1 � L;whih implies that (xn+1 � L)2 � (xn+2 � L)(xn � L)or x2n+1 � 2 xn+1L + L2 � xn+2xn � (xn + xn+2)L + L2or x2n+1 � 2 xn+1 � L � xn+2 � xn � (xn + xn+2)L:Therefore, L(�xn+2 + 2xn+1 � xn) � x2n+1 � xn+2xn



337and L � x2n+1 � xn+2 � xn�xn+2 + 2xn+1 � xn = xn � (xn+1 � xn)2xn+2 � 2xn+1 + xn :Therefore, we an (hopefully) aelerate onvergene to L if we de�ne a newsequene by the rule:De�nition 15.0.9 (Aitken's Method). If fxng1n=0 is a sequene of numbers, thenthe Aitken's Method for aelerating the onvergene is given by x̂n = xn� (xn+1�xn)2xn+2�2xn+1+xn :De�nition 15.0.10. If fxng1n=1 is a sequene, then the forward differene formulais given by �xn = xn+1 � xn. Higher powers are de�ned indutively by �kxn =�(�k�1xn):Virginia: Is there any onnetion between this formula and the �rst derivative? Theylook similar.Galileo: In fat it is. If you think of the �rst derivative as a limit of the quotientsf(x+�)�f(x)� ; then the \derivative" of a sequene should be the \limit" ofxn+1�xnn+1�n = xn+1�xn1 = xn+1 � xn: Of ourse, we an't ompute limits beause we havea disrete set of points. Instead, we simply think of the two points xn+1 and xn as\lose" to one another.Example 15.0.4. The only reason we need higher powers of the forward di�ereneformula for Aitken's Method is to ompute the seond forward di�erene �2xn =�(�xn) = �(xn+1 � xn) = xn+2 � 2xn+1 + xnVirginia: This formula should represent the 2nd derivative. Corret?Galileo: You are orret.Proposition 15.0.11 (Aitken's Method). If fxng1n=0 is a sequene of numbers,then the Aitken's Method for aelerating the onvergene is given by x̂n = xn� (�xn)2�2xn :Simpliio: This formula looks suspiiously familiar.Galileo: It should. Note the similarity between this formula and the formula T (x) =x � f(x)f 0(x) given by Newton/Raphson. This assoiation should help you rememberAitken's formula.



338 CHAPTER 15. AITKEN'S METHODExample 15.0.5. Let us begin by applying Aitken's method to the linearly onvergentsequene xn = 12n : With this speial ase, we see thatx̂n = xn � (xn+1 � xn)2xn+2 � 2xn+1 + xn= 12n � ( 12n+1 � 12n )212n+2 � 2 12n+1 + 12n= 12n � 2n+2( 12n+1 � 12n )21� 4 + 4= 12n � 2n+222n+2= 12n � 12n= 0:Thus, Aitken's Method onverts a linearly onvergent sequene to one that onvertsinstantly!!Simpliio: Hey, this method works great. Does it give any relief for the bisetionmethod?Galileo: To answer your question properly, we must �rst deide how we are going toimplement the method. In the previous example, we were given a formula for thenth term of the sequene. Unfortunately, nature is not so kind. The algorithm ofJohan Ste�ensen (1873-1961) omputes two terms of the sequene and then makesan Aitken's omputation. Try integrating this idea into a bisetion algorithm and seehow it does when you ompute p2:Exerise Set 15.1.1. Apply Aitken's method to the sequene xn = 13n : How many steps does it taketo onverge to zero?2. Apply Aitken's method to the sequene xn = 3n: What number does the se-quene onverge to? How many steps does it take to onverge?3. Apply Aitken's method to the sequene xn = 1n : Do you �nd any bene�t byapplying Aitken's method?



3394. Apply Aitken's method to the sequene xn = 122n : How many steps does it taketo onverge?5. Devise a hybrid Bisetion/Aitken's Method to �nd the positive root of thefuntion f(x) = x2 � K; where K > 1 and the initial interval is [1; K℄: Applyyour algorithm to the funtion when K = 1010: Does your algorithm provide asigni�ant improvement in the rate of onvergene? While there are a multitudeof di�erent ways to reate a hybrid algorithm, you might begin by alternatingthe two methods.6. Devise a hybrid Newton/Raphson/Aitken's Method to �nd the positive root ofthe funtion f(x) = x2�K; where K > 1 and the initial guess is x0 = K: Applyyour algorithm to the funtion when K = 1010: Does your algorithm provide asigni�ant improvement in the rate of onvergene? While there are a multitudeof di�erent ways to reate a hybrid algorithm, you might begin by alternatingthe two methods.7. Devise a hybrid Contration Mapping Theorem/Aitken's Method to solve theequation x = 12 sin(x) + 13: �nd the root of the funtion f(x) = x2 �K; whereK > 0: Apply your algorithm to the funtion when K = 1010: Does youralgorithm provide a signi�ant improvement in the rate of onvergene? Whilethere are a multitude of di�erent ways to reate a hybrid algorithm, you mightbegin by alternating the two methods.
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Part VI
Day 6. Linear Algebra Review

341





343

Giuseppe Peano (1858-1932)Ambiguity of language is philosophy's main soure of problems. That iswhy it is of the utmost importane to examine attentively the very wordswe use. -Giuseppe PeanoGalileo: Linear Algebra is probably the most important prerequisite for appliations.Simpliio: I took Linear Algebra from Professor Poubelle. All we did was solvesystems of equations using row operations. It was easy.Galileo: Unfortunately, Linear Algebra is probably the most important mathematisourse you will ever take.Virginia: More important than Calulus?Galileo: Man has been making observations and measurements sine the beginningof written history. This data leads to onjetures. Conjetures lead to mathematialmodels. Whenever you model a problem, your �rst instint is to make it linear.Linear models are easy to understand and ompute.Simpliio: How about an example?Galileo: If I paid twie as muh for a house as you did, then mine ought to be twie asbig. In other words, if you double the prie, then you should double the size. Theseideas go bak several thousand years to the anient Greeks with their disussions ofsimilar triangles and proportions.Simpliio: But what if your house is on a Florida beah and osts twie as muh as



344my student ghetto trash littered dump, then my house might still be the same sizeas yours. Mine might even be larger.Galileo: That's orret. Life is often nonlinear.Virginia: How about a more sienti� example?Galileo: My olleague, Aristotle (384-322B.C.E.), asserted a linear relationship be-tween the distane a dropped objet travels and the time of ight. In other words, ifthe time of ight is doubled, then the distane should also be doubled. Unfortunately,my data showed that his speulation was not orret.Virginia: So what do we need to know from Linear Algebra?Galileo: Despite Eulid's onern for detail, the story of Geometry wasn't ompleteduntil Hermann Grassmann (1809-1877), George Cantor (1845-1918), Bernhard Rie-mann (1826-1866), Giuseppe Peano (1858-1932), David Hilbert (1862-1943), KurtG�odel (1906-1978), Bertrand Russell (1872-1970), and others �nally redued all themathematial and logial issues to the axioms of set theory. (While not quite au-rate, I refer to these fellows as the \grumpy, 19th entury, German mathematiians.")Thus, this e�ort to \get it right" took several thousand years to unfold.Simpliio: Weren't we talking about Linear Algebra? Why have we digressed oneagain to Geometry?Galileo: Every geometri idea orresponds with an algebrai expressions in LinearAlgebra. Do you remember Eulid's 14 axioms?Virginia: I remember a ouple of them:1. A point is that whih has no part.2. A line is breadthless length.Galileo: Very good. Now, do you remember Peano's 10 axioms for a vetor spae?Simpliio: Not a hane.Galileo: While you might prefer that all of Linear Algebra was limited to a disus-sion of <n; remember that the de�nition is given more abstratly. Namely, a vetorspae V is a set V together with two operations addition, denoted by +; and salar



345multipliation, denoted by �: These operations satisfy a number of rules inluding theassoiative, ommutative, and distributive laws. We also have an additive identity(namely 0) and additive inverses.Simpliio: Why all this unneessary abstration?Galileo: Beause when we study approximation theory, we need geometri ideas ex-pressed in algebrai language. Notie that the idea of a vetor in a vetor spae isEulid's idea of a point. All the salar multiples of that point produe a line. All thepositive multiples of a non-zero vetor produe a ray so we are ready to talk aboutthe angle between two rays emanating from the same point.Virginia: What about triangles and parallelograms?Galileo: We an build a triangle by taking linear ombinations of two sides.Simpliio: The same idea works for parallelograms.Virginia: Exept we have to be areful the sides of the �gure are linearly independent.Otherwise, we will end up with a ray. In fat, we need the idea of linear indepen-dene to generate n�dimensional �gures. If I remember orretly, a vetor spae hasdimension n if it has a basis with n elements. We spent a lot of time in our LinearAlgebra lass showing that any two bases have the same number of elements.Simpliio: Why did you do that? Isn't that obvious?Virginia: I found those proofs to be diÆult.Galileo: Peano's axioms are exatly what you need to slug through those proofs.Let me now turn your attention bak to Eulid's idea of a point. Note that hisde�nition ontains the impliit assumption the reader already knows a point shouldlie in the plane. The de�nition is rather negative beause it does not tell you what itis, but rather what it is not. Rene Desartes (1596-1650) reognized that a point anbe thought of iin a more positive way as a pair of real numbers (x; y): Cantor andPeano realized that Eulid's de�nitions of a point was totally inadequate for modernappliations. In partiular, they realized that the funtions ould be thought of aspoints.Simpliio: Your kidding? Funtions are't points. They are de�ned for points in their



346domain.Galileo: It is an interesting leap forward, isn't it? In any ase, they deided isworthwhile to abstrat the idea of a point to suh funtions as 1; x; x2; : : : ; xn:Virginia: And note that these funtions (or should I say points) are linearly indepen-dent. Thus, the vetor spae they span is n + 1-dimensional.Galileo: Similarly, Jean Baptiste Joseph Fourier (1768-1830) reognized that for anypositive integer n; the funtions 1; os(x); os(2x); : : : ; os(nx); sin(x); sin(2x); : : : ; sin(nx)represent 2n + 1 linearly independent funtions (or points!) whih span a 2n + 1-dimensional vetor spae. During our tutorial we will also disuss orthogonal poly-nomials, splines and wavelets. These new sets of funtions all form vetor spaes ina natural way. While the de�nition of a vetor spae is a bit abstrat when you �rstenounter it, the beauty is its generality. In other words, you don't have to keepreiterating the same de�nitions and theorems over and over again. Think of it as awell-written subroutine for some omputer program you are writing. The softwareshould be onise so it is simple to omprehend, but it should also be general so itan be used in as many di�erent settings as possible.Simpliio: What you said is interesting. I will have to think about it.Virginia: I guess Eulid's onept of a line is similarly limited.Simpliio: I would have to agree.Galileo: We should now move on to the geometri ideas of distane, angles, andprojetions. These ideas were distilled and abstrated into a single onept: the innerprodut.De�nition 15.0.12. If u = (u1; u2; : : : ; un)t and v = (v1; v2; : : : ; vn)t are vetors in<n; then the inner produt of u and v is de�ned as < u;v >= utv =Pnk=1 ukvk:Simpliio: Why did you write the supersript t on the vetors?Galileo: In the ulture of Linear Algebra, we prefer to think of points as olumnvetors. Unfortunately, in the ulture of publishing, it is more onvenient to writerow vetors to save spae on the page. The supersripts t denotes the transpose,whih ips a row vetor to a olumn vetor and vie versa. Thus, the inner produt



347< u;v > is simply equal to the matrix produt of the row vetor ut and the olumnvetor v:Simpliio: So you have simply de�ned the dot produt of two vetors.Galileo: Exatly. Now let's turn to the problem of de�ning length and distane.De�nition 15.0.13. If u = (u1; u2; : : : ; un)t is a vetor in <n; then the length (or2� norm) of u is kuk2 = p< u;u >:Simpliio: What is that little subsript 2 doing there?Galileo: Atually, I must apologize, but that subsript omes from the PythagoreanTheorem. As it turns out, there are a multitude of di�erent norms. In fat, for anyreal number p � 1; there is a p�norm. However, as someone interested in appliations,the only values of p that you might ever use are p = 1; 2;1:The 1�norm is sometimes alled the taxi-ab metri and is de�ned as follows:De�nition 15.0.14. If u = (u1; u2; : : : ; un)t is a vetor in <n; then the 1� norm ofu is kuk1 =Pnk=1 jukj:The 1�norm is sometimes alled the sup norm and is de�ned but the followingrule. This metriDe�nition 15.0.15. If u = (u1; u2; : : : ; un)t is a vetor in <n; then the 1� normof u is kuk1 = maxfju1j; ju2j; : : : ; junjg:Note that the taxi-ab and sup metris do not involve omputing a square root.Thus, they are faster and easier to ompute than the 2�norm.We now use the 2�norm to de�ne the distane between two vetors.De�nition 15.0.16. If u = (u1; u2; : : : ; un)t and v = (v1; v2; : : : ; vn)t are vetors in<n; then the distane between u and v is ku� vk2:Simpliio: Sine I saw these de�nitions in Calulus, I am omfortable with theseideas.Galileo: Good. Now we are ready to de�ne the osine of the angle between twovetors and the projetion of one vetor onto another.



348De�nition 15.0.17. If u = (u1; u2; : : : ; un)t and v = (v1; v2; : : : ; vn)t are vetors in<n; then the osine of the angle � between u and v is os(�) = <u;v>kuk2kvk2While people in appliations expet a method to \always work," they may notbe so fortunate. As the patient reader will see, most tehniques have to be usedwith aution. The purpose of many of the theorems is to provide onditions andguidelines when the tehniques will provide useful estimates. Remarkably, one key toa multitude of stable methods is the onept of orthogonality, whih is nothing morethan another word for right angle. Thus, numerial tehniques look to Geometry asa soure of ideas for methods that always work. We will see this theme throughoutthese notes.Galileo: You might be surprised to learn you have an ally in the mathematiianPafnuty Chebyshev (1821-1894), who one remarked: \To isolate mathematis fromthe pratial demands of the sienes is to invite the sterility of a ow shut away fromthe bulls."Simpliio: I bet Professor Chebyshev and I would get along just �ne.



Chapter 16
Stable Tehniques: The Role ofOrthogonality
Galileo: I am a believer in \Appliations driven mathematis." However, before wemove on, I must add that the onept of orthogonality is essential to the suess ofa multitude of numerial methods. To say two vetors are orthogonal is just a fanyway of saying they are perpendiular. A triangle is alled a right triangle if its twoshorter edges are perpendiular. As Virginia just noted, my olleague Pythagoras hasa lot to say about right triangles. More reently, Professor Chebyshev showed thathis polynomials also have speial orthogonality properties.Simpliio: But why should I are?Galileo: Some tehniques are stable, while others are unstable.Simpliio: Stable? Unstable? I don't get it.Galileo: Will no one rid me of this meddlesome fellow?Virginia: OK, OK. I think it is time to relax here.Galileo: Think of a mathematial tehnique as a blak box that produes answersfor given types of inputs. An example of suh a blak box is a alulator. Anyoneworking in appliations should worry about whether or not a tehnique produes\reasonable" outputs when given \reasonable" inputs. Many tehniques lak thisimportant property{at least some of the time.349



350CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYSimpliio: An example please.Galileo: Suppose A is a 2 � 2 matrix and we are suppose to solve the system oflinear equations Ax = b: In this example, the inputs are the the matrix A and the2-dimensional vetor b: The output is the 2-dimensional vetor x:Simpliio: No problem. I remember the formula that solves suh a system.Virginia: If I remember orretly, the formula requires that you divide by the deter-minant of A: Thus, if det(A) = 0; there may be a problem.Galileo: Yes, Virginia. You have pointed out an important hypothesis to that theo-rem. Namely, we must assume det(A) 6= 0:Simpliio: I still don't see the problem.Galileo: Consider the following two systems of linear equations in the plane:System 1: 1:001x+ y = 2:001x + y = 2Note that the equations of these two lines are lose to being parallel. Solving thesystem we �nd x = 1 and y = 1:

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

The X Values 

Y
 

Figure 16.1: The Almost Parallel Lines for System 1Now onsider a slight modi�ation of this system of equations.



351System 2: 1:001x+ y = 2x + y = 2Solving this new system we �nd x = 0 and y = 2: Thus, we have modi�ed only oneentry in the vetor b by the minusule amount 0:001:
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Figure 16.2: The Almost Parallel Lines for System 2This hange has led to a di�erene of 1 in both entries of the answer. If we de�nethe oeÆient matrix by A = 0�1:001 11 11A ;then note that det(A) = 0:001 6= 0: Thus, the matrix equation an be solved by rowoperations. However, onsidering the size of the hange in the inputs, the size of thehange in the outputs is large. This is evil.A seond phrasing of stability is: If given two di�erent sets of inputs whih arelose together, then the outputs should also be lose together. Our little examplefails to possess this important property. If you are an engineer, you ome to avoidunstable methods beause they produe weird untrustworthy answers. If a tehnique



352CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYlaks this property, then engineers won't use it. This issue appears repeatedly in amultitude of numerial tehniques.Simpliio: But we are talking about row operations here! People still use this methodevery day. I have solved dozens of problems using row operations and have neverobserved this problem. How ome nobody ever warned me about this problem before?What is the problem?Galileo: Its all in the hypotheses. Note that the two olumns of A are almost parallel,whih implies that the matrix A is mildly ill-onditioned. I am willing to bet thatthe matrix equations you solved in your previous ourses all had integer entries.Your professors were being easy on you so you ould ompute the answer withouthaving to keep trak of a lot of deimal plaes. In real-life appliations, don't expetinteger entries. Let me �nish the disussion of this example by remarking that thisproblem disappears if the olumns of A are orthogonal (or almost orthogonal). Wewill revisit this issue numerous times in our future disussions. We will �nd thatmatries assoiated with polynomial approximations of data are evil, while matriesassoiated with Fourier series, spline, and wavelet approximations are good. As youwill see, the mantra for numerial tehniques is: \The name of the game is ontrol."Simpliio: OK, let's get bak to a disussion of the prerequisites for this tutorial.Galileo: Of ourse, you also need to have a solid bakground in Calulus. I use thephrase \solid bakground" to mean that you either remember the material or arewilling to make an e�ort to review it on your own. At a minimum, you should beable to ompute derivatives of funtions using the sum, produt, quotient, and hainrules. You should also be able to ompute easy integrals using substitution. Wewill review integration by parts, the Fundamental Theorem of Calulus, and Taylor'sTheorem. Reall that the big onept in Di�erential Calulus is that the tangentline at a given point on a urve is the line that best approximates the urve at thatpoint. The slope of this line is omputed as the derivative of the funtion. By theway, Brook Taylor (1685-1731) was a British mathematiian, whose ideas are usedeverywhere in Numerial Analysis. We will see a lot of him.



16.1. LINEAR ALGEBRA = GEOMETRY + ALGEBRA 353Simpliio: I think I an handle the Calulus prerequisite.16.1 Linear Algebra = Geometry + AlgebraGalileo: As for Linear Algebra, I an only say it is probably the most importantourse you will ever take in mathematis. The �rst instint of an engineer is totransform a given problem into a linear one{at least over a short time span. Generalinterest in this magni�ent subjet is easy to understand: With only two tehniquesyou have the ability to solve virtually any linear problem. The �rst tehnique is themethod of Gaussian elimination, otherwise known as row operations. The seond isthe diagonalization of a matrix using eigenvalues and eigenvetors.Simpliio: Until a few minutes ago, I had no problem with row operations. However,I must admit that I have always been a bit inseure when it omes to eigenvalues.Professor Poubelle overed the topi at the end of the semester and we ran out oftime and energy.Galileo: And so it is. You learned one of the two big ideas.Virginia: I will agree with Mr. Simpliio. I had Professor Piky Piky Piky forLinear Algebra, While he was a good teaher, we rarely omputed anything. We alsohad the problem that we got bogged down in lots of de�nitions, theorems, and proofs.The good Professor said the purpose of the ourse was to teah us about abstratmathematis. I worked hard and enjoyed the material, but was never quite able tomaster the topi of diagonalizing a matrix. Some how, I always got the transitionmatrix bakwards. That stu� at the end of the semester was very onfusing.Galileo: And there it is: the psyhoti bifuration of a beautiful subjet. My viewis that deep down Linear Algebra is the fusion of geometry and algebra. If you will,it is the \algebratization" of Eulid's Geometry. Maybe it should have been alledLinear Algebrai Geometry. Of ourse, it is too late now. The beauty of LinearAlgebra is that algebrai expressions and formulas are provided for eah geometrionept. Points, rays, and lines an be represented by vetors; angles and distanes



354CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYan be omputed using the inner produt; areas and volumes an be omputed withthe determinant funtion; and ongruenes an be represented by the ombinationof orthogonal and translational matries. This strong onnetion between the twosubjets is no aident. For the 100 years of the 19th Century, mathematiians workedinessantly to get Geometry \right."In fat, the subjet matter you studied in your Calulus, Linear Algebra, andVetor Analysis ourses is a diret result of this e�ort to algebratize geometry. The�rst reason was to make geometry rigorous; the seond was to failitate the inorpo-ration of geometri ideas into the modeling of real-life appliations. In the proessof proving the Fundamental Theorem of Algebra, Gauss reognized that omplexnumbers ould be represented as vetors in the plane. Sir William Rowan Hamilton(1805-1865) generalized the idea of the omplex numbers to the quaternions, whihprovide an algebrai struture for <4: This struture satis�es the assoiative and dis-tributive laws, but the multipliation fails to be ommutative. He also invented theword \vetor."Simpliio: Can't the omplex numbers be thought of as a subset of the quaternions?Galileo: Corret. Three other mathematiians, who ontributed to this searh for theest blend of geometry and algebra were Hermann Grassmann (1809-1877), ArthurCayley (1821-1895), and Josiah Willard Gibbs (1839-1903). While Grassmann on-tributed to many aspets of the subjet, his e�orts were foused on making the subjetas abstrat and general as possible. In partiular, he formalized the terms inner andouter produt in terms of their properties instead of their formulas. These ideas willbeome important when we investigate Fourier series. Cayley worked with Hamiltonon matrix algebra. In fat, he invented the term. Do you know what the word matrixmeans in Latin?Simpliio: No lue.Galileo: Womb.Simpliio: Oh.Galileo: Gibbs was the �rst high quality Amerian mathematiian. Trained in Eu-



16.1. LINEAR ALGEBRA = GEOMETRY + ALGEBRA 355rope, he studied thermodynamis and heat transfer. Entropy and enthalpy were hisideas.Simpliio: Why would I are about thermodynamis? Thank heavens I never had tostudy that diÆult subjet.Galileo: Thermodynamis is a subjet that grew out of the invention of the steamengine. You drive a ar, don't you?Simpliio: Sure.Galileo: Gibbs was also one of the founding fathers of Vetor Analysis. He eveninvented the notation for the dot produt and the ross produt. His Vetor Analysisemerged as the winner over Hamilton's quaternions for most appliations. GiuseppePeano (1858-1932) was a lear-thinking Italian, who has numerous redits to hisname inluding the formal de�nition of indution on the integers, the onstrution ofontinuous funtions whih raise dimension, and the formal de�nition of an abstratvetor spae. Peano is responsible for that abstrat de�nition you should have learnedin your �rst ourse in linear algebra. The reason for the abstration was to get awayfrom the idea of a �xed oordinate system in Eulidean n�dimensional spae <n:My olleagues Professors Giuseppe Peano (1858-1930) and David Hilbert (1862-1943) were instrumental in setting up the axioms for a vetor spae so they �t amultitude of di�erent appliations. It seems that di�erent researh groups were alldoing the same thing. They just didn't realize it. Peano and Hilbert ompleted thiswork at the end of the 19th Century. At the same time they put Eulid on a solidfoundation.Simpliio: OK, that is enough history.Galileo: Let us now turn to the idea of a vetor spae, whih plays a fundamentalrole in the topis we will disuss.Simpliio: What is a vetor spae? Professor Poubelle never disussed that topi.Virginia: A vetor spae is a set together with two operations: addition and salarmultipliation. The axioms inlude assoiative, ommutative, and distributive lawsas well as additive identity and inverses. The plane <2; three spae <3; and <n are



356CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYexamples of vetor spaes, where the set of salars is the set of real numbers. Theelegant feature of a vetor spae is that a funtion f(x) ontinuous at eah x 2 [a; b℄an be thought of as a vetor. If we denote the olletion of all ontinuous funtionson [a; b℄ by C0[a; b℄; then it is straightforward (but boring, boring, boring) to showthat C0[a; b℄ is a vetor spae.Simpliio: When I think of vetors, I think of little arrows with a poison tip. Whihway does f(x) point?Galileo: Just as a vetor in the plane has two oordinates and a vetor in three spaehas three oordinates, a funtion f(x) has a oordinate for eah x 2 [a; b℄: Thus, thespae C0[a; b℄ is looking like an in�nite dimensional vetor spae. (Galileo sips fromhis goblet.)Simpliio: This in�nite dimensional stu� is just mathematial games to keep you guyso� the streets. We live in three spae. I say three spae is as high as we need to go.Galileo: What about time?Simpliio: OK, I will onede four dimensions.Galileo: What about phase spae in Physis? Those guys like to have a partile movearound in six dimensional spae: three oordinates for position and three for veloity.Simpliio: OK, six.Galileo: String theory puts us at 11. Atually, a signal with n terms an be thoughtof as a vetor in <n: Similarly, the set of all digital images in bitmap format with 256rows and 256 olumns lie in a 256� 256 = 228 dimensional spae so you might as wellonede the point. You get one dimension for eah pixel loation.Simpliio: Those last two examples make this disussion more interesting. I likeimages.Galileo: What about a areful de�nition of this notion of dimension?Simpliio: It is what you said. The de�nition of dimension is simply the number ofoordinates. I don't see the problem.Galileo: Virginia, do you have any thoughts on this matter?Virginia: Dimension is a triky onept to make mathematially rigorous. If I re-



16.1. LINEAR ALGEBRA = GEOMETRY + ALGEBRA 357member orretly from Professor Piky's lass, we �rst de�ned the notions of linearombination and linear dependene. One we had de�ned linear dependene, thede�nition of independene is easy. Namely, a set of vetors is independent if it is notdependent. A basis is de�ned as any subset of a given vetor spae with the propertythat it is both linearly independent and maximal with respet to the property of beingindependent. The de�nition of dimension for a vetor spae an now be de�ned as thenumber of vetors in a basis. Professor Piky also de�ned the notion of a spanningset and then proved that any minimal spanning set is a basis.Simpliio: That de�nition doesn't sound too bad. What's the problem.Virginia: The problem is that there an be a zillion di�erent bases for a given ve-tor spae. Professor Piky spent several days going through some kind of exhangeargument, whih showed that any two bases have the same ardinality.Simpliio: Cardinality? What is that?Virginia: The ardinality of a set is the number of points in the set.Simpliio: Well why didn't you say so? Professor Poubelle was right. All this mathstu� is rubbish. You make the easiest ideas diÆult for absolutely no reason. Youmath people are all neurotially obsessed by details. Boring, boring, boring. So Iguess I should be polite and ask why should we are whether or not two bases havethe same ardinality?Virginia: Consider your favorite vetor spae <2: It is easy to hek that the standardbasis B = e1 = (1; 0); e2 = (0; 1) is a basis. From the disussion I just gave, we nowknow that any other basis will also have two members. Similar omments apply to<3:Simpliio: Big deal. The standard basis is good enough for me. Why should Itransform something easy into something ompliated?Galileo: Atually, the opposite is true. Do you happen to remember my olleagueApollonius (262-190 B.C.E.)?Virginia: He was the one with the oni setions. Right?Galileo: And what did his theorem say?



358CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYVirginia: If you ut (or interset) a plane with a one, then you get either a parabola,a hyperbola, or an ellipse. Atually, you an also get some less interesting ases suhas a point, a line, two lines, and even the empty set.Galileo: Very good. Now what did my friend Rene Desartes (1596-1650) show?Virginia: I am not sure I remember.Galileo: Desartes showed that if you onsider the subset of the plane de�ned byS = f(x; y) : Ax2 + Bxy + Cy2 +Dx + Ey + F = 0g; then the set must be a onisetion. The argument proeeds in two steps. The �rst is to translate the x and yaxes so that in the new oordinate system the onstants D = E0: This step is easyand leaves us with the expression Ax2 + Bxy + Cy2 + F = 0: The seond step is torotate the oordinates so that B = 0: This rotation is arried out by the matrixS = 0� �ss  1A ;where  = os(�) and s = sin(�) for an appropriately hosen angle �: With thesetwo transformations, we end up with the same seven ases you just mentioned. Ifwe de�ne the disriminant by the formula � = B2 � 4AC; then the three interestingases beome:1. If � = 0; then the set S is a parabola de�ned by y = ax2:2. If � > 0; then the set S is a hyperbola de�ned by x2a2 � y2b2 = 1:3. If � < 0; then the set S is an ellipse de�ned by x2a2 + y2b2 = 1:This proess has redued a ompliated expression to one in standard form, wherethe three interesting ases an be identi�ed by simply omputing �:Virginia: In other words, the disriminant disriminates!Simpliio: OK, all well and good, but what employer is going to pay me a worthysalary for knowing this little theorem about oni setions?Virginia: You an always teah.Simpliio: Fat hane of that ever happening.



16.1. LINEAR ALGEBRA = GEOMETRY + ALGEBRA 359Galileo: While I will admit that this theorem may seem a bit old fashioned, it pro-vides the onept for a multitude of appliations. In partiular, an employer willbe interested in whether or not you are knowledgeable about Fourier Series. Fourierdidn't invent Fourier series and he never got the math right, but he did manage todraw attention to a tehnique that works over a broad range of appliations. He knewit worked.Simpliio: Who is this Fourier and how did he get started?Galileo: Jean Baptiste Joseph Fourier (1768-1830) aompanied Napoleon Bonaparteto Egypt as his hief sientist in 1798. While Fourier enjoyed the sunny weather, itseems that the English did not partiularly appreiate the Frenh having ontrol ofthis important region. As a result, Lord Horatio Nelson attaked and defeated theFrenh in the Battle of the Nile in 1798. With his subsequent return to Frane, Fourierhose to live in Grenoble, where the winters are long, old, and miserable. While heturned up the heat in his apartment and put on extra oats, he was unable to keepout the winter hill. He su�ered mightily. In his misery, he began his investigationsinto the heat equation.Simpliio: Why are you telling me this sad story about poor old Mr. Fourier? I arenothing about his heat equation.Galileo: You might reonsider that statement. While Fourier investigated the heatequation, his series ontinue to be used in a multitude of appliations even 200 yearsafter their invention. Two reasons for this longevity ome to mind. First, Fourierseries are simply linear ombinations of sines and osines so they should probably beonsidered when modeling any phenomenon assoiated with the motion of a wave. Ifyou think about it, waves are involved in a multitude of appliation areas inludingoptis, eletromagneti waves, ommuniations, aoustis, and speeh reognition.For an eletrial engineer or omputer sientist, Fourier also provides the basis forthe aquisition, transmission, ompression, and �ltering of signals and images. Whenone speaks of \appliations driven mathematis," Fourier series should be one of the�rst topis to ome to mind. In any ase, Fourier is a ore subjet for students in



360CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYboth pure and applied mathematis. I apologize for the extended soliloquy.Simpliio: Now you have my full attention.Galileo: Before we move on to Fourier, let's take one more look at Desartes' rotationmatrix S: The new oordinate system an be desribed by the basis formed by thetwo olumn vetors of S: More spei�ally, the two new basis vetors are:0�s1A and0��s 1A :These vetors have two fundamentally important properties. First, they are or-thogonal. Seond, they both have length one. In the language of modern LinearAlgebra, we have diagonalized the matrixM = 0�A B2B2 C1A ;whih allows us to write the quadrati expression Ax2 + Bxy + Cy2 as the matrixprodut: Ax2 +Bxy + Cy2 = (x; y)0�A B2B2 C1A0�xy1A :If �1 and �2 are the eigenvalues of M; then0��1 00 �21A = 0�  s�s ;1A0�A B2B2 C1A0� �ss  1A :In other words, if �1 > 0 and �2 > 0; then the oni setion is an ellipse; if �1 > 0and �2 < 0; then the setion is a hyperbola; and if either �1 = 0 or �2 = 0; then thesetion is a parabola. Thus, the eigenvalues an also be used to distinguish the threeases.Simpliio: OK, OK, that ugly word orthogonal is now looking better.Galileo: The question now beomes: How do you ompute lengths, distanes, andangles in a vetor spae?



16.1. LINEAR ALGEBRA = GEOMETRY + ALGEBRA 361Virginia: There is nothing in the de�nition of a vetor spae that says anything abouteither property.Galileo: You are, in fat, orret.Simpliio: So what do we do?Galileo: Leave it to another grumpy German geek from the 19th Century, one Her-mann Grassmann (1809-1877), to invent the idea of an inner produt. The virtue ofthis idea is that it solves all three problems at the same time. In partiular, this de-vie an be used to make abstrat de�nitions for length (also alled norm), distane,and angle. His ideas were so ahead of his time, nobody ould understand what hewas talking about.Simpliio: Why would anyone want all this abstration? Why not keep it under-standable?Galileo: Think about your omputer software lasses. When you write a subroutineor proedure to make some omputation, you should make it as generally useful aspossible. If you are sloppy and write a new subroutine for eah new situation, yoursoftware will expand out of ontrol. The same strategy has existed in mathematissine the anient Greeks, where it has taken the best minds to reognize that ahodgepodge of di�erent speial ases sometimes fall under the same umbrella. As aninexperiened beginner, the problem beomes a lak of familiarity with all the relevantspeial ases that gave rise to the abstrat de�nition. The problem with modernmathematial pedagogy is that we begin with the �nal produt. This approah tendsto be elegant, but sterile.Simpliio: Don't think I haven't notied.



362CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITY16.2 Linear Algebra: The Role of Inner Produts

Figure 16.3: Hermann Grassmann (1809-1877)Galileo: To begin our disussion of inner produt spaes, let us begin with the speialase of the inner produt de�ned on <n:De�nition 16.2.1. If u = (u1; u2; : : : ; un)t and v = (v1; v2; : : : ; vn)t; are olumnvetors in <n; then the inner produt is < u;v >= utv =Pnk=1 ukvk:Simpliio: Remind me about that little t next to the vetor u:Galileo: That exponent t indiates the transpose of the olumn vetor to a row vetor.While publishers would like all vetors to be written horizontally, we would like tothink of them as olumn vetors.Simpliio: What useful purpose does this serve?Galileo: We would like to onsider a matrix as a partiulary useful type of funtion,whose domain onsists of all the olumn vetors in <n and whose range onsists ofall the olumn vetors in <m: These olumn vetors will be onsidered to be points.This funtion funtion an be omputed by the rules of matrix multipliation.Simpliio: Thus, the produt utv simply indiates the usual dot produt. For exam-ple, if u = (u1; u2)t and v = (v1; v2)t; then < u;v >= utv = u1v1 + u2v2:Galileo: Yes, you are orret. Now, using this inner produt, we an de�ne the lengthof the vetor.



16.2. LINEAR ALGEBRA: THE ROLE OF INNER PRODUCTS 363De�nition 16.2.2. kuk2 = p< u;u >:Simpliio: Wait a minute. What is this notation kuk2? More to the point. What isthat little subsript 2 doing there?Virginia: One again, I bet it is Pythagoras lurking around.Galileo: We an also de�ne the distane between two vetors.De�nition 16.2.3. If u = (u1; u2; : : : ; un)t and v = (v1; v2; : : : ; vn)t; are olumnvetors in <n; then the distane between u and v is dist(u;v) = ku� vk2:Simpliio: In other words, the distane between two vetors is the length of theirdi�erene.Galileo: Corret. In addition to length, the notion of inner produt allows us toompute the osine of the angle between two vetors u and v:De�nition 16.2.4. The osine of the angle � between two vetors u and v is de�nedby the formula os(�) = < u;v >kuk2kvk2 :Thus, we an now ompute the angle � by the arosine funtion. We an alsohek to see if two vetors are 90 degrees (or orthogonal) by simply omputing theinner produt < u;v > : If this quantity equals zero, they are orthogonal. Forexample, if u = (;�s)t and v = (s; )t; then < u;v >= s � s = 0: Thus, thevetors u and v are orthogonal.Simpliio: What is that little subsript 2 doing on the length formula kuk2?Galileo: We put a subsript there to remind you to ompute the square root of thesum of the squares of the oordinates of u: As it turns out, we will sometimes �nd itonvenient to ompute kukp: This symbol represents the pth root of the sum of thepth powers of the oordinates of u: You omputer types tend to like it when p = 1 orp =1:Simpliio: In God's green earth, how an p = 1? If p = 1; then we are summingthe in�nite power of a bunh of numbers.



364CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYGalileo: The ase p = 1 denotes the maximum of the absolute values of all theoordinates. Don't worry. We will return to that point. OK, what an we observeabout our rotation matrix S?Simpliio: The two olumns are orthogonal.Virginia: And hene we won't have the problem with stability we had with our matrixA!Galileo: You got it. Looking ahead, you might also like to know that the 2�2 Fouriermatrix is de�ned by the equation:F2 = 0�p22 p22p22 �p22 1Aso this matrix has orthogonal olumns eah with unit length. In fat, if we interhangethe two olumns of F2; the matrix represents a rotation of � = �45: Note thatdet(F2) = �1; whih implies that there is a \ip" aross some line in the plane. Thebeauty of the general Fourier matrix Fn is that it will have orthogonal olumns ofunit length.Simpliio: This stu� is OK.Galileo: Unfortunately, I have bad news for you. The situation deteriorates a littlefrom here.Simpliio: How so?Galileo: When we begin approximating a funtion f(x) on an interval [a; b℄; we willhave many di�erent bases to hose from. For example, we an approximate the fun-tion by linear ombinations of funtions from the basis BP = f1; x; x2; : : : ; xng: Thistype of approximation is by polynomials. We have a number of di�erent tehniquesinluding Taylor and polynomial interpolation. We an also approximate f(x) bylinear ombinations of funtions in the basisBF = f1; os(x); sin(x); os(2x); sin(2x); : : : ; os(nx); sin(nx)g: As it turns out formost appliations, the seond basis is preferred to the �rst. First, as we mentioneda few minutes ago, there are a multitude of appliations involving some kind of wavephenomena. Sine the funtions os(nx) and sin(nx) ertainly look like waves, they



16.2. LINEAR ALGEBRA: THE ROLE OF INNER PRODUCTS 365should provide a good model. Seond, as we shall see in a moment, these funtionshave marvelously stable mathematial properties.Simpliio: How so?Galileo: I hate to tell you but the answer one again is, you guessed it, orthogonality.Simpliio: But wait a minute. How the hek an two funtions be orthogonal? Thatmakes no sense.Galileo: Now we are bak to grumpy Grassmann, who reognized that we an omputethe inner produt of two ontinuous funtions f(x) and g(x) de�ned on an interval[a; b℄ by simply ompute the integral. In other words, simply de�ne the inner produtby the formula: < f(x); g(x) >= Z ba f(x)g(x) dx:If you think of the integral as simply a fany summation symbol and the values of x asoordinates, this formula is just an extension of the dot produt. Thus, the funtionsf(x) and g(x) are orthogonal if R ba f(x)g(x) dx = 0: In partiular, if we onsider thefuntions os(mx) and sin(nx) to be de�ned on the interval [��; �℄; then it will turnout that R ��� os(mx) sin(nx) dx = 0: Thus, these two trigonometri funtions areorthogonal. Are you bak in your omfort zone yet?Simpliio: I am getting there.Virginia: If I hear you orretly, we an now ompute the length of a funtion f(x)by the formula kf(x)k2 =p< f(x); f(x) > =sZ ba f(x)2 dx:We an also ompute the osine of the angle between two funtions f(x) and g(x) bythe formula os(�) = < f(x); g(x) >kf(x)k2kg(x)k2 :Galileo: Corret.Simpliio: But what does it mean to talk about the length of a funtion? What sensedoes it make to talk about the angle between two funtions? In partiular, what isthe angle between the funtions xm and xn?



366CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYGalileo: Unfortunately, the news here is not good. While we an easily ompute therequired integrals on any interval, say [�1; 1℄; the osine of the angle between theman be arbitrarily lose to one implying the funtions are lose to being parallel. Aswe have already observed, this situation an lead to evil.Virginia: I an visualize the problem here.Galileo: Before we leave the topi of inner produt, let's mention one more speialase. In partiular, if the funtions f(x); g(x); and !(x) are ontinuous on the interval[a; b℄ and !(x) > 0 for all x 2 [a; b℄; then we an de�ne an inner produt by the rule< f(x); g(x) > = < f(x); g(x) >!(x) = Z ba f(x) g(x) !(x) dx:The funtion !(x) an be thought of as a weighting funtion.Simpliio: One again, I see this de�nition as just one more playground for the mathgeeks. It looks to me like abstration for the sake of abstration.Galileo: Unfortunely, I think Professors Adrien-Marie Legendre (1752-1833), CharlesHermite (1822-1901), Pafnuty Chebyshev (1821-1894), and Edmund Niholas La-guerre (1834-1886) might beg to di�er. They eah ontributed to the study oforthogonal polynomials: As the name orthogonal polynomials suggests, these fel-lows studied polynomials, whih by the appropriate hoie of weighting funtion alsohappen to be orthogonal on some interval [a; b℄. In eah ase, their method pro-vides an elegant new basis for C0[a; b℄: Professor Legendre studied the ase when theweighting funtion !(x) = 1 for all x 2 [�1; 1℄: Professor Hermite studied the asewhen !(x) = e�x2 for all x 2 (�1;1): Professor Chebyshev studied the ase when!(x) = 1p1�x2 for all x 2 [�1; 1℄: Professor Laguerre studied the ase when !(x) = e�xfor all x 2 [0;1): For Professor Legendre the �rst few basis vetors areL0(x) = 1;L1(x) = x;L2(x) = x2 � 13 ;L3(x) = 5x3 � 3x; et:



16.2. LINEAR ALGEBRA: THE ROLE OF INNER PRODUCTS 367For Professor Hermite the �rst few basis vetors areH0(x) = 1;H1(x) = 2x;H2(x) = 4x2 � 2;H3(x) = 8x3 � 3x; et:For Professor Chebyshev the �rst few basis vetors areT0(x) = 1;T1(x) = x;T2(x) = 2x2 � 1;T3(x) = 4x3 � 3x; et:Finally, for Professor Laguerre the �rst few basis vetors areL0(x) = 1;L1(x) = � x + 1;L2(x) = 12(x2 � 4x+ 2);L2(x) = 16(�x3 + 9x2 � 18x+ 6); et:These polynomials an be omputed using their de�nition, integration by parts, andthe Gram-Shmidt orthogonalization proess you learned in a beginning Linear Al-gebra ourse.Sine the weighted integral R ba f(x)g(x)!(x) dx is an inner produt, anytime afat is demonstrated about an inner produt spae, it will also be true for theseorthogonal polynomials. The Pythagorean Theorem is the most notable example.These orthogonal polynomials not only have notable mathematial properties, butalso have appliations to di�erential equations and Physis. Legendre polynomialsare losely assoiated with Laplae's equation, heat transfer, and the topi of spherialharmonis in physis. The literature written on these topis is vast.



368CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYSimpliio: I never studied these properties in my physis lass. These appliationssound diÆult.Galileo: We are now in a position to understand the virtues of orthogonal projetions.Simpliio: I hate to think.Galileo: Well then, visualize for a moment that you are holding two annonballs inyour hands. If you let go, they drop to the oor. If they were lose together at thebeginning, they will land side-by-side when they hit the oor. Note that the anglebetween the ight-path of eah ball and the oor is 90 degrees. In other words, anyvetor lying in the oor is orthogonal to the ight-path of eah ball.Simpliio: I see.Galileo: On the other hand, suppose I ing the annonballs sideway towards the edgeof the room.Simpliio: So?Galileo: Even if they are lose together when they are in your hands, they may stillstrike the oor at points far apart. If the room is large, they may land very farapart. The virtue of Fourier series approximation is that it amounts to an orthogonalprojetion from an in�nite dimensional spae into a �nite dimensional spae. Smallerrors in measurement at the beginning remain small. This is good.Virginia: It is better to drop than ing?Galileo: You have it. Moreover, the tehnique of linear least squares is also based onthis same onept. Statistiians give daily thanks to the Greek Goddess Orthogonal.Simpliio: This is more than I an stand.Galileo: Sine it took people deades to understand Grassmann, it is not too surpris-ing you might have to think about these ideas for a minute or two. However, let meomment that an inner produt an be de�ned on an abstrat vetor spae by simplystating four simple properties. The whole proess is amazingly elegant and simple.(Galileo sips.)Virginia: I like these ideas. Simple is good.Simpliio: I think I am going to have a bad hangover.



16.2. LINEAR ALGEBRA: THE ROLE OF INNER PRODUCTS 369Galileo: No drinking for you. Alohol kills brain ells you annot a�ord to lose. Infat, we now summarize the onnetions between Geometry and Linear Algebra inTable 16.2.
Geometry ! Linear Algebrapoint ! vetorline ! vetorray ! vetordistane ! inner produtangle ! inner produtright angle ! orthogonality (inner produt)area ! determinantvolume ! determinantongruene ! linear transformationsimilarity ! linear transformationTable 16.1: The Connetions Between Geometry and Linear Algebra.

Virginia: So the key ideas of Geometry are enapsulated in the four onepts: vetor,inner produt, determinant, and linear transformation.Galileo: You got it. Better yet, it is rigorous and set up for making omputations.The subjet is perfet for our omputer guys.



370CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITY16.3 A Linear Algebra Version of Pythagoras

David Hilbert (1862-1943)David Hilbert: \He who seeks for methods without having a de�nite prob-lem in mind seeks in the most part in vain."Galileo: Let us introdue David Hilbert, an expert in Linear Algebra. He wrotea lassi work on the foundations of geometry, where his mission was to formulatethe logial struture of geometry into the most mathematially orret frameworkpossible. He also enjoyed appliations as well as daning on Saturday nights. We willask him to present a more modern version of the Pythagorean Theorem.Simpliio: Well, at least we don't have to deal with that logi guy. He was a downer.Virginia: You try my patiene.Hilbert: In the interest of keeping the disussion aessible and onrete, we beginwith an example.Example 16.3.1. Let u = 0�111Aand v = 0� 1�11A :



16.3. A LINEAR ALGEBRA VERSION OF PYTHAGORAS 371Note that the square of the length of the vetor u equals 2. Note that the square ofthe length of the vetor v also equals 2.Note that the square of the length of the vetoru + v = 0�201Aequals 4. Sine 2 + 2 = 4; we have proved a speial ase of the Algebrai Version ofthe Pythagorean Theorem.Simpliio: Even I an handle that omputation.Hilbert: We now generalize this example by proving the theorem for olumn vetorsin <n whih have the form
u = 0BBBBBB�u1u2...un

1CCCCCCA ;where eah uj 2 <:Theorem 16.3.1 (Algebrai Version of Pythagoras ). If u = (u1; u2; : : : ; un)tand v = (v1; v2; : : : ; vn)t are two orthogonal vetors in <n; then ku + vk22 = kuk22 +kvk22:Proof. By the properties listed in the previous proposition ombined with the as-sumption that < u;v >=< v;u > = 0; we see thatku+ vk22 = < u+ v;u+ v >= < u;u > + < u;v > + < v;u > + < v;v >= kuk22 + 0 + 0 + kvk22= kuk22 + kvk22:



372CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYSimpliio: While the proof is short, I still don't like this unneessary abstration.Hilbert: Do you understand how the theorem applies to the examples?Simpliio: No problem, for the vetors u = (1; 1)t and v = (1;�1)t; we simply observethat u+ v = (2; 0)t and 4 = 2 + 2:For the vetors u = (3; 4)t and v = (�4; 3)t; we simply observe that u + v =(�1; 7)t and ku+ vk22 = 1 + 49 = 52 + 52 = kuk22 + kvk22:Hilbert: Good. To help you visualize the theorem in two dimensions, we have inludeda diagram in Figure 16.4.

Figure 16.4: The Linear Algebra Version of the Pythagorean TheoremHilbert: Unfortunately, the abstration gets worse. However, before we move in thatdiretion, I would like to point out that the proof only used the properties of the innerprodut we showed in the proposition. You have now seen Hermann Grassmann atwork. Namely, �rst identify and isolate the key properties assoiated with an ideaand then prove as muh as you an about the properties. A bene�t of this proessis that ompliated summation notation is replaed by a pair of brakets. One you



16.3. A LINEAR ALGEBRA VERSION OF PYTHAGORAS 373get used to this method of doing business, the ideas underlying the tehnique beomemore transparent. Later we will reprove the theorem for Fourier series, whih live in amore general inner produt spae. In an e�ort to prepare you for Fourier Series, howabout if we restate the Pythagorean Theorem the vetor w is a linear ombinationof two orthogonal vetors u and v; whih have the same length L: For Fourier seriesthe onstant L = p�: Note also, that if the onstant L = 1; then the statement isthe same as the theorem we just presented.Example 16.3.2. Let u = 0�111Aand v = 0� 1�11A :As we noted before, the length of the vetors u and v both equal p2:If w = au + bv; then kwk22 = 2(a2 + b2): Note that this observation is a speialase of the next Theorem.Theorem 16.3.2 (Algebrai Version of Pythagoras 2). Let u = (u1; u2; : : : ; un)tand v = (v1; v2; : : : ; vn)t be two orthogonal vetors in <n with the property that kuk2 =kvk2 = L: If a; b 2 < and w = au+ bv; then kwk22 = L2(a2 + b2):Proof. Sine w = au+ bv;kwk22 = = < w;w >= < au + bv; au+ bv >= a2 < u;u > +ab < u;v > +ba < v;u > +b2 < v;v >= a2 < u;u > +0 + 0 + b2 < v;v >= a2L2 + b2L2= L2(a2 + b2):



374CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYSimpliio: OK, why should I are about this last theorem? Why don't we just leavethese ideas in Geometry where they belong?Hilbert: We are looking ahead to Fourier series, whih we will be disussing at a laterdate. The 2� 2 matrix F2 = 0�1 11 �11Ais the matrix representing the disrete Fourier transform. Note that the olumns ofthis matrix are the vetors u andmathbfV we just disussed in the previous example.The advantage of Peano's abstrat de�nition of vetor spae is that funtions an alsobe thought of as vetors. In partiular, trigonometri funtions suh as 1; os(x); andsin(x) an now be onsidered vetors in a very large (i.e in�nite dimensional) spae.While you may think of the inner produt as the dot produt of two vetors in <n;we an also de�ne the inner produt of two funtions as the integral of their produtover some interval [a; b℄: When we disretize these funtions, we end up with the 3�3Fourier matrix 0BBB�1 1 01 �12 p321 �12 �p32
1CCCA :Note that the olumns of this matrix are pairwise orthogonal.Simpliio: So?Hilbert: This observation is important beause the Pythagorean Theorem an nowbe applied to these three olumn vetors to infore stability.Simpliio: I see that the olumns are orthogonal. In�nite dimensional spaes?Example 16.3.3. Hilbert: The idea of an in�nite dimensional spae is not so strangewhen you realize that eah point x 2 [a; b℄ an be thought of as a oordinate fora funtion f(x): Sine trigonometri funtions are usually de�ned on the interval[��; �℄ (or [0; 2�℄), the inner produt beomes< f(x); g(x) > = Z ��� f(x)g(x) dx:



16.3. A LINEAR ALGEBRA VERSION OF PYTHAGORAS 375The make the onnetion between Fourier series and Pythagoras, leth(x) = a os(x) + b sin(x): Sine it is an easy exerise from alulus to show that1. < os(x); os(x) >=< sin(x); sin(x) >= � and2. < os(x); sin(x) >=< sin(x); os(x) >= 0;we observe thatZ ���(h(x))2 dx = < a os(x) + b sin(x); a os(x) + b sin(x) >= a2 < os(x); os(x) > + 2ab < os(x); sin(x) >+ b2 < sin(x); sin(x) >= a2� + 2 � 0 + b2� = �(a2 + b2):Grassmann would be proud to see his abstrat de�nition of the inner produt be-oming a entral fous in this important appliation.Virginia: I see the potential here for some interesting mathematial ideas.Exerise Set 16.1.1. If u;v; and w represent the olumns of the matrix0BBB�1 1 01 �12 p321 �12 �p32
1CCCA ;then show that ku+ v +wk22 = kuk22 + kvk22 + kwk22:2. Prove the Pythagorean Theorem for three vetors: If u = (u1; u2; : : : ; un)t;v = (v1; v2; : : : ; vn)t; and w = (w1; w2; : : : ; wn)t are three vetors in <n with theproperty that u ? v; u ? w; and v ? w; then ku + v +wk22 = kuk22 + kvk22 +kwk22:



376CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITY3. Prove the following theorem: Let u = (u1; u2; : : : ; un)t;v = (v1; v2; : : : ; vn)t; andw = (w1; w2; : : : ; wn)t be pairwise orthogonal vetors in <n with the propertythat kuk2 = kvk2 = kwk2 = L: If a; b;  2 < and z = au + bv + w; thenkzk22 = L2(a2 + b2 + 2):4. Prove the parallelogram law: If u = (u1; u2; : : : ; un)t and v = (v1; v2; : : : ; vn)t;then ku+ vk22 + ku� vk22 = 2kuk22 + 2kvk22:5. Prove the Law of Cosines.
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Chapter 17
Taylor Polynomials

Brook TaylorGalileo: We now ask Professor Taylor to rejoin us so he an explain the generalversion of the theorem that made him famous. While stritly speaking it is not amethod of interpolation, it does provide an entry point into the topi of polynomialinterpolation. Professor Taylor, tell us your theorem.Taylor: Atually, it is a straight forward generalization of what we presented when weshowed the method of Newton/Raphson onverges quadratially. Again, the oneptis to write a given funtion f(x) = pn(x) + En(x); where pn(x) is a polynomial ofdegree n and En(x) represents the error. In other words, a smooth funtion an be379



380 CHAPTER 17. TAYLOR POLYNOMIALSwritten as the sum of a polynomial and an error. With luk, the error term will besmall.Theorem 17.0.3 (Taylor). If a < x; x0 < b and f(x) 2 Cn+1[a; b℄; thenf(x) = nXk=0 f (k)(x0)k! (x� x0)k + 1n! Z xx0 f (n+1)(t)(x� t)n dt:Proof. The proof employs the same tehnique as the one given for the ase n = 1:The idea is to always attak the error term using the tehnique of integration byparts, where we integrate f (n+1)(t) and di�erentiate (x � t)n: Sine we have alreadydemonstrated the proof for n = 1; we will prove the next ase when n = 2:For n = 2 we let u = (x � t)2 and dv = f 000(t) dt so that du = �2(x � t)dt andv = f 00(t): When we apply integration by parts, we get the following redution.Z xx0 f 000(t)(x� t)2dt = (x� t)2f 00(t)jxt=x0 � Z xx0 f 00(t)(�2)(x� t)dt= �(x� x0)2f 00(x0) + 2 Z xx0 f 00(t)(x� t)dt= �(x� x0)2f 00(x0) + 2[f 0(x0)(x� x0) + f(x)� f(x0)℄:Thus, f(x) = f(x0) + (x� x0)f 0(x0) + f 00(x0)2 (x� x0)2 + 12 R xx0 f 000(x)(x� t)2 dt:The general ase is proved by applying the tehnique of integration by parts ntimes to the integral R xx0 fn+1(t)(x� t)ndt; where u = (x� t)n and dv = fn+1(t)dt: Ifn = 47; then the tehnique will have to be applied 47 times.Taylor: Note that any polynomial of the form p2(x) = a0 + a1x + a2x2 is a Taylorseries. Similarly, any nth degree polynomial pn(x) = Pnk=0 akxk represents a Taylorseries. Here is an example to work out.Example 17.0.4. Compute the �rst n + 1 non-zero terms of the Taylor series forthe funtion f(x) = os(x) at the point x = x0 = 0: Sine os(x) = os(�x); for allx 2 <; the funtion os(x) is an even funtion. This fat should tip you o� that theTaylor series expansion will only have even powers of x represented.



381Solution: When we ompute the derivatives of f(x); we �nd that f(0) = 1; f 0(0) =0; f 00(0) = �1; f 000(0) = 0; f (4)(0) = 1; et:Thus, the series expansion at x = 0 isos(x) � 1� 12!x2 + 14!x4 + � � �+ (�1)k 1(2n)!x2n = nXk=0(�1)k 1(2k)!x2k:Simpliio: Where did the formula for the polynomialpn(x) =Pnk=0 f(k)(x0)k! (x� x0)k ome from? How did you ever think of that?Taylor: You an �gure out the formula for yourself. Just work out the next example.Example 17.0.5.Problem: If p2(x) = 2 + 3x + 5x2 and x0 = 7; then �nd onstants A;B;C so thatp2(x) = A+B(x� 7) + C(x� 7)2:Solution: If p2(x) = A+B(x� 7) + C(x� 7)2; then p2(7) = A:Sine p02(x) = B + 2C(x� 7); p02(7) = B:Sine p002(x) = 2C; p02(7) = C2 :Thus, p2(x) = p2(7) + p02(7)(x� 7) + p002 (7)2 (x� 7)2:Taylor: This last exerise provides formulas for a polynomial when expanded aboutan arbitrary point x0: This formula is exatly my theorem for the speial ase thatthe funtion is a polynomial.Simpliio: But what about the error term?Taylor: Sine you have begun the proess with a polynomial, the errors are all zero.In other words, there is no error term.Simpliio: And of ourse, I have to omplain about the proof. While I understandintegration by parts, I must say I am urious about how you ame up with that idea.Galileo: Now you are asking the more diÆult question: How does the reative proesstake plae in your brain? While the answer will probably never be known, hard workand areful thought are de�nitely prerequisites.Lagrange: I would like to interede a seond time to insist that I have a more elegantform of this theorem, where the integral in the error term is replaed by a derivativesimilar to the ones in the polynomial part.



382 CHAPTER 17. TAYLOR POLYNOMIALSTheorem 17.0.4 (Taylor). If a < b and f(x) 2 Cn+1[a; b℄; then for every pair ofpoints x; x0 2 (a; b) there is a point z 2 (a; b) suh thatf(x) = nXk=0 f (k)(x0)k! (x� x0)k + f (n+1)(z)(n+ 1)! (x� x0)(n+1):Proof. As before, we will only prove this form of the theorem for the integer n = 2:In this ase, we have the equation f(x) = f(x0) + (x� x0)f 0(x0) + f 00(x0)2 (x� x0)2 +12 R xx0 f 000(t)(x� t)2 dt: Again, by the Intermediate Value Theorem for Integrals, we seethat there is a point z between x0 and x suh that12 Z xx0 f 000(x)(x� t)2 dt = 12f 000(z) Z xx0 (x� t)2 dt= 12f 000(z)(x � x0)33= f 000(z)6 (x� x0)3
Simpliio: While all this mathematis is quite lovely, ould you give me one usefulappliation.
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Figure 17.1: Suessive Taylor Approximations of f(x) = sin(x)



383Galileo: This request is not a problem. Consider the question of designing a alula-tor. On that alulator you would like to have a button, whih omputes the valueof sin(x) for a given value of x:Simpliio: That feature would be onvenient.Galileo: So how do you think you might design suh a devie?Simpliio: Sine there is no formula for sin(x); I have no earthly idea.Galileo: While Taylor's theorem does not provide a formula for the exat value ofsin(x); it does manage to provide a formula for an approximation to an auray aslose as you wish. In partiular, the strategy an be desribed in the following steps:1. Deide the auray you require. For single preision, this requirement is 1107 :For double preision, this requirement is 11014 :2. Deide the size of the interval (a; b) you would like to ompute. Sine sin(x) is2� periodi, this interval might be [��; �℄:3. Find an integer n so that the error term En(x) = f(n+1)(z)(n+1)! (x�x0)n+1 is less thanthe required auray for all x 2 (a; b):Simpliio: That strategy sounds reasonable.Galileo: Well then, here are some problems to pratie on.Exerise Set 17.1.
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Figure 17.2: Suessive Taylor Approximations of f(x) = ln(x)



384 CHAPTER 17. TAYLOR POLYNOMIALS1. Compute the �rst 5 non-zero terms of the Taylor series for the funtions sin(x); 11+x2 ; tan(x)and ex at the point x = x0 = 0: Note that while the funtion 11+x2 requires onlyeven powers of x; the funtions sin(x) and tan(x) have only odd powers of xrepresented. Do you remember the de�nition of what it means for a funtionto be even or odd?2. Compute the �rst 5 non-zero terms of the Taylor series for the funtion ln(x)at the point x = x0 = 1:3. Given the funtion f(x) = sin(x) de�ned on the interval [��; �℄; x0 = 0; anda tolerane tol = 110;000 determine an integer n with the property that thepolynomial pn(x) =Pnk=0 f(k)(x0)k! (x�x0)k has the property that jf(x)�pn(x)j �tol for all x 2 [��; �℄: Could this tehnique be e�etively programmed into aalulator to estimate the funtion sin(x) to single preision? What if we reduethe size of the interval to [��=2; �=2℄? What about double preision?4. Given the funtion f(x) = os(x) de�ned on the interval [��=2; �=2℄ and atolerane tol = 110;000;000 determine how many terms of the Taylor series will berequired to guarantee that the error between the funtion and the Taylor seriesis less than the tolerane.5. Given the funtion f(x) = ex de�ned on the interval [�1; 1℄ and a toleranetol = 110;000;000 determine how many terms of the Taylor series will be requiredto guarantee that the error between the funtion and the Taylor series is lessthan the tolerane.6. Given the funtion f(x) = ln(1 + x) de�ned on the interval [�12 ; 12 ℄; x0 = 0;and a tolerane tol = 110;000 determine an integer n with the property that thepolynomial pn(x) =Pnk=0 f(k)(x0)k! (x�x0)k has the property that jf(x)�pn(x)j �tol for all x 2 [�12 ; 12 ℄: Could this tehnique be e�etively programmed into aalulator to estimate the ln(x) to single preision? What if we redue the sizeof the interval to [�14 ; 14 ℄? What about double preision?



3857. What about the Taylor Series error formula for the funtions 11+x2 and tan(x)?(Assume that x0 = 0:)8. Show that the Mean Value Theorem is a speial ase of Taylor's Theorem whenn = 0:9. Use Taylor's Theorem to ompute the square root of 3. (Hint: Let f(x) =px; x0 = 4; and x = 3:) How many terms of the Taylor series will be neededto to guarantee an auray of less than 0.00001? What happens when x0 = 1;and x = 2 are used to ompute p2?10. If p2(x) = 2+3x+5x2 and x0 = 7; then show that p2(x) = p2(7)+p02(7)(x�7)+p002 (7)2 (x�7)2: (Hint: Let p2(x) = A+B(x�7)+C(x�7)2; ompute derivatives,substitute x = 7; and solve for A;B; and C:)11. If p2(x) = a0 + a1x + a2x2 and x0 is any real number, then show that p2(x) =p2(x0) + p02(x0)(x� x0) + p002 (x0)2 (x� x0)2:12. If pn(x) = Pnk=0 akxk and x0 is any real number, then show that pn(x) =Pnk=0 p(k)nk! (x� x0)k:13. Given the funtion f(x) = ln(x) de�ned on the interval [34 ; 54 ℄; x0 = 1; anda tolerane tol = 110;000 determine an integer n with the property that thepolynomial pn(x) =Pnk=0 f(k)(x0)k! (x�x0)k has the property that jf(x)�pn(x)j �tol for all x 2 [34 ; 54 ℄:



386 CHAPTER 17. TAYLOR POLYNOMIALS



Chapter 18
Polynomial Interpolation
Galileo: Let us begin with an investigation of three simple and easy to understandsequenes.The �rst sequene begins 1; 3; 5; 7; 9:The seond sequene begins 1; 2; 4; 8; 16:The third sequene begins 1; 1; 2; 3; 5; 8:The question 8 year old kids are often asked in their elementary mathematislasses is: What is the next term in eah of these sequenes?Simpliio: Even I an answer these questions. Sine the �rst sequene is learlyarithmeti, the next term will be 2 more than the last and thus 11. Sine the seondsequene is learly geometri and eah term is twie the previous, the next term willequal 32. The last sequene is learly Fibonai where the rule is that eah term isthe sum of the previous two terms, the answer is 13.Galileo: Not so fast. I ontend that the next term for eah sequene should equal 47.Simpliio: Impossible!Galileo: Atually, you provided evidene that indiates your prejudie when youidenti�ed the sequenes as arithmeti, geometri, and Fibonai. I did not providethat information. Thus, you read a struture into the problem that was not present.Simpliio: But that is what I did when I was a kid and I always got the right answersthen. Are you telling me that the rules of mathematis have hanged?387



388 CHAPTER 18. POLYNOMIAL INTERPOLATIONGalileo: No. I am telling you that the struture of the answer was implied, but notexpliitly provided, whih means that a a unique answer is not fored. In partiular,your teahers were suÆiently sloppy that any answer is orret. This problem ouldhave been avoided if they had been more spei� when they asked the question. Ofourse, you have worked enough of these problems that you instintively know whihanswer the teaher wants so you have no problem.Simpliio: To think that I have been misled all these years. This turn of events isquite disturbing.Galileo: No worries. We will now show how to produe a formula to interpolateany set of data using the tehnique of polynomial interpolation. The idea is thefollowing. For any given �nite set of data points (xk; yk), k = 0; 1; 2; : : : ; n; where thexk's are distint, we an �nd a degree n polynomial pn(x) suh that pn(xk) = yk forall k = 0; 1; 2; : : : ; n: In partiular, we an �nd a 5th degree polynomial p5(x); whihinterpolates the data (0; 1); (1; 3); (2; 5); (3; 7); (4; 9); and (5; 47):Simpliio: I will be interested to see that polynomial p5(x):Galileo: In this presentation we will provide three di�erent tehniques used to performthe interpolation, a statement of the Lagrange error formula, and the lassial exampleof Runge, whih indiates that polynomial interpolation an be dangerous. Note thatwhile three di�erent tehniques are presented, they all produe the same answer.Simpliio: If the method is dangerous, then why would we play with it?Galileo: Beause the methods are easy to understand and they give insight into leastsquares, Fourier, and spline methods, whih are used on a daily basis in today's worldof high tehnology.



18.1. THE METHOD OF LAGRANGE 38918.1 The Method of Lagrange

Joseph Louis-Lagrange: \As long as algebra and geometry have been sep-arated, their progress has been slow and their uses limited; but when thesetwo sienes have been united, they have lent eah mutual fores, and havemarhed together towards perfetion."Galileo: The �rst interpolation tehnique to be presented is the method of Lagrangepolynomial interpolation. While Joseph Louis-Lagrange (1736-1813) made numerousontributions to algebra, analysis, and di�erential equations, his observations on-erning polynomial interpolation also bear his name. Napoleon named Lagrange tothe Legion of Honour and Count of the Empire in 1808. He summarized his life'swork with the quote \I do not know."We begin the disussion of our �rst tehnique for polynomial interpolation with ade�nition.Note that the following statements are easy to hek.Proposition 18.1.1. If (xk; yk), k = 0; 1; 2; : : : ; n are given points with the xk'sdistint and wk(x) = (x � x0)(x � x1) � � � (x � xk�1)(x � xk+1) � � � (x � xn); then thefuntions Lk(x) = wk(x)wk(xk) satisfy the following relations:1. deg(Lk(x)) = n;



390 CHAPTER 18. POLYNOMIAL INTERPOLATION2. Lk(xk) = 1; and3. Lk(xj) = 0 if j 6= k:De�nition 18.1.2. If the data points (xk; yk), k = 0; 1; 2; : : : ; n have the propertythat the xk's are distint, then Lagrange interpolating polynomials are de�ned by theformula pn(x) = nPk=0 yk � Lk(x):Proposition 18.1.3 (The Method of Lagrange). If points (xk; yk), k = 0; 1; 2; : : : ; nare given, where the xk's are distint, then the polynomial pn(x) = nPk=0 yk � Lk(x) hasthe property that pn(xk) = yk for all k = 0; 1; 2; : : : ; n:Proof. This proposition is immediate sine Lk(xk) = 1 and Lk(xj) = 0; if j 6= k:Exerise Set 18.1.1. Use the method of Lagrange to �nd a quadrati polynomial p2(x) suh thatp2(1) = 3; p2(2) = 5; and p2(3) = 7:2. Use the method of Lagrange to �nd a ubi polynomial p3(x) suh that p3(1) =3; p3(2) = 5; p3(3) = 7; and p3(4) = 11:3. Find a 5th degree polynomial p5(x); whih interpolates the data (0; 1); (1; 3); (2; 5); (3; 7); (4; 9);and (5; 47):18.2 The Tehnique of Newton Divided Di�er-enesGalileo: Sir Isaa Newton (1642-1727) was an English mathematiian, who made his-tori ontributions to mathematis, optis, and elestial mehanis. The Prinipiais reognized as the greatest sienti� book ever written. In this monumental workhe analyzed the motion of the bodies in resisting and non-resisting media under theation of entripetal fores. The results were applied to orbiting bodies, projetiles,



18.2. THE TECHNIQUE OF NEWTON DIVIDED DIFFERENCES 391pendulums, and free-fall near earth. He further demonstrated that the planets wereattrated toward the sun by a fore varying as the inverse square of the distane.He also explained the eentri orbits of omets, the tides, and the preession of theearth's axis. While the invention of the alulus may have been his greatest ontri-bution to mathematis, his method of divided di�erenes provides a omputationallyeÆient tehnique for implementing polynomial interpolation.Let us begin the disussion by solving the following simple problem. Given threepoints (x0; y0); (x1; y1); (x2; y2); �nd onstants 0; 1; 2 with the property that thepolynomial p2(x) = 0+1(x�x0)+2(x�x0)(x�x1) has the property that p2(x0) =y0; p2(x1) = y1; and p2(x2) = y2: A quik hek shows that 0 = y0 and 1 = y1�y0x1�x0 : Anot so quik hek shows that 2 = y2�y1x2�x1 � y1�y0x1�x0x2 � x0We an begin to understand these formulas if we assume the data is generated bya funtion y = f(x): In partiular, if yk = f(xk) for all k = 0; 1; 2:De�nition 18.2.1. Let f(x) be a funtion de�ned on the interval [x0; xn℄:x0 f [x0℄ = f(x0) f [x0; x1℄ = f [x1℄�f [x0℄x1�x0x1 f [x1℄ = f(x1) f [x0; x1; x2℄ = f [x1;x2℄�f [x0;x1℄x2�x0 :f [x1; x2℄ = f [x2℄�f [x1℄x2�x1x2 f [x2℄ = f(x2)Note that suh a onstrution is alled a \asade."Proposition 18.2.2. If y = f(x) is a funtion and y0 = f(x0); y1 = f(x1); andy2 = f(x2); where the points x0; x1; and x2 are distint, then the polynomial p2(x)de�ned by p2(x) = f [x0℄ + f [x0; x1℄(x � x0) + f [x0; x1; x2℄(x � x0)(x � x1) has theproperty that p2(x0) = y0; p2(x1) = y1; and p2(x2) = y2:Proof. It is easy to hek that p2(x0) = y0 and p2(x1) = y1: A bit of algebra an beused to show that p2(x2) = y2:



392 CHAPTER 18. POLYNOMIAL INTERPOLATIONThus, the previous proposition an be used to show that formulas exist for theonstants 0; 1; and 2; namely, the top entry of eah olumn in the asade.We now indiate how this tehnique an be applied to any set of data points bymaking the following de�nition.De�nition 18.2.3. The kthdivided di�erene relative to xi; xi+1; xi+2; : : : ; xi+k is givenby f [xi; xi+1; : : : ; xi+k℄ = f [xi+1; : : : xi+k℄� f [xi; xi+1; : : : ; xi+k�1℄xi+k � xi :While it is easy to hek that formula p2(x) = f [x0℄+f [x0; x1℄(x�x0)+f [x0; x1; x2℄(x�x0)(x� x1) interpolates the data, it is more tedious to hek the general ase.Proposition 18.2.4 (Newton Divided Di�erenes). If x0; x1; x2; : : : ; xn are dis-tint points and yk = f(xk) for all k = 0; 1; 2; : : : ; xn; then the polynomialpn(x) = f [x0℄ + nXk=1 f [x0; : : : ; xk℄(x� x0) : : : (x� xk�1)has the property that pn(xi) = f(xi) for all i = 0; 1; 2; : : : ; n.Simpliio: So, why should I waste my time learning this seond method?Galileo: Let us inquire what our friendly expert, Isaa Newton, has to say on thismatter.Newton: Well, if you had bothered to work out the previous two exerises, you wouldhave notied that omputing the ubi polynomial p3(x) is only slightly more workthan omputing the quadrati polynomial p2(x): If you want to really appreiate mymethod, then use the method of Lagrange to ompute these two polynomials.Simpliio: But I did use the method of Lagrange to ompute p2(x) and p3(x): Itdidn't seem bad at all.Newton: Did you simplify your answer for p3(x) so that it is in the form p3(x) =a0 + a1x + a2x2 + a3x3?Simpliio: No.Newton: After you do this simple exerise, then you an omplain about my method.Not until.



18.3. THE TECHNIQUE OF VANDERMONDE 393Exerise Set 18.2.1. Use the method of Newton divided di�erenes to �nd a quadrati polynomialp2(x) suh that p2(1) = 3; p2(2) = 5; and p2(3) = 7:2. Use the method of Newton divided di�erenes to �nd a ubi polynomial p3(x)suh that p3(1) = 3; p3(2) = 5; p3(3) = 7; and p3(4) = 11:3. Show that the Newton divided di�erene formula works for ubi polynomials.18.3 The Tehnique of VandermondeGalileo: Alexandre Theophile Vandermonde (1735-1796) was a Frenh mathemati-ian, whose �rst love was musi. He only turned to mathematis when he was 35years old. His mathematial interests were in the theory of equations and the theoryof determinants.The tehnique of Vandermonde evolves in a natural way from the problem: Givena set of data points (x0; y0); (x1; y1); and (x2; y2); where the xk's are distint, �nd aquadrati polynomial of the formp2(x) = a0 + a1x + a2x2 suh that p2(x0) = y0; p2(x1) = y1; and p2(x2) = y2: Thus, asystem of three equations and three unknowns must be solved. In matrix format thissystem beomes: 0BBB�1 x0 x201 x1 x211 x2 x22
1CCCA0BBB�a0a1a21CCCA = 0BBB�y0y1y21CCCA :More generally, given a set of data points (xk; yk), k = 0; 1; 2; : : : ; n; where thexk's are distint, �nd an n�degree polynomial of the form pn(x) = Pnk=0 akxk suhthat pn(xk) = yk; for all k = 0; 1; 2; : : : ; n: The answer to this question is the solutionto the following system of equations:



394 CHAPTER 18. POLYNOMIAL INTERPOLATION0BBBBBBBBB�
1 x0 x20 : : : xn01 x1 x21 : : : xn11 x2 x22 : : : xn2... ... ... : : : ...1 xn x2n : : : xnn

1CCCCCCCCCA
0BBBBBBBBB�
a0a1a2...an
1CCCCCCCCCA = 0BBBBBBBBB�

y0y1y2...yn
1CCCCCCCCCA :

Thus, the onstants a0; a1; : : : ; an an be found if the system an be solved. Thefollowing proposition shows the system an be solved as long as the xk's are distint.Proposition 18.3.1. If
Vn = 0BBBBBBBBB�

1 x0 x20 : : : xn01 x1 x21 : : : xn11 x2 x22 : : : xn2... ... ... : : : ...1 xn x2n : : : xnn
1CCCCCCCCCA ;

then det(Vn) =Q0�i<k�n(xk � xi):Proof. If we let
Vn(x) =

0BBBBBBBBBBBB�
1 x0 x20 : : : xn01 x1 x21 : : : xn11 x2 x22 : : : xn2... ... ... : : : ...1 xn�1 x2n�1 : : : xnn�11 x x2 : : : xn

1CCCCCCCCCCCCA ;
then notie that det(Vn(x)) is a polynomial of degree n with roots x0; x1; x2; : : : ; xn�1:Thus, det(Vn(x)) = Cn(x�x0)(x�x1) : : : (x�xn�1); where Cn is some onstant. Whilea straightforward indution argument an be used to show that Cn = det(Vn�1(xn�1));the proof is best understood by simply omputing the speial ases when n = 1 andn = 2:



18.3. THE TECHNIQUE OF VANDERMONDE 395A matrix of the form given in the previous proposition is alled a Vandermondematrix.The previous proposition shows that if the xk's are pair-wise distint, then thedeterminant is di�erent from zero and the system annot only be solved, but thesolution is unique. The matrix V is alled a V andermonde matrix.Proposition 18.3.2. If (xk; yk), k = 0; 1; 2; : : : ; n are n + 1 distint points, thenthe polynomial de�ned by pn(x) = Pnk=0 akxk; where the values of a0; a1; : : : ; an areomputed as the solution of the equation0BBBBBBBBB�
1 x0 x20 : : : xn01 x1 x21 : : : xn11 x2 x22 : : : xn2... ... ... : : : ...1 xn x2n : : : xnn

1CCCCCCCCCA
0BBBBBBBBB�
a0a1a2...an
1CCCCCCCCCA = 0BBBBBBBBB�

y0y1y2...yn
1CCCCCCCCCAhas the property that pn(xk) = yk for all k = 0; 1; 2; : : : ; n:Proof. Note that this proposition is a simple restatement in matrix form that pn(xk) =yk for all k = 0; 1; 2; : : : ; n:Galileo: The next proposition is a uniqueness theorem.Simpliio: Why would I possibly are about uniqueness?Galileo: Well, we have shown you three di�erent tehniques to ompute the interpo-lating polynomial. You might wonder if you might get three di�erent answers. Infat, the next proposition shows that all tehniques will result in the same answer.Proposition 18.3.3. Let (xk; yk), k = 0; 1; 2; : : : ; n be a set of n + 1 points. If thexk's are distint and pn(x) =Pnk=0 akxk and qn(x) =Pnk=0 bkxk are polynomials suhthat pn(xk) = qn(xk) for all k = 0; 1; : : : ; n; then ak = bk for all k = 0; 1; : : : ; n:Proof. If pn(xk) = qn(xk) for all k = 0; 1; : : : ; n; then we have a system of linear equa-tions of the form Va = Vb, where V is a Vandermonde matrix, a = (a0; a1; : : : ; an)t;



396 CHAPTER 18. POLYNOMIAL INTERPOLATIONand b = (b0; b1; : : : ; bn)t: Sine the xk's are distint, the determinant of the Van-dermonde matrix is di�erent from zero so that the matrix V has an inverse. Thus,ak = bk for all k = 0; 1; : : : ; n:
Simpliio: But wait a minute! How am I going to solve a system of 3 equations and3 unknowns or 4 equations and 4 unknowns? These omputations will be required toget the �nal answer?Galileo: That is why Babbage invented the omputer.Simpliio: Who was Babbage?Galileo: Charles Babbage (1791-1871) was the designer of the di�erene engine, whihimplemented Newton's method of divided di�erenes. Together with a bit of help fromhis lady friend, Augusta Ada King, ountess of Lovelae (1815-1852), he also designed(but never built) the forerunner of the modern eletroni omputer. If you want tosee a reonstrution of his di�erene engine, visit the Siene Museum in London. Itweighs a mere 3 tons.Simpliio: Not a alulator you ould strap to your belt.Exerise Set 18.3.1. Use the method of Vandermonde to �nd a quadrati polynomial p2(x) suh thatp2(1) = 3; p2(2) = 5; and p2(3) = 7:2. Use the method of Vandermonde to �nd a ubi polynomial p3(x) suh thatp3(1) = 3; p3(2) = 5; p3(3) = 7; and p3(4) = 11:3. Use the method of Vandermonde to �nd a ubi polynomial p3(x) suh thatp3(�1) = 2; p3(0) = 5; p3(2) = 7; and p3(�2) = 3:



18.4. ERROR ESTIMATION FOR POLYNOMIAL INTERPOLATION 39718.4 Error Estimation for Polynomial Interpola-tionGalileo: We now turn to the problem of omputing the error between a funtion andits polynomial interpolation. While we have three di�erent tehniques for polynomialinterpolation (Lagrange, Newton, and Vandermonde), we saw at the end of the lastsetion that they all produe the same answers. The fous of the next disussion isto provide a formula for the error. Sine the three tehniques all produe the samepolynomial approximation pn(x); we only need one error formula.Simpliio: While one error formula is good news, I an tell that more theory is onthe way. I would appreiate it if we ould keep the disussion simple.Galileo: Professor Lagrange ould you help us?Lagrange: If a funtion f(x) is di�erentiable at every point in an interval [x0; x℄;then we know by the Mean Value Theorem that there is a point z 2 [x0; x℄ so thatf(x) = f(x0) + f 0(z)(x � x0): Just as Rolle's Theorem an be used to prove theMean Value Theorem, the generalized Rolle's Theorem an be used to prove the errorformula for polynomial interpolation.Simpliio: But I don't remember Rolle's Theorem.Lagrange: The way to visualize Rolle's Theorem is to imagine throwing a ball in theair and athing it when it omes down. What an you say about the veloity of theball at its highest point?Simpliio: Sine the ball is hanging diretion from upward to downward motion,obviously the veloity is zero.Lagrange: Your observation is orret. Now take that observation one step further bythrowing a ball into the air and instead of athing it on the way down, let it hit theground and boune bak up into your hand. If this experiment is onduted arefully,there will be three di�erent moments in time, where the height of the ball is the same(i.e. the height of your hand above the ground). What an you onlude?Simpliio: The ball will now have two di�erent moments in time, where the veloity



398 CHAPTER 18. POLYNOMIAL INTERPOLATIONis zero. I don't get it.Lagrange: Well, if the veloity is zero at two di�erent points in time, then what anyou say about the aeleration?Simpliio: It seems like the aeleration must be zero at some moment in time betweenwhen the veloities are zero.Lagrange: You are orret. Now you are ready to understand a general theorem,whih we now state. We indiate a proof for the ases when n = 1 and n = 2:Theorem 18.4.1 (The Generalized Rolle's Theorem). If f(x) 2 Cn[a; b℄, a �x0 < x1 < � � � < xn � b, and f(xk) = 0 for all k = 0; 1; 2; : : : ; n, then there exists apoint z 2 (a; b) suh that f (n)(z) = 0:Proof. If n = 1; then we have two distint points x0 and x1 so that f(x0) = 0 andf(x1) = 0: By the Rolle's Theorem you endured in your �rst alulus ourse, thereis a point z between x0 and x1 so that f 0(z) = 0: In partiular, when n = 1; theGeneralized Rolle's Theorem is exatly Rolle's Theorem.If n = 2; then we have three distint points x0; x1; and x2 so that f(x0) = f(x1) =f(x2) = 0: Thus, a point z1 an be found in the interval (x0; x1) suh that f 0(z1) = 0and a point z2 an be found in the interval (x1; x2) suh that f 0(z2) = 0: Applyingthe familiar form of Rolle's Theorem a third time, we an �nd a point z 2 (z1; z2)suh that f 00(z) = 0:The general form of this theorem is proved by employing the familiar form ofRolle's Theorem multiple times. For example, if n = 3; then Rolle's Theorem willhave to be ited 3 + 2 + 1 = 6 times.Lagrange: We now use this general theorem to prove the error formula for polynomialinterpolation. Note that the Mean Value Theorem is a speial ase of this theorem.Note also, the error term is idential with the error term for Taylor's Theorem if weallow all the points x0; x1; x2; : : : ; xn to equal one another. Thus, in a very real sense,this theorem generalizes Taylor's Theorem. However, a di�erent proof is required.



18.4. ERROR ESTIMATION FOR POLYNOMIAL INTERPOLATION 399Theorem 18.4.2 (The Lagrange Error Formula for Interpolating Polyno-mials). If f(x) 2 Cn+1[a; b℄; a � x0 < x1 < x2 < � � � < xn � b, pn(x) is the uniquepolynomial of degree n suh that pn(xk) = f(xk) for k = 0; 1; 2; : : : ; n, then for eahx 2 [a; b℄; there exists a z 2 [a; b℄ suh thatf(x) = pn(x) + f (n+1)(z)(n+ 1)! (x� x0)(x� x1) : : : (x� xn):Proof. Let x 2 [a; b℄: Sine the theorem is obviously true if x = xk for some k; weassume x 6= xk for all k = 0; 1; : : : ; n:Let G(t) = f(t)� pn(t)� (f(x)� pn(x)) � wn(t)wn(x) ;where wn(t) = nQk=0(t� xk).1. G(x) = 0;2. G(xk) = 0 for k = 0; 1; 2; : : : ; n; and3. G(n+1)(t) = f (n+1)(t)� 0� (f(x)� pn(x)) � (n+1)!wn(x) :Thus, we have shown that we have n+ 2 distint points x; x0; x1; : : : ; xn with theproperty that G(x) = 0:By the Generalized Rolle's Theorem, there exists a z 2 [a; b℄ suh that G(n+1)(z) =0 so that 0 = f (n+1)(z)� (f(x)� pn(x))(n+ 1)!wn(x) :Lagrange: Note the similarity between the error formula for interpolating polynomialsand Taylor's Theorem. You might �nd the next proposition useful in working thefollowing exerises.Proposition 18.4.3. If a = x0 < x1 < x2 < � � � < xn = b are equally spaed points,h = b�an ; and !n(x) = (x � x0)(x � x1) : : : (x � xn); then j!n(x)j � n!hn+1 for allx 2 [a; b℄:



400 CHAPTER 18. POLYNOMIAL INTERPOLATIONProof. The graph of the 10-degree polynomial !10(x) = (x� 1)(x� 2) : : : (x� 10) isdisplayed in 18.1. Note that the maximum (in absolute value) ours between 1 and 2and between 9 and 10: This fat is true in general. Thus, if h = b�an and x 2 [x0; x1℄;then j!n(x)j � hh(2h)(3h) : : : (nh) = n!hn+1:Exerise Set 18.4.1. Let f(x) = sin(�x) for x 2 [�1; 1℄: Let pn(x) be the Lagrange Interpolatingpolynomial for f(x) using the evenly spaed points �1 = x0 < x1 < x2 < � � � <xn = 1: Find an integer n with the property that jpn(x) � sin(�x)j � 10�3 forall x 2 [�1; 1℄:2. If f(x) = ex; x 2 [�1; 1℄ and tol = 10�7; then how many equally spaed points�1 = x0 < x1 < x2 < � � � < xn = 1 must be omputed to guarantee that theinterpolating polynomial pn(x) will di�er by less than tol from f(x) = ex for allx 2 [�1; 1℄:3. If f(x) = ln(1� x); x 2 [�12 ; 12 ℄ and tol = 10�7; then how many equally spaedpoints �12 = x0 < x1 < x2 < � � � < xn = 12 must be omputed to guaranteethat the interpolating polynomial pn(x) will di�er by less than tol from f(x) =ln(1� x) for all x 2 [�12 ; 12 ℄:
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Figure 18.1: The Graph of the Funtion !10(x) = (x� 1)(x� 2) : : : (x� 10)



18.5. POLYNOMIAL INTERPOLATION: THE RUNGE EXAMPLE 40118.5 Polynomial Interpolation: The Runge Exam-pleSimpliio: So we have ompleted our introdution to statistis. I am seure in myknowledge of these methods.Galileo: Not so fast. We now introdue the German Mathematiian, Carle Runge(1856-1927), who showed quite learly why polynomials are a disaster. ProfessorRunge ould you explain your lassi example illustrating this problem?Runge: While polynomial interpolation is easy to understand and straightforward toimplement, it is dangerously unstable for uniformly spaed data sets ontaining asfew as 20 points. If we de�ne the funtion f(x) = 11+x2 on the interval [��; �℄; andtake the points �� = x0 < x1 < � � � < xn = � to be uniformly spaed points, thenyou would think that the approximation by the interpolating polynomials would getbetter and better as the degree of the polynomial n beomes larger.Simpliio: That onlusion seems only reasonable sine the error terms for the fun-tions f(x) = sin(x) and f(x) = ex derease rapidly as n is inreased.Runge: The bad news is that many situations exist where this desirable propertyfails to hold. For example, let us onsider the funtion f(x) = 11+x2 be de�ned on theinterval [��; �℄: The graph of this funtion is displayed in Figure 18.2.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

The X Values 

T
he

 Y
 V

al
ue

s

Figure 18.2: The Graph of the Funtion f(x) = 11+x2 for x 2 [��; �℄



402 CHAPTER 18. POLYNOMIAL INTERPOLATIONRunge: Now let xk = �� + k 2�n be equally spaed points between �� and � andde�ne points (xk; yk); where yk = f(xk) = 11+x2k for k = 0; 1; : : : ; n: The next step is toapproximate f(x) by polynomials interpolating the points (xk; yk): To illustrate whathappens, in Figures 18.3,we graph the 6; 20; and 22 degree polynomial interpolants along with the funtionf(x): Even though the approximations are aurate in the middle of the interval, theapproximations at the endpoints beome worse and worse. In fat, the di�erenebetween the polynomials pn(x) and the funtion f(x) onverges to in�nity.
Simpliio: These graphs are disturbing. Even I an understand that if the data is
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Figure 18.3: The 6th Degree Polynomial Approximation of f(x) = 11+x2
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Figure 18.4: The 20th Degree Polynomial Approximation of f(x) = 11+x2



18.5. POLYNOMIAL INTERPOLATION: THE RUNGE EXAMPLE 403as smooth as those supplied by the funtion f(x) = 11+x2 ; then the approximationsshould improve. Why are the results so terrible?Galileo: For insight into the ause, think about the Pythagorean Theorem and theexample we disussed many days ago, where the lines were almost parallel.Simpliio: I am not sure what example you mean.Galileo: Reall the system of two equations and two unknowns and its slight modi�-ation:System 1: 1:001x+ y = 2:001x+ y = 2Note that these equations are lose to being parallel. Solving the system we �ndx = 1; y = 1:System 2: 1:001x+ y = 2x + y = 2The solution to this system of equations is x = 0; y = 2:Simpliio: Now I remember.Galileo: When a mathematial method is unstable, it is often the ase that a set of
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Figure 18.5: The 22th Degree Polynomial Approximation of f(x) = 11+25x2



404 CHAPTER 18. POLYNOMIAL INTERPOLATIONbasis vetors are lose to parallel. Note the omputations in the following exampleand you might attain a better understanding of the problem.Example 18.5.1. If V = 0BBB�1 1 11 2 41 3 91CCCA ;then let's ompute the angles between the olumn vetors v1;v2;v3:If �12 represents the angle between the �rst two olumn vetors, thenos(�12) = < v1;v2 >kv1k kv2k = 1 + 2 + 3p3p1 + 4 + 9 = 6p3p14 = 0:93:Thus, the angle �12 = 22:2 degrees:If �13 represents the angle between the �rst and third olumn vetors, thenos(�13) = < v1;v3 >kv1k kv3k = 1 + 4 + 9p3p1 + 16 + 81 = 14p3p98 = 0:82:Thus, the angle �13 = 35:3 degrees:If �23 represents the angle between the seond and third olumn vetors, thenos(�23) = < v2;v3 >kv2k kv3k = 1 + 8 + 27p1 + 4 + 9p1 + 16 + 81 = 36p14p98 = 0:97:Thus, the angle �23 = 13:6 degrees:Simpliio: While the angle between the �rst and seond olumns are over 22 degrees,the angle between the 2nd and 3rd is about 13 degrees so they are almost parallel. I nowan see that this omputation means that the solution of a polynomial interpolationproblem has the potential to have very poor results. It looks like the last two olumnsare the most parallel. Is that true in general?Galileo: Make some more omputations and see for yourself.Simpliio: Hmmm.Galileo: I think you are beginning to understand why our friend Fourier searhed fora better method.



18.6. LINEAR LEAST SQUARES APPROXIMATION 405Exerise Set 18.5.1. Form the 5� 5 Vandermonde matrix generated by the vetor v = [1; 2; 3; 4; 5℄:Compute the angles between the �rst and seond, �rst and fourth, and fourthand �fth olumns. Whih pair of vetors is losest to being parallel?2. Compute the angle between the vetors v1 = [1:001; 1℄ and v2 = [1; 1℄:18.6 Linear Least Squares ApproximationGalileo: We begin our disussion of linear least squares with the problem of �ndinga straight line through three given data points (x0; y0); (x1; y1); (x2; y2): If we try to\solve" this problem, we are in the position of trying to solve a linear system of 3equations and 2 unknowns. In partiular, if the equation of the line is in the formy = a0+a1x; then we have to �nd onstants a0 and a1 suh that yk = y(xk) = a0+a1xk;for k = 0; 1; 2: Thus, we have to solve the matrix equation given by:0BBB�1 x01 x11 x21CCCA0�a0a11A = 0BBB�y0y1y21CCCA :Simpliio: But how an you solve a system of 3 equations and 2 unknowns?Galileo: Yes, a problem does exist with having more equations (or onstraints) thanunknowns. While a solution may exist, it is unlikely. In fat, the probability is zero.Despite this problem, note that the system an be written Aa = y; where A = Vtand V is a Vandermonde matrix.Sine this task is usually impossible, we are in the position of identifying the lineof the form y = a0+a1x with the property that the sum of the squares of the distanesfrom eah point to the orresponding point on the line is minimized. In partiular, if



406 CHAPTER 18. POLYNOMIAL INTERPOLATIONdk = a0 + a1xk � yk; then we need to minimize the residual:R = R(a0; a1)= d20 + d21 + d22= (a0 + a1x0 � y0)2 + (a0 + a1x1 � y1)2 + (a0 + a1x2 � y2)2:Sine the funtion R is minimized at a ritial point, we ompute the derivatives:�R�a0 = 2(a0 + a1x0 � y0) + 2(a0 + a1x1 � y1) + 2(a0 + a1x2 � y2) = 0�R�a1 = 2(a0 + a1x0 � y0)x0 + 2(a0 + a1x1 � y1)x1 + 2(a0 + a1x2 � y2)x2 = 0;whih leads to the 2� 2 matrix equation:0� 3 x0 + x1 + x2x0 + x1 + x2 x20 + x21 + x221A0�a0a11A = 0� y0 + y1 + y2x0y0 + x1y1 + x2y21A :Galileo: Note that this matrix an be easily solved to �nd the line that \best �ts"the data. Note that if the matrix equation Vta = y is multiplied on both sides bythe matrix V = 0� 1 1 1x0 x1 x21A ;then the resulting 2� 2 system is exatly the same as the 2� 2 system disovered byomputing partial derivatives and searhing for a ritial point.Simpliio: But what if we are presented an arbitrary numer of points? How does thedisussion hange?Galileo: Simply add up more terms. In other words, if we would like to �t a straightline through the points (x0; y0); (x1; y1); : : : (xn�1; yn�1); (xn; yn); where x0 < x1 <� � � < xn�1 < xn; then the matrix equation beomes:0� n + 1 Pnk=0 xkPnk=0 xk Pnk=0 x2k1A0�a0a11A = 0� Pnk=0 ykPnk=0 xkyk1A :



18.6. LINEAR LEAST SQUARES APPROXIMATION 407Simpliio: This formula looks like nothing but a fany way of averaging numbers tome.Galileo: Why is that?Simpliio: Well if the parameter a1 happens to be zero, then a0 is simply the averageof the y�values.Galileo: That is orret. We now repeat this disussion to ondut a searh for aquadrati polynomial p2(x) = a0 + a1x+ a2x2; whih \best �ts" a given data set of 4points(x0; y0); (x1; y1); (x2; y2); (x3; y3): For an exat �t of the data we would have to be ableto solve the system of 4 equations and 3 unknowns given by:0BBBBBB�1 x0 x201 x1 x211 x2 x221 x3 x23
1CCCCCCA0BBB�a0a1a21CCCA = 0BBBBBB�y0y1y2y3

1CCCCCCA :
Again, sine this system annot be solved, we minimize the residual:R = R(a0; a1; a2)= d20 + d21 + d22 + d23= 3Xk=0(a0 + a1xk + a2x2k � yk)2:The ritial point where the minimum value of R ours an be found by omput-ing the partial derivatives of R with respet to the variables a0; a1; a2:�R�a0 = 2 3Xk=0(a0 + a1xk + a2x2k � yk) = 0;�R�a1 = 2 3Xk=0(a0 + a1xk + a2x2k � yk)xk = 0;�R�a2 = 2 3Xk=0(a0 + a1xk + a2x2k � yk)x2k = 0:



408 CHAPTER 18. POLYNOMIAL INTERPOLATIONThe resulting system of 3 equations and 3 unknowns is:0BBB� 4 P3k=0 xk P3k=0 x2kP3k=0 xk P3k=0 x2k P3k=0 x3kP3k=0 x2k P3k=0 x3k P3k=0 x4k
1CCCA0BBB�a0a1a21CCCA = 0BBB� P3k=0 ykP3k=0 xkykP3k=0 x2kyk

1CCCA :If x0 < x1 < x2 < � � � < xm are m + 1 distint points and y0; y1; : : : ; ym are anym + 1 values, then the polynomial pn(x) = a0 + a1x + � � �+ anxn with the propertythat p(xi) = yi an be found when m = n by solving the equation Vtx = b, where
V = 0BBBBBBBBB�

1 1 1 : : : 1x0 x1 x2 : : : xnx20 x21 x22 : : : x2n... ... ... ... ...xn0 xn1 xn2 : : : xnm
1CCCCCCCCCA ;

x = 0BBBBBB�a0a1...an
1CCCCCCA ; and b = 0BBBBBB�y0y1...yn

1CCCCCCA :If m > n; then m + 1 > n + 1; whih implies the \solution" of this equation will bein the least squares sense. In partiular, the equation(Vt)tVtx = (Vt)tb orVVtx = Vbmust be solved. The matrix VVt is (n + 1) � (n + 1)�dimensional. Sine detV =Qi<j(xj � xi), the rank of the matrix (V) = n+ 1 whenever the points xk are distint.Sine VVt has rank n+ 1; it an be shown that the matrix VVt is invertible, whihimplies that the least squares problem always has a unique solution.If A 2 Rm�n and x;b 2 Rn; then the general linear least squares problem is to\solve" the matrix equation Ax = b even if m > n: In this formulation we wouldlike to �nd the vetor x whih minimizes the funtion r(x) = kAx� bk2: In the ase



18.7. LINEAR CLASSIFIERS 409when the rank (A) = n; the solution to this problem an be obtained by omputingthe gradient of r(x) with respet to the variables xk: It is an easy exerise to showthat the unique ritial point of this funtion is the solution of the equation:AtAx = Atb:If A has rank = n; then the matrix AtA is symmetri and positive de�nite. Inpartiular, it is invertible. If the Cholesky fatorization is used to solve the linearsystem of equations AtAx = Atb; then this tehnique for solving this least squaresproblem is referred to as the method of \normal equations".Exerise Set 18.6.1. Find the equation of the line y = p1(x) = a0 + a1x; whih provides the leastsquares best �t for the data (1; 2); (2; 3); (3; 5):2. Find the parabola y = p2(x) = a0+a1x+a2x2; whih provides the least squaresbest �t for the data (1; 2); (2; 3); (3; 5); (4;�1):18.7 Linear Classi�ersGalileo: One of the onsequenes of the reent proliferation of tehnology and om-puters is the inredible amount of data that is generated daily. In fat, the data isgenerated so rapidly that it is impossible to analyze and interpret without numerialtehniques. One of the most important areas of study in statistis is the developmentof automated tehniques that lassify into two or more groups. For example, thepeople in the military would like to be able to reliably di�erentiate between a shoolbus and a tank, while a physiian would like assistane in automated diagnosis. Inmany approahes, you would like to train your tehnique with data, where you alreadyknow the answers. The training proess often involves the estimation of parametersfor some funtion or distribution, whih an be used to lassify a new data set. If



410 CHAPTER 18. POLYNOMIAL INTERPOLATIONyour method provides reasonable answers over a wide range of data, then it an beonsidered a suess. If not, then it will be ignored.Simpliio: How do we start?Galileo: As usual, let's start small. For example, if we would like to lassify a set ofpoints (xk; yk); for k = 0; 1; 2; : : : ; n into two ategories, then a linear lassi�er an beformulated as a least squares �t to the data (xk; yk; 1) for one group of the set and(xk; yk;�1) for the other group. In other words, �nd the parameters �0; �1 and �2;whih \solve" the system
�0 + �1x0 + �2y0 = z0�0 + �1x1 + �2y1 = z1�0 + �1x2 + �2y2 = z2... ...�0 + �1xn + �2yn = zn;

where zk = �1 or 1: Does this setting look familiar?Simpliio: It ertainly does. But, what if you have four or �ve ategories? It seemsto me you have several di�erent ways to make the omputations.Galileo: True, but let us just keep it simple and onsider only two ategories. Letus now ompute an example, where one set of points in the plane is de�ned byS1 = f(0; 0); (1; 0); (0; 1); (1; 1)g and a seond is de�ned by S2 = f(�1;�1)g: Wethen �nd a linear funtion z = �0 + �1x1 + �2x2 with the property that the line0 = �0 + �1x1 + �2x2 separates S1 and S2: To this end simply reate the linearsystem:



18.7. LINEAR CLASSIFIERS 411
�0 + �10 + �20 = 1�0 + �11 + �20 = 1�0 + �10 + �21 = 1�0 + �11 + �21 = 1�0 + �1(�1) + �2(�1) = � 1;The matrix equation beomes:0BBBBBBBBB�
1 0 01 1 01 0 11 1 11 �1 �1

1CCCCCCCCCA
0BBB��0�1�21CCCA = 0BBBBBBBBB�

1111�1
1CCCCCCCCCA :

The transpose of the oeÆient matrix is:0BBB�1 1 1 1 10 1 0 1 �10 0 1 1 �11CCCA :Thus, multiplying both sides of the matrix equation by the transpose, we get0BBB�5 1 11 3 21 2 31CCCA0BBB��0�1�21CCCA = 0BBB�3331CCCA :The linear funtion beomes z = 0:3913 + 0:5217x+ 0:5217y: The line separatingthe two sets is: 0:0 = 0:3913 + 0:5217x+ 0:5217y or y = �x� 0:75:Simpliio: While I notie that this line is perpendiular to the line through themidpoints of the two sets, I would have thought it would be the perpendiular bisetor.What is going on?



412 CHAPTER 18. POLYNOMIAL INTERPOLATIONGalileo: Sine the set S1 has a higher variane (or standard deviation) than the setS2; the line is shifted loser to the set S2; whih makes sense from a geometrial pointof view.Simpliio: Even I an understand that idea. For if one set has a small variane andthe other has a low variane, plae the line loser to the set with low variane.Galileo: Exatly.Exerise Set 18.7.1. Given two data sets S = f(�1; 1); (�1;�1); (0; 0)g and T = f(1; 1); (1;�1)g;�nd a line L of the form �0+�1x+�2y = 0 with the property that L separatesthe set S from T:2. Given two data sets S = f(1; 1); (0; 0)g and T = f(1; 0); (0; 1)g; �nd a line L ofthe form �0 +�1x+�2y = 0 with the property that L separates the set S fromT:



Chapter 19
Fourier Interpolation

Jean Baptiste Joseph Fourier: \The di�erential equations of the propaga-tion of heat express the most general onditions, and redue the physialquestions to problems of pure analysis, and this is the proper objet oftheory." Analytial Theory of HeatGalileo: We now turn to the problem of interpolation by trigonometri series of theform Tn(x) = a02 + nPk=1[ak os(kx) + bk sin(kx)℄: While this type of series is typiallyreferred to as a Fourier series, after the Frenh mathematiian Jean Baptiste JosephFourier (1768-1830), others had omputed these series many years before. In parti-ular, Euler had used one suh series to show suh identities as P1n=1 1n2 = �26 : Whilethese identities are interesting and urious to mathematiians, it was Fourier who413



414 CHAPTER 19. FOURIER INTERPOLATIONshowed their usefulness in modeling heat ow through a medium.Let us ask him how he formed his insights.Fourier: I joined Napoleon's army when he invaded Egypt in 1798. While we enjoyedwarm weather and great suess for a while, Lord Nelson destroyed the Frenh eetin the Battle of the Nile on August 1, 1798. Sine this event brought an end tothe sun and fun, I returned to Grenoble, where I was fored to endure old, drearywinters with freezing temperatures. In an e�ort to deal with this state of a�airs,I began an investigation of the heat equation. In 1807, I ompleted the memoir\On the Propagation of Heat in Solid Bodies," where I presented these ideas inmanusript form. This work was presented to the Paris Institute on 21 Deember1807 and reviewed by a ommittee onsisting of Lagrange, Laplae, Monge, andLaroix. The members of this ommittee were unhappy with the work beause ofunresolved questions onerning the expansions of funtions as trigonometri series.My olleague, Biot, was also unhappy beause he felt he should have been referenedfor the work he did on this topi in 1804. While I found this review unfair, I oulddo nothing about it. In 1811, I submitted an extension of this work to a seondompetition and atually won the prize.Simpliio: That sounds great!Fourier: Well, there was only one other entry. Worse yet, the report of the ommit-tee (whose members were Lagrange, Laplae, Malus, Hauy, and Legendre) was notompletely favorable sine it objeted to the lak of rigor in the treatment of themathematis. My paper, \Theorie analytique de la haleur," was �nally published in1822. Even then Biot ontinued to laim priority.Simpliio: Well, don't take it so hard. Your ideas are appreiated.Galileo: But it did take 100 years to get all the mathematial issues sorted out withhis series.Simpliio: Whih issues?Galileo: Sine Linear Algebra had not yet been invented, suh ideas as linear inde-pendene, basis, inner produt, and orthogonality had not yet been formulated. Sine



415the de�nition of limit had not yet been invented, the understanding of onvergenewas also murky. Eventually, the mathematiians parsed onvergene into a numberof di�erent types inluding: uniform onvergene, pointwise onvergene, and onver-gene in the mean. Trigonometri series live best in Hilbert Spae, where Pythagorasrules.Simpliio: I am onfused about this onvergene onept.Galileo: If you remember the error formulas for Taylor series and polynomial inter-polation, they an be used to hek for uniform and pointwise onvergene.Simpliio: How so?Galileo: If you reall the error formula for Taylor isEn(x) = f (n+1)(z)(n + 1)! (x� x0)n+1while the error formula for polynomial interpolation isEn(x) = f (n+1)(z)(n+ 1)! (x� x0)(x� x1) : : : (x� xn):In the problems you were assigned, you were given and � > 0 and then were expetedto �nd an integer n with the property that jEn(x)j < � for all x 2 [a; b℄: When yousolve this kind of problem, you are showing that the sequene of polynomials areonverging uniformly to the given funtion f(x):Simpliio: So what is pointwise onvergene?Virginia: Let me guess. Pointwise onvergene is when you begin the problem byrestriting your attention to a partiular point x:Galileo: Corret.Virginia: So with the Runge example f(x) = 11+x2 ; x 2 [��; �℄, we have pointwiseonvergene for any partiular hoie of x; but we do not have uniform onvergenebeause the approximations y o� to in�nity near the boundaries of the interval[��; �℄: In other words, For a given � > 0 (suh as � = 0:00001), we annot �nd aninteger n whih works for all x in the interval.Galileo: For pointwise onvergene, eah point x requires its own individualized inte-ger n:



416 CHAPTER 19. FOURIER INTERPOLATIONSimpliio: What is onvergene in the mean?Galileo: While we haven't yet observed this type of onvergene, it is a distane metribased on the integral of the di�erene of two funtions. In partiular, d(f(x); g(x)) =qR ba (f(x)� g(x))2 dx: While this metri is tuned to work well with Fourier series,the bad news is that it is weaker than uniform onvergene. Surprisingly, this distaneformula is losely onneted with Pythagoras.Simpliio: Life would be easier if we only had one type of onvergene.Galileo: Sorry, Mother Nature won't allow it. In fat, She insists we onsider themall.19.1 Fourier Interpolation: Introdutory Exam-plesSimpliio: How about if you give me the short leture on trigonometri series.Fourier: Sine you probably never appreiated partial di�erential equations, let usbegin by solving the following simple interpolation question:Given three points y0; y1; and y2 and three angles x0; x1; and x2; �nd a trigono-metri polynomial of the form T1(x) = a02 + a1 os(x) + b1 sin(x) with the propertythat T1(x0) = y0; T1(x1) = y1; and T1(x2) = y2:Simpliio: The answer to that problem is easy. All you have to do is solve the systemof three equations and three unknowns.0BBB�1 os(x0) sin(x0)1 os(x1) sin(x1)1 os(x2) sin(x2)1CCCA0BBB�a02a1b11CCCA = 0BBB�y0y1y21CCCA :But when do you ever have to onsider data in the form (xk; yk); where xk is anangle?Fourier: If you are modeling the temperature of a metal rod of length L; then thepoint xk an be used to represent the position along the rod. If the points x0; x1; x2



19.1. FOURIER INTERPOLATION: INTRODUCTORY EXAMPLES 417are equally spaed, then x0 = 0; x1 = L2 ; and x2 = L: In general, if we have n + 1equally spaed points 0 = x0 < x1 < � � � < xn = L; then we an de�ne the points byxk = kLn for n = 0; 1; : : : ; n:Simpliio: But these points don't represent angles!Fourier: No problem, we will simply replae eah xk by the angle 2k�xkL : Note thatthese angles vary between 0 and 2�: We will get to that aspet of the heat equation,but let's keep it simple for the moment and restrit our attention to the questionabout interpolation.Simpliio: How about the equally spaed angles x0 = 0; x1 = �; and x2 = 2�?Fourier: Well, the idea is right, but os(0) = os(2�) and sin(0) = sin(2�) so the �rstand third row of the oeÆient matrix are the same.Virginia: Thus, the determinant of the matrix is zero, whih implies the solution maynot exist. We may not be able to solve for the onstants a0; a1; and b1:Fourier: A better hoie is x0 = 0; x1 = 2�=3; and x2 = 4�3 ; whih leads to the matrix:A = 0BBB�1 1 01 �12 p321 �12 �p32
1CCCA :Do you notie anything speial about this matrix?Simpliio: I an't say that I do.Fourier: If you take a areful look at the three olumns of this matrix, you will notiethat they are pairwise perpendiular.Simpliio: You mean hek if the dot produt of any two of these olumns are zero?Fourier: Preisely.Simpliio: But, why should I are about this detail? Why would anyone are?Fourier: If you multiply the matrix A by its transpose A; you get the followingprodut: AtA = 0BBB�1 1 11 �12 �120 p32 �p32

1CCCA0BBB�1 1 01 �12 p321 �12 �p32
1CCCA = 0BBB�3 0 00 32 00 0 32

1CCCA :



418 CHAPTER 19. FOURIER INTERPOLATIONSimpliio: I think I am beginning to understand. It seems like the produt AtA is adiagonal matrix. Is that always true?Fourier: If you make a smart hoie of angles, the olumns of the matrix will beperpendiular. However, before we onsider that question, let us solve for the threeonstants a0; a1; and b1:Simpliio: No problem, the answers are the solutions to the matrix equation AtAx =Aty; where x = 0BBB�a0a1b11CCCAand y = 0BBB�y0y1y21CCCA :Dividing through by the onstants on the diagonal, we unover formulas for a0; a1;and b1 : a0 = 23(y0 + y1 + y2);a1 = 23(y0 os(x0) + y1 os(x1) + y2 os(x2));b1 = 23(y0 sin(x0) + y1 sin(x1) + y2 sin(x2)):Virginia: Thus, we an summarize this disussion by saying that while the matrixequation an be solved for a multitude of hoies of x0; x1; x2; a \smart" hoie isx0 = 0; x1 = 2�3 ; x2 = 22�3 :Galileo: Corret! With a lever hoie of x0; x1; x2; we an easily solve the matrixequation.Simpliio: And we don't even need row operations!Galileo: Corret again.Simpliio: But wait a minute. One we have the formulas for the oeÆients a0; a1; b1;then an't we simply throw away the matries?Galileo: You are thinking like an engineer. To implement the method all you needare the formulas. However, let us onsider the question: Why are these Fourier still



19.1. FOURIER INTERPOLATION: INTRODUCTORY EXAMPLES 419used today?Virginia: I bet it is beause of Pythagoras.Galileo: Corret again. The Fourier matries avoid all the serious stability issuesexhibited by the Runge example. While polynomial interpolation has serious stabilityissues, the Fourier methods are always stable. In fat, the olumns of the Fouriermatrix have a Linear Algebra version of the Pythagorean Theorem that simply doesn'texist for a general Vandermonde matrix.Fourier: How about if we step through the proess again with the number of pointsinreased from three to �ve? If we hoose the angles to be equally spaed, we againsee that a workable hoie is: x0 = 0;x1 = 1 � 2�=5;x2 = 2 � 2�=5;x3 = 3 � 2�=5;x4 = 4 � 2�=5:To keep the determinant of the oeÆient matrix from being equal to zero, note thatthe angle x4 has been hosen to be di�erent from 2�: Now, if we have been given �vepoints y0; y1; y2; y3; and y4; we are then expeted to �nd �ve onstants a0; a1; a2; b1;and b2; with the property that the trigonometri polynomialT2(x) = a02 + a1 os(x) + a2 os(2x) + b1 sin(x) + b2 sin(2x)has the property that T2(xk) = yk for all k = 0; 1; 2; 3; 4:Simpliio: And the answer to this problem is going to be another one of those matrixequations?Fourier: Yes, and this time the matrix equation beomes



420 CHAPTER 19. FOURIER INTERPOLATION0BBBBBBBBB�
1 os(x0) os(2x0) sin(x0) sin(2x0)1 os(x1) os(2x1) sin(x1) sin(2x1)1 os(x2) os(2x2) sin(x2) sin(2x2)1 os(x3) os(2x3) sin(x3) sin(2x3)1 os(x4) os(2x4) sin(x4) sin(2x4)

1CCCCCCCCCA
0BBBBBBBBB�

a02a1a2b1b2
1CCCCCCCCCA = 0BBBBBBBBB�

y0y1y2y3y4
1CCCCCCCCCA :

When we ompute the matrix for the given angles, we get:
A = 0BBBBBBBBB�

1 1 1 0 01 0:3090 �0:8090 0:9511 0:58781 �0:8090 0:3090 0:5878 �0:95111 �0:8090 0:3090 �0:5878 0:95111 0:3090 �0:8090 �0:9511 �0:5878
1CCCCCCCCCA :

What do you notie about the olumns?Simpliio: One again, eah entry in the �rst olumn equals 1.Fourier: What else?Simpliio: Sine eah entry in the �rst olumn equals 1, the dot produt of the �rstolumn and any other olumn will equal the sum of the entries in that partiularolumn. Sine the sum of the entries in eah of these 4 olumns equals zero, the �rstolumn will be perpendiular to eah of the other four. In general, it appears thatany two olumns are one again perpendiular.Fourier: You have made an important and fundamental insight beause we are againin the position to easily solve the matrix equation Ax = y: In partiular, whathappens when we multiply both sides of this equation by the transpose At?Simpliio: Of ourse we get the equation AtAx = Aty:Virginia: Sine the matrix produt AtA is always a diagonal matrix, it will be easyto solve as soon as we ompute the diagonal entries.Fourier: Simpliio, let's ompute the produt AtA:



19.2. FOURIER INTERPOLATION: COEFFICIENT FORMULAS 421Simpliio: No problem, the answer is the matrix:
AtA = 0BBBBBBBBB�

5:0000 �0:0000 �0:0000 0 0�0:0000 2:4999 0:0001 0 �0:0000�0:0000 0:0001 2:4999 0 �0:00000 0 0 2:5002 00 �0:0000 �0:0000 0 2:5002
1CCCCCCCCCA :

It looks like a diagonal matrix exept for two o�-diagonal entries whih equal 0:0001:Fourier: If we had kept a few more digits of preision, those terms would have disap-peared when we omputed the matrix A:.Virginia: In fat, it looks like the o�-diagonal entries should equal 0:0000 and all thediagonal entries other than the �rst should equal 5=2:Fourier: Those thoughts are orret. The next onern is to point out that theseideas are ompletely general. For this bene�t we need to expend a bit of e�ort toorganize the neessary mathematial fats that will make the ideas preise.Virginia: I am beginning to wonder about all that Gaussian elimination stu� welearned in Linear Algebra. This Fourier approah is so muh easier. No row operationsrequired.Exerise Set 19.1.1. Given data y0; y1; y2; y3; y4 ompute the values for the oeÆients a0; a1; a2; b1; b2:2. Given data y0 = 1; y1 = 2; y2 = 3; y3 = 4; y4 = 5 ompute the values for theoeÆients a0; a1; a2; b1; b2: Chek that the funtion T2(x) atually interpolatesthe data by showing that T2(x2) = y2 = 3:19.2 Fourier Interpolation: CoeÆient FormulasFourier: The next goal is to show that the interpolation tehnique we have justdisussed for 3 data points and �ve data points an be generalized to any odd numberof points. In partiular, we will disuss the general ase when we are given 2n+1 data



422 CHAPTER 19. FOURIER INTERPOLATIONpoints (xk; yk) for k = 0; 1; 2 : : : ; 2n: In this setting, our oeÆient matrix will have2n+1 rows and 2n+1 olumns. The �rst proposition states that any two olumns ofthe oeÆient matrix A will always be perpendiular. As before this will imply thatthe matrix produt AtA will be a diagonal matrix. The seond proposition statesthat the diagonal entries of the matrix AtA are 2n+12 :Virginia: Exept, of ourse, for the �rst entry whih is 2n + 1: Right?Fourier: Corret! Finally, the third proposition presents formulas for the oeÆientsa0; a1; : : : ; an and b1; b2; : : : ; bn: The formulas follow easily from these key propertiesof A and AtA:Fourier: Sine the �rst proposition is written in mathematially tehnial languagewith �ve di�erent summations (all equal to zero), we will begin by disussing theimpliations of eah part. In partiular, we make the following observations:1. The summation 2nPk=0 os(mxk) = 0 implies the inner produt (i.e. dot produt)of the 1st olumn and the mth os(x) olumn equals zero. Thus, the �rst olumnwill always be perpendiular to any os(x) olumn.2. The summation 2nPk=0 sin(mxk) = 0 implies the 1st olumn is perpendiular to themth sin(x) olumn. Thus, the �rst olumn will always be perpendiular to anysin(x) olumn.3. The summation 2nPk=0 os(jxk) � sin(mxk) = 0 implies the jth os(x) olumn isperpendiular to the mth sin(x) olumn.4. The summation 2nPk=0 sin(jxk) � sin(mxk) = 0 implies the jth sin(x) olumn isperpendiular to the mth sin(x) olumn.5. The summation 2nPk=0 os(jxk) � os(mxk) = 0 implies the jth os(x) olumn isperpendiular to the mth os(x) olumn.Simpliio: But if j = m in the last two remarks, then we are omputing the dotprodut of a olumn with itself. That doesn't sound right to me.



19.2. FOURIER INTERPOLATION: COEFFICIENT FORMULAS 423Galileo: Your observation is orret. In the proposition, we will assume that j 6= mto insure that the olumns are atually di�erent.Virginia: And these 5 piees of information imply that any two olumns of the oef-�ient matrix are perpendiular. Isn't that right?Galileo: Corret.Proposition 19.2.1 (Orthogonality for Disrete Fourier). If 0 < m; j � 2n areintegers and xk = k2n+12� for k = 0; 1; : : : ; 2n; then the following statements hold:1. If m � 2n; then 2nPk=0 os(mxk) = 0:2. If m � 2n; then 2nPk=0 sin(mxk) = 0:3. If j � n; and m � n; then 2nPk=0 os(jxk) � sin(mxk) = 0:4. If j � n;m � n; and j 6= m; then 2nPk=0 sin(jxk) � sin(mxk) = 0:5. If j � n;m � n; and j 6= m; then 2nPk=0 os(jxk) � os(mxk) = 0:Proof. The underlying idea behind this proof is that the formula for the geometriseries works just as well for omplex numbers as it does for real numbers. In partiular,if z 6= 1; then nXk=0 zk = 1� zn+11� z :The proof is exatly the same as before. All you need to know is that all the usualassoiative, ommutative, and distributive rules apply.However, we will also need Euler's formula, whih an be stated as follows.Lemma 19.2.2. If i = p�1; then eix = os(x) + i sin(x):This formula an be proved by Taylor series, Calulus, or Di�erential Equations.If we onsider the speial ase when x = �; then we have Euler's famous identityei� = �1: Note that this identity ombines three remarkable onstants e; �; i into



424 CHAPTER 19. FOURIER INTERPOLATIONthe familiar number �1: However, we should not get distrated from the business athand.If we let z = e 2�i2n+1 = os( 2�2n+1)+ i sin( 2�2n+1); then note that whenever m � n; then(zm)2n+1 = (z2n+1)m = (e2�i)m = 1m = 1:By the geometri series formula we now observe that sine xk = k 2�2n+1 = 2�k2n+1 ; mxk =2�km2n+1 ; Z = 2nXk=0 os(mxk) + i 2nXk=0 sin(mxk)= 2nXk=0 eimxk = 2nXk=0 ei 2�km2n+1 = 2nXk=0(ei 2�2n+1 )mk= 2nXk=0 zmk = 2nXk=0(zm)k = 1� (zm)2n+11� zm = 1� (z2n+1)m1� zm = 1� 1m1� zm = 0:Thus, both the real and imaginary parts of Z equal zero. Sine the real partof Z equals zero, 2nPk=0 os(mxk) = 0: Sine the imaginary part of Z equals zero,2nPk=0 sin(mxk) = 0: Thus, the �rst two statements in the proposition are veri�ed.Virginia: But why did we assume that m � n?Fourier: If m is an integer multiple of 2n + 1; then zm = 1; whih mean that we aredividing by zero and thus an't apply the geometri series.The other three statements follow from the identities:os(A) sin(B) = 12[sin(A +B) + sin(B � A)℄;os(A) os(B) = 12[os(A+B) + os(A� B)℄;sin(A) sin(B) = 12[os(A� B)� os(A+B)℄:In partiular, if A = jxk and B = mxk; thenos(jxk) sin(mxk) = 12[sin((j +m)xk) + sin((m� j)xk)℄;os(jxk) os(mxk) = 12[os((j +m)xk) + os((j �m)xk)℄;sin(jxk) sin(mxk) = 12[os((j �m)xk)� os((j +m)xk)℄:



19.2. FOURIER INTERPOLATION: COEFFICIENT FORMULAS 425Thus, the third summation an be written as2nXk=0 os(jxk) � sin(mxk) = 12 2nXk=0[sin((j +m)xk) + sin((m� j)xk)℄= 12 2nXk=0[sin((j +m)xk)℄ + 12 2nXk=0[sin((m� j)xk)℄= 0 + 0 = 0:Fourier: Note that this argument requires the fat that you have already provedstatement 2 in the proposition and that the sums j +m � 2n and j �m � 2n:Statements 4 and 5 in the proposition follow from the same argument we just gavefor statement 3.Fourier: In the next proposition, we ompute the values of the entries along the diag-onal of the matrix produt AtA: This omputation is equivalent to the omputation ofthe norms (i.e lengths) of the olumns of A: The �rst statement in the Equal LengthFormulas an be used to show that the �rst diagonal entry of the matrix produt willequal 2n + 1; the seond two items an be used to show that all the other diagonalentries will equal 2n+12 :Proposition 19.2.3 (Equal Length Formulas for Disrete Fourier). If 0 <m � n are integers and xk = k2n+12� for k = 0; 1; : : : ; 2n; then1. 2nPk=0 1 = 2n+ 1;2. 2nPk=0 os2(mxk) = 2n+12 ; and3. 2nPk=0 sin2(mxk) = 2n+12 :Proof. The relations follow from the half angle formulas and the orthogonality propo-sition. Reall that the half angle formulas are:1. os2(�) = 1+os(2�)2



426 CHAPTER 19. FOURIER INTERPOLATION2. sin2(�) = 1�os(2�)2Note that these formulas have the virtue that they an be used to redue expres-sions of the form os2(�) and sin2(�) to linear expressions.In partiular, the �rst half angle formula ombined with statement 1 from theprevious proposition an be used to make the following redution:2nXk=0 os2(mxk) = 2nXk=0 1 + os(2mxk)2=12 2nXk=0f1 + os(2mxk)g=12 2nXk=0 1 + 12 2nXk=0 os(2mxk)=12 2nXk=0 1 + 0=2n+ 12 :Similarly, the seond half angle formula an be used to prove the third equationin the proposition: 2nXk=0 sin2(mxk) = 2nXk=0 1� os(2mxk)2=12 2nXk=0f1� os(2mxk)g=12 2nXk=0 1 = 2n+ 12 :
Fourier: We now present the key formulas for the oeÆients for the trigonometriseries. These formulas allow you to interpolate any given data set y0; y1; y2; : : : ; y2nwith a funtion of the formTn(x) = a02 + nXk=1[ak os kx+ bk sin kx℄:



19.2. FOURIER INTERPOLATION: COEFFICIENT FORMULAS 427Note that the argument is the same strategy, where we solve a matrix equationAa = y by multiplying both sides of the equation by At resulting in the equationDa = AtAa = Aty; where D is a diagonal matrix.Theorem 19.2.4 (Fourier CoeÆients: Disrete Case). If xk = k2n+12�; fork = 0; 1; : : : ; 2n and y0; y1; y2; : : : ; y2n are 2n+ 1 given data values, then onstants akand bk an be found so that the trigonometri polynomialTn(x) = a02 + nXk=1[ak os kx + bk sin kx℄has the property that Tn(xk) = yk for all k = 0; 1; : : : ; 2n:In partiular, the formulas are:ak = 22n+ 1 2nXj=0 yj os(kxj) for k = 0; 1; 2; : : : ; n;and bk = 22n+ 1 2nXj=0 yj sin(kxj) for k = 1; 2; : : : ; n:Proof. Fourier: Sine we require the property Tn(xk) = yk for all k = 0; 1; : : : ; 2n;we must solve a (2n + 1) � (2n + 1) dimensional linear system of the form Aa =y; where A is the oeÆient matrix onsisting of various sines and osines, a =(a0; a1; : : : ; an; b1; b2; : : : ; bn); and y = (y0; y1; : : : ; y2n):For the speial ase n = 2 the requirement that T2(xk) = yk leads to a system of5 equations and 5 unknowns:a02 + a1 os(x0) + a2 os(2x0) + b1 sin(x0) + b2 sin(2x0) = y0a02 + a1 os(x1) + a2 os(2x1) + b1 sin(x1) + b2 sin(2x1) = y1a02 + a1 os(x2) + a2 os(2x2) + b1 sin(x2) + b2 sin(2x2) = y2a02 + a1 os(x3) + a2 os(2x3) + b1 sin(x3) + b2 sin(2x3) = y3a02 + a1 os(x4) + a2 os(2x4) + b1 sin(x4) + b2 sin(2x4) = y4:



428 CHAPTER 19. FOURIER INTERPOLATIONSimpliio: So we an one again write a matrix equation Aa = y; where A; a; and yare the usual suspets.Virginia: If we multiply both sides of the equation by the transpose At; the resultingequation is AtAa = Aty: Sine any two olumns of A are orthogonal, the matrix AtAis diagonal.Simpliio: Even I an see this is true by the Orthogonality Proposition.Virginia: By the Equal Lengths Formulas, the �rst entry on the diagonal is 2n + 1;while the remaining diagonal entries equal 2n+12 :Simpliio: Thus, the oeÆient formulas are simply the result of multiplying the ve-tor Aty by the inverse of the diagonal matrix D = AtA: In symbols, a = (AtA)�1Aty:Fourier: You got it.Simpliio: Atually, I rather liked that proof.Fourier: Then how about a seond proof?Simpliio: Sorry, but one proof is plenty for me.Fourier: Well, let's all it an observation then.Virginia: Let's see it.Fourier: What we are really doing here is searhing for onstants (given by the vetora) whih allow us to write the vetor
y = 0BBBBBBBBB�

y0y1y2y3y4
1CCCCCCCCCAas a linear ombination of the sines and osines. In partiular, if we write the linearsystem Aa = y as a linear ombination of the olumns of the oeÆient matrix A;we have



19.2. FOURIER INTERPOLATION: COEFFICIENT FORMULAS 429
a02
0BBBBBBBBB�
11111
1CCCCCCCCCA+a10BBBBBBBBB�

os(x0)os(x1)os(x2)os(x3)os(x4)
1CCCCCCCCCA+a20BBBBBBBBB�

os(2x0)os(2x1)os(2x2)os(2x3)os(2x4)
1CCCCCCCCCA+ b10BBBBBBBBB�

sin(x0)sin(x1)sin(x2)sin(x3)sin(x4)
1CCCCCCCCCA+ b20BBBBBBBBB�

sin(2x0)sin(2x1)sin(2x2)sin(2x3)sin(2x4)
1CCCCCCCCCA = 0BBBBBBBBB�

y0y1y2y3y4
1CCCCCCCCCA :

If we let uk = 0BBBBBBBBB�
os(kx0)os(kx1)os(kx2)os(kx3)os(kx4)

1CCCCCCCCCA and vk = 0BBBBBBBBB�
sin(kx0)sin(kx1)sin(kx2)sin(kx3)sin(kx4)

1CCCCCCCCCA ;
then we an write the vetor y as a linear ombinationy = a02 u0 + a1u1 + a2u2 + b1v1 + b2v2:Virginia: I see what you are after. You have hanged the basis for the vetor spae<5 from the usual basis vetors e1; e2; e3; e4; e5; to a new basis u0;u1;u2;v1;v2: Theonstants a02 ; a1; a2; b1; b2 are simply the result of the usual hange of basis formulas.Fourier: Very good.Simpliio: So.Fourier: If we want to ompute the oeÆient am; we simply ompute the innerprodut < um;y > : Sine the orthogonality lemma for disrete Fourier shows thatthe olumns are pairwise orthogonal, we know < um;uk >= 0 for all k 6= m: Sinealso know < um;vk >= 0 for all k,< um;y >= a02 u0 + a1u1 + a2u2 + b1v1 + b2v2 = am < um;um >= am 52 :Virginia: Thus, we see immediately thatam =25 < um;y >=25(y0 os(mx0) + y1 os(mx1) + y2 os(mx2) + y3 os(mx3) + y4 os(mx4)):



430 CHAPTER 19. FOURIER INTERPOLATIONThe same argument an be used to show bm = 25 4Pj=0 yj sin(mxj): In both ases theOrthogonality and Equal Lengths properties are ruial.Simpliio: But why would we want to go to this extra trouble?Fourier: Beause we will see this argument again in several other settings. First, wewill see this exat same argument in the proof of the Pythagoras/Parseval formulafor trigonometri series. Seond, we will see it again when we disuss least squares fortrigonometri series. Third, we will use this exat same argument for the ontinuousase, where we write a funtion f(x) : [��; �℄! < as an in�nite series of the formf(x) = a02 + 1Xk=1(ak os(kx) + bk sin(kx)):In this last ase, the inner produt relevant to the disussion beomes an integralrather than a dot produt.Simpliio: But why would you want to do that?Fourier: You know how to hurt a guy. This tehnique is exatly what I used to solvethe heat equation.Fourier: These thoughts an be summarized in the following proposition. Note thatwe have not even assumed that the matrix A is square. Note this proposition well.We will revisit it soon.Proposition 19.2.5. If A 2 <m�n is a matrix with m rows and n olumns, whihhas the property that every pair of olumn vetors are perpendiular, then the produtD = AtA is an n� n diagonal matrix. Moreover, the jth diagonal entry of D is thesquare of the length of the jth olumn of A:Proof. The proof is simply the observation that the (i; j)th entry of D is the dotprodut of the ith and jth olumns of A:Simpliio: Even I an understand this one.



19.2. FOURIER INTERPOLATION: COEFFICIENT FORMULAS 431Example 19.2.1. Problem: Given the data y0 = 3; y1 = 2; y2 = 2; ompute theFourier oeÆients a0; a1; b1:By the oeÆient formulas,a0 = 23(y0 + y1 + y2) = 23(3 + 2 + 2) = 143 :a1 = 23(y0 � 12 y1 � 12 y2) = 23(3� 1� 1) = 23 :b1 = 23(p32 y1 � p32 y2) = 23(p32 2� p32 2) = 0:Sine b1 = 0; T1(x) = 73 + 23 os(x): In partiular, the basis funtion sin(x) isunneessary.Example 19.2.2. Problem: Given the data y0 = 0; y1 = 2; y2 = �2; ompute theFourier oeÆients a0; a1; b1:By the oeÆient formulas,a0 = 23(y0 + y1 + y2) = 23(0 + 2� 2) = 0:a1 = 23(y0 � 12 y1 � 12 y2) = 23(0� 1 + 1) = 0:b1 = 23(p32 y1 � p32 y2) = 23(p32 2 + p32 2) = 4p33 :Sine a0 = 0 and a1 = 0; T1(x) = 4p33 sin(x): In partiular, the basis funtions 1and os(x) are unneessary.Example 19.2.3. Problem: Given the data y0 = 0; y1 = 2; y2 = 3; y3 = �3; y4 = �2;ompute the Fourier oeÆients a0; a1; a2; b1; b2:If
x = 0BBBBBBBBB�

x0x1x2x3x4
1CCCCCCCCCA = 0BBBBBBBBB�

02�522�532�542�5
1CCCCCCCCCA = 0BBBBBBBBB�

01:25662:51333:76995:0265
1CCCCCCCCCA ;



432 CHAPTER 19. FOURIER INTERPOLATIONthen
os(x) = 0BBBBBBBBB�

os(x0)os(x1)os(x2)os(x3)os(x4)
1CCCCCCCCCA = 0BBBBBBBBB�

1:00000:3090�0:8090�0:80900:3090
1CCCCCCCCCA ; os(2x) = 0BBBBBBBBB�

os(2x0)os(2x1)os(2x2)os(2x3)os(2x4)
1CCCCCCCCCA = 0BBBBBBBBB�

1:0000�0:80900:30900:3090�0:8090
1CCCCCCCCCAand

sin(x) = 0BBBBBBBBB�
sin(x0)sin(x1)sin(x2)sin(x3)sin(x4)

1CCCCCCCCCA = 0BBBBBBBBB�
0:00000:95110:5878�0:5878�0:9511

1CCCCCCCCCA ; sin(2x) = 0BBBBBBBBB�
sin(2x0)sin(2x1)sin(2x2)sin(2x3)sin(2x4)

1CCCCCCCCCA = 0BBBBBBBBB�
0:00000:5878�0:95110:9511�0:5878

1CCCCCCCCCA :
Thus, by the oeÆient formulas, we see thata0 = 25(y0 + y1 + y2 + y3 + y4)= 25(0 + 2 + 3� 3� 2) = 0;a1 = 25(y0 os(x0) + y1 os(x1) + y2 os(x2) + y3 os(x3) + y4 os(x4))= 25(0 + 2 � 0:3090� 3 � 0:8090 + 3 � 0:8090� 2 � 0:3090) = 0;a2 = 25(y0 os(2x0) + y1 os(2x1) + y2 os(2x2) + y3 os(2x3) + y4 os(2x4))= 25(0� 2 � 0:8090 + 3 � 0:3090� 3 � 0:3090 + 2 � 0:8090) = 0;b1 = 25(y0 sin(x0) + y1 sin(x1) + y2 sin(x2) + y3 sin(x3) + y4 sin(x4))= 25(0 + 2 � 0:9511 + 3 � 0:5878 + 3 � 0:5878 + 2 � 0:9511) = 2:9324;b2 = 25(y0 sin(2x0) + y1 sin(2x1) + y2 sin(2x2) + y3 sin(2x3) + y4 sin(2x4))= = 25(0 + 2 � 0:5878� 3 � 0:9511� 3 � 0:9511 + 2 � 0:5878) = �1:3422:Thus, a0 = a1 = a2 = 0; whih implies that T1(x) = 2:9324 sin(x)�1:3422 sin(2x):In partiular, the basis funtions 1; os(x); and os(2x) are unneessary.



19.2. FOURIER INTERPOLATION: COEFFICIENT FORMULAS 433Simpliio: I hate to be diÆult, but I have just one quik question that has begun toeat at me.Fourier: Sure.Simpliio: In all the disussions you have given so far, you have always assumed thatyou are given 2n+1 points in your vetor y: If y = (y0; y1; : : : ; y2n); then it has an oddnumber of oordinates. What do you do if you are given an even number of points?Fourier: The short answer is that "It depends on the problem." The longer answer isthat ertain problems only require the os(mx) funtions and ertain other problemsonly require the sin(mx) funtions. For example, the heat equation only requiresthe sin(mx) funtions and the JPEG ompression tehniques only require os(mx)funtions. With a ompression problem, we will \double" the data from n+ 1 pointsto 2n + 1 points in suh a way that the oeÆients bk = 0 for all k: Thus, we willalways have an odd number of points and we will never need the basis funtionssin(mx):Simpliio: Interesting. In other words the basis funtions of the form os(mx) willsuÆe.Fourier: Preisely. Here are a few exerises, whih you should not �nd partiularlyhallenging.Exerise Set 19.2.1. Show that the quantity a02 always represents the average of the given data sety0; y1; : : : ; y2n:2. Given the data y0 = 1; y1 = 2; y2 = 3; ompute the Fourier oeÆients a0; a1; b1:Plot the data and the funtion T1(x) = a02 + a1 os(x) + b1 sin(x) on the samegraph.3. Given the data y0 = sin(0); y1 = sin(2�3 ); y2 = sin(4�3 ) ompute the FourieroeÆients a0; a1; b1: Plot the data and the funtion T1(x) = a02 + a1 os(x) +b1 sin(x) on the same graph.



434 CHAPTER 19. FOURIER INTERPOLATION4. Given the data y0 = os(0); y1 = os(2�3 ); y2 = os(4�3 ) ompute the FourieroeÆients a0; a1; b1: Plot the data and the funtion T1(x) = a02 + a1 os(x) +b1 sin(x) on the same graph.5. Given the data y0 = 0; y1 = 2; y2 = �2; ompute the Fourier oeÆientsa0; a1; b1: Whih oeÆients equal zero?6. Given the data y0 = 3; y1 = 1; y2 = 2; y3 = 2; y4 = 1; ompute the FourieroeÆients a0; a1; a2; b1; b2: Whih oeÆients equal zero?7. Given the data y0 = 0; y1 = 1; y2 = 2; y3 = �2; y4 = �1; ompute theFourier oeÆients a0; a1; a2; b1; b2: Plot the data and the funtion T2(x) =a02 + a1 os(x) + a2 os(2x) + b1 sin(x) + b2 sin(2x) on the same graph. WhihoeÆients equal zero?8. Given the data y0 = 0; y1 = A; y2 = �A; where A is an arbitrary number,ompute the Fourier oeÆients a0; a1; b1: Whih oeÆients equal zero?9. Given the data y0 = A; y1 = B; y2 = B; where A and B are arbitrary numbers.Compute the Fourier oeÆients a0; a1; b1: Whih oeÆients equal zero?10. Given the data y0 = 0; y1 = A; y2 = B; y3 = B; y4 = A; where A and B arearbitrary, ompute the Fourier oeÆients a0; a1; a2; b1; b2: Whih oeÆientsequal zero?19.3 Fourier Least SquaresFourier: Let's go bak to the just ompleted disussion of interpolation and hangethe rules to the setting, where we have more data points than oeÆients. In otherwords, let's onsider the problem:Given data y0; y1; y2; y3; y4 and equally spaed points x0 = 0; x1 = 2�5 ; x2 =22�5 ; x3 = 32�5 ; x4 = 42�5 ; �nd the funtion T1(x) = a02 + a1 os(x) + b1 sin(x) \best�ts the data".



19.3. FOURIER LEAST SQUARES 435Virginia: Let me guess. We are one again onfronted by the same the setting wehad for polynomial least squares. Namely, we simply \solve" the set of equations:T1(x0) =a02 + a1 os(x0) + b1 sin(x0) = y0T1(x1) =a02 + a1 os(x1) + b1 sin(x1) = y1T1(x2) =a02 + a1 os(x2) + b1 sin(x2) = y2T1(x3) =a02 + a1 os(x3) + b1 sin(x3) = y3T1(x4) =a02 + a1 os(x4) + b1 sin(x4) = y4:This set of equations morphs into equation Aa = y; where
A = 0BBBBBBBBB�

1 os(x0) sin(x0)1 os(x1) sin(x1)1 os(x2) sin(x2)1 os(x3) sin(x3)1 os(x4) sin(x4)
1CCCCCCCCCA ; a = 0BBB�a02a1b11CCCA ; and y = 0BBBBBBBBB�

y0y1y2y3y4
1CCCCCCCCCA :

Sadly, this equation is one again overdetermined. However, the good news is that wean solve it by multiplying both sides of the equation by the transpose At to obtainAtAa = Aty: The beauty of this matrix equation is thatD = AtA = 0BBB�5 0 00 52 00 0 52
1CCCA :Thus, the matrix equation Aa = y is easily \solved" for the oeÆients a0; a1; b1:Better yet, the formulas for these oeÆients are exatly the same as those we pre-sented moments ago.Simpliio: How did she know that?Virginia: Math is easy.Fourier: Atually, when I �rst began working on these series, I didn't understandthis issue all that well either. However, let's be sure to mention that this tehnique



436 CHAPTER 19. FOURIER INTERPOLATIONis equivalent to the problem of minimizing the residual R =P4k=0(a02 + a1 os(xk) +b1 sin(xk)� yk)2 with respet to the parameters a0; a1; b1:Simpliio: Even I an see that this quantity R an be found by omputing the gradientrR = 0BBB� �R�a0�R�a1�R�b1
1CCCA ;setting eah oordinate equal to zero, and solving three equations and three unknowns.Fourier: The matrix equation is 2(AtAa�Aty) = 0; whih is obviously equivalent toour friend AtAa = Aty:Fourier: We summarize our disussion with the following theorem.Theorem 19.3.1 (Fourier CoeÆients: Linear Least Squares). If xk = k2n+12�;for k = 0; 1; : : : ; 2n and y0; y1; y2; : : : ; y2n are 2n + 1 given data values, then for anyinteger N � n; onstants ak and bk an be found so that the trigonometri polynomialTN(x) = a02 + NXk=1[ak os kx + bk sin kx℄has the property that the funtion TN (x) provides a best least squares �t to the datayk for all k = 0; 1; : : : ; 2n:Moreover, the oeÆients an found by be omputing the following formulas:ak = 22n+ 1 2nXj=0 yj os(kxj) for k = 0; 1; 2; : : : ; N;and bk = 22n+ 1 2nXj=0 yj sin(kxj) for k = 1; 2; : : : ; N:Simpliio: That WAS easy.Fourier: Now its time to work some problems. Sine the formulas are the same as forinterpolation, these problems should provide no hallenge.Exerise Set 19.3.



19.4. FOURIER INTERPOLATION: THE RUNGE EXAMPLE REVISITED 4371. Given the data y0 = 3; y1 = 1; y2 = 2; y3 = 2; y4 = 1; ompute the funtionT1(x) = a02 + a1 os(x) + b1 sin(x) whih best �ts the data in the sense of leastsquares. Plot the data and the funtion.2. Given the data y0 = 0; y1 = 1; y2 = 2; y3 = �2; y4 = �1; ompute the funtionT1(x) = a02 + a1 os(x) + b1 sin(x) whih best �ts the data in the sense of leastsquares. Plot the data and the funtion.3. Given the data y0 = 1; y1 = �1; y2 = 1; y3 = �1; y4 = 1; y5 = �1; y6 = 1;ompute the funtion T2(x) = a02 + a1 os(x)+ a2 os(2x)+ b1 sin(x)+ b2 sin(2x)whih best �ts the data in the sense of least squares. Plot the data and thefuntion.19.4 Fourier Interpolation: The Runge ExampleRevisitedFourier: To illustrate the bene�t of using trigonometri interpolation, let's revisitour friend Carl Runge. Reall that polynomial interpolation is a disaster when weapproximate the urve y = f(x) = 1x2+1 ; for x 2 [��; �℄:Simpliio: That's right. We saw those rabbit ears pop up near the boundary pointsof the interval x = �� and �: The graphs of the approximations y o� to in�nity.Fourier: Let's apply our new interpolation method to this same urve. In partiular,let's approximate the urve f(x) = 1x2+1 by the trigonometri polynomials Tn(x)on the interval [��; �℄: The results of these experiments (for the integers n = 1; 2;and n = 20) are displayed in Figures 19.1, 19.2, and 19.3. Note that in Figure19.3 it is impossible to distinguish between the original urve and the approximationby T20(x): Unlike polynomial interpolation, the approximations provide improvedapproximations of the original urve when more points are added.Simpliio: I am glad to see that we now have a reliable method we an ount on to
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Figure 19.1: Fourier Interpolation of f(x) = 11+x2 by T1(x); x 2 [��; �℄
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Figure 19.2: Fourier Interpolation of f(x) = 11+x2 by T2(x); x 2 [��; �℄always give the results we want.Fourier: In a moment, we will disuss the trigonometri approximation of the fun-tion y = f(x) = x; where we again enounter a slight \blip" at the endpoints ofthe interval. However, this time the problem is not as violent as is the ase withpolynomial interpolation.Simpliio: I have an unimportant question, whih has been nagging me. Namely,while all the data (xk; yk) mention in the theorems we have proved is designed sothat xk 2 [0; 2�℄; you took the domain of the funtion f(x) = 11+x2 to be the interval[��; �℄: Thus, the points xk must lie in the interval [��; �℄: I know this is a smalldi�erene, but sine we are being piky, I thought : : : :Fourier: You should have been a mathematiian. You spotted a bit of sloppiness onmy part. Atually, sine the funtions os(x) and sin(x) are both 2� periodi, we ouldgo through the same analysis for any interval of length 2�: While the Orthogonalityand Equal Lengths propositions will hold, the oeÆients will be di�erent.



19.5. FOURIER INTERPOLATION: GIBBS' PHENOMENON 439
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

The X Values 

Y
 

Figure 19.3: Fourier Interpolation of f(x) = 11+x2 by T20(x); x 2 [��; �℄Virginia: But the oeÆients ak; bk will be di�erent only beause the entries in theoeÆient matrix will have been permuted around. Right?Fourier: For example, if x0 = �� = �180 (deg); x1 = �� + 2�3 = �60 (deg);x2 = �� + 22�3 = 60 (deg); then the oeÆient matrix beomesA = 0BBB�1 �1 01 12 �p321 12 p32
1CCCA :Simpliio: Looks like Orthogonality and Equal Lengths are OK to me.Exerise Set 19.4.1. Compute the Fourier oeÆient matrix for �ve points on the interval [��; �℄:(i.e. Compute the matrix A when x0 = ��; x1 = �� + 2�5 ; x2 = �� + 22�5 ; x3 =�� + 32�5 ; x4 = �� + 42�5 :2. Let y = f(x) = 11+x2 ; for x 2 [��; �℄: Write a program to approximatef(x) by the funtions T0(x) for various evenly evenly spaed points �� =x0; x1; : : : ; x2n < �: Plot the funtions y = f(x) and y = T0(x) on the samegraph. How good are the approximations? What do you notie?19.5 Fourier Interpolation: Gibbs' PhenomenonFourier: We now provide a short disussion of the famous Gibbs' phenomenon. JosiahWillard Gibbs(1839-1903) was the �rst outstanding Amerian mathematiian. His



440 CHAPTER 19. FOURIER INTERPOLATIONontributions were in a wide range of areas inluding vetor analysis, the orbits ofomets, the thermodynamis of uids, eletromagneti radiation, and statistial me-hanis. His investigations into thermodynamis involved the mathematis surround-ing the words energy, entropy, and enthalpy.Simpliio: Doesn't entropy involve the ideas of order and disorder?Virginia: If I remember orretly, entropy always inreases. Isn't that the idea behindthe Seond Law of Thermodynamis?Fourier: Very good. Gibbs was a dediated natural sientist, who developed sophis-tiated mathematial ideas to model real physial phenomena. He ontinued theinvestigations into the study of the steam engine begun by Sadi Carnot (1796-1832).Their researh led to the modern theory of Thermodynamis. Gibbs brought moremathematis to the table. In any ase, we are not going to disuss this topi today.Instead, we are going to mention Gibbs' ontribution to Trigonometri series.Simpliio: And, : : :Fourier: While the phenomenon appears in many di�erent disguises, we will demon-strate it only for the funtion f(x) = x de�ned on the interval [��; �℄: If we letTn(x) = 2 nPk=1 (�1)k+1k � sin(kx) on [��; �℄ for n = 4; 8; and 20; then note the graphs ofthe approximations in Figures 19.4, 19.5, and 19.6.Simpliio: Sine we are omputing on the interval [��; �℄; won't we one againenounter a modi�ed version of the Fourier matrix the way we just did with theRunge example? In other words, when we ompute the entries in the oeÆient ma-trix A; we will use the points x0 = ��; x1 = �� + 2�2n+1 ; x2 = �� + 2 2�2n+1 ; x3 =�� + 3 2�2n+1 ; : : : x2n = �� + 2n 2�2n+1 :Fourier: Corret. In any ase, these examples lead to the well-known Gibbs phe-nomenon, where a slight \blip" appears at the endpoints �� and �: Note that this\blip" ontinues to appear even for a 20 degree polynomial. This blip is about 9% ofthe di�erene between +� � (��) = 2� and thus about 0:56:Simpliio: And one again we have a setting, where an approximation of good dataleads to mediore results.



19.5. FOURIER INTERPOLATION: GIBBS' PHENOMENON 441Virginia: But at least the blips don't go o� to in�nity. I would say that is animprovement.Fourier: That's why we all them Fourier series.
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Figure 19.4: The Gibbs E�et When Approximating f(x) = x by T4(x)
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Figure 19.5: The Gibbs E�et When Approximating f(x) = x by T8(x)Exerise Set 19.5.1. Compute and plot the trigonometri series approximation of the funtion de�nedby f(x) = 8<: �1 if x 2 [��; 0)1 if x 2 [0; �℄ :Approximate the blip at x = 0 for the integers n = 4; 6; and 10: Where do you�nd the blips? How big are they?
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Figure 19.6: The Gibbs E�et When Approximating f(x) = x by T20(x)2. Compute and plot the trigonometri series approximation of the funtion de�nedby f(x) = 8<: 0 if x 2 [0; �)1 if x 2 [�; 2�℄ :Approximate the blip at x = 0 for the integers n = 4; 6; and 10: Where do you�nd the blips? How big are they?19.6 Fourier Interpolation: Pythagoras/ParsevalGalileo: We are now in a position to prove the theorem of Pythagoras one more time.How about an explanation Professor Fourier?Fourier: The only di�erene between this theorem and the one Professor Hilbert gaveyou previously is that the word vetor will be replaed by the word funtion. Inpartiular, we will prove the theorem for funtions of the form Tn(x): If you under-stood Professor Hilbert's Linear Algebra proof, you will understand this one with noproblem. The data vetor y = (y0; y1; y2; : : : ; y2n)t an be visualized at the diagonalin an n-dimensional parallelepiped (i.e. retangle). If x = (x0; x1; : : : ; x2n)t; then thesides of the box an be visualized as represented by a set of orthogonal vetors of theformu0 = (1; 1; : : : ; 1)t;u1 = os(x)t;u2 = os(2x)t; : : : ;un = os(nx)t;v1 = sin(x)t;v2 =sin(2x)t; : : : ;vn = sin(nx)t: We understand that the notation u1 = os(x)t simply



19.6. FOURIER INTERPOLATION: PYTHAGORAS/PARSEVAL 443means that u1 = os(x)t = (os(x0; os(x1); : : : ; os(x2n)t: The proof works beausethe vetors um = os(mx)t and vk = sin(kx)t are mutually perpendiular.Virginia: Interesting.Simpliio: Groan.Theorem 19.6.1 (Pythagoras/Parseval). If xk = k2n+12�; for k = 0; 1; : : : ; 2n;and y0; y1; y2; : : : ; y2n are 2n+ 1 given data values, andTn(x) = a02 + nXk=1[ak os kx + bk sin kx℄has the property that Tn(xk) = yk for all k = 0; 1; : : : ; 2n; then22n+ 1 2nXk=0 y2k = a202 + nXk=1(a2k + b2k):Proof. As in the previous theorem, we only give the proof for the ase when n = 2:If we set y = (y0; y1; y2; y3; y4)t;u0 = (1; 1; 1; 1; 1)t;u1 = os(x)t;u2 = os(2x)t;v1 =sin(x)t; and v2 = sin(2x)t; then T2(x) = a02 u0 + a1u1 + a2u2 + b1v1 + b2v2: Thus, bythe Orthogonality and Equal Lengths Properties, we see that< y;y >= < a02 u0 + a1u1 + a2u2 + b1v1 + b2v2; a02 u0 + a1u1 + a2u2 + b1v1 + b2v2 >= < a02 u0; a02 u0 > + < a1u1; a1u1 > + < a2u2; a2u2 > +< b1v1; b1v1 > + < b2v2; b2v2 >= (a02 )2 < u0;u0 > +a21 < u1;u1 > +a22 < u2;u2 > +b21 < v1;v1 > +b22 < v2;v2 >= 5(a02 )2 + 52a21 + 52a22 + 52b21 + 52b22:Thus, 25 4Xk=0 y2k = a202 + 2Xk=1(a2k + b2k):The reason the argument works is beause orthogonality implies that all the in-ner produts < um;vk >;< um;uk >; and < vm;vk > equal zero exept for thespeial ases when < u0;u0 >= 5; < u1;u1 >= 52 ; < u2;u2 >= 52 ; < v1;v1 >= 52 ; <v2;v2 >= 52 : Orthogonality does the trik.



444 CHAPTER 19. FOURIER INTERPOLATIONFourier: As I think you an see, the proof of the general theorem is going to be thesame as the n = 2 ase. The only di�erene is that we will need to sum more terms.Simpliio: Even I an see that. In fat, this proof looks familiar.Fourier: It should. When we proved the oeÆient formula, we used almost the sameargument.Simpliio: Ok, but what is all this theory good for? How about an example?Fourier: It is a bit diÆult to give an interesting example for this theorem beauseif I give you a vetor y = (y0; y1; y2; : : : ; y2n)t; note that all you are going to do isompute the sum 22n+1P2nk=0 y2k and the sum a202 +P2nk=1(a2k+ b2k) and hek if they areequal. Do you want me to bore you?Simpliio: Not today.Virginia: But the theorem is a lovely extension of Pythagoras's ideas. I really likethis theorem.Simpliio: I am sure you do.19.7 A Fourier Appliation: Signal CompressionFourier: How about an appliation?Simpliio: An appliation would be appreiated.Fourier: How about signal and image ompression?Simpliio: I must admit that I �nd image ompression interesting.Fourier: The �rst piee of information to mention is that the disrete osine transformis an integral omponent of the JPEG and MPEG �le formats that are used to displayimages on the internet. At least that was true until the year 2000.Simpliio: What happened then?Fourier: The tehniques were upgraded from trigonometri series to wavelets.Simpliio: What is a wavelet?Fourier: While there are a multitude of tehnialities with wavelets, the basi idea isto build a olletion of basis funtions that have the same orthogonality properties



19.7. A FOURIER APPLICATION: SIGNAL COMPRESSION 445as sines and osines, but whih don't osillate up and down forever. In other words,outside of some �nite interval (e.g. [0; 1℄), they always equal zero. These funtionsare preferred in a multitude of real appliations beause data olletion and omputermemory are neessarily �nite.Galileo: Professor Fourier you digress.Fourier: While there are a number of ways to ompress a signal, the idea we willexplore uses the Theorem of Pythagoras/Parseval to measure how many oeÆientswill be required to produe an aurate reonstrution of the signal.Simpliio: What does it mean to reonstrut a signal?Fourier: By the CoeÆient Formula for Trigonometri Interpolation, we an alwayssolve the problem: If given xk = k2n+12�; for k = 0; 1; : : : ; 2n and y0; y1; y2; : : : ; y2nare 2n + 1 given data values, then onstants ak and bk an be found so that thetrigonometri polynomialTn(x) = a02 + nXk=1[ak os kx + bk sin kx℄has the property that Tn(xk) = yk for all k = 0; 1; : : : ; 2n:Sine Tn(xk) = yk for all k = 0; 1; : : : ; 2n; we have perfet reonstrution. If wethrow away some of the oeÆients (i.e. set some ak's or bk's = 0), then we anno longer expet the equalities Tn(xk) = yk to always hold. This issue leads to theonept of imperfet reonstrution and provides a fundamental tehnique for lossyompression.Simpliio: In other words, the idea is to replae the given data values y0; y1; y2; : : : ; y2nby the oeÆients a0; a1; a2; : : : ; an; b1; b2; : : : ; bn: If you retain all the oeÆients, youhave perfet reonstrution beause you an always ompute yk = Tn(xk): The prob-lem with perfet reonstrution is that you have no savings when you store your dataon your hard drive. For lossy ompression, you an \reonstrut" the data by om-puting ŷk = T̂n(xk); where the formula for T̂n(x) is the same as for Tn(x) exept thatsome of the oeÆients have been set equal to zero.Fourier: Very good. First of all, when we set ertain oeÆients ak = 0 and bk = 0;



446 CHAPTER 19. FOURIER INTERPOLATIONfor k > N; then we are simply omputing the best least squares approximation of thedata using the funtionT̂n(x) = TN (x) = a02 + NXk=1[ak os(kx) + bk sin(kx)℄;where N < n:Seond, as we remarked in our disussion of least squares, the oeÆient formulasare the same as before. In partiular,ak = 22n+ 1 2nXj=0 yj os(kxj) for k = 0; 1; 2; : : : ; N;and bk = 22n+ 1 2nXj=0 yj sin(kxj) for k = 1; 2; : : : ; N:Virginia: But wait a minute. I detet a potential problem here. What if ŷk = TN (xk)is not lose to the original value yk?Fourier: We should now all in our friend Pythagoras. He would be proud to knowhis ideas are still being disussed after all these years. In his plae, let us remark thatwe know by Pythagoras/Parseval that22n + 1 2nXk=0 y2k = a202 + nXk=1(a2k + b2k):If we form the fration Q = a202 +Pnk=1(a2k + b2k)22n+1P2nk=0 y2k ;then Q most de�nitely equals 1.Simpliio: No argument on this point.Fourier: If N � n and we form the frationQN = a202 +PNk=1(a2k + b2k)22n+1P2nk=0 y2k ;then Q � 1:Simpliio: We have simply disarded some positive terms in the numerator. Noargument on this point as well.



19.7. A FOURIER APPLICATION: SIGNAL COMPRESSION 447Fourier: Let me now ask you an old question in Physis. What is the formulas forkineti energy?Virginia: Of ourse, KE = 12mv2:Fourier: Notie that kineti energy has the veloity squared. If you think about it, thefration QN an be thought of as providing a measure of the energy in the oeÆientsused divided by the total energy of the data. If N = n; the two measures of energyare in balane and QN = 1: In this ase, we have lossless ompression. We now askthe following question: If we want 90% of the information in the data, then how dowe hoose N?Virginia: I bet I an guess. How about if we simply hoose N to be an integer lessthan n with the property that QN > 0:90: We will ahieve the greatest ompression,if we hoose N to be the smallest suh integer.Fourier: You got it.Simpliio: How about an example?Fourier:Example 19.7.1. Given seven data points �3;�2;�1; 0; 1; 2; 3; ompute the smallestinteger N with the property that QN > 0:85; where oeÆients N are needed so thatthe quotient QN = a202 +PNk=1(a2k + b2k)22n+1P2nk=0 y2k :If we make the omputations, we �nd Q1 = 0:6640 and Q2 = 0:8685: Thus, we anhoose N = 2:Simpliio: Seems OK to me.Fourier: Now lets ondut a little experiment, where we \double the data" before weompute the oeÆients and the quotient QN : What I mean by doubling the datais to take the 7-dimensional vetor y = (�3;�2;�1; 0; 1; 2; 3) and extend it to the13-dimensional vetory2 = (�3;�2;�1; 0; 1; 2; 3; 3; 2; 1; 0;�1;�2): When we do this, we �nd that all theoeÆients bk = 0; for all k = 1; 2; 3; 4; 5; 6



448 CHAPTER 19. FOURIER INTERPOLATIONSimpliio: Why didn't you make y2 into a 14-dimensional vetor with last oordinateequal to �3?Fourier: If we use that strategy, we don't quite ahieve the key symmetry relationthat makes the terms anel out. Sine the funtions sin(kx) are \anti-symmetri"about the vertial line x = � (i.e. f(� + x) = �f(� � x) for all x 2 <) and sine� � xj = x13�j � �; we know thatsin(kx7) =� sin(kx6);sin(kx8) =� sin(x5);sin(kx9) =� sin(x4);sin(kx10) =� sin(x3);sin(kx11) =� sin(x2);sin(kx12) =� sin(x1):Note that we may need the sum formulas for sin(x) to make this argument omplete.Thus, y6 sin(kx7) + y6 sin(kx6) = 0;y5 sin(kx8) + y5 sin(kx5) = 0;y4 sin(kx9) + y4 sin(kx4) = 0;y3 sin(kx10) + y3 sin(kx3) = 0;y2 sin(kx11) + y2 sin(kx2) = 0;y1 sin(kx12) + y1 sin(kx1) = 0and thus bk = y0 sin(0) + y1 sin(kx1) + y2 sin(kx2) + y3 sin(kx3) +y4 sin(kx4) + y5 sin(kx5) + y6 sin(kx6) + y6 sin(kx7) +y5 sin(kx8) + y4 sin(kx9) + y3 sin(kx10) + y2 sin(kx11) +y1 sin(kx12) = 0:



19.7. A FOURIER APPLICATION: SIGNAL COMPRESSION 449We have just proved a speial ase of the following proposition.Proposition 19.7.1. If y = (y0; y1; : : : ; yn; yn+1; : : : ; y2n) is a (2n+ 1)�dimensionalvetor with the property that yn+1 = yn; yn+2 = yn�1; : : : ; y2n = y1; then bk = 0; forany integer k = 1; 2; : : : ; n:Proof. Sine xj = j 2�2n+1 and x2n+1�j = (2n + 1 � j) 2�2n+1 ; a bit of arithmeti an beused to show that � � xj = x2n+1�j � �:By the sum formula for sin(x); we knowsin(k(� � xj)) = sin(k�) os(kxj)� sin(kxj) os(k�) = � sin(kxj) os(k�)and sin(k(x2n+1�j � �)) = sin(kx2n+1�j) os(k�)� sin(k�) os(kx2n+1�j)= sin(kx2n+1�j) os(k�):Thus, � sin(kxj) os(k�) = sin(kx2n+1�j) os(k�):Dividing both sides of this equation by os(k�); we see that� sin(kxj) = sin(kx2n+1�j):Sine y2n+1�j = yj; for all j,�yj sin(kxj) = y2n+1�j sin(kx2n+1�j) for all j: Sine theoeÆient bk = 22n+ 1 nXj=1(yj sin(kxj) + y2n+1�j sin(kx2n+1�j) = 0;we are done.Simpliio: That last proof was a bit tehnial. How about an example.Fourier: No problem How about if we repeat the same problem we disussed a fewminutes ago?Simpliio: I'm easy.



450 CHAPTER 19. FOURIER INTERPOLATIONExample 19.7.2. Given the same seven data points (so n = 6) �3;�2;�1; 0; 1; 2; 3;we double the data to the 13 point set �3;�2;�1; 0; 1; 2; 3; 3; 2; 1; 0;�1;�2: We nowwould like to interpolate this data with the funtion T6(x): By the proposition, weknow that b1 = b2 = b3 = b4 = b5 = b6 = 0 so we only need to ompute the oeÆientsak's. As before, we would like to �nd the smallest integer N � 6 with the propertythat QN > 0:85; where QN = a202 +PNk=1 a2k22n+1(y20 + 2P6k=1 y2k) :If we make the omputations, we �nd Q1 = 0:9839 > 0:85: Thus, we an hooseN = 1:Simpliio: N = 1! Hey, that trik worked muh better than when the bk's wereinvolved. With the previous omputations, we saw thatQ1 = 0:6640 andQ2 = 0:8685;where the value of Q1 requires the three oeÆients a0; a1; b1 and the value of Q2requires the �ve oeÆients a0; a1; a2; b1; b2: By doubling the data and saving only theoeÆients a0 and a1; we get far better reonstrution than before. I am getting abit more interested. What's going on here?Virginia: I bet there is a theorem lurking here somewhere.Fourier: You got it. The problem with the data set is that the �rst value y0 = �3and the last data point y6 = 3: In partiular, the values y0 does not equal y6:Simpliio: In fat, the data is essentially a straight line between the two points (0;�3)and (2�; 3) so Gibbs is sure to haunt you.Fourier: The Gibbs problem disappears if you approximate a ontinuous funtionf(x) : [��; �℄! <; whih is blessed with the additional property that f(��) = f(�):An even funtion always has this desired property.Virginia: So this theorem will show that the approximations of the Runge examplef(x) = 11 + x2 by funtions Tn(x) will onverge with no blips?Fourier: Corret.Simpliio: So, even is good, odd is evil.Fourier: Not quite.



19.8. COMPLEX NUMBERS: A BRIEF REVIEW 451with the property that f(��) = f(�): Similarly, the Gibbs problem disappears ifyou are approximating a ontinuous funtion f(x) : [0; 2�℄ ! < with the propertythat f(0) = f(2�): While we always manage to ge pointwise onvergene for anyontinuous funtion, we manageFourier: How about working a few problems to hek your understanding?Exerise Set 19.7.1. Given seven data points 0; 2; 3; 5; 7; 11; 13; ompute the oeÆients a0; a1; a2; a3; b1; b2; b3:How many oeÆients N � 3 are needed so that the quotientQ = a202 +PNk=1(a2k + b2k)22n+1P6k=0 y2k � 0:90?2. Redo the previous problem after the data has been doubled.3. If the data y0; y1; : : : ; y2n has the property that it is anti-symmetri about themiddle value (i.e. yn = �yn+1; yn�1 = �yn+2; et.) and y0 = 0; then showthat all the oeÆients ak = 0: Thus, if a data set has this property, then theoeÆients ak do not have to be omputed.19.8 Complex Numbers: A Brief ReviewGalileo: In preparation of our disussion of the omplex Fourier transform, we noware fored to onsider (and understand!) omplex numbers.Virginia: Mother Nature insists!Galileo: This transform arises from polynomial interpolation, where the points (zk; yk)are hosen with the restrition that the points zk lie uniformly spaed on the unitirle in the omplex plane.Simpliio: Wait a minute. Our previous disussion of the disrete Fourier transformseems just �ne to me. Why would we ompliate the disussion by introduing om-plex numbers? I am only interested in real data. In any ase, I am out of my omfortzone here.



452 CHAPTER 19. FOURIER INTERPOLATIONVirginia: They have always seemed a bit imaginary to me as well.Galileo: If our goal is to solve equations, Mother Nature won't allow us to ignoreomplex numbers. Reall that the equation x2 = �1 does not have a real solution.In general, even though your problem an be stated in terms of omplex numbers,the solution may not.Simpliio: Onward.Galileo: While the anient Greeks had the onepts of distane, numbers, addition,subtration, multipliation, and division, they had only a limited understanding ofAlgebra. In fat, not only were negative numbers unknown to them, they didn't evenhave the onept of zero.Simpliio: I understand zero dollars!Galileo: No problem arose when the anients wanted to solve an equation of the formx+2 = 3 or a proportion of the form x1 = 1�xx : However, this trunated understandingof Algebra led to trouble when they tried to solve equations like x + 3 = 2:Virginia: Where the answer is negative and you are fored to onsider negative num-bers?Galileo: Corret. Even muh later the Father of Algebra, Muhammad ibn Musaal-Khwarizmi (780-850) avoided negative numbers. For example, he would write theexpression ax2 � bx = 0 as ax2 = bx:Simpliio: But negative numbers are easy. You just add, subtrat, multiply, anddivide the same way you manipulate positive numbers. No problem.Galileo: Very good. but for the anients, negative numbers were just as virtual asomplex numbers are for you. What does it mean for you to have �$100:00 in yourpoket?Virginia: Your last purhase was harged to your redit ard!Galileo: Exatly my point. Credit ards are virtual. How about a seond question:Why does (�1)(�1) = +1?Simpliio: I'm not sure. Atually, I never did like that rule.Galileo: The underlying fore behind that equation is the desire to solve di�erent



19.8. COMPLEX NUMBERS: A BRIEF REVIEW 453types of equations. These equations an be linear, quadrati, ubi, or worse. Itdoesn't matter.Simpliio: I don't see the onnetion between the rule (�1)(�1) = +1 and solvingequations.Galileo: While the subjet of Algebra has taken several millenia to unfold, we arenow lear that the essene of an algebrai struture is a set of points X together withone or two operations suh as addition and/or multipliation. The points in the setX are usually represented by the letters a; b;  and x; y; z; et:; while the operationsare usually represented by the symbols +;�; �; =: It wasn't until Niole d' Oresme(1323-1382), Johannes Widmann (1460-1524), William Oughtred (1574-1660), andGottfried Wilhelm Leibniz (1646-1716) ame along that people began to realize thesemathematial operations deserve their own symbology. By using di�erent symbolsfor points and operations, the impliit message is that they are indeed di�erent. Didyou realize that the symbol for addition \ + " is derived from the Latin word \et."Virginia: Whih, of ourse, means \and."Galileo: Not only were the anient Greeks not quite lear about points and operations,but even the Father of Algebra, the Medieval Indian mathematiians, and Leonardoof Pisa (1188-1250) (otherwise known as Fibonai) were also not quite lear. Themodern view is that the starting point should be the set of natural numbers N =1; 2; : : : ; n; : : : together with the operations of addition (+) and multipliation (�):These operations should satisfy both the assoiative and ommutative laws for bothaddition and multipliation. The distributive law is the fore that binds additionand multipliation. If you didn't have the distributive law, then you ould studythese two operations separately. The whole numbers are the slightly larger set W =0; 1; 2; : : : ; n; : : : with the same two operations.Simpliio: So what about negative numbers?Galileo: The disussion beomes lear when we onsider the whole numbers as asubset of the integers Z = : : : ;�n; : : : ;�3;�2;�1; 0; 1; 2; : : : ; n; : : : ; where the minussign (�) funtions in two ways. First, this sign indiates a new symbol to be added



454 CHAPTER 19. FOURIER INTERPOLATIONto the set N: Seond, it ats as a new operation, whih is the inverse operation foraddition. Not only does the set Z ontain both N and W; but the operations ofaddition and multipliation an be extended so the assoiative, ommutative, anddistributive laws ontinue to hold. The fat that the number zero ontinues as theadditive identity (along with the rules n + 0 = n; n + (�n) = 0; and n � n = 0) isruial.Simpliio: So, why do I want all these laws?Galileo: Beause you an now solve equations by repeated appliations of just afew simple laws. In other words, one you know these laws, you an manipulate theequations with no fear of getting an inorret answer. This proess atually make slifeeasier. Colin Malaurin (1698-1746) understood this strategy. He always onsidereda negative quantity to be no less real than a positive one.Virginia: Didn't you forget the additive and multipliative identities?Galileo: Oops! You are orret. You need to know:1. n+ 0 = n;2. n � 1 = n;3. n � 0 = 0; and4. n+ (�n) = 0:Simpliio: Ok, so why is (�1) � (�1) = +1?Galileo: By rearranging, we an write (�1)� (�1) = +1 as (�1)� (�1)�1 = 0; whihis equivalent to(�1) � (�1) + (�1) � (+1) = (�1) � (�1 + 1) = (�1) � 0 = 0:Thus, if we deide to extend the distributive law to the integers Z; then MotherNature gives us no hoie other than to make the rule (�1) � (�1) = +1:Simpliio: So how do these remarks apply to omplex numbers?Galileo: While the anient Greeks were well aware of the quadrati formula and whileCardano extended (with the help of others!) extended the formula to ubis, it wasn't



19.8. COMPLEX NUMBERS: A BRIEF REVIEW 455until Rafael Bombelli (1526-1572) that larity emerged. In his text, Algebra; hepresented our now familiar rules for addition and multipliation of omplex numbers.Virginia: It is remarkable that suh simple ideas took so long to unfold.Simpliio: No wonder I have always hated Algebra and found it so diÆult. Theytook 1500 years to �gure it out.Galileo: We have seen that before. Think about the Contration Mapping Theorem.It is simple theorem to state and prove, but remarkably general.Simpliio: I would say abstrat.Virginia: So Bombelli had the idea that the real numbers an be thought of as asubset of a larger set of numbers with the property that the equation x2 = 1 an besolved. Better yet, the operations of addition and multipliation an be extended tothis larger set in suh a way that the assoiative, ommutative, and distributive lawsontinue to hold.Simpliio: I worry.Galileo: If we assume that that the real numbers are well understood (and that is notat all obvious), we an write a omplex number in two di�erent ways. The �rst is asa sum z = a+ bi; where i = p�1: From this vantage point, we an add two numbersby the following rule:De�nition 19.8.1 (Complex Addition). If a; b; ; d 2 <; i = p�1; z1 = a + bi;and z2 = + di; then z1 + z2 = (a+ b) + (+ d)i:We an also multiply two omplex numbers by the rule:De�nition 19.8.2 (Complex Multipliation). If a; b; ; d 2 <; i = p�1; z1 =a+ bi; and z2 = + di; then z1 � z2 = (a� bd) + (ad+ b)i:The advantage of omplex numbers is that Euler's formula ei� = os(�) + i sin(�)allows you to onsolidate two trigonometri funtions into one exponential. With onlyslight modi�ations, all the ideas of interpolation, least squares, and orthogonalityontinue as before.



456 CHAPTER 19. FOURIER INTERPOLATIONSimpliio: While I don't mind the rule for addition, I don't see the justi�ation formultipliation.Virginia: Obviously, the rule for multipliation is motivated by the distributive law.For if z1 = a + bi and z2 =  + di; then we an simply assume the distributive lawholds, multiply out the produt and gather terms. In partiular,z1 � z2 = (a+ bi) � (+ di)= a+ adi + bi + bdi2= a+ adi + bi� bd= (a� bd) + (ad+ b)i:The real part of the number is a � bd; while the imaginary part is ad + b: Thenegative sign appears beause i2 = �1:Galileo: Corret.Simpliio: Are we done with all this Algebra?Galileo: How about if we formulate the algebrai rules into a proposition?Proposition 19.8.3. If z1; z2; z3 are omplex numbers, then the following rules hold.1. z1 + 0 = z1 (additive identity property)2. z1 � 1 = z1 (multipliative identity property)3. z1 + (z2 + z3) = (z1 + z2) + z3; (assoiative law for addition)4. z2 + z1 = z1 + z2; (ommutative law for addition)5. z1(z2z3) = (z1z2)z3; (assoiative law for multipliation)6. z1z2 = z2z1; (ommutative law for multipliation)7. z1(z2 + z3) = z1z2 + z1z3: (distributive law)Simpliio: How about an example?Galileo: Sure.



19.8. COMPLEX NUMBERS: A BRIEF REVIEW 457Example 19.8.1. If z1 = 1+p3i2 ; and z2 = 1�p3i2 ; then by the distributive lawz1 � z2 = (1 +p3i2 ) � (1�p3i2 )= 14 + 34 + (�12p32 + 12p32 )i= = 1 + 0i = 1:This example leads to the Geometry of the omplex numbers.Simpliio: Geometry?Galileo: If we think of the quantity i = p�1 as a plae holder for a oordinate, thenthe omplex number z = 1+p3i2 an be written as the vetor z = (12 ; p32 ): Thus, theproposition given above indiates that we an add, subtrat, multiply, and divide two2-dimensional vetors z1 = (a; b) and z2 = (; d):Simpliio: And the multipliation rule isz1 � z2 = (a; b) � (; d) = (a� bd; ad+ b):Galileo: Now that we have addition and multipliation out of the way, we an turnto the idea of the modulus of a omplex number. This onept is de�ned by the rule:De�nition 19.8.4. If z = a + bi = (a; b); then the modulus is de�ned by kzk =pa2 + b2:Simpliio: But wait a minute. Haven't you just omputed the length of the vetor(a; b)? Is modulus another word for length?Galileo: Corret. We ould just easily have alled it the 2�norm. For omplexnumbers, the words modulus, length, absolute value, and 2�norm are di�erent termsto desribe the same onept. They all have the same meaning. However, as soon aswe are talking about length, we are talking about Geometry.Virginia: And it all began with Pythagoras.Galileo: The next geometri onept is embedded in the omputation of the onjugateof a omplex number. This omputation an be used whenever we ompute themodulus. We an visualize the onjugate as a \ip" of a omplex number aross thex�axis.



458 CHAPTER 19. FOURIER INTERPOLATIONDe�nition 19.8.5. If z = a + bi = (a; b); then the onjugate is de�ned by the rulez = a� bi = (a;�b):The �rst appliation of the onjugate is to give us a seond de�nition of themodulus of a omplex number.Proposition 19.8.6. If z = a+ bi = (a; b); then kzk = pzz:Proof. Simpliio: But this formula is obvious. All you have to do is make the om-putation.Virginia: It is also onvenient.Galileo: It is more than onvenient. In Geometry we are also interested in whetheror not two lines or vetors are orthogonal. In general, we would like to ompute theangle between two vetors. Right?Simpliio: Sure.Galileo: How did we ompute angles before?Simpliio: We omputed os(�) using the dot produt and norm.Virginia: More generally, we enapsulated these omputations in the idea of innerprodut.Galileo: Ok, so to deide whether or not two 2�dimensional vetors z1 = (a; b) andz2 = (; d) are orthogonal we hek whether or not < (a; b); (; d) >= a + bd equalszero.Virginia:Simpliio:where x 2 [0; 2�℄ and z = a+ bi is a point on the unit irle in the omplex plane.In partiular, the length of z = pa2 + b2 = 1:Exerise Set 19.8.



19.9. THE DISCRETE FOURIER TRANSFORM: THE COMPLEX CASE 45919.9 The Disrete Fourier Transform: The Com-plex CaseGalileo: To begin our disussion of the disrete omplex Fourier transform, let usonsider the \polynomial" p1(z) = 0 + 1z + �1z�1 where z = a + bi is a point onthe unit irle in the omplex plane. (i.e. a2+ b2 = 1:) In our disussions, we will usethe letter i to denote the square root of �1: In partiular, i2 = �1: As was the asewith previous disussions of interpolation, we have the setting:Given the data (z0; y0); (z1; y1); (z2; y2);Find the onstants 0; 1; �1 so that p1(z0) = y0; p1(z1) = y1; p1(z2) = y2:This problem leads to the matrix equation:0BBB� 1z0 1 z01z1 1 z11z2 1 z21CCCA0BBB� 01�11CCCA = 0BBB�y0y1y21CCCA :As it turns out, a \smart" hoie of the points isz0 = 1; z1 = �1+p32 ; z2 = �1�p32 ; whih leads to the matrix equation0BBB�1 1 11 �1+p3i2 �1�p3i21 �1�p3i2 �1+p3i2
1CCCA0BBB� 01�11CCCA = 0BBB�y0y1y21CCCA :Does this equation look familiar?Simpliio: Sure, but I still don't like those imaginary numbers in there.Galileo: To ease the pain, how about if think begin by thinking about the geometryassoiated with Euler's formula.Virginia: You mean where the variable x denotes an angle between zero and 2� andeix = os(x) + sin(x) represents the orresponding point on the unit irle.To begin the disussion, let us onsider the funtion T1(x) = a02 + a1 os(x) +b1 sin(x) and the \polynomial" p1(z) = �1z�1 + 0 + 1z; where x 2 [0; 2�℄ andz = a+bi is a point on the unit irle in the omplex plane. In partiular, the length of



460 CHAPTER 19. FOURIER INTERPOLATIONz = pa2 + b2 = 1: This setting is virtually idential to the one we gave for polynomialinterpolation, where we were given n+1 data points (x0; y0); (x1; y1); : : : ; (xn; yn) andwere expeted to �nd a polynomial pn(x) = a0 + a1x + � � �+ anxn with the propertythat pn(xk) = yk for all k = 0; 1; 2; : : : ; n:Simpliio: Exatly the same? I am suspiious here.Galileo: Well OK, if the setting were exatly the same, then I would be repeatingmyself. I ertainly wouldn't want to bore you. The di�erene this time is that wenow allow the variable x to be a omplex number z:Virginia: Do we still get to make \smart hoies" for the points x0; x1; : : : ; xn?Galileo: Absolutely. However, sine these numbers will be omplex, we will denotethem by the letters zk: Also, the notation will be a bit easier if we assume we have npoints and are interpolating with a polynomial of the form pn�1(z) = 0+ 1z+ � � �+n�1zn�1:Simpliio: Why did you hange the oeÆients from ak to k?Galileo: While it is part of our ulture to use the oeÆients ak and bk in the de�nitionof the funtion Tn(x) = a02 +Pnk=1[ak os(kx)+ bk sin(kx)℄; there is a lose onnetionbetween these oeÆients and the oeÆients k in the \polynomial" pn(z) =Pnk=�n :In partiular, if z = eix; where x 2 [0; 2�℄; then by Euler's formula pn(z) = Tn(x)as long as we hoose ak = k and bk = ik for all k = 0; 1; : : : ; n:integer n; we will be given let x0 = z0 = 1; x1 = z1 = ! = e 2�in ; where i = p�1;and xk = zk = !k for k = 1; 2; : : : ; n� 1:An example of the type of problem we are solving is: Given data points y0 and y1;�nd a polynomial of the form p2(z) = 0 + 1z suh that p2(1) = y0 and p2(!) = y1:In this simple setting, ! = �1 and we need to solve the matrix equation0�1 11 �11A0�011A = 0�y0y11A :The de�nition of the Fourier matrix F2 beomes



19.9. THE DISCRETE FOURIER TRANSFORM: THE COMPLEX CASE 461F2 = 0�1 11 �11A :For three points, the problem we are solving beomes: Given data points y0; y1;and y2; �nd a polynomial of the form p2(z) = 0 + 1z + 2z2 suh that p2(1) =y0; p2(!) = y1; and p2(!2) = y2; where ! is the ube root of unity de�ned by ! = e 2�i3 :In partiular, !3 = 1:The matrix equation that must be solved is0BBB�1 1 11 ! !21 !2 !41CCCA0BBB�0121CCCA = 0BBB�y0y1y21CCCA :The de�nition of the Fourier matrix F3 is given by
F3 = 0BBB�1 1 11 ! !21 !2 !41CCCA :If n = 4; then ! = e 2�i4 = i;!2 = �1;!3 = �! = �i; and!4 = 1:The orresponding Fourier matrix beomes

F4 = 0BBBBBB�1 1 1 11 ! !2 !31 !2 (!2)2 (!3)21 !3 (!2)3 (!3)3
1CCCCCCA = 0BBBBBB�1 1 1 11 i �1 �i1 �1 1 �11 �i �1 i

1CCCCCCA :



462 CHAPTER 19. FOURIER INTERPOLATIONNote that the F2; F3; and F4 matries all have the struture of a Vandermondematrix. Sine eah one arose as part of a solution to a problem in polynomial inter-polation, this observation is not an aident.We are now in a position to show that eah Fourier matrix Fn has two importantproperties. First, every pair of olumns are orthogonal. Seond, eah olumn haslength pn: Thus, one again we an eÆiently ompute the Fourier oeÆients bysimply multiplying both sides of the equation by a matrix A�; whih has the propertythat A�A is diagonal. The purpose of the next disussion is to give a areful de�nitionof this new matrix.We begin with a de�nition of the Fourier matrix.De�nition 19.9.1. If n is a positive integer and ! = e 2�in , then the Fourier matrixFn is de�ned by the rule:
Fn =

0BBBBBBBBBBBB�
1 1 1 1 : : : 11 ! !2 !3 : : : !n�11 !2 (!2)2 (!3)2 : : : (!n�1)21 !3 (!2)3 (!3)3 : : : (!n�1)3... ... ... ... : : : ...1 !n�1 (!2)n�1 (!3)n�1 : : : (!n�1)n�1

1CCCCCCCCCCCCA :
To make the disussion of orthogonality more preise, we need to extend thede�nition from the domain of vetors in <n to the omplex n�dimensional spae Cn:First, reall the following de�nitions.De�nition 19.9.2. If z = a+bi 2 C; then the onjugate of z is denoted by z = a�bi:Example 19.9.1. If z = 3 + 4i; then z = 3� 4i:Sine an equivalent way to represent a omplex number z = a + bi is as a pointz = (a; b); we an graph any omplex number in the plane. Note that the graph of theomplex onjugate z = (a;�b) is on the opposite side of the x�axis (or line y = 0:)from z:



19.9. THE DISCRETE FOURIER TRANSFORM: THE COMPLEX CASE 463Example 19.9.2. If z = 0BBB� 2 + i35� 2i1CCCADe�nition 19.9.3. If
A = 0BBBBBBBBB�

a11 a12 a13 a14 : : : a1na21 a22 a23 a24 : : : a2na31 a32 a33 a34 : : : a3n... ... ... ... : : : ...am1 am2 am3 am4 : : : amn
1CCCCCCCCCA ;

then the onjugate of A is the matrix
A = 0BBBBBBBBB�

a11 a12 a13 a14 : : : a1na21 a22 a23 a24 : : : a2na31 a32 a33 a34 : : : a3n... ... ... ... : : : ...am1 am2 am3 am4 : : : amn
1CCCCCCCCCA :

De�nition 19.9.4. If A 2 Cm�n; then the adjoint of A is de�ned by A� = At:De�nition 19.9.5. If z1 and z2 are omplex olumn vetors in Cn; then the innerprodut is de�ned by < z1; z2 >= z�1z2:Example 19.9.3. If z1 = 0BBB� 2 + i35� 2i1CCCA and z2 = 0BBB� 7 + i11� 5i13� 8i1CCCAthen < z1; z2 >=(2 + i)(7 + i) + 3(11� 5i) + (5� 2i)(13� 8i)=(2� i)(7 + i) + 3(11� 5i) + (5 + 2i)(13� 8i)=129� 34i:



464 CHAPTER 19. FOURIER INTERPOLATIONDe�nition 19.9.6. If z1 and z2 are omplex olumn vetors in Cn; then they areorthogonal if < z1; z2 >= 0:De�nition 19.9.7. If z is a omplex olumn vetor in Cn; then the 2-norm of z isgiven by jzj = p< z; z >:Note that the 2-norm of a omplex vetor simply represents its length.Proposition 19.9.8. If n is a positive integer and ! = e 2�in ; then 1 + !+ !2 + : : :+!n�1 = 0:Proof. Sine !n = 1; we know by the formula for the geometri series that 1 + ! +!2 + : : :+ !n�1 = 1�!n1�! = 0:Proposition 19.9.9 (Complex Fourier: Orthogonality and Equal Lengths).The olumns of the Fourier matrix Fn are pairwise orthogonal and the matrix D =F �nFn is a diagonal matrix with eah entry on the diagonal equal to the integer n: Inpartiular, the 2-norm of eah olumn of Fn is pn:Proof. This proposition follows immediately from the assumption that !n = 1; thefat that !! = 1; and the previous proposition.Proposition 19.9.10. The inverse of the Fourier matrix Fn is the matrix 1nF �n :Proof. This fat follows immediately from the previous proposition.Theorem 19.9.11 (Complex Fourier: CoeÆient Formulas). If y0; y1; : : : ; yn�1is a given set of data and ! = e 2�in ; then the oeÆients of the polynomial pn�1(z) =0+1z+ : : :+n�1zn�1 with the property that pn�1(!k) = yk for all k = 0; 1; : : : ; n�1are k = 1nPn�1j=0 yj!jk; for k = 0; 1; : : : ; n� 1:Proof. The matrix equation that must be solved is Fn = y; where  = (0; 1; : : : ; n�1)tand y = (y0; y1; : : : ; yn�1)t: Sine the olumns of Fn are pairwise orthogonal and allhave 2-norm equal to pn; k = 1n < !k; y >; where !k is the kth olumn of Fn: Sine< !k; y >=Pn�1j=0 yj!jk; we are done.



19.9. THE DISCRETE FOURIER TRANSFORM: THE COMPLEX CASE 465Theorem 19.9.12 (Complex Parseval/Pythagoras). If y0; y1; : : : ; yn�1 is a givenset of data in C; ! = e 2�in ; pn�1(z) = 0 + 1z + : : : + n�1zn�1 with k 2 C for allk = 0; 1; : : : ; n � 1 is a polynomial with the property that pn�1(!k) = yk for allk = 0; 1; : : : ; n� 1; thenn�1Xj=0 y2j = 1n(j0j2 + j1j2 + : : :+ jn�1j2):Exerise Set 19.9.1. If z = 0BBB� 2 + i35� 2i1CCCA ;then ompute the 2-norm of the vetor z:2. If ! = e 2�i3 and y0 = 2; y1 = 3; y2 = 5 are given points, then �nd onstants0; 1; 2 suh that the polynomial p2(z) = 0 + 1z + 2z2 has the property thatp2(1) = y0; p2(!) = y1; and p2(!2) = y2:3. If ! = e 2�i3 and y0; y1; y2 are given points, then �nd onstants 0; 1; 2 suh thatthe polynomial p2(z) = 0+1z+2z2 has the property that p2(1) = y0; p2(!) =y1; and p2(!2) = y2:



466 CHAPTER 19. FOURIER INTERPOLATION



Chapter 20
Cubi Spline Interpolation

Isaa ShoenbergGalileo: The idea behind this next disussion is to show that polynomials an beof great use as long as you make an e�ort to ontrol them. These ideas were �rstdeveloped by Romanian born Isaa Shoenberg (1903-1990), who is reognized asthe inventor of splines. While he was more interested in their use in theoretialmathematis, they now play a fundamental role in numerous appliations inluding467



468 CHAPTER 20. CUBIC SPLINE INTERPOLATIONdata �tting, omputer graphis, and omputer-aided design. The primary reasonspline tehniques are used in so many di�erent real-world appliations is that theyare stable.Simpliio: I am not sure of the meaning of the word stable when used in this ontext.Galileo: Hopefully you remember our disussion of the Runge example, where thesmooth funtion f(x) = 11+25x2 was approximated by interpolating polynomials onthe interval [�1; 1℄: As the degree of the polynomial was inreased, the auray ofthe approximation beame worse.Simpliio: Oh yes, the approximation was partiularly poor at the endpoints.Galileo: The good news is that with splines that type of problem will never our.Simpliio: Sounds good.Galileo: While a multitude of di�erent kinds of splines have been devised, we willonsider only four di�erent types: B-splines, lamped, free, and periodi. Note thatsome researhers refer to lamped splines as \omplete splines" and some people allfree splines \natural."While eah of the di�erent types of splines have their uses, periodi splines arepartiularly useful beause they an be used to onstrut digital ontours in the planepassing through a given �nite set of points. These ontours will be smooth and thusnot ontain any sharp orners.Simpliio: Where do we begin?Galileo: For several reasons the lass of pieewise linear funtions provide a naturalentry point into the disussion of splines. The �rst reason is a pedagogial issue.Namely, the idea of a spline is most aessible if the onstrution of a pieewiseapproximation is well understood. The seond reason is that the error formula forpieewise linear approximation is not only useful by itself, but also provides a keypiee of information used in the proof of the onvergene formula for lamped splines.The theory for lamped splines turns out to be speial in a number of ways.First, the lamped spline is haraterized as the smooth interpolating funtion withthe \fewest number of osillations." This idea an be formulated mathematially as



469an integral of the seond derivative squared. This integral an be thought of as ameasure of the \energy" of the funtion. The less energy in the funtion, the fewerosillations. The lamped ubi spline is the smooth interpolant, whih minimizesthis energy funtion. Remarkably, integration by parts and a modern version of thePythagorean Theorem are used in the proof of this minimization theorem.Simpliio: Why should I are about the integral of the square of the seond derivative?Galileo: While the minimization theorem provides enjoyable reading for a mathemati-ian, an engineer is more likely to be interested by the high onvergene rates providedby lamped ubi splines. For most situations, the onvergene rate is 4th-order forthe interpolants and 2nd-order for the seond derivatives. As a demonstration of thepower of the method, we will apply splines to the funtion f(x) = 11+25x2 and showthat not only does the sequene of splines onverge to the funtion, but the sequeneof seond derivatives onverge as well.Simpliio: What are the di�erenes between these splines?Galileo: To avoid tehnial diÆulties, we will limit our disussion to the settingwhere the partition has equally spaed points. When we make this assumption, theinterpolant an be written as a linear ombination of funtions whih are formed astranslated and saled versions of a single standard spline funtion. In all four ases,the onstants an be found by solving a system of equations, where the oeÆientmatrix has a speial easy to understand form. The oeÆient matrix for the B-splineinterpolant has 10s on the diagonal and 14 0s on the super and sub-diagonals. Everyother entry in the matrix is zero. The matries for the other three types of splinesare minor variations of this one.The B-spline interpolation tehnique is the easiest to explain beause no disussionof the endpoints is required. The other three types of splines are the same as B-splinesexept that additional restritions are plaed on the endpoints of the interval. For thelamped spline, the �rst derivatives of the interpolant SC(x) are fored to be equalto preset values at the two endpoints. Thus, S 0C(a) = y00 and S 0C(b) = y0n; where y00and y0n are given values. For the free spline, the seond derivatives of the interpolant



470 CHAPTER 20. CUBIC SPLINE INTERPOLATIONSF (x) are set equal to zero at the two endpoints. Thus, S 0F (a) = 0 and S 0F (b) = 0: Forperiodi splines, the interpolant SP (x) is fored to have the property that derivativesagree at the endpoints. Thus, SP (a) = SP (b); S 0P (a) = S 0P (b); and S 00P (a) = S 00P (b):Simpliio: While this all sounds interesting, I am not sure I am a believer yet.Galileo: It took Shoenberg 20 years to get people to pay attention to what hewas doing. However, with the advent of the omputer in the early 1960's interestskyroketed beause engineers found them useful in a multitude of appliations.20.1 Pieewise Linear InterpolationGalileo: Even though the fous of this setion is on splines, we begin with a disussionof linear interpolation. While we ould have presented this material earlier, it providesan exellent introdution into the ideas and onvergene theorems we will enounterfor lamped splines.We begin our disussion with a brief review of some notation and a brief intro-dution to some new notation.Let P = fa = x0 < x1 < : : : xn = bg denote a �xed partition of [a; b℄:De�nition 20.1.1. If P = fa = x0 < x1 < : : : xn = bg is a partition, then the meshof P is de�ned by kPk = maxfxi+1 � xi : i = 0; 1; : : : ; n� 1g:If P is a partition of [a; b℄, then let CP [a; b℄ denote the set of all ontinuousfuntions on [a; b℄ whih are linear on eah segment [xi; xi+1℄. This olletion offuntions will be referred to as the pieewise linear funtions.De�nition 20.1.2. A Pieewise Linear Bump or Chapeau funtion is de�ned byBi(x) = 8>>>>><>>>>>: x�xi�1xi�xi�1 x 2 [xi�1; xi℄xi+1�xxi+1�xi x 2 [xi; xi+1℄0 otherwise.



20.1. PIECEWISE LINEAR INTERPOLATION 471Note that the funtions Bi(x) are ontinuous on [a; b℄: In fat, these funtions arezero from �1 to xi�1; a straight line with positive slope from xi�1 to xi; a straightline with negative slope from xi to xi+1; and zero from xi+1 to 1:Proposition 20.1.3. If a funtion f(x) is de�ned on an interval [a; b℄ and P =fa = x0 < x1 < : : : xn = bg is a partition of [a; b℄; then the pieewise linear funtionIf(x) = n�1Pk=0 f(xk) �Bk(x) has the property that If(xk) = f(xk) for all k = 0; 1; : : : ; n:Proof. Note that Bi(xj) = Æij = 8><>:0 if i 6= j1 if i = j:Note that the funtion If(x) = n�1Pk=0 f(xk) � Bk(x) is alled the pieewise linearapproximation of f(x): Sine any pieewise linear funtion �(x) in the olletionCP [a; b℄ an be written in the form �(x) = n�1Pk=0 �(xk) � Bk(x); the set of funtionsfBk : k = 0; 1; : : : ; n� 1g form a basis for the set of all funtions in CP [a; b℄: This setof funtions is omparable to the funtions Lk(x); whih were used in the Lagrangemethod for polynomial interpolation. In partiular, note that the Chapeau funtionBk(xj) is equal to zero at all points xj; where j 6= k:De�nition 20.1.4. If a funtion f(x) is de�ned on an interval [a; b℄; then the1�norm(or sup norm) of f(x) is de�ned by the rule kfk1 = maxfjf(x)j : x 2 [a; b℄g:More intuitively, kfk1 is the maximum value of jf(x)j on the interval [a; b℄:Proposition 20.1.5. If f(x) 2 C2[a; b℄ and f(a) = f(b) = 0; then kfk1 � 18kf 00k1:Proof. By the Lagrange error formula there is a �rst degree polynomial p1(x) suhthat for every x 2 [a; b℄ there is a z suh thatf(x) = p1(x) + f 00(z)2 (x� a)(x� b):Sine f(a) = f(b) = 0; p1(x) = 0 for all x 2 [a; b℄: Thus, there is a point z 2 [a; b℄suh that f(x) = f 00(z)2 (x� a)(x� b):



472 CHAPTER 20. CUBIC SPLINE INTERPOLATIONBut the extreme (i.e. minimum) value of parabola (x � a) � (x� b) ours at thepoint a+b2 so that for all x 2 [a; b℄jf(x)j � kf 00k12 �b� a2 �2� kf 00k18 � (b� a)2:Therefore, kfk1 � kf 00k18 � (b� a)2:The next orollary is a preise statement that as the partition is re�ned to have asmaller mesh size, the pieewise linear interpolants will onverge to the given funtion.Even more important is the fat that the onvergene rate is quadrati.Corollary 20.1.6. Let P = fa = x0 < x1 < � � � < xn = bg be a partition of [a; b℄: Iff 2 C2[a; b℄; then the interpolating funtion If(x) = nPk=0 f(xk) �Bk(x) has the propertythat kf � Ifk1 � kPk28 � kf 00k1:Proof. The proof of this orollary follows immediately from the appliation of theprevious proposition applied to eah interval [xk; xk+1℄:While the next orollary is an immediate onsequene of the previous one, it willbe used as one of the key steps in the proof of onvergene for the lamped ubisplines.Theorem 20.1.7 (Error Theorem For Pieewise Linear Approximation). LetP = fa = x0 < x1 < � � � < xn = bg be a partition of [a; b℄: If f 2 C4[a; b℄, then theinterpolating funtion If 00(x) = nPk=0 f 00(xk) �Bk(x) has the property that kf 00� If 00k1 �kPk28 � kf (4)k1.Proof. Simply replae the funtion f(x) by the funtion f(x)00�If 00(x) in the previousproposition.Exerise Set 20.1.



20.2. CUBIC B-SPLINE INTERPOLATION 4731. Given that the os(23) = 0:92050485345244 and os(24) = 0:91354545764260;what is the pieewise linear approximation of os(23:56)? Use your alulatorto hek that os(23:56) = 0:91664200257852: How does the di�erene betweenthese two numbers ompare with the estimate provided by the Error TheoremFor Pieewise Linear Approximation?2. If f(x) = os(x) for x 2 [��; �℄ and tol = 1105 ; then how many equally spaedpoints will be required to guarantee that the pieewise linear approximationIf(x) will approximate os(x) with error less than 1105 for all x 2 [��; �℄?3. If f(x) = 11+25x2 for x 2 [�1; 1℄ and tol = 1105 ; then how many equally spaedpoints will be required to guarantee that the pieewise linear approximationIf(x) will approximate f(x) with error less than 1105 for all x 2 [�1; 1℄?20.2 Cubi B-Spline InterpolationGalileo: The most straight forward path to understanding splines is through thestudy of standard \bumps." The �rst standard bump is the pieewise linear Chapeaufuntion from the previous setion.De�nition 20.2.1. The standard pieewise linear bump is de�ned by the followingrules: B(x) = 8>>>>>>>><>>>>>>>>:
0 x � �1x + 1 x 2 [�1; 0℄1� x x 2 [0; 1℄0 x � 1:A graph of this funtion is displayed in Figure 20.1.Galileo: Note that if the points in a partition P = fa = x0 < x1 < � � � < xn = bgare equally spaed, then the funtions Bi(x) de�ned in the previous setion an bede�ned by the formulas Bi(x) = B(x�xih ); where h = b�an : In other words, the funtion



474 CHAPTER 20. CUBIC SPLINE INTERPOLATIONBi(x) is nothing more than a translation by xi and a streth by h of the StandardChapeau funtion B(x): Thus, any ontinuous funtion f(x) an be approximated bylinear ombinations of translations and strethes of B(x):Sine numerous appliations (e.g. omputer graphis) require the use of smoothurves rather than urves with sharp orners, these funtions are not always appro-priate. However, the same onepts an be translated into the domain of smoothapproximations. The only tehnial diÆulty is to reate a smooth bump. The nextde�nition provides the formulas needed for the standard ubi spline bump. Thegraph of this funtion is presented in Figure 20.2.De�nition 20.2.2. The standard spline bump is a pieewise ubi polynomial de�nedby the following rules:
S(x) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
0 x � �214 [(2� x)3 � 4(1� x)3 � 6x3 + 4(1 + x)3℄ x 2 [�2;�1℄14 [(2� x)3 � 4(1� x)3 � 6x3℄ x 2 [�1; 0℄14 [(2� x)3 � 4(1� x)3℄ x 2 [0; 1℄14(2� x)3 x 2 [1; 2℄0 x � 2:Proposition 20.2.3. The standard spline bump S(x) has the property that it is in
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Figure 20.1: The Graph of the Standard Chapeau PWL Bump B(x)



20.2. CUBIC B-SPLINE INTERPOLATION 475C2(�1;1): In partiular, S(x); S 0(x); and S 00(x) are all ontinuous for all x 2(�1;1): Moreover,1. S(0) = 1; S(�1) = 14 ; and S(�2) = 0;2. S 0(�1) = 34 ; S 0(1) = �34 ; S 0(�2) = S 0(0) = S 0(2) = 0; and3. S 00(�2) = S 00(2) = 0; S 00(�1) = S 00(1) = 32 ; and S 00(0) = �3:Proof. Sine S(x) is a ubi polynomial at all points x 2 (�1;1) exept wheretwo polynomials join. Thus, we only need to hek ontinuity at the �ve pointsx = �2;�1; 0; 1; and 2: However, sine S(�2) = 0; S(�1) = 14 ; and S(0) = 1 whetheromputed by the formula on the left side or right side of the possible trouble spot,the funtion is ontinuous.The �rst derivative of S(x) is given by the rules:
S 0(x) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
0 x � �214 [�3(2� x)2 + 12(1� x)2 � 18x2 + 12(1 + x)2℄ x 2 [�2;�1℄14 [�3(2� x)2 + 12(1� x)2 � 18x2℄ x 2 [�1; 0℄14 [�3(2� x)2 + 12(1� x)2℄ x 2 [0; 1℄�34(2� x)2 x 2 [1; 2℄0 x � 2:
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Figure 20.2: The Graph of the Standard Spline Bump S(x)



476 CHAPTER 20. CUBIC SPLINE INTERPOLATIONAgain, we only need to hek the �ve possible trouble spots, where the quadratipolynomials are joined. However, S 0(�1) = 34 ; S 0(�2) = S 0(0) = S 0(2) = 0; andS 0(1) = �34 : Thus, the funtion S 0(x) is ontinuous for eah x 2 (�1;1):The seond derivative of S(x) is given by the rules:
S 00(x) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
0 x � �214 [6(2� x)� 24(1� x)� 36x+ 24(1 + x)℄ x 2 [�2;�1℄14 [6(2� x)� 24(1� x)� 36x℄ x 2 [�1; 0℄14 [6(2� x)� 24(1� x)℄ x 2 [0; 1℄64(2� x) x 2 [1; 2℄0 x � 2:For the seond derivative S 00(x); the alulations are S 00(�2) = S 00(2) = 0; S 00(�1) =S 00(1) = 32 ; and S 00(0) = �3:Thus, the funtion S 00(x) is ontinuous for eah x 2 (�1;1):Simpliio: How would anyone think up those weird formulas?Galileo: In any researh projet, one of the key ingredients is to ask the right ques-tions. The best questions are straightforward to understand, but whose answersprovide insight beyond the stated question. To answer your immediate question, thefuntion S(x) equals the onvolution of B(x) with itself.Simpliio: The word onvolution means nothing to me.Galileo: The onvolution of two funtions is a fany word for the integration of theirprodut{in a very partiular way. Not only does this idea provide solutions to anumber of questions in di�erential equations, but also ours whenever �ltering isdisussed in signal proessing and image proessing. I have plaed the topi on theagenda for a meeting in the not-to-distant future. In any ase, we now give the formalde�nition.De�nition 20.2.4. If f(x) and g(x) are ontinuous funtions on (�1;1) with theproperty that R1�1 f(x)2 dx <1 and R1�1 g(x)2 dx <1; then the onvolution of f(x)



20.2. CUBIC B-SPLINE INTERPOLATION 477and g(x) is given by the formulaf � g(x) = Z 1�1 f(x� t)g(t) dt:Galileo: As it turns out, the bump S(x) is the onvolution of B(x) with itself. Ifwe also know that the operation of onvolution tends to make a funtion smoother,then we are loser to the fat that the funtion S(x) has ontinuous �rst and seondderivatives.Simpliio: I bet the omputation is messy.Galileo: Maybe so, but the omputation an be visualized as simply dragging oneopy of B(x) aross another. When the bumps are disjoint, the integrals are zero.As they begin to interset, we are integrating the produt of two straight lines so theanswer is a ubi polynomial.Simpliio: And if we would like to onstrut a pieewise linear 5th degree polynomialbump, then we simply onvolve the funtions B(x) and S(x) to reate a funtionwhih has ontinuous �rst, seond, third, and fourth derivatives. Is that not orret?Galileo: You have the piture.Simpliio: But is there method a with easier formulas?Galileo: Atually, some researhers use the pieewise 6th degree polynomial:C(x) = 8><>:(x� 1)3(x + 1)3 if x 2 [�1; 1℄0 if jxj � 1Galileo: However, the more popular method is the one we desribed. Sine the�rst and seond derivatives of S(x) play an important role in both the theory andappliation of splines, we present their graphs in Figures 20.3 and 20.4.Galileo: We now turn to the problem of onstruting the B�spline from buildingbloks provided by the spline bump S(x): Given a partition of equally spaed pointsP = fa = x0 < x1 < � � � < xn = bg; the seond step is to translate and streth thestandard bump n + 1 times so that the kth bump, Sk(x); has enter xk and equalszero outside the interval [xk�2; xk+2℄:



478 CHAPTER 20. CUBIC SPLINE INTERPOLATIONGiven data points (xk; yk) k = 0; 1; 2; 3; : : : ; n; where xk+1 � xk = h for all k =0; 1; 2; : : : ; n; the goal now is to �nd onstants k; where k = 0; 1; 2; : : : ; n so thatSB(x) = nPk=0 kS(x�xkh ) has the property that it interpolates the data. In partiular,we insist that SB(xk) = yk for all k = 0; 1; : : : ; n:If we let Sk(x) = S(x�xkh ), then we an write SB(x) = nPk=0 kSk(x): As was thease for both polynomial and Fourier interpolation the onstants k an be found bysolving the matrix equation SB = y; where
 = 0BBBBBB�01...n

1CCCCCCA ; y = 0BBBBBB�y0y1...yn
1CCCCCCA ; and
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Figure 20.3: The Graph of S 0(x)
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 20.4: The Graph of S 00(x)



20.3. CLAMPED CUBIC SPLINE INTERPOLATION 479
SB =

0BBBBBBBBBBBBBBB�
1 14 0 0 0 : : : 014 1 14 0 0 : : : 00 14 1 14 0 : : : 0... . . . . . . . . . ...... . . . . . . 1 14 0... 14 1 140 : : : : : : : : : 0 14 1

1CCCCCCCCCCCCCCCA :
The onstants 1 and 14 in the (n + 1) � (n + 1) matrix SB are fored by therelationships Sk(xk) = S(0) = 1 and Sk(xk+1) = Sk(xk�1) = S(�1) = 14 ; respetively.The zero entries in the matrix follow from the fat that Sk(x) = 0 for all x suh thatjx� xkj � 2h:The beauty of the matrix SB is that it is tridiagonal, diagonally dominant, sym-metri, and well-onditioned [1℄.Exerise Set 20.2.1. Given the data (0; 2); (1; 2); (2; 2); (3; 2); (4; 2); set up the matrix equation thatmust be solved to ompute the onstants for the B-spline interpolation funtionSB(x): Use omputer software to ompute the onstants 0; 1; 2; 3; 4: Usethese onstants to ompute SB(x) for x = 1; 5; 7:2. Compute the LU fatorization of the 5�5 spline matrix SB: How would you usethis fatorization to write eÆient ode to solve the matrix equation SB = y?20.3 Clamped Cubi Spline InterpolationGalileo: We now turn to the problem of lamped ubi spline interpolation. In thisappliation, we again have a partition of equally spaed points P = fa = x0 < x1 <� � � < xn = bg; where xk+1 � xk = h for all k = 0; 1; 2; : : : ; n � 1: As before, we arealso given data points (xk; yk) for k = 0; 1; 2; : : : ; n: The di�erene this time onsists



480 CHAPTER 20. CUBIC SPLINE INTERPOLATIONof two new piees of information, y00 and y0n; onstraining the value of the derivativeat the two endpoints. In partiular, we require that the interpolating funtion SC(x)has the property that S 0C(a) = S 0C(x0) = y00 and S 0C(b) = S 0C(xn) = y0n: Sine we havetwo new onstraints, we must have two new free variables. The trik is to simply addtwo new bumps.Simpliio: But, where are you going to add them?Galileo: Simply add one at eah end of the interval [a; b℄: Sine the points in P areassumed to be equally spaed, we simply add the points x�1 and xn+1 to the partitionso that x0 � x�1 = h and xn+1 � xn = h: We now have to solve n + 3 equations andn+3 unknowns for �1; 0; 1; : : : ; n; n+1: The new interpolant is de�ned by the linearombination SC(x) = n+1Pk=�1 kS(x�xkh ):The two new onstraints are fored by the equations S 0C(x0) = y00 and S 0C(xn) = y0n:But if x = x0; thenS 0C(x0) = �1S 0�1(x0) + 0S 00(x0) + 1S 01(x0) = �1 34h + 0 + 1�34h = y00:If x = xn; thenS 0C(xn) = n�1S 0n�1(xn) + nS 0n(xn) + n+1S 0n+1(xn) = n�1 34h + 0 + n+1�34h = y0n:Solving the �rst equation for �1 and the seond for n+1; we �nd that �1 = 4h3 y00+1and n+1 = 4h3 y0n + n�1: Thus, the two new equations beome:0 + 121 = y0 � h3y00and 12n�1 + n = yn � h3y0n:Thus, the modi�ed system of equations we need to solve beomes SC = yy;where
 = 0BBBBBB�01...n

1CCCCCCA ; yy = 0BBBBBB�y0 � h3y00y1...yn � h3y0n
1CCCCCCA ; and



20.4. NATURAL CUBIC SPLINE INTERPOLATION 481
SC =

0BBBBBBBBBBBBBBB�
1 12 0 0 : : : : : : 014 1 14 0 : : : : : : 00 14 1 14 0 : : : 0... . . . . . . . . . ...... . . . . . . 1 14 0... 14 1 140 : : : : : : : : : 0 12 1

1CCCCCCCCCCCCCCCA :
Again, the onstants 1 and 14 in the (n+1)� (n+1) matrix SC are fored by therelationships Sk(xk) = S(0) = 1 and Sk(xk+1) = Sk(xk�1) = S(�1) = 14 ; respetively.The zero entries in the matrix ome from the fat that Sk(x) = 0 for all x suh thatjx� xkj � 2h:As before, the matrix SC is tridiagonal, diagonally dominant, almost symmetri,and well-onditioned. Again, the LU -fatorization an be used to solve the matrixequation SC = yy:Exerise Set 20.3.1. Given the data (0; 2); (1; 2); (2; 2); (3; 2); (4; 2); y00 = 3 and y04 = 7; set up thematrix equation that must be solved to ompute the onstants for the lampedubi spline interpolation funtion SC(x): Use omputer software to ompute theonstants 0; 1; 2; 3; 4: Use these onstants to ompute SC(x) for x = 1; 5; 7:2. Compute the LU fatorization of the 5�5 lamped spline matrix SC : How wouldyou use this fatorization to write eÆient ode to solve the matrix equationSC = yy: How does this fatorization ompare with the fatorization of the5� 5 matrix SB?20.4 Natural Cubi Spline InterpolationGalileo: We now turn to the problem of natural ubi spline interpolation. Sometimesthis type of spline is referred to as a free spline. In this appliation, we will again



482 CHAPTER 20. CUBIC SPLINE INTERPOLATIONassume we have been given data points (xk; yk) for k = 0; 1; 2; : : : ; n; where thepartition P = fa = x0 < x1 < � � � < xn = bg has equally spaed points andxk+1 � xk = h for all k = 0; 1; 2; : : : ; n � 1: While the spirit is the same as lampedsplines, the strategy this time is to simply de�ne the endpoint onditions by the rules:y000 = 0 and y00n = 0:Simpliio: Why would you make this assumption?Galileo: You may not have any information on the �rst derivatives and yet you maywant to temper the behavior at the endpoints.Simpliio: May I guess that you simply add two new bumps, whih provide two newfree variables?Galileo: Exatly! If we let SN(x) = n+1Pk=�1 kS(x�xkh ); then we an reate two newonstraints: S 00N(x0) = y000 = 0 and S 00N(xn) = y00n = 0: These onstraints provide uswith two new endpoint onditions.First, if x = x0; thenS 00N(x0) = �1S 00�1(x0) + 0S 000 (x0) + 1S 001 (x0) = �1 32h2 � 0 3h2 + 1 32h2 = y000 = 0:Seond, it x = xn; thenS 0N(xn) = n�1S 00n�1(xn)+nS 00n(xn)+n+1S 00n+1(xn) = n�1 32h2�n 3h2+n+1 32h2 = y00n = 0:These equations simplify to the following:
�1 � 20 + 1 = 0n�1 � 2n + n+1 = 0:Solving for the variables �1 and n+1; we immediately see that �1 = 20� 1 andn+1 = 2n � n�1:Thus, the matrix equation beomes: SN = y; where



20.5. PERIODIC CUBIC SPLINE INTERPOLATION 483
 = 0BBBBBB�01...n

1CCCCCCA ; y = 0BBBBBB�y0y1...yn
1CCCCCCA ; and

SN =
0BBBBBBBBBBBBBBB�

32 0 0 0 : : : : : : 014 1 14 0 : : : : : : 00 14 1 14 0 : : : 0... . . . . . . . . . ...... . . . . . . 1 14 0... 14 1 140 : : : : : : : : : 0 0 32
1CCCCCCCCCCCCCCCA :

Simpliio: Let me �nish your thoughts by saying that the matrix SN is tridiago-nal, diagonally dominant, almost symmetri, and well-onditioned. Again, the LU -fatorization an be used to solve the matrix equation SN = y:Exerise Set 20.4.1. Given the data (0; 2); (1; 2); (2; 2); (3; 2); (4; 2); set up the matrix equation thatmust be solved to ompute the onstants for the natural spline interpolationfuntion SN(x): Use omputer software to ompute the onstants 0; 1; 2; 3; 4:Use these onstants to ompute the value of SN(x) for x = 1; 5; 7:2. Compute the LU fatorization of the 5� 5 natural spline matrix SN : How doesthis fatorization ompare with the fatorizations for the 5�5 matries SB andSC? How would you use this fatorization to write eÆient ode to solve thematrix equation SN = y?20.5 Periodi Cubi Spline InterpolationGalileo: We now turn to the problem of periodi ubi spline interpolation for equallyspaed points. If you understood what we did before, this disussion will only take a



484 CHAPTER 20. CUBIC SPLINE INTERPOLATIONminute.Simpliio: I think I have time in my shedule for this item.Galileo: To ontinue, when we are given a data set (xk; yk) for k = 0; 1; 2; : : : ; n; weassume the data is smoothly periodi. Thus, we not only assume yn = y0; but alsothat y0n = y00 and y00n = y000 : A moments reetion makes us realize that the data anbe thought of as ontinuing from �1 to 1 so the interpolating funtion has theform SP (x) = 1Pk=�1 kS(x�xkh ): Better yet, the solution will have the property thatk = n+k for any integer k:Simpliio: But won't we be adding up an in�nite number of numbers?Galileo: Not really, beause for any given x only a �nite number of integers k exist withthe property that S(x�xkh ) 6= 0: In fat, if S(x�xkh ) 6= 0 for some k; then S(x�xjh ) = 0for all j � k+4 and all j � k� 4: Sine �1 = n�1 and 0 = n; the matrix equationbeomes SP = y; where
 = 0BBBBBB� 01...n�1

1CCCCCCA ; y = 0BBBBBB� y0y1...yn�1
1CCCCCCA ; and

SP =
0BBBBBBBBBBBBBBB�
1 14 0 0 : : : : : : 1414 1 14 0 : : : : : : 00 14 1 14 0 : : : 0... . . . . . . . . . ...... . . . . . . 1 14 0... 14 1 1414 : : : : : : : : : 0 14 1

1CCCCCCCCCCCCCCCA :
Simpliio: In other words, you wrapped the data around from beginning to end andthrew away a bump beause the data at x0 equals the data at xn:Galileo: Exatly.Exerise Set 20.5.



20.6. ORTHOGONALITY PROPERTY FOR CLAMPED CUBIC SPLINES 4851. Given the data (0; 2); (1; 2); (2; 2); (3; 2); (4; 2); set up the matrix equation thatmust be solved to ompute the onstants for the periodi spline interpolationfuntion SN(x): Use omputer software to ompute the onstants 0; 1; 2; 3; 4:Use these onstants to ompute the value of SP (x) for x = 1; 5; 7:2. Compute the LU fatorization of the 5� 5 natural spline matrix SP : How doesthis fatorization ompare with the fatorizations for the 5�5 matries SB; SC ;and SN? How would you use this fatorization to write eÆient ode to solvethe matrix equation SP = y?20.6 Orthogonality Property for Clamped CubiSplinesGalileo:The purpose of this setion is to prove an orthogonality property for splines, whihis analogous to the Pythagorean Theorem. This property is also fundamental to thestability and onvergene properties that make splines useful.Let a = x0 < x1 < x2 < � � � < xn = b be a partition of [a; b℄.If g 2 C2[a; b℄, then let gs denote the lamped spline assoiated with g: In parti-ular, gs(xi) = g(xi) for i = 0; 1; 2; : : : ; n and g0s(a) = g0(a) and g0s(b) = g0(b).Let eg(x) = g(x)� gs(x):Note that eg(xi) = 0 for all i = 0; 1; : : : ; n and e0g(a) = e0g(b) = 0:Lemma 20.6.1. If �(x) is a pieewise linear ontinuous funtion on [a; b℄ whih islinear on eah interval [xi; xi+1℄; thenZ ba e00g(x) � �(x)dx = 0:Proof. The idea behind the proof is to integrate the integral by parts. Sine we areusing lamped splines, the endpoint information g0s(a) = g0(a) and g0s(b) = g0(b) willensure that the integral is zero.



486 CHAPTER 20. CUBIC SPLINE INTERPOLATION
Theorem 20.6.2 (Orthogonality Property For Clamped Cubi Splines). Ifg 2 C2[a; b℄ and eg(x) = g(x)�gs(x); then R ba [g00(x)℄2dx = R ba [g00s (x)℄2dx+R ba [e00g(x)℄2dx.Proof. Sine g00s (x) is pieewise linear and ontinuous, we observe thatZ ba [g00(x)℄2dx = Z ba [g00s (x) + e00g(x)℄2dx= Z ba [g00s (x)℄2dx + 2 Z ba g00s (x) � e00g(x)dx+ Z ba [e00g(x)℄2dx= Z ba [g00s (x)℄2dx + Z ba [e00g(x)℄2dx:
20.7 Minimization Property for SplinesWe now present a mathematial formulation of the intuitive onept that spline inter-polation provides the �t with the fewest \wiggles." This minimization property willbe one of the key fats needed to prove the onvergene theorem for splines.Let C2g [a; b℄ denote the set of all � 2 C2[a; b℄ suh that �(xi) = g(xi) for alli = 0; 1; 2; : : : ; n and �0(a) = g0(a) and �0(b) = g0(b).Note that the set C2g [a; b℄ is a onvex subset of C2[a; b℄:Proposition 20.7.1. If � 2 C2g [a; b℄; then �s(x) = gs(x) for all x 2 [a; b℄:Theorem 20.7.2. (Minimization Property) If g 2 C2[a; b℄ and any � 2 C2g [a; b℄; thenZ ba [g00s (x)℄2dx � Z ba [�00(x)℄2dx:Proof. By the orthogonality propertyZ ba [�00(x)℄2dx = Z ba [�00s(x)℄2dx+ Z ba [�00(x)� �00s(x)℄2dx:



20.8. CONVERGENCE FOR SPLINES 487Sine � 2 C2g [a; b℄, �s � gs on [a; b℄;Z ba [�00(x)℄2dx = Z ba [g00s (x)℄2dx+ Z ba [�00(x)� �00s(x)℄2dx� Z ba [g00s (x)℄2:
20.8 Convergene for SplinesThe �rst step in the proof of the onvergene theorem for splines is to attak theseond derivative of a funtion by a linear ombination of \hat" funtions, whih arebest as measured by a least squares �t, (i.e. in the L2 norm).De�nition 20.8.1. If P is a partition of [a; b℄ and g 2 C0[a; b℄; then a funtiongLS 2 CP [a; b℄ is alled the best pieewise linear approximation to g in the least squaressense, if Z ba (g(x)� gLS(x))2dx � Z ba (g(x)� �(x))2dxfor all � 2 CP [a; b℄:The next proposition provides the solution to the least squares problem for theseond derivative of a funtion. This proposition states that the seond derivative ofthe lamped ubi spline provides the best least squares approximation to the seondderivative of a given funtion. Note that the proof of this theorem uses the fat thatthe spline of the sum is the sum of the splines.Proposition 20.8.2 (Corollary). If g 2 C2[a; b℄ and gs denotes the lamped ubispline approximation of g, then g00s = (gs)00 is the best pieewise linear approximationof g00 in the least squares sense. In partiular, (g00)LS = (gs)00.



488 CHAPTER 20. CUBIC SPLINE INTERPOLATIONProof. To prove this proposition we must show that if � is any member of CP [a; b℄;then Z ba [g00(x)� g00s ℄2dx � Z ba [g00(x)� �(x)℄2dx:By the fundamental theorem of alulus, a funtion � an be found in C2[a; b℄with the property that �00(x) = �(x) for all x 2 [a; b℄. (i.e. �(x) is the doubleantiderivative of �(x).)Let G(x) = g(x)� �(x):If eG(x) = G(x)�Gs(x); then by the orthogonality propertyZ ba [G00(x)℄2dx = Z ba [G00s(x)℄2dx + Z ba [e00G(x)℄2dx:Sine e00G(x) = G00(x)�G00s(x) and �00(x) = �00s(x) = �(x) for all x 2 [a; b℄;e00G(x) = g00(x)� �(x)� (g00s (x)� �00s(x))= g00(x)� g00s (x):Thus, Z ba [g00(x)� �(x)℄2dx = Z ba [G00(x)℄2dx� Z ba [e00G(x)℄2dx= Z ba [g00(x)� g00s (x)℄2dx:Sine � is an arbitrary member of CP [a; b℄ we are done.Corollary 20.8.3. Let P = fa = x0 < x1 < � � � < xn = bg be a partition of [a; b℄: Ifg 2 C2[a; b℄; then the lamped ubi spline gs(x) has the property thatkg � gsk1 � kPk28 � kg00 � g00sk1:Proof. Simply let G(x) = g(x)� gs(x) and apply Corollary 4.4.



20.9. CONVERGENCE FOR CLAMPED SPLINES 489Note that if the points xi in the partition are equally spaed, then the matrix Ahas the form
A = 2h

0BBBBBBBBBBBBBBB�
12 14 0 0 : : : 014 1 14 0 : : : 00 14 1 14 0 .... . . . . . . . . . . . .... . . . . . . . . . . . 0. . . . . . . . . 140 0 14 1

1CCCCCCCCCCCCCCCA :
Proposition 20.8.4. If g 2 C0[a; b℄ and gLS is the best pieewise linear approximationto g in the least squares sense, thenkgLSk1 � 3 � kgk1:Proof. The proof of this proposition is quite tehnial and thus omitted.Corollary 20.8.5. If g 2 C2[a; b℄, then kg00sk1 � 3 � kg00k1.Proof. By the previous proposition kg00LSk1 � 3 �kg00k1. By the orollary to Pythago-ras, gLS = g00s . Therefore kg00sk1 � 3 � kg00k1.The previous proposition shows that the most simple{minded interpolation is nomore than twie as bad as the best.Proposition 20.8.6. If g 2 C2[a; b℄; then kg00 � g00sk1 � 4 � kg00 � Ig00k1:Proof. kg00 � g00sk1 � kg00 � Ig00k1 + kIg00 � g00sk1 � kg00 � Ig00k1 + 3kIg00 � g00k1 =4 � kg00 � Ig00k1:
20.9 Convergene for Clamped SplinesThe purpose of the next disussion is to prove the onvergene theorem for thelamped ubi spline. Better yet, this theorem guarantees a 4th-order onvergenerate. In addition, the onvergene theorem for the seond derivatives is also proved.



490 CHAPTER 20. CUBIC SPLINE INTERPOLATIONThe following list of 3 fats provides a summary of the key steps used to proveonvergene for the lamped ubi spline.1. kg � gsk1 � 18 � kg00 � g00sk1 � kPk22. kg00 � g00sk1 � 4 � kg00 � Ig00k13. kg00 � Ig00k1 � 18kg(4)k1 � kPk2Theorem 20.9.1. Convergene for Clamped SplinesIf g 2 C4[a; b℄, then kg � gsk1 � 116 � kg(4)k1 � kPk4:Proof. By fat 1, kg � gsk1 � 18kg00 � g00sk1 � kPk2:By fat 2, kg00 � g00sk1 � 4 � kg00 � Ig00k1:Therefore, kg � gsk1 � 12kg00 � Ig00k1 � kPk2:By fat 3, kg � gsk1 � 12 � 18kg(4)k1 � kPk2 � kPk2= 116 � kg(4)k1 � kPk4:Note that the best result is by Hall in 1968 where he showed:kg � gsk1 � 5384 � kPk4 � kg(4)k1:The next theorem guarantees a 2nd-order onvergene rate for the seond deriva-tive of the laimed ubi splines to onverge to the seond derivative of the funtion.



20.9. CONVERGENCE FOR CLAMPED SPLINES 491Theorem 20.9.2 (Convergene for the 2nd derivative of the lamped ubisplines.). If g 2 C(4)[a; b℄, thenkg00 � g00sk1 � 12 � kg(4)k1 � kPk2:Proof. By the previous proposition kg00 � g00sk1 � 4 � kg00 � Ig00k1:By fat 2, kg00 � Ig00k1 � 18kg(4)k1 kPk2. Therefore,kg00 � g00sk1 � 48 � kg(4)k1 � kPk2:Note that Hall and Meyer showed in 1976 [2℄ thatkg00 � g00sk1 � 38kg(4)k1 � kPk2:Exerise Set 20.9.1. If g(x) = os(x) for x 2 [��; �℄ and tol = 1105 ; then how many equally spaedpoints will be required to guarantee that the lamped ubi spline approximationgs(x) will approximate os(x) with error less than 1105 for all x 2 [��; �℄? Repeatthis exerise for g00(x): Compare your answer with the answer you found for thepieewise linear approximation.2. If g(x) = 11+25x2 for x 2 [�1; 1℄ and tol = 1105 ; then how many equally spaedpoints will be required to guarantee that the pieewise linear approximationgs(x) will approximate g(x) with error less than 1105 for all x 2 [�1; 1℄? Repeatthis exerise for g00(x): Compare your answer with the answer you found for thepieewise linear approximation.
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