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Remarks by the Author

Topics and Clientele

Keep the interests of the students in mind and the rest will work itself

out.—Bill Harris, NSF

The goal of this set of notes is to present mathematical topics selected from numer-
ical analysis, which are suitable for a semester course at the upper level undergraduate
level. The topics have been organized thematically under the headings of root find-
ing and approximation theory. The discussion of root finding techniques includes
the square root method of Archimedes/Heron, the method of Newton/Raphson, the
bisection method, and the contraction mapping theorem. The discussion of approx-
imation theory includes the topics of Taylor’s Theorem, polynomial approximation,
least squares, Fourier Series, splines, and wavelets. The Pythagorean Theorem and
the concept of orthogonality provide a unifying overarching theme which appears
throughout. The topics have been selected with the idea that they will be particu-
larly relevant for students in computer science, electrical engineering, and computer
engineering.

Since engineering students are typically inexperienced, untrained, and uninter-
ested in formal mathematics, the subject of numerical methods has a sad reputation
for being a dull, difficult, and irrelevant requirement for graduation. In the numer-
ous times I have taught this course, I have not infrequently encountered the atti-
tude: “This is my last math course-hopefully.” In particular, I have found teaching

a course on numerical methods a pedagogical challenge because students lack the

X
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required mathematical training to appreciate the discussions. In one class, I noticed
that one of my engineers was visibly resistant to the proof of a key theorem. On
further questioning it became evident that he saw no justification for his time being
wasted in such an exercise. For some reason, I finally asked ”What is the difference
between a definition and a theorem?” His response was “Aren’t they the same?” I was
startled to think that a student, who had passed three semesters of Calculus as well
as semester courses in Linear Algebra and Differential Equations could make such a
statement. Even the teachings of Euclid were beyond this fellow. Unfortunately, he
is not alone. Since that experience, I now regularly confront such issues on the first

day of class by asking the following basket of questions:
1. “Why do we have definitions and theorems?”
2. “What is a conditional sentence?”
3. “What is the structure of a theorem?”

4. ‘What is the difference between the way a mathematician and a statistician uses

the word hypothesis?”
5. “What is a mathematical system?”
6. “Why should anyone care?” (This question is the most important!)

I try to answer these questions by giving short expositions on basic propositional logic
and the ramifications of Euclid’s famous 5 Postulate. After one such introduction,
a computer science student, a native of Southeast Asia, stated she was shocked by
the remedial level of the discussion. She left and never returned.

In case you are thinking [ am prejudiced against the engineering students, let
me mention that my math majors also have deficiencies when taking more applied
courses. One extremely bright and talented student (also from Southeast Asia) earned
an almost perfect score on every exam. However, when asked to write five lines of

computer code to approximate the square root of a number, she was helpless. In
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general, the engineers complain about the theory and clamor for more projects, while
the mathematics students thrive on the theory and wish the projects were not a part
of the course. Thus, I have found that the instructor of an applied mathematics
course should be alert to the differing needs of the students, while at the same time
not getting derailed repairing too many deficits.

In my experience, the single most important reason students find numerical anal-
ysis dull, boring, and difficult is their lack of skill and knowledge in Logic, Geometry,
and Linear Algebra. A second reason is their inability to connect the theory with
some aspect of their expected future employment. The “Interview” has been included
in an effort to address these issues. For students who have been away from math-
ematics for a long time, I have included many other brief reviews throughout the
notes.

While the focus of the discussion is on the mathematics, the goal is to present a
readable account of the thought behind the theory in a manner that will be appre-
ciated by a large subset of the students. The approach is to present the material as
a historical progression of ideas motivated by key examples and easy-to-understand
special cases. Hopefully, this approach will help neutralize negative attitudes and

better meet the needs of the students.

A Brief History of the Dialogue Format

Mathematics is written for mathematicians. — Nicolaus Copernicus

With a quick glance through the these notes, the reader will immediately notice
that they are written in a dialogue format. Surely the author must be joking. Why
would anyone waste his/her time writing a mathematics textbook in dialogue format?
Why would anyone waste hard-earned money purchasing such a volume? Galileo as
a central character in the discussion” However, that is exactly what is offered: an
allegorical presentation of real mathematical ideas.

Let us begin our defense by noting that numerous books from antiquity were
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written as dialogues. Plato (427-347 B.C.E.) wrote virtually all his works in this
dramatic style. In his “Apology,” he dramatizes the fatal conflict between Socrates
and his enemies Meletus, Anytus, and Lycon, who had accused him of “corrupting the
youth.” For this crime, Socrates receives the ultimate punishment. In his “Allegory
of the Cave,” Plato tries to clarify the concepts of intellect, belief, and knowledge.
In this dialogue, he chains prisoners in an underground cave, where they see only
shadows cast on the wall in front of them and hear only echoes from behind. This
allegory dramatizes the fundamental human conflict that we can never know reality.
His commentaries on ethics, politics, astronomy, and mathematics were also written

as dialogues.

In 1632, Galileo (1564-1642) published his “Dialogue Concerning the Two Chief
World Systems: Ptolemaic and Copernican,” [3] where he dramatizes the scientific
conflict between two different mathematical models of the solar system. Simplicio,
his spokesman for the Aristotle/Ptolemaic earth-centric view of the universe, plays
the role of a foil to Salviati, who advocates the Copernican view that the sun is the
center of the solar system. A third character, Sagredo, plays the role of the forward
looking aristocrat, who considers both sets of arguments, but consistently ends up
siding with Salviati. In the narrative, Salviati presents observations of the ocean
tides, the moons of Jupiter, and the phases of Venus as evidence that the Earth
moves. The main reason for his use of the dialogue format was to present the case
for the Copernican view while pretending to be impartial. Of course, this ruse failed
to protect him from the wrath of the Inquisition of Pope Urban VIII (1568-1644).
On 22 June 1633, he was found guilty of heresy and sentenced to house arrest for the

remainder of his life.

In 1638, Galileo published a second dialogue “Dialogues Concerning Two New
Sciences,” [5]. In this work he again presents the same three characters in a four day
discussion of fundamental concepts in two key areas of modern Physics. The focus
of the discussion for the first two days is on the strength of materials. The focus for

the second two days is on the behavior of a falling object. While Galileo’s style is
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again engaging, the style of this second volume is more mathematically challenging
than the first. Much of the writing is in an definition, theorem, proof format, where
the reader is subjected to numerous difficult mathematical arguments. (Most of these
discussions are geometric in nature.) On the first day, he even considers several of the
paradoxes of infinitesimals and infinity, which arise in his discussion of strength of
such materials as copper wire, glass, marble, and rope. At the beginning of the fourth
day, his Proposition I concludes that the path of a falling object describes a parabola.
Later in the same day, his Proposition VIII asserts the familiar physics/calculus fact
that a projectile fired from a cannon at a 45 degree angle will travel farther than when
fired at any other angle. While much of the complexity of these arguments can be
reduced if armed with a knowledge of modern calculus, the discussions remain fresh
to this day. For example, on the second day Salviati argues that a giant cannot be
arbitrarily sized in the same proportion as a smaller creature unless the bones are
made from a stronger material. Thus, real physical reasons exist that explain why

the largest mammals reside in the great oceans of the world.

A number of modern authors have also employed a dialogue format in their math-
ematical writings. In 1895, Lewis Carroll (1838-1898) published “What the Tortoise
Said to Achilles,” where the discussion elucidates the subtleties of the logical argument
of modus ponens. In particular, he addresses the logical problem of self-referencing.
(The easiest example of self-referencing is to consider the truth or falsity of the
statement: “I am lying.” Think about it.) In 1963-64, the Hungarian mathemati-
cian/economist/historian Imre Lakatos (1922-1974) published four articles entitled
“Proofs and Refutations.” (The articles were published as a book in 1976 [8].) In this
small set of dialogues, the author creates a classroom setting through conversations
between a teacher and a small group of students. The teacher is named Teacher
and the students are named Alpha, Beta, Gamma, etc. Through their interactions
the reader is drawn into the world of mathematical rigor. The concepts of axioms,
definitions, and theorems are discussed through a question/answer format, where the

focus of the mathematics is Euler’s famous theorem that V — E + F = 2 for any
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polyhedral 2—sphere, where V, E| F' denote the number of vertices, edges, and faces,
respectively. While mathematical rigor, logic, proof, examples and counterexamples
(i.e. refutations) are central, Lakatos teaches the process of formulating carefully
worded definitions and theorems so that ambiguity or vagueness are removed. As the
discussion shows, if you are sloppy or careless with your wording, a counterexample
to what you had expected may be lurking nearby. Alfred Renyi (1921-1970) was one
of the outstanding Hungarian mathematicians and statisticians of the 20" Century.
He even has an institute constructed in his honor. In 1965, he published ”Dialogues
on Mathematics,” [8] where Socrates, Archimedes, King Hieron II, and Galileo are
featured discussing such subjects as “pure versus applied mathematics.” On occasion,
he even performed these works with his daughter. His best known quote is “A math-
ematician is a machine for converting coffee into theorems.” (Another Hungarian,
Paul Erdés, has also received credit for this quote.) In his 1974 dialogue “Surreal
Numbers,” [7] Donald Knuth strands two ex-students, Bill and Alice, on an isolated
beach. Bored and lonesome, they find happiness in mathematics (and a touch of
romance) through a highly rigorous discussion of the properties of the real number
system. In 1979, Douglas Hofstadter expanded on Lewis Carroll’s discussion of of
self-referencing in his highly popular Pulitzer Prize winning book “Godel, Escher,
Bach” [4], where he makes connections between a myriad of subjects including logic,
art, music, computer programming, the nature of language, the nature of thought,
the replication of our genetic code, Turing machines, artificial intelligence, and free
will. Dialogues between Achilles, the Tortoise, the Anteater, the Crab, and Charles
Babbage interlace this book of ideas. Most recently, Keith Kendig has written the
book “Conics” [6], where a Teacher, a Philosopher, and a Student uncover the prop-
erties of the conics through an engaging and readable dialogue. The Philosopher is
looking for unity and beauty, the student loves stories, and the teacher provides the

details. Along the way, questions are asked and mathematical discoveries are made.

The inspiration behind the dialogue format set forth in these notes is Dava Sobel’s

book “Galileo’s Daughter,” [10]. While most books on Galileo (1564-1642) provide
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an account of his scientific achievements and/or his political problems, the focus of
Sobel’s book is his relationship with his eldest daughter, Virginia (1600-1633). While
Galileo had two other children, Virginia was probably his favorite. She was bright,
beautiful, serious, and passionately devoted to her father. Since she was illegitimate
(as were his other two children), marriage was problematic. Thus, at the age of 16
she followed the respectable alternative of the times by dutifully taking vows as Suor
Maria Celeste at the convent of St. Mateo in Padova, Italy. (The name Celeste is
derived from celestial and is probably an indirect reference to Galileo’s astronomical
discoveries.) Life at the convent was dominated by prayer, never ending chores, and
grinding poverty. Despite their separation and difficult circumstances, the father and
daughter adored each other. She provided him with aid and comfort when he was
ill and wrote him continually during their extended separations. In return, Galileo
never failed to respond to her requests for money. Sobel speculates that this dutiful
daughter may have assisted in the preparation of his dialogue “Two Chief World
Systems.” One can only wonder what she might have achieved if she had been more
fortunate in her birthright.

A downside to the dialogue format is a lack of economy. Since mathematics lives
perfectly well in its own sparse setting, the experienced instructor or reader may find
the conversational style not only unnecessary, but also distracting and irritating. If
this is the case, simply move on to a new topic. The author has no intention that
someone would teach word-for-word what is written in these notes. What is written

here contains too much of one individual instructors own classroom style.

Cultural Impacts on Pedagogy

We note that a huge body of evidence attests to the fact that a soci-
ety’s values are passed from generation to generation through a process of
transmission which may be vertical (from parents) or oblique (from oth-

ers in the prior generation) and involves a psychological internalization of
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values. —Karl Marx

How does society optimize the transfer of mathematical knowledge and skills from
one generation to the next? While the educators, politicians, and media have spent
inordinate quantities of time, thought, and cash trying to address this issue, my view
is that the answers lie in the culture of the community, the reward system for those
involved, and the method of delivery. Needless to say these three forces are not
unrelated.

If a community values finance, fashion, and football more than mathematics and
science, then guess what? The resources and talent of the community will flow into
those more preferred areas. Sometimes political events change the behavior of a
community. Before the rise of the Nazis, mathematics training in America was al-
most nonexistent at every level. With the immigration of prominent scientists to the
United States in the 1930’s, interest in mathematics began to rise. In 1957 the Rus-
sians changed science forever by launching Sputnik. This event provided the impetus
for educators to launch advanced science and mathematics courses in high schools
throughout the United States. The “New Math” was part of this Cold War effort
to catch up. In 1962, John F. Kennedy’s push to land a man on the moon created
an excitement that boosted the production of PhD mathematicians to never before
seen levels. The study of mathematics in America was transformed from being worst
to first. Students and young faculty now came from all over the world to study in
America. Unfortunately, only a short time later the excitement began ebbing back
to the historical mean. In the 1970’s, the concern became: How are we going to
find employment for all these mathematicians? In the 1990’s, the concern refocused
to: Why does a kid in a far-off land perform better on standardized math exams
than those in America? Recently, I quizzed a number of (excellent) Chinese graduate
students on this issue. I asked whether or not their mothers pushed them to excel.
Their response was that not only did their parents insist they study hard, but the
expectation was uniform among their friends so negotiation was not part of the equa-

tion. When they performed well, they were rewarded. Their parents had also given
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them a choice: They could study or they could work. In a culture where education
was a privilege, not a right and where drudge labor was the norm, the connection was
clear. Thus, parents, prestige, and profit combined to create an environment where
they became driven by internal forces. My students from Eastern Europe, Russia,
India, and South America are driven by similar pressures. In all these cultures, math
is easy when compared with the alternatives.

So what incentives are available for motivating students in today’s world? While
the excitement of the space race and the new math have evaporated and the economies
of the world are doing reasonably well, a plethora of new gadgets, technologies, and
issues have exploded in their place. Calculators are everywhere. Imaging Science
is a field that permeates medicine and the military. Environmental (e.g. global
warming), public safety (e.g. hurricane tracking), and public health issues (e.g. the
spread of AIDS) abound. These new areas all require appropriately chosen numerical
methods and models. Since engineers enjoy projects that impact society, a focus of
this dialogue is to connect the abstract mathematical ideas to as many applications

as possible.

Pedagogy as a Process

Knowing something for oneself or for communication to an expert col-
league is not the same as knowing it for explanation to a student. ~-Hyman

Bass

While mathematicians are expected to write in a definition-theorem-proof style
that is clear, rigorous, and lean, I have found few undergraduate (or even graduate)
students, who can retain much from this style of information transfer. Instead, I pre-

> where

fer to present modern mathematics as a naturally unfolding “Socratic process,’
simple questions and observations lead to fundamental insights. The key is to formu-
late and answer clearly stated questions, which get to the heart of the problem. If

you “Begin with the easiest problem you don’t understand,” then the solution to one
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problem often leads to new questions and new answers which lead to new solutions.
Simple observations evolve into ever more general and abstract concepts. These ab-
stract general results become more accessible and easier to understand. The dialogue
format provides a mechanism which can be used to capture this spirit of discovery.
The question “What does it mean for a technique to work?” leads to a precise defini-
tion of the rules of the game. In my experience, students typically find definitions an
unnecessary and pedantic annoyance. A mathematicians attitude is that you can’t
play the game until you have a precise statement of the rules. The question “Does
the technique always work?” frequently leads to examples demonstrating a negative
answer. These examples lead to the question “When does the technique work?” The
response of the mathematician is to formulate a theorem or proposition, which pro-
vides exact conditions when a positive result can be guaranteed. The question “Can
the method be generalized”?” may lead to a technique that can be applied to a wider
range of problems. Once a generalization has been formulated the process repeats

itself.

The Contraction Mapping Theorem of Stephan Banach (1906-1960) is a notable
example of this evolution from simple to abstract. Without reference to the ancient
Archimedes/Heron square root algorithm and the Newton/Raphson root finding tech-
nique 1700 years later, this theorem lacks seems to emerge from nowhere. Approx-
imation theory provides a second progression of ideas, where the topics presented
include: polynomials, Fourier, splines, and wavelets. In each case, orthogonality (or
lack thereof) is fundamental to the success (or failure) of the technique. Since orthog-
onality is nothing but a fancy way of saying perpendicular, the Pythagorean Theorem
is at the heart of the discussion. The fact that root finding and approximation took
several thousand years to unfold indicates the richness of the ideas underlying the
techniques. Our approach is to use this rich history to drive the discussion. Armed
with an understanding of this mathematical process, the hope is that the reader
should be better able to evaluate, select, and apply numerical methods in their own

endeavors.
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While not as important as the development of mathematical ideas, I find that stu-
dents also enjoy mathematical gossip. By introducing cartoon versions of some the
great contributors to mathematics, I am hoping the reader can begin to appreciate
some of their quirky personalities. Probably my favorite story is Fourier’s personal
interest in the heat equation. In short, after an enjoyable visit to sunny Egypt with
Napoleon in 1798, Fourier returned to the miserable rain and snow of Grenoble’s
winter, where he turned up the heat in his apartment to the highest setting. Thus
stimulated, he developed stable methods for solving the heat equation. Such anec-
dotes lead to the questions: “Who cares?” and “Why would anyone be interested in
solving these types of problems?” George Polya (1887-1985) also endorses this “jour-
nalistic” approach to pedagogy when he remarks that your five best friends are What,
Why, Where, When, and How [9]. I would also add Who. Thus, the mathematical
ideas are embedded in an interactive discussion of the background, significance, and
historical context of the subject. In my experience, I have found that my engineering
and medical students find this approach an agreeable alternative to the more tradi-
tional one, where they are stuffed with facts, formulas, and techniques like the overfed

4

goose headed for the dinner table as “paté de foie gras.”

In addition to presenting the theoretical ideas as a process, we have followed the
lead of G. Polya in our discussion of examples and problems. In his book “How to
Solve It,” [9], he spells out a general four step process for solving a mathematic’s

problem:
1. understanding the problem,
2. devise a plan,
3. carry out the plan, and
4. look back and review what was done.

This process provides a student with a structure and framework for attacking a prob-

lem. Probably the best example of this approach is our treatment of limit problems,
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where we insist students are able to know and apply the definition of a limit. In
the problems we consider, the plan is always the same. Each solution requires three
simple steps. While students argue that they should not be expected to know this
skill, they soon find that they are far easier than the problems connected with real
applications. As you will read many times in these notes: “Math is easy. It is life

that is difficult.”

Murphy’s Law

What can go wrong, will go wrong. ~Murphy

While logic and rigor are fundamental to the spirit of mathematics, computer
scientists, engineers, and physicists turn to mathematics for techniques to mathe-
matically analyze and model real-world phenomena. Students from these fields may
enjoy the study of mathematics, but are driven by the needs of their particular appli-
cation. Unfortunately, the curriculum has become so crowded that most instruction
in these applied areas becomes “technique driven” rather than “process driven.” In
other words, the instructor presents the formulas and techniques, but hurries on to the
next topic before discussing history, insights, or caveats associated with the method.
However, in my experience, I have found Murphy’s Law to be the one guiding prin-
ciple that rules the study of numerical methods. In these notes, key examples have
been provided to help the student identify the numerous tar pits that are forced on
the subject. Hopefully, the student will develop a wariness when employing these and

other techniques in their own investigations.

A Final Comment

And yet it moves. —Galileo

While Galileo’s book, “T'wo Chief World Systems,” contained thinly veiled politi-

cal statements not in accord with the dogma of his times, the dialogue strategy failed
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to keep him out of harm’s way. For on 22 June 1633 the wrath of Pope Urban VIII
descended upon him when the Holy Inquisition convicted him of heresy and subjected
him to life imprisonment (later commuted to house arrest). If he had not been so
famous and had not abjured himself, he might have been burned at the stake as was
his predecessor, the heretic Giordano Bruno (1548-1600). It was not until 31 Octo-
ber 1992, after almost 13 years of investigation (including the testimony of Physicist
Steven Hawking), that a commission appointed by Pope John Paul II admitted that

“mistakes must be frankly recognized.” And so it goes.
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the numbers from 1 to 100. She even tried to get us to discover the formula for the
arithmetic series ourselves. (My recollection is that this experiment didn’t work out
too well.) She loved Geometry, where mathematical rigor was front and center. No
sloppy thoughts were allowed in her class. She also had a fearsome intensity. When we
did poorly on an exam, she did not hesitate to let us know. Fortunately for me, I sat
near the back of the room and so could hide from her wrath. Of course, when we did

well, her praise made you glow. In my 40 years of teaching several thousand students,
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I have found only a handful with the training in the fundamentals of mathematics
that equaled mine. She took her profession very seriously.

I have also extracted a multitude of photographs, quotes, and comments from the
MacTutor History of Mathematics archive[2], which is based at the School of Mathe-
matical and Computational Sciences at the University of St Andrews, Fife, Scotland.
I found their database containing more than 1000 biographies of mathematicians to
contain a gold mine of information.

Finally, I must also acknowledge my students, colleagues, friends, teachers, fam-
ily, and assorted poets, who have unknowingly supplied much of the language that

appears in these pages. I have stolen from them mercilessly.
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Part 1

Day 1. The Interview






Chapter 1

Introductions

The universe cannot be read until we have learned the language and be-
come familiar with the characters in which it is written. It is written
in mathematical language, and the letters are triangles, circles and other
geometrical figures, without which means it is humanly impossible to com-

prehend a single word. -Galileo Galilei (1564-1642)

The Setting:

The time is the present. Galileo sits at his desk absorbed in a manuscript. A

small glass of Chianti rests nearby. Enter Virginia and Simplicio. Galileo looks up.

3
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Galileo: And what brings you to my office?

Virginia: We are interested in learning more science and mathematics.

Galileo: Isubmit that the study of these subjects is a noble and worthy goal. Virginia,
who is this young fellow with you?

Virginia: I would like you to meet my new friend Simplicio.

Galileo: I am pleased to meet you Mr. Simplicio. I am sure you have found Virginia
to be a gracious lady with exquisite manners and charm. She is one of my favorites.
Simplicio: Indeed I do enjoy her company.

Galileo: And if I may ask, what career goals do you have?

Virginia: I am interested in teaching mathematics.

Simplicio: I would like to become more knowledgeable about important applications.
An understanding of numerical methods seems to be a requirement for my future
employment.

Galileo: Very interesting, but why?

Simplicio: I am not sure, but several prospective employers have mentioned data. It
seems they are overloaded with data and having trouble making any sense of it. They
recommended I discuss these issues with you. It seems you are the master of data.
Galileo: T am flattered. Others have not been so kind. It sounds like you have talked
to someone, who requires a knowledge and skill in data acquisition, storage, and
analysis techniques. Is that correct?

Simplicio: One company builds devices, which acquire and analyze signals for the
military. One builds medical imaging equipment. One is in communications. One is
in the business of compressing images.

Galileo: So, you are ready to journey through a mathematically rigorous study of
these topics?

Simplicio: Unlike yourself, I do not enjoy the rigor of mathematics.

Galileo: I am sorry to hear that. I find the beauty, oder, and clarity of mathematical

ideas a refreshing contrast to the sloppy thinking that surround us.



Chapter 2

Science, Models, and Applications

From the same principles, I now demonstrate the frame of the System of

the World.-Isaac Newton
A job is death without dignity. -Dylan Thomas

Simplicio: While I have no objection to rigor for others, my reason for this visit is to
learn techniques useful in my employment.

Galileo: Do I detect that “rigor” and “employment” are concepts separated by a
void?

Simplicio: To be honest, I find mathematics to be difficult, boring, and irrelevant. I
search for a job, where the pay is good and the work not too stressful.

Galileo: You are an honest man.

Simplicio: I always make an effort to be direct. What skills do we need?

Galileo: Over the ages, the ancient thinkers have developed numerical techniques to

compute:
1. solutions to systems of linear equations,
2. solutions to systems of nonlinear equations,

3. derivatives
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4. integrals,
5. eigenvalues and eigenvectors,
6. solutions to differential equations, and
7. solutions to partial differential equations.

While these methods are all useful, we are not going to have time to discuss them all.
Choices must be made.

Simplicio: Which skills would an employer prefer?

Galileo: The big picture is that all these techniques are useful in setting up and
solving mathematical models of physical phenomena. In short, these techniques are
joined as the computational component of the scientific method. This simple, but

severe test can be summarized as repeated iterations of the following procedure:
1. observational and/or experimental data is acquired,
2. a mathematical /statistical model is formulated, and
3. the model and the data are tested for agreement.

The reason for this process is to make predictions, which help answer the questions

“When,” 13

where,” or “how much.” Interestingly, sometimes the data comes first and
stimulates the search for a model. The data I collected on the motion of a falling
body showed that the motion can be modeled by a quadratic equation. Johannes
Kepler (1571-1630) demonstrated that Tycho Brahe’s data forced the conclusion that
the orbit of Mars is an ellipse. Soon after, Isaac Newton proved that both these
models can be explained as consequences of his laws of motion. This tour de force is
unmatched in the history of science. On the other hand, sometimes the theory comes
first. Albert Einstein’s special theory of relativity wasn’t confirmed by data until more
than a decade after the discovery. In both scenarios, confirmation of agreement is

key. Each time new data is acquired, the accuracy of the model is reevaluated. If one

model provides better agreement and predictions than another, then it is preferred.



This process is ongoing. While the process is imperfect, it is better than all its
competitors. Needless to say, some models have greater predictive value than others.
Aristotle asserted that the earth is the center of the universe. The epicycle model of
Ptolemy (Claudius Ptolemaeus, 87-150) was based on this assumption. For centuries,
the church accepted this view as dogma. Even though this model provided reasonably
accurate predictions for the motion of the planets, the Newton/Kepler model is easier
to understand and provides a clear explanation for such anomalies as the apparent
retrograde motion of Mars.

Simplicio: The method seems to be intelligently designed.

Virginia: Ouly if you play by the rules.

Galileo: We now have successful models for the motion of the planets, the motion of a
pendulum, the motion of a spring, fluid flow, the nature of electricity and magnetism,
the nature of waves, and heat transfer. While many models are complicated, the
best models are based on simple principles that you sure are correct. Our confidence
in many of these models is now so great we would be shocked if the unexpected
happened. Every time you turn on one of your electronic gadgets, you are using the
laws of electricity and magnetism.

Simplicio: What about hurricanes, floods, and beach erosion?

Galileo: The models for fluids are not as reliable as those for electricity. While you
can criticize those making predictions based on less perfect models, you might think
of them as an opportunity for employment. If you can accurately predict the future,
you can make money. Better yet, you can begin to understand the world around you.
Virginia: You can also get into trouble.

Galileo: Sometimes my colleagues have been sloppy about their data. While my
colleague Aristotle claimed the distance traveled by a falling body has a linear rela-
tionship with the time of flight, he never tested his ideas properly. My data shows
the relationship is quadratic. In particular, if you double the time of flight, then the
distance traveled will be quadrupled.

Simplicio: I guess data is important, but is an employer going to hire me to expound
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on these already well-understood insights? Why would he care?

Galileo: The techniques of the ancient masters are embedded in the technology of the
present. For example, Fourier series techniques used to solve partial differential equa-
tions are now being used in a multitude of applications including speech recognition,
image analysis, and signal compression.

Simplicio: So where do numerical methods factor into this scenario?

Galileo: If you can model a problem by an equation or system of equations, then the
goal of numerical analysis is to provide techniques to find the solution (or solutions).
If your model is linear, then Linear Algebra is your tool of choice. Whenever possible,
you should linearize your problem:.

Simplicio: What do you do if your problem is not linear?

Galileo: If possible, you linearize your problem over a short period of time. The
underlying concept in differential calculus is that the first derivative is the slope of
the line that “best approximates” the curve. For us, the root finding method of New-
ton/Raphson is an example of a technique that repeatedly uses a linear approximation
to solve a nonlinear problem.

Simplicio: OK, so what skills do I need to work in this area?

Galileo: If you find data fascinating, then I recommend you become versed in the

following areas:
1. mathematics,
2. computer science,
3. statistics,
4. physics, and possibly
5. a biomedical area.

Virginia: [ am worried about that computer science requirement. I have limited

programming experience. My background in physics is a bit weak as well.



Galileo: You need to have enough computer skills to implement and test your own
ideas. No one is going to do it for you. Otherwise, you will have no ability to
test your ideas. You need to be comfortable with physics because different data
acquisition devices employ different physical principles. A technique that produces
accurate estimates for one modality may be useless when applied to signals or images
acquired on another system. Any numerical method for analyzing data should be in
sync with the device or method used to acquired it.

Simplicio: What about statistics? The only word that comes to mind is: boring,

boring, boring. My view is:

[ know not Y,

I know not square,
Nor do I know,
Why I should care.

Galileo: Maybe you should reconsider this attitude. Statisticians are the gatekeepers
to a multitude of today’s scientific questions because they provide us with tools for
making sense of data. While the last century was the century of the hard sciences,
the exciting new frontiers are now shifting to medical and biomedical applications.
Imaging science will play a large role in these areas. Genomics with its terabytes of
data may be a better example. In any case, anyone who has the ability to make sense
of the mountains of data that is generated daily will be employable. In a word: Data,
Data, Datal

Virginia: So that’s why you mentioned biomedical applications?

Galileo: You got it.
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Chapter 3

Topics for the Tutorial

He who does not understand motion, cannot understand Nature.-Galileo

Virginia: Good Sir, could you give us an overview of the topics you will be discussing
in this tutorial?

Galileo: Certainly. The two main themes will be root finding and approximation
theory. Since root finding has a long and distinguished history, we will begin with
this theme. The task of finding a root is equivalent to that of solving a system of
nonlinear equations.

Simplicio: Could you remind me about roots?

Galileo: A root of a function is a point x = r, where the graph of function crosses the

x—axis. The official definition is:

Definition 3.0.1. If f(z) : [a,b] — R, is a function and f(r) =0, then v =71 is a

r00t.

Simplicio: Why would 1 care?

Galileo: If you recall from your study of Calculus, the problem of maximizing and/or
minimizing a function f(z) : [a,b] — R is at the heart of a multitude of applications.
The strategy is to compute the first derivative f'(x) at each critical point x = r. The
maximum of the function y = f(x) on the interval [a, b] will equal the maximum of

the values f(a), f(b), f(r1), f(ra),..., f(rs), where ri,ro, ... 1, is the list of all the

11
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critical points for f(z). A similar statement is true for computing the minimum of the
function. The beauty of this strategy is that an infinite problem has been reduced to
a finite one.

Simplicio: Forgive me, but it has been a long time since I have suffered through
Calculus. What is a critical point?

Virginia: A critical point of a function is a point x = r, where the graph of the first
derivative crosses the r—axis. In other words, a location where the function has a

horizontal tangent line. The precise definition is:

Definition 3.0.2. If f(x) : [a,b] — R, is a differentiable function and f'(r) = 0, then

x =71 is a critical point for f(x).

Galileo: Very good. Note that the critical point always lies in the domain of the
function.

Simplicio: And why should I care about critical points?

Galileo: If a company can represent their profits by a function, then they can max-
imize their profits by simply computing this function at all the critical points. The
largest value will be the maximum of the function. A similar statement holds for
minimizing their costs.

Simplicio: I must admit that [ am having a bit of trouble visualizing this situation.

Galileo: How about the example of the parabola? Calculus is nothing more than
the recognition that concepts such as velocity and acceleration associated with the
motion of a falling body can be generalized to arbitrary functions. If you understand
the parabola, you are a long way home.

Simplicio: Sounds good.

Galileo: If f(x) = ax® + bx + ¢, then the first derivative is f'(z) = 2ax + b. The
critical point x = r is commuted by solving the equation f'(z) = az +b = 0. As an
expert in Algebra, you immediately recognize that the critical point is r = z = —g
and the critical value is f(r) = f(=2) = a(=2)* + b(—=2) + ¢ = =22 + ¢ In the
special case of a falling body, I found that the height can be modeled by the formula
s(t) = —3gt* + vot + s9, where g = —32- Lt = 9.8y, denotes the initial velocity,

sec? sec??
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and sy denotes the initial height. Since this curve is concave down, the highest
point of the flight of the ball will occur when the velocity equals zero. Since the
velocity is the first derivative of the height function, the critical point will occur
when v(t) = §'(t) = —gt + vo =0 or t = *2.

Virginia: If you toss the ball in a downward direction, then the initial velocity is
negative. In this case, the maximum value of f(z) will occur at time ¢ = 0.

Galileo: Good point. I should have mentioned that we are assuming vy > 0. While the
critical points are easy to find for this problem, real-world problems require much more
general techniques. We will focus our discussion on the Newton/Raphson, bisection,
and Contraction Mapping Theorem techniques. The Newton/Raphson method is
based on finding the root x = r for the linear function y = f(x) = ma + b. Since
r= —%, the problem is not too difficult. Right?

Simplicio: These remarks help, but why are we discussing several different methods
for finding roots? Why not simplify the discussion and just focus on one method?
Galileo: Each has its place. Our discussions will be driven by such questions as: Does
the method always work?” Which converges faster? Unfortunately, with numerical
techniques, you don’t always get clear winners. We will often find that the application
drives the choice of technique.

Simplicio: And why would I care about the Contraction Mapping Theorem?
Galileo: This theorem is an elegant generalization of the method of Archimedes/Heron
and Newton/Raphson. While these extensions are easy to understand in retrospect,
they took 2000 years to unfold.

Simplicio: Do [ need elegance?

Galileo: This theorem can be used to solve linear systems of equations, non-linear
equations, and differential equations. It is even used to generate fractal pictures and
compress images. In other words, it can be used to solve a multitude of different
types of problems. In its most basic form, the technique is easy to understand, can
be implemented in only a few lines of computer code, and always works. I call that

elegant and I appreciate it when I find it.
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Simplicio: I like the idea of compressing images.

Virginia: I too have enjoyed the beautiful snowflake example.

Galileo: While we won’t have time to discuss fractals, we will lay the foundation so
you can study that subject on your own.

Virginia: Are these all the topics we will cover?

Galileo: The second theme of our tutorial is approximation theory, where we will
discuss the topics of Taylor’s Theorem, polynomial approximation, Fourier Series,
cubic splines, and wavelets. These methods are useful if you would like to approximate
a function f(z) by a function with certain desirable properties. For example, given
the function f(xz) = sin(z), we would like to approximate its value at a particular
point & = xy. We can do this with a Taylor polynomial of the form p; (z) = z,p3(x) =
x— 2%, ps(x) = x — ga® + 552, ete. Since polynomials are easy to compute and the
method always converges to the correct answer, Taylor’s Theorem is a great place to
start. Taylor’s Theorem provides a fundamental tool for the numerical approximation
of first and second derivatives. Virtually any problem involved with rates of change
requires the estimation of velocity or acceleration. The formulas we will derive are
used everywhere in differential equations, partial differential equations, and signal
and image processing.

Simplicio: What’s next?

Galileo: After Taylor’s Theorem, we turn to a second technique for approximating
functions by polynomials. The advantage of this method is we use a sampling of the
values of the function at scattered points rather than the values of the function and
its derivatives at one particular point.

Simplicio: So?

Galileo: Typically, when we are given a set of data points, we are not given any
information about the derivatives so Taylor’s Theorem cannot be applied. Thus, we
need a new technique.

Simplicio: OK.

Galileo: This topic also provides an excellent entry point into the modeling of data.
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Since we usually have more data than we know what to do with, we usually try to
reduce the data to a form that is easy to understand. Straight lines and parabolas are
often a good place to begin. The technique that gets us there is linear least squares.
While least squares is usually associated with straight line approximations, it can also
be used to approximate data with a parabola of the form py(x) = ag + a1z + apz?.
Our falling body problem is a good example, where a parabolic fit works. In 1958,
Charles Keeling (1928-2005) began the collection of data measuring the concentration
of carbon dioxide in the atmosphere. These measurements have been made monthly
ever since he began this effort. When least squares is used to fit a parabolic curve
to this data, the fit is excellent. A current political issue is whether or not the rising
concentration of this gas causes global warming. Just because the fit is good, doesn’t
mean we can extrapolate out too many years. We shall see.

Simplicio: Interesting.

Virginia: Why would we worry about Fourier series?

Galileo: Fourier made his mark in mathematics by recognizing that trigonometric ap-
proximations produce much more accurate results than polynomial ones when solving
the heat equation. We will discuss that famous Runge example, which shows that
high degree polynomials are evil.

Simplicio: Good and evil in a mathematics class?

Galileo: If you are an engineer making a calculation and your calculator gives you a
stupid answer, then your attitude is that the device is evil.

Simplicio: Even I understand that.

Virginia: Why discuss polynomials at all?

Galileo: As we mentioned, linear and quadratic fits can often produce useful results.
Least squares are used everywhere. However, probably the best reason is polyno-
mial interpolation provides an excellent entry point to Fourier series. In fact, if you
look at the subject properly, the discrete Fourier transform is exactly polynomial
interpolation. Thus, if you understand polynomials, you are a long ways towards

understanding Fourier. Better yet, waves and wavelike (i. e. periodic) motion are ev-
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erywhere in nature. While the motion of the pendulum is the first one that comes to
mind, light, radio, ocean, and sound waves are also examples. A wave with frequency
w can be written as a trigonometric function of the form cos(w(t — tg)). Fourier series
are nothing but linear combinations of functions of the form cos(nz) and sin(nz). Not
only are they perfectly designed for modeling waves, but they also have remarkable
mathematical properties.

Simplicio: But I am not interested in their math properties.

Galileo: You should be. As it turns out, engineers love Fourier techniques because
they are not only directly connected with wave phenomena, but because they are
computationally stable. Thus, they can trust the answers. The fundamental reason
for this trust takes us back to Pythagoras.

Simplicio: I can’t wait.

Virginia: What about cubic splines?

Galileo: While they are not as useful in physics as Fourier series, they have the same
stable characteristics as Fourier series but even better convergence properties for the
first and second derivatives. This property is not necessarily true for Fourier series.
Splines have another important property that Fourier series don’t have. Namely,
while functions like sin(z) and cos(z) oscillate up and down forever, splines equal
zero outside some finite interval.

Simplicio: Why is that property important?

Galileo: When you compute a linear combination of a bunch of spline functions at
a particular point x, you can ignore all the intervals not containing z. Typically,
the point x will lie in no more than 5 intervals. Since splines are piecewise cubic
polynomials, they are almost instantaneous to compute on each interval and lie in a
small number of intervals, they are blazingly fast. For these reasons, they are often
used in computer graphics and computer animations.

Simplicio: I will have to pay attention when we discuss that topic.

Galileo: You will enjoy the elegant theorems associated with splines as well.

Virginia: And finally, what are wavelets good for?
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Galileo: Wavelets represent the best of all possible worlds. If you think about the
name a minute, you realize that the word wavelet implies “little wave,” which is
exactly what they are. Wavelets oscillate like sin(z) and cos(z) so they are useful
for modeling real physical phenomena. Like the trigonometric functions, they enjoy
the benefits of Pythagoras and so are stable to compute. In addition, they have the
same finiteness properties that splines have so they are fast to compute. Needless
to say, wavelets are very popular and are used in a multitude of applications. In
particular, Jean Morlet used them to search for intense, short term bursts in geologic
sonography data. They are also used in a multitude of imaging applications including
compression and analysis.

Simplicio: If wavelets are so great, why don’t we skip the other topics?

Galileo: Because you would be lost and confused. We will try to let the story unfold
so the ideas become more transparent.

Simplicio: So that’s it?

Galileo: Since the heat equation and the wave equation gave rise to the popularity of
Fourier series, we really are required to discuss partial differential equations. Since we
know your limits, we will make the discussions as brief as possible. Since differential
equations are also everywhere in Nature, we will mention those topics as well.
Simplicio: I never had a course in differential equations.

Galileo: He who does not understand motion, cannot understand Nature.

Simplicio: Maybe I should become a monk.

Galileo: You can run, but you cannot hide. Remember: Math is easy. Its life that is
difficult. And young lady, why are you here?

Virginia: I find all this talk about data and applications quite exciting. Hopefully,
this experience will make me a better teacher.

Galileo: If your students can see how mathematics connects with the real world, then
maybe they will be more motivated.

Simplicio: Again, why would you want to teach?

Virginia: [ enjoy the logic, clarity, and simplicity of mathematics. It all makes sense.



18 CHAPTER 3. TOPICS FOR THE TUTORIAL

I enjoy interacting with young people. My material needs are few so [ don’t object
to the low pay.

> and “Hmmm.”

Galileo: (The phone rings. Galileo answers. After he mumbles “Yes.’
repeatedly, he gets up from his chair.) My benefactor feels I should return to my
research. So ends my catechism.

Simplicio: One last question?

Galileo: Yes?

Simplicio: Every book on numerical methods I have looked at begins with a discussion
of round-off errors. Why haven’t you mentioned this topic?

Galileo: Round-off errors are a detail. The big picture comes first. (Galileo sips from
his glass of wine and departs.)

Simplicio: What do you think? Should we enroll in this guy’s tutorial or take someone
else’s class? All he talks about is definitions, theorems, and proofs. Nothing but math,
math, math. Worse yet, he seems to be a preacher teacher. I am not sure I can handle
it.

Virginia: You can always take the course with Professor Powertrip. You might prefer
to be with all those engineers. It is probably more your style.

Simplicio: Not a chance. That guy is mean and will do whatever he can to make you
feel stupid.

Virginia: How about Professor Poubelle’s section?

Simplicio: At least he wouldn’t expect much from us.

Virginia: While I am a bit worried about the computer projects and the applications,
I have decided to enroll with the preachy guy.

Simplicio: Tonight is ladies night at the “Math and Music Bar.” Interested?
Virginia: Are you serious? I have to study.

Simplicio: Tomorrow is another day, maybe.
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Day 2. Background and Review
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Let no one ignorant of geometry enter here.” -inscription above Plato’s

Academy

Galileo: You have returned?

Simplicio: While I am not yet certain this course of study is worth my time, I have
decided to give your tutorial a try.

Galileo: My administrator will be pleased I have clients. This is good. In any case,
be certain to pay your fees before you leave.

Simplicio: What?

Galileo: Don’t you expect compensation for your labors?

Simplicio: I will have to discuss this problem with my father. What about her?
Galileo: She has been awarded a scholarship.

Virginia: Enough of this talk. Let’s move on.

Galileo: I plan to begin our tutorial by presenting several proofs of the Pythagorean
Theorem.

Simplicio: Why on Earth would you present a theorem we have seen in our youth?
Galileo: Recall from our first conversation that the computation of the square root is
of fundamental importance in math, statistics, and engineering. The Linear Algebra

version is at the heart of the success of Fourier series.

The only prerequisite for this course is plenty between the ears.-Walter

Rudin

Simplicio: What are the prerequisites for this tutorial?

Galileo: Since my funding requires that I sustain my research program, let me be
brief. You only need to know one thing, but you have to figure it out.

Simplicio: (To Virginia) Is this guy serious? He speaks in tongues.

Galileo: OK, let me rephrase my response. To succeed in mathematics or science you
need to develop the ability to solve a problem on your own. Most never get it.

Simplicio: But can I ask questions?
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Galileo: The math gene is what separates you from the other primates so you have the
talent. Do you really think that an employer is going to reward you with a high salary
to implement well understood ideas? Unfortunately, mathematics is not a spectator
sport. Just like an athletic competition, you have to put in the time and effort. I
am not interested in passive learners who just say “feed me.” I expect you to run up
and down the field like everyone else. Otherwise, we will both be wasting our time.
Attitude is everything.

Simplicio: How about if you just tell me what I need to know to survive this tutorial?
Galileo: Since we will not be discussing specific issues in physics and biology, you
can learn those subjects on another occasion. While statistics is important and we
will discuss the rudiments of least squares and classification, you will not need any
training in statistics to follow our discussions. On the other hand, since one of the
main goals of this tutorial will be to develop algorithms, you will definitely need to
have basic skills in computer programming. If you don’t, you will be helpless when
asked to implement even the most rudimentary algorithm.

Simplicio: I can handle those requirements.

Virginia: I am worried.



Chapter 4

Geometry

There is no royal road to Geometry.—Euclid
Euclid alone hath seen beauty.—Emma Talley Shaw

Uncle Dave, Geometry is easy.-Carter McMillan

Simplicio: What mathematics prerequisites are required for this tutorial?

Galileo: A solid foundation in Euclidean Geometry is essential. You will find Pythago-
ras (569-475 B.C.E.) everywhere in our discussions.

Simplicio: Surely, you are joking Mr. Galileo. I found Euclid (325-270 B.C.E) dull,
difficult, and irrelevant.

Virginia: Mr. Simplicio, I find that statement surprising. I loved Euclid with his

points, angles, similar triangles, congruent triangles, the area formulas for a paral-

23
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lelogram and rhombus, and ruler and compass constructions. I particularly enjoyed
the careful and rigorous logic he used when presenting his axioms, postulates, and
theorems. Side-angle-side was my favorite. He opened a whole new world for me.
Galileo: As you will see, a multitude of ideas from Geometry have inspired computa-
tional algorithms. Our first algorithm will be introduced by my colleague Archimedes
(287-212 B.C.E.). He loved Geometry so much he had his formula for the volume of
a sphere engraved on his tomb.

Simplicio: Whoever heard of using a ruler and compass to implement a mathematical
technique on a computer? Side-angle-side? Give me a break.

Galileo: You will see.

4.1 The Pythagorean Theorem

At its deepest level, reality is mathematical in nature.-Pythagoras

There is geometry in the humming of the strings, there is music in the

spacing of the spheres.-Pythagoras

Galileo: In the spirit of the ancients, we begin with the Pythagorean Theorem. I
know you have seen it before.
Simplicio: It is a theorem I learned in geometry many years ago. Why would you

begin our discussion with such an old theorem?
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Galileo: Because the Pythagorean Theorem provides a unifying theme for this tuto-
rial. In fact, it contains four important concepts that appear everywhere in modern

mathematics. These concepts include:

1. distance,

2. roots,

3. irrational numbers,

4. orthogonality, and

ot

. projection.

Can you state the theorem?

Virginia: I remember it.

Theorem 4.1.1 (Pythagorean Theorem). If the legs of a right triangle have
lengths a and b and the hypotenuse has length c, then ¢ = a? + b®.

Galileo: We begin by making some easy observations about the theorem that should
help to make these themes more transparent. First, since the length of the hypotenuse
of a right triangle is the square root of the sum of the squares of the other two, it
forms the basis for computing the distance between two points. In fact, the formula
for the distance between two points P(xq,y;) and Q(z2,y2) in the plane is given by

the formula:

dist(P, Q) = /(w3 — 1)% + (y2 — y1)2.

This rule is an immediate application of the Pythagorean Theorem. Note that we
will begin our tutorial with a discussion of the Archimedes/Heron square root algo-
rithm for approximating the square root of a number. As you will see, the ideas in
this algorithm are embedded in a number of important modern techniques including

Newton/Raphson and the Contraction Mapping Theorem. Also, while lengths and



26 CHAPTER 4. GEOMETRY

distances may seem too easy, the concept of computing distances between points reap-
pears in Linear Algebra, Fourier series, orthogonal polynomials, splines, and wavelets.
We will revisit this idea repeatedly during our quest. Are wavelets new enough?
Simplicio: OK, OK.

Galileo: A key assumption in the Pythagorean Theorem is that one of the angles has
to be a right angle. Without that assumption, the theorem is false. As we will see in
our investigations, many numerical techniques fail badly. Engineers do not like being
blind sided by a stupid result when they are in the middle of a project. They like
methods that always produce accurate answers. The concept of orthogonality helps
fulfill this wish.

Simplicio: I never heard of orthogonality before.

Galileo: Orthogonality is just a fancy way of saying right angle or perpendicular. In
the Pythagorean Theorem, the two shorter sides of the triangle are assumed to be
perpendicular (and thus orthogonal).

Simplicio: It looks easy from here.

Galileo: The fourth idea is that we can project the hypotenuse of the triangle onto
either of the other two sides. Note that the length of the hypotenuse is greater than
the length of either of the other two sides.

Simplicio: That’s evident from the formula ¢? = a? + b2.

Galileo: This desirable property is a consequence of our assumption that the angle
opposite the hypotenuse is assumed to be a right angle. While not all projections
have this wonderful property, Fourier does. Such projections are called orthogonal.
Virginia: Since I don’t exactly understand Fourier series, I am not sure where you
are going with this. In any case I find these ideas interesting.

Simplicio: So far, I like this discussion. Easy is good.

Galileo: T like to begin with easy examples. Can you prove this theorem of Pythago-
ras?

Simplicio: I fear it has evaporated from my cranium.

Galileo: Pythagoras of Samos (ca.569 — ca.475 B.C.E.) is often described as the first



4.1. THE PYTHAGOREAN THEOREM 27

pure mathematician. While he is an extremely important figure in the development of
mathematics, we know very little about his mathematical achievements. Unlike many
later Greek mathematicians, we have nothing of Pythagoras’s writings. The society
which he led was half religious and half scientific. His theorem has been claimed
by both the Chinese and Babylonians at least 1000 years before his birth so maybe
others deserve credit as well.

Virginia: Isn’t it time we prove it?

Galileo: How about two proofs?

Proof. The Pythagorean Theorem
Proof 1:

After a cursory look at Figure 4.1, we see that the area of both squares equals
(a + b)%. Since the area of the square on the left is the sum of the square in the
middle and 4 triangles, A = ¢* + 4(3ab) = ¢* + 2ab. Since the area of the square on
the right is the sum of two squares and two rectangles, A = a® + 2ab + b?. Thus,
A = %+ 2ab = a? + 2ab + b*. By subtracting the quantity 2ab from both sides of the
equation, we arrive at the relation ¢? = a? + b°.

Proof 2:

A second proof can be given using only the square on the left. Since the area of
the large square is (a4 b)? = a® + 2ab+ b* and since the whole is equal to the sum of
its parts, we see that a® + 2ab + b* = ¢* + 4(3ab) = ¢* + 2ab. Again, by subtracting
2ab from both sides of the equation, we find ¢? = a? + b°. O

Galileo: That wasn’t so bad was it?

Figure 4.1: The Pythagorean Theorem
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Simplicio: Even I can understand these proofs. What else did he do?

Galileo: Pythagoras led a remarkable life. In about 535 B.C.E Pythagoras visited
Egypt, where he learned about their refusal to eat beans, wear even cloths made from
animal skins, and their quest for purity. In 525 B.C.E. Cambyses II, the king of Persia,
invaded Egypt. Pythagoras was captured and removed to Babylon. Eventually, he
was allowed to leave and returned to Samos. In about 518 B.C.E. he left Samos and
went to Croton in southern Italy, where he formed a mathematical/religious society.

He and his followers believed that reality is mathematical in nature.
Simplicio: Really?

Galileo: They even believed that things are numbers and each number has its own

personality.
Simplicio: Bizaar.

Galileo: They also believed that the Earth is a sphere at the center of the Universe

and that every number should be rational.
Simplicio: Those ideas seem more reasonable.

Virginia: What happened when they discovered the quantity /2 is not a rational

number?
Simplicio: They probably started eating beans again.

Galileo: And so it goes.

Exercise Set 4.1.

1. Prove the Pythagorean Theorem for three dimensions. In particular, if a,b,c
represent the lengths of the sides of a rectangular box and d represents the
length of the diagonal, then show that d* = a? + b* + ¢*. (Hint: Apply the

Pythagorean Theorem twice.)
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4.2 Garfield’s Proof of the Pythagorean Theorem

Ideas control the world.-James Garfield

Figure 4.2: President Garfield’s Proof of the Pythagorean Theorem

Galileo: While the Pythagorean theorem is of great interest to mathematicians, it

even inspired President James Garfield to provide his own proof. Let’s take a look.

Garfield: Instead of using a square, my proof based on the area of a trapezoid, where
the two bases have lengths a and b and the height is a + b. A picture containing the

idea of the proof is given in Figure 4.2.
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Proof. If we compute the area of the trapezoid, we find:

1
A :§(a+b)(a+b)
1
= i(a2 + 2ab + b%)

1 1
= §a2 + ab + 5b2

Now computing the same area as the sum of the areas of the three triangles that

comprise the trapezoid we find:

1 1 1
A = 5ab+§ab+§c2
b+1 2
=a —c
2

Setting these values for the area of the trapezoid equal to each other we find:

1 1 1
A:§a2+ab+§b2:ab+562.

Thus, by subtracting the quantity ab from both sides of the equation and multiplying
both sides of the equation by 2 we have the desired result:
a® + b = 2.

O

Simplicio: I don’t see that his proof is much different from the two we just discussed.
Dividing everything by two adds little to my understanding. He should have been
shot.

Galileo: He was.

Exercise Set 4.2.

1. Investigate Alexander Graham Bell’s role in trying to save President Garfield’s

life. What technology was used?
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4.3 The Method of Archimedes/Heron

Archimedes (287-212 B.C.E.)

Certain things first became clear to me by a mechanical method, although
they had to be demonstrated by geometry afterwards because their inves-
tigation by the said method did not furnish an actual demonstration. But
it is of course easier, when we have previously acquired by the method,
some knowledge of the questions, to supply the proof than it is to find it

without any previous knowledge.-Archimedes to Eratosthenes

Noli turbare circulos meos. Do not disturb my circles! Last words. Some-

times reported as: Soldier, stand away from my diagram.-Archimedes

Simplicio: What are the topics for today’s lesson?

Galileo: The first topic will be the Archimedes/Heron algorithm for computing the
square root of a positive number. This technique is easy to understand, always
works, and converges quickly. For an engineer this is the best of all possible worlds.
To illustrate how the algorithm works, we will compute a number of examples such
as v/2,v/3, and v/5. These computations should increase your comfort zone.
Simplicio: Sounds like a plan.

Galileo: We now introduce one of the great masters of antiquity, Archimedes of
Syracuse. He was one of the great mathematicians of all time, who wrote expositions

solid geometry, pumps (the Archimedes’ helix-shaped screw), floating bodies, the
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center of gravity, and the area under a parabola. His proof of the formula for the
volume of a sphere is a gem. If he had the ideas of modern algebra, he would have
invented Integral Calculus. Professor Archimedes welcome to our tutorial.
Archimedes: T am glad to be here.

Galileo: Good sir, could you enlighten us on your method for computing square roots?
Archimedes: The underlying idea is quite simple: given a positive number K find two
numbers a and b that are close together and have the property that ab = K. If the
approximations are not good enough, then replace a by the average @ = “TH’ and b by

K Note that ax b = K.

a

the product b =
The square root method can now be implemented in the following steps:
Let K > 0 be a given real number.
Step 0. Begin the process by setting ag = 1 and by = K.
Step 1. Set a; = @ and b; = %
Step 2. Set ay, = % and b, = %
Step n. Set a, = “"‘17;“””‘1 and b, = %
Note that for each iteration n, we have the property that a, * b, = K.
Galileo: What can be more reasonable and elegant than computing the average of
two numbers?
Simplicio: I like this method. It is easy to understand and easy to implement.
Archimedes: The algorithm can be simplified. In particular, if a, is replaced by z,
and b,, is replaced by %, then the method becomes:

Let K > 0 be a given real number.

Step 0. Initialize the process by setting zy = 1.

LK
Step 1. Set xy = IOZIO.
+ K
Step 2. Set xy = o 5L
xn71+w,f(,1

Step n. Set x, =

Simplicio: I like this version even better.

Example 4.3.1. Galileo: In Figure /.3 we have displayed the locations of the first

three estimates on the real line.
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X185

1! \x—w/a
X4z Ni= 167

Figure 4.3: The First Three Estimates of v/2

In Table 4.1 we have presented the first 6 estimates of the square root of 2 when

the initial guess is xy = 1.

xp | 1.000000000000000
x1 | 1.500000000000000
Ty | 1.416666666666667

x3 | 1.414215686274510

xq | 1.414213562374690

x5 | 1.414213562373095

xe | 1.414213562373095

Table 4.1: Six Estimates of v/2

Simplicio: Amazing!! After only 6 iterations we have 15 digits of agreement. I like
this algorithm.

Galileo: What do you notice about the terms of the sequence? Do they increase or
decrease?

Simplicio: Looks to me like they decrease after the initial guess.

Galileo: Why not try a few exercises to see how the method works?
Virginia: Where did this algorithm come from? What inspired you?
Archimedes: Geometry is the key. Consider Figure 4.4 where we suppose 2? ~ K

and we want to find a Az such that (v + Ax)? = K.

Archimedes: Since Az is small, Az? is even smaller, so we can eliminate this shaded



34 CHAPTER 4. GEOMETRY

AX

Figure 4.4: The Geometry Underneath the Square Root Algorithm
piece of the diagram. Doing so we find

K = (z+Ax)?

= 2% + 22Ax + Ax?

~ 1? + 2wz,
which implies
K — 2
Ax =~ il
2x
Thus,
K
r+Ar=x— a .
2x

Rewriting x + Az as z,,, and = as x,, we arrive at the equation

2
x; — K

Tn+1 =Tp —
Ty + %
2
1 N 1K
= —1 -
2°" " 2g,]
which is exactly the previously discussed method. In particular, the value of z,,; is
the average of x,, and %

Simplicio: But I have one quick question. Will the algorithm eventually terminate or

will we have to compute forever to get the exact answer?



4.3. THE METHOD OF ARCHIMEDES/HERON 35

Galileo: Note that if K is a rational number (i.e. the quotient of two integers), then
each x, T, ..., 2, must also be rational numbers. Thus, if VK = x,, for some n,
then v/ K must also be rational. The bad news is that even our colleague Pythagoras
noticed that the square root of 2 is irrational (i.e. not rational).

Virginia: Thus, if we start the process of approximating v/2 with zy = 1, then every
succeeding estimate x,, will be a rational number. And we are forced to make an
infinite number of computations to get the exact answer.

Galileo: As we have already learned, the ancients found this knowledge quite upsetting
and mystical. Archimedes do you have any other thoughts on this technique?
Archimedes: Note also that division by 2 in a calculator (or computer program) can
be implemented as a bit shift. Thus, the only serious computation is the division
by = .

Simplicio: I like that observation.

Galileo: You can see that Archimedes is keeping up with current advances in tech-
nology.
Virginia: What is a bit shift?

Simplicio: Instead of representing a number base ten by a sequence of digits chosen
from the set {0,1,2,3,4,5,6,7,8,9}, you represent a number base two by a sequence
of digits from the set {0,1}. For example, 6 = 2% + 1 x 2+ 0 = 110. If you divide 6
by 2, you get 3 = 2+ 1 = 11. In other words, to divide by 2 you simply drop the 0.

A computer geek will say he has shifted the digits 110 one unit to 11.

Example 4.3.2. Galileo: Let’s use our algorithm to compute the square root of zero.

Simplicio: Your kidding! Everyone in the room knows the answer. Why bother?

Galileo: I have an agenda. Simplicio: In any case, it is easy. If K = 0, then
a,‘%fK 1
Tpy1 = Tp — 2w, 7Tn-

Galileo: If xo = 1, then what is xg?

Simplicio: Since the value of the estimate at one step in the process is exactly half

1

the estimate at the previous step, Ts = 5.

Galileo: How far is that from the final answer?
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Virginia: Compared with the other examples we have just discussed, we are miles, no
light years, from the final answer.
Galileo: How many iterations will we need to get 12 digits of accuracy?

Simplicio: Since 2'° ~ 1000, we observe that 2*° ~ 1000* = 10"2. Thus, x4 & 15rz-
Virginia: Forty iterations is a lot more than six.

Simplicio: What’s going on here?
Galileo: Think about it. We will return to this issue shortly. If you work the homework
problems, you will see we have problems with very large numbers as well.

Simplicio: We were doing so well. Now I am worried.

Galileo: Before we leave the topic of computing square roots, we should observe the
idea underneath this method is to “linearize” the problem. More specifically, when a
problem is too difficult to solve in general, simply discard the higher order terms and
solve the remaining linear part of the problem. With luck, the solutions to a sequence
of simple linear problems will converge to the solution to the non-linear problem. We

will see this strategy again with the method of Newton/Raphson.

Exercise Set 4.3.
1. Show that v/2 is not a rational number.

2. Let K =5 and z¢y = 1. Compute the first five iterations of the square root algo-
rithm to estimate v/5. What do you notice about the terms of the sequence? Do
they increase or decrease? What is the difference between your estimate and the
exact answer? How many iterations does it take before the difference between
x, and the exact answer is less than 0.0000017 (Make your computations with

10 digits of accuracy.)

3. Let K = 10 and zy = 1. Compute the first five iterations of the square root
algorithm to estimate v/10. What do you notice about the terms of the sequence?
What is the difference between your estimate and the exact answer? How many
iterations does it take before the difference between z,, and the exact answer is

less than 0.0000017 (Make your computations with 10 digits of accuracy.)



4.3. THE METHOD OF ARCHIMEDES/HERON 37

4. Let K = 100 and zp = 1. Compute the first five iterations of the square root
algorithm to estimate v/100. What is the difference between your estimate and
the exact answer? How many iterations does it take before the difference be-
tween x,, and the exact answer is less than 0.0000017 (Make your computations

with 10 digits of accuracy.)

5. Let K = 10,000 and xq = 1. Compute the first five iterations of the square
root algorithm to estimate /10,000. What is the difference between your es-
timate and the exact answer? How many iterations does it take before the
difference between z,, and the exact answer is less than 0.0000017 (Make your

computations with 10 digits of accuracy.)

6. Let K = 1,000,000 and xy = 1. Compute the first five iterations of the square
root algorithm to estimate /1,000,000. What is the difference between your
estimate and the exact answer? How many iterations does it take before the
difference between x,, and the exact answer is less than 0.0000017 Compare the
number of iterations require for this problem and when you approximated v/2.

Which is greater? (Make your computations with 10 digits of accuracy.)

7. Let K =0 and ¢y = 1. Compute the first five iterations of the square root al-
gorithm to estimate +/0. What is the difference between your estimate and the
exact answer? How many iterations does it take before the difference between
x, and the exact answer is less than 0.0000017 Compare the number of itera-
tions require for this problem and when you approximated /2 and /T, 000, 000.

(Make your computations with 10 digits of accuracy.)

Simplicio: These exercises would have been a drag without my trusty programmable
calculator.

Galileo: While your calculator is fine for these problems it will be woefully inadequate
for most real-life computations. Get used to idea of implementing your methods in

computer software.
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Simplicio: No problem.

Galileo: Note that these exercises were designed to stress the algorithm. By comput-
ing VK for large and small numbers we are checking two important aspects of the
algorithm. First, we are looking to see if we get the correct answers. Second, we are
checking the rate of convergence. Both of these considerations will be addressed in
future discussions.

Simplicio: I guess I had better redo these problems.

4.4 'Two Applications of Square Roots

Figure 4.5: Heron of Alexandria (ca.10 — ca.75)

Galileo: While the Pythagorean Theorem provides one situation where the computa-
tion of a square root is needed, a couple of others should also be mentioned. You do
remember the formula for computing the area of a triangle?

Simplicio: Of course, the area is simply one half the base times the height.

Galileo: OK, but would it not be more natural to have a formula, which produces
the area in terms of the lengths of the three sides? This question is a natural one
because the height may not be known.

Simplicio: I don’t recall any such formula.
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Galileo: Leave it to the ancient Greeks to not only have asked this question, but to
have answered it as well. While Heron of Alexandria (10 — 75) is frequently given
credit for its discovery, the formula was already known to Archimedes of Syracuse
(287-212 B.C.E.). For the area of a triangle whose sides have lengths: a, b, and ¢, the

area is given by the formula:

A=/s(s—a)(s —b)(s —c),

atbic denotes the semi-perimeter. Note that the computation of a square

where s =
root is required.

Note that as long as you know how to compute the square root of a number, the
formula is straightforward to compute. Do either of you see why the formula might
be useful?

Virginia: In fact good sir, I prefer this formula to the usual one given in Geometry
because you frequently don’t know the height of the triangle. This formula works
great if you simply know the lengths of the three sides?

Simplicio: I like the formula, but how would anyone have ever thought of it?
Galileo: While I can’t answer that question, always remember that those ancient
fellows were smart and thought deeply.

Virginia: How would such a formula be proved?

Galileo: In modern notation, simply represent the vertices of a triangle by vectors
u = (a,b) and v = (¢, d) in the plane and compute. It helps to use the fact that the
area of the triangle is the absolute value of 1(ad — bc). However, it is still a bit of a
mess. We will leave this problem as an exercise.

Simplicio: (To Virginia) That problem belongs to you.

Galileo: A second example is the golden mean (or ratio) ¢, which the ancient Greeks
felt had special, even mystical, significance. This quantity appeared in their art and
architecture as well as their mathematics. The ratio of the height to the width of the
Parthenon equals this famous number. A pentagram is loaded with ratios equal to ¢.

The golden ratio is defined as the ratio ¢ = %, where x is the point in a line segment
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[0, 1] such that ¢ = 1;1}”” In other words, the point x is chosen so that the ratio of the
whole segment to the longer subsegment equals the ratio of the longer segment to the
shorter. When this proportion is solved for z, the answer is x = %‘/5 Since lengths
should be positive quantities, we are only interested in the answer x = ’1%‘/5 An
easy computation shows that ¢ = % = # =~ 1.61803.... Thus, the Greeks had a
natural interest in computing the quantity /5.

Virginia: If I remember correctly, this number can be approximated by computing
the ratios of the terms in the Fibonacci sequence 1,1,2,3,5,8, .. ..

Galileo: Very good.

Simplicio: Is that why we have note cards of dimension 3 x 5 and 5 x 87

Virginia: You do the math.

Exercise Set 4.4.

1. Compute the golden mean to 8 decimal places.

2. Compute the area of a triangle, whose sides have lengths 1,1, and 1.
3. Compute the area of a triangle, whose sides have lengths a, a, and a.
4. Compute the area of a triangle, whose sides have lengths 1,2, and 3.

5. Compute the area of a triangle, whose sides have lengths 1,2, and 4. Why do
you have an OOPS?

6. Prove the Archimedes/Heron formula for the area of a triangle, whose sides

have lengths a, b, c.
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4.5 Rigor

Figure 4.6: Kurt Godel (1906-1978)

The development of mathematics towards greater precision has led, as is
well known, to the formalization of large tracts of it, so that one can prove

any theorem using nothing but a few mechanical rules.-Kurt Godel

Simplicio: OK, what’s next?

Galileo: A solid understanding of Geometry is built on a foundation of mathematical
rigor. I insist you are comfortable with logical arguments.

Simplicio: I knew this discussion was going to deteriorate. Here it comes.

Galileo: Before you can understand the strengths and weaknesses of a mathematical
technique, you need to have an understanding of when it works and when it fails. A
bit of logic and mathematical formalism will aid in the understanding of when you
can trust a method. Key examples can be used to point out when you should be
suspicious. The first requirement in formal mathematics is that you must understand
the difference between an axiom, a definition, and a theorem.

Simplicio: Groan.

Galileo: Unfortunately, the beauty of numerical analysis is that the subject is ruled by

Murphy’s Law. Namely, “What can go wrong, will go wrong.” A technique that works
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well for one application may fail for another. Worse yet, for any given technique, an
example can invariably be found, where it provides answers that make no sense. It
is important to understand why one method is preferred over another. Definitions
and theorems can be used to make these thoughts precise. I now introduce Professor
Godel, who has agreed to help clarify these issues for us. Professor Godel.

Virginia: I am pleased to meet you sir.

Simplicio: Good day sir. (To Virginia) He looks mean. This meeting could get ugly.
Godel: T am not sure I am welcome. Maybe I should retreat to my office.

Galileo: Please enlighten these young people about the nature of mathematics.
Godel: T will try. First, every theorem consists of two parts. The first is the hypoth-
esis, while the second is the conclusion. If the theorem is valid and the hypotheses
are true, then we can conclude that the conclusion is also true. Symbolically, every
theorem is a conditional sentence of the form: If p, then . If the theorem is true
and we know that the statement p is also true for our particular situation, then we
immediately know that q is true as well. This bit of logic is called modus ponens.
Galileo: Let me note that our friends in statistics are also quite fond of conditional
sentences. The theorem of the Presbyterian minister Thomas Bayes (1702-1761) is
central to any discussion of conditional probability. Thus, people other than my-
self require you to understand the structure of language. In any case, what is the
hypothesis of the Pythagorean Theorem?

Virginia: Actually, we have two hypotheses. The first hypothesis is that the geometric
object we are dealing with is a triangle. The second is that this triangle is of a special
type. Namely, one of its three angles is 90 degrees.

Galileo: Correct. Now what is the conclusion?

Virginia: The relationship between the length of the hypotenuse and the lengths of
the other two sides of the triangle. Namely, the equation ¢? = a? + b%.

Galileo: Correct again.

Simplicio: Why are you boring us with these discussions? I know the formula

¢ = a® + b? has been established. But if I know the formula, then isn’t that good
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enough? What else matters?

Godel: How can this guy be so obtuse? Children are evil. (Godel departs)
Simplicio: This wizened little guy is mean.

Virginia: Maybe he was a pediatrician and had you as a patient.

Galileo: How about a bit less disrespect and a bit more discussion?

Godel: (Godel returns) Has anyone seen a small black valise? It contained important
work.

Galileo: What if the triangle is not a right triangle? In particular, what if the triangle
is acute or obtuse? You need to know when it is appropriate to apply the formula.
Virginia: Obviously, the formula does not apply for all triangles.

Galileo: Correct again. If the hypothesis is not satisfied, then the theorem does not
apply and you cannot pretend the conclusion holds.

Simplicio: What do you do then?

Godel: This discussion is outrageous. Plato understood these issues 2500 years ago.
These young people should have mastered logic and rigor when they studied Euclid.
We should not be having these discussions.

Galileo: Patience good sir. However, my experience has been that people in applica-
tions tend to be sloppy in these matters. I find it is better to discuss them up front.
Later, when the setting is more abstract, a discussion of rigor might get lost in the
mud. We might as well address the issue now while we are in the familiar setting of
geometry. You will be well served if you make the effort to clarify these questions of
rigor and logic now. Don’t worry, we will revisit these issues.

Godel: Let’s just reduce the discussion to the essentials.

1. A theorem is a statement of the form: “If p, then ¢.”

’

2. The converse of the theorem “If p, then ¢.” is the statement “If ¢, then p.”

)

3. The contrapositive (modus tollens) of the theorem “If p, then ¢.” is a statement

of the form “If ~ ¢, then ~ p.”
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4. If a statement “If p, then ¢” and its converse “If ¢, then p” are both true, then
p and q are considered equivalent. In this setting, the statements p and ¢ are

either both true or both false.

While politicians and preachers would like you to believe that a theorem and its
converse are equivalent, nothing could be further from the truth.

13

Simplicio: What are those little squiggles “~” doing in this discussion?

Virginia: Obviously, the symbol ~ p denotes the negation of p. In other words, if p is
true, then ~ p is false and vice versa.

Simplicio: How about an example?

Godel: Consider the statement: ”If you are Franklin Delano Roosevelt, then you are
famous.”

Simplicio: I would rather consider the statement: ”If you are Emmitt Smith, then
you are famous.”

Virginia: Who is Emmitt Smith? Is he famous?

Galileo: I think we are off topic here. In any case, let us assume the statement is
true.

Godel: The converse of MY version of the statement is: ”If you are famous, then you
are Franklin Delano Roosevelt.” Do you think this converse is also true?

Simplicio: No. Barbara Bush is famous and she is not even a male much less a
president. In particular, the two statements are not equivalent.

Virginia: On the other hand, the contrapositive of this statement is: “If you are not
famous, then you are not Franklin Delano Roosevelt.” Note that this statement is
indeed equivalent to the original statement.

Galileo: Correct again.

Simplicio: So why should I care?

Godel: T am done.

Galileo: Good sir. Before you depart, could you give us a quick summary of what
these young people need to know.

Godel: All these truths are encapsulated in Table 4.2.



4.5. RIGOR 45

Plq|pPNqgpPVq|P—4q
T|T| T T T
T|F F T F
F1T| F T T
FIF F F T

Table 4.2: The Truth Table for “And,” “Or,” and “If.”

Simplicio: I don’t understand all those symbols.

Virginia: Obviously, T = True and F = False.

Simplicio: I figured that out. Also, while I assume the symbol p — ¢ represents the
conditional statement “If p, then ¢.” What do the symbols A and V represent?
Godel: The symbol A means “And,” while V means “Or.”

Virginia: Ok, [ understand that if p and ¢ are both true, then we should define p A ¢
to be true. However, if you are ordering a meal at a restaurant and the choice is “tea
or coffee,” then you surely don’t get both.

Godel: Don’t confuse the “exclusive or” with the “inclusive or.” In a restaurant, you
will get tea or coffee, but not both. In Logic we are more generous and will give you
both.

Simplicio: I guess that’s why all the math restaurants have gone out of business.
Godel: The concept of a theorem is the most important idea to take away from Table
4.2. In particular, if a theorem p — ¢ is true and the hypothesis p is true, then the
conclusion ¢ is also true. This logic is exactly what use when we apply a general
theorem to a specific instance.

Virginia: And if we don’t satisfy the hypothesis, then we may be disappointed when
g turns out to be false.

Galileo: Correct.

Godel: In Table 4.3 we observe that the 3¢ column represents a statement and the

4™ column represents its converse. Note that these two columns are not the same.
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Virginia: However, the 3" and 7% columns are the same.
Galileo: Correct again.

Godel: T must be gone. (Godel picks up his valise and departs.)

plqg|P—=q|q—=P|~P|~q|~qg—=>~D
T|T T T F F T
T|F F T F T F
F|T T F T F T
FIF T T T T T

Table 4.3: The Truth Table for the Contrapositive

Galileo: Very good. Your observation is at the heart of a proof by contradiction. In
other words, we will assume that the statement ¢ is false and then will show that
the statement p is also false. In summary, an understanding of definitions, theorems,
converses, and contrapositives is about all the logic you will need to know.

Virginia: If I remember my Geometry correctly, we also considered lemmas, proposi-
tions, and corollaries.

Galileo: These three words all represent different names for for small theorems. A
lemma is interesting only because it can be used to help prove a more important
theorem. Sometimes they are called helping theorems because they help organize
the proof of an important theorem. A proposition is a small (but usually useful)
theorem, which is more of a stepping stone than a reservoir containing a big concept.
A corollary will usually represent an easy consequence of an important theorem. For
example, the Mean Value Theorem has several important corollaries that we will use
more often than the theorem itself.

Virginia: So when we are studying for an exam, we study the theorems first, the
corollaries second, and the propositions last.

Simplicio: Do we get to forget the lemmas?
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Virginia: For you, the answer is probably yes. For the rest of us, a lemma helps
us organize and remember the proof. What do you have to say about axioms and
definitions?

Galileo: Axioms are something you assume true. For example, in algebra we assume
that equals added to equals are equal.

Virginia: So, if a =b and ¢ =d, then a +c =0+ d.

Galileo: While definitions are written in the same “If p, then q.” format we use for
theorems, their purpose is to define a new concept.

Simplicio: An example please!

Galileo: How about the definition of a right triangle?

Definition 4.5.1. If a triangle has the property that one of its angles is a right angle,
then it is a right triangle.

Note that while this definition is written as a statement of the form “If p, then
q,” it is understood that the p and ¢ are equivalent.
Virginia: In other words, there are no converses for definitions. If the triangle doesn’t
have a 90 degree angle, it cannot be a right triangle.
Galileo: Looks like you understand the hierarchy. I would only add that you pay
special attention to theorems with names such as the Pythagorean Theorem, Taylor’s
Theorem, the Mean Value Theorem, and the Intermediate Value Theorem. We will
think of a theorem as an item in a bookkeeper’s ledger. Whenever you need to know
if something is true, you simply check the list of theorems in the ledger. If you find
one that you think might be relevant, all you have to do is check the hypotheses. If
they are satisfied, you get the conclusion for free. In other words, the hard work has
already been done. Now, you have to admit that this logic and rigor is easy. All you
have to know is four logic rules and the difference between an axion, a definition, and
a theorem.

Simplicio: I should have gone to church this morning.

Galileo: Remember, math is easy, it’s life that’s uncertain.
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Simplicio: Let’s move on before I become rigor-mortified.
Galileo: We end with the definition of the inverse of a statement. I will leave it for

you to show the inverse of a statement is equivalent to the converse.

Definition 4.5.2. The inverse of the statement “If p, then q.” is the statement "If

~ p, then ~ q.”

Exercise Set 4.5.

1. Use a truth table to show the inverse is equivalent to the converse.

2. Use a truth table to show the statement “If p, then ~ ¢.” is equivalent to the
statement “(~ p) V (~ ¢).”
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Isaac Newton (1642-1727)

Truth is ever to be found in the simplicity, and not in the multiplicity and

confusion of things.-Isaac Newton

Simplicio: What are the topics for today’s lesson?

Galileo: The first topic will be an algorithm for computing the cube root of a number.
This technique is a natural an extension of the Archimedes/Heron algorithm for com-
puting the square root of a number. As before, this technique is easy to understand,
always works, and converges quickly. For an engineer this is the best of all possible
worlds. To illustrate how the algorithm works, we will compute a number of examples
such as /2.

Simplicio: Wait a minute. I am a bit confused here. The other day you talked about
the root of a function f(x). Today you are talking about the root of a positive number
K. Do I detect double talk here?

Galileo: You have made a good observation. However, this confusion can be quickly
explained away because the quantity r = v/K is a root of the function flx) =2 - K.
Simplicio: Oh, I see all you have to do is substitute = VK into the function f(z)
and get f(r) = f(VK) = (VK)? — K = K — K = 0. I now understand that point.
What is next?

Galileo: After the cube root algorithm, we introduce a similar algorithm for comput-
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ing n'" roots.

Simplicio: While I can understand why someone might be interested in computing a
cube root, why in heaven’s name would I care about n'* roots?

Galileo: What about music? Recall that a piano has 12 keys for each octave. Each
key is represents a different frequency. The frequency represented by C in one octave
is twice the frequency for C in the previous octave. The 12 root of 2 is the key.
Also, the formula for the n'® root algorithm motivates the formula for the method of
Newton/Raphson. As it turns out, the square root, cube root, and n'* root methods
are all special cases of Newton/Raphson.

Simplicio: Why would we bother with the special cases then?

Galileo: Now you are thinking like a mathematician. If you have a general method,
why not keep it simple and discard the special cases? However, from a pedagogical
point of view, we like to discuss the easy cases first. Building on the experience we
have gained from the easy cases, the general cases should be more accessible. We
could begin our discussion with the method of Newton/Raphson. However, simple
examples exist, which demonstrate that this method doesn’t always work. Our square
root method doesn’t have this problem.

Simplicio: Now you have me worried.

Galileo: Mathematicians always worry. However, after showing you how to compute
square roots, cube roots, and n* roots, we present Cardano’s formula for computing
the roots of a cubic polynomial. This nifty formula requires that you are able to
compute square roots and cube roots.

Simplicio: That sounds fine.

Galileo: The next set of topics will be focused on different root finding techniques.
In particular, we will present the Newton/Raphson, secant, and bisection methods.
Simplicio: Techniques are good. I am sure I will enjoy it.

Galileo: After we discuss these three algorithms, the story turns ugly. We first
show that Newton/Raphson fails in a fundamental way. Sometimes the algorithm

produces a sequence, which diverges to infinity. Sometimes the sequence converges
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to an unexpected answer. Occasionally, the sequence simply oscillates.

Simplicio: This is not the news I wanted to hear.

Galileo: Unfortunately, the evil Mr. Murphy is lurking behind every clever algorithm.
He will pounce when you least expect it. In addition to we will mention a famous
example of James Wilkinson, which shows that the roots of a 20 degree polynomial
can lead to dangerous instabilities. In other words, you are insane if you model a
real-world problem with a high degree polynomial.

Simplicio: OK, OK.

Galileo: The next discussion will focus on the successes we can salvage from our
collection of disasters. In an effort to understand and rectify these issues, we turn to
mathematics.

Simplicio: Does this mean theory?

Galileo: When you hit the square root button on your calculator, you would like to
get the correct answer, wouldn’t you?

Simplicio: I have no argument with correct answers.

Galileo: Actually, you are making too much of a big deal about mathematical rigor.
We did all the heavy lifting yesterday when we defined and discussed convergence.
We will show the method of Archimedes/Heron “always works.” The words bounded
and increasing will reappear.

Virginia: I look forward to these insights.

Virginia: What’s next?

Galileo: The next goal is to demonstrate mathematically why one method might be
preferred over another.

Simplicio: What does the word “preferred” mean in this context?

Galileo: If it takes 5 iterations to compute the square root of a number with one
method and 30 iterations with another, which would you prefer?

Simplicio: Hmmm.

Galileo: Surprisingly, the Mean Value Theorem and Taylor’s Theorem will drive this

discussion. We are interested in the problem of when one sequence converges faster



o4

than another.

Simplicio: Wait a minute. What does it mean for one sequence to converge faster
than another?

Galileo: Now you are thinking like a mathematician. The first type of convergence
is called first order or linear. The second is called second order or quadratic. The
Mean Value Theorem is the tool for showing a sequence converges linearly. Taylor’s
Theorem is used to show Newton/Raphson (usually) converges quadratically. As you
will see, quadratic convergence is preferred.

Virginia: So Newton/Raphson is preferred when it works!

Galileo: Correct. If one is not careful, Murphy will get you.

Virginia: What is next?

Galileo: The process of understanding the method of Newton/Raphson leads to the
amazingly general Contraction Mapping Theorem. Once the terms contraction and
fixed point have been defined, this theorem is easy to state, easy to prove, and even
easier to implement. The method always works. Better yet, a multitude of appli-
cations are connected with this theorem including the solution of linear equations,
non-linear equations, the solution of differential equations, and the creation of fractal
patterns. This technique represents the best of all possible mathematical worlds.
Virginia: Great.

Galileo: We will finish the day with a discussion of Aitken’s method. The goal of this
technique is to speed up the rate of convergence from linear to quadratic. While it
works well in some cases, it is not as useful as one might hope.

Simplicio: What? You are going to waste our time by showing us methods that don’t
work?

Galileo: While Aitken has his place in the world of numerical methods, his technique
does little to speed up the bisection method. This is just one example. The sad truth
is that the highway of numerical techniques is littered with good ideas that failed to
perform as hoped.

Virginia: Let me summarize today’s agenda:
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1. the square root technique of Archimedes/Heron,
2. general root finding techniques,
3. failure of general methods,
4. success of general methods,
5. analysis of convergence rates,
6. generalization of Newton/Raphson to the Contraction Mapping Theorem, and
7. Aitken’s Method to improve the convergence rate.

Galileo: You got it.

Simplicio: The program makes sense to me.
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Chapter 5

The Computation of n'" Roots

5.1 Cube Roots

Galileo: Since we now understand how to compute square roots, we now turn to
the problem of computing cube roots. Our strategy will be to imitate the approach
described for square roots. This time we will again assume that the quantity x is
a reasonably close approximation of /K and now search for the quantity Az such
that (z + Az)> = K. While the picture is more difficult to draw than for the 2-
dimensional case, it can be visualized by simply replacing the square by a cube as we
have attempted in Figure 5.1.

Again, if Az is small, then Az? and Az® are even smaller, so we find

K = (v+An)?
= 2® + 322 Azx + 3zAz? + Az

~ 2% + 3% Ax.

Thus, if we let Az = K?);g«‘s and replace = by z, and x + Az by x,,,, we have the

following cube root algorithm:

Ty = ]_,

3
o —K
Tpgl = Tp — gx% ,n > 0.

o7
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Simplicio: This discussion is quite familiar.

AX

AX

Figure 5.1: The Geometry Underneath the Cube Root Algorithm

Example 5.1.1. Galileo: OK, it is time to work an example. In Table 5.1 we display
the first siz approzimations of /2.

xo | 1.000000000000000

x1 | 1.333333333333333

To | 1.263888883838889

x3 | 1.259933493449977

x4 | 1.259921050017770

x5 | 1.259921049894873

Te | 1.259921049894873

Table 5.1: Six Estimates of v/2

Simplicio: This set of computations is amazing! Once again, the 5" and 6 terms
are identical out to 15 decimal places.

Galileo: What else do you notice?

Virginia: After the initial guess, the terms are decreasing.

Galileo: In Figure 5.2 we once again display the locations of these estimates on the

real number line. As you have noticed, the third estimate is less than the second.
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xif“;sz?

w1 %,= Lagze 2

Xs= L2599

Figure 5.2: The First Three Estimates of v/2

Galileo: Very good. Now let’s make a few remarks about the algorithm. Since the

formula for z,,, can also be written as
20t 2 1K

xT = — = —I —|———7
n+1 3 3 n 3%’%

it becomes apparent that x,; is the weighted average of x,, and %, where the first
weight is % and the second weight is %

Archimedes: While I get annoyed when others try to take credit for my ideas, I am
a bit embarrassed that you are assigning this method to me. We didn’t even think
about cube roots in those days.

Galileo: While you are correct, you must admit the concept is the same. While this
generalization to the computation of cube roots may seem like an easy generalization
of the method of Archimedes/Heron, the time gap is in terms of millennia.
Simplicio: Probably nobody cared.

Galileo: You may be right. Even today, square roots are used much more often
than cube roots. In any case, the concept that bridged the gap was an improved

understanding of algebra and the binomial theorem.

Exercise Set 5.1.

1. Let K = 5 and 2y = 1. Compute the first five iterations of the cube root
algorithm to estimate v/5. What is the difference between your estimate and the
exact answer? How many iterations does it take before the difference between
x, and the exact answer is less than 0.0000017 (Make your computations with

10 digits of accuracy.)
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. Let K =10 and zy = 1. Compute the first five iterations of the cube root algo-

rithm to estimate v/10. What is the difference between your estimate and the
exact answer? How many iterations does it take before the difference between
x, and the exact answer is less than 0.0000017 (Make your computations with

10 digits of accuracy.)

. Let K = 1000 and zy = 1. Compute the first five iterations of the cube root

algorithm to estimate v/1000. How many iterations does it take before the dif-
ference between z,, and the exact answer is less than 0.000001? (Make your

computations with 10 digits of accuracy.)

. Let K = 1,000,000 and xy = 1. Compute the first five iterations of the cube

root algorithm to estimate /1, 000, 000. How many iterations does it take before
the difference between x,, and the exact answer is less than 0.0000017 Compare
the number of iterations with your answer for /1, 000,000. Which algorithm

takes more iterations? (Make your computations with 10 digits of accuracy.)

. Let K = 10° and zy = 1. Compute the first five iterations of the cube root algo-

rithm to estimate v/10°. What do you notice? How close is the last estimate to
the correct answer? How many iterations does it take before the difference be-
tween x,, and the exact answer is less than 0.0000017 (Make your computations

with 10 digits of accuracy.)

. Let K = 0 and zy = 1. Compute the first five iterations of the cube root

algorithm to estimate v/0. How close is the last estimate to the correct answer?
How many iterations does it take before the difference between x,, and the exact
answer is less than 0.0000017 Compare the number of iterations require for this
problem and when you approximated /0. (Make your computations with 10

digits of accuracy.)
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5.2 n!" Roots

Galileo: We now show how to generalize the method of computing cube roots to a
method that can be used to compute the n'* root of a number.

Simplicio: Why would we care about n'* roots?

Galileo: What about music? Let’s ask Pythagoras.

Pythagoras: Long ago I observed that two blacksmith’s striking different anvils at
the same time can produce resonating frequencies when one is twice the size of the
other. With string instruments two strings produce resonating sounds when one is
twice (or three times) the length of another and under the same tension.

Simplicio: How do you get the tensions to be the same?

Pythagoras: If you place the fret at the midpoint, the frequency is doubled.

Galileo: While we are at it, let me comment that a major concern of Fourier series
is the problem of approximating functions f(x) : [—m, 7] — R by linear combinations
of functions of the form 1,cos(z),sin(x), cos(2z), sin(2x), ..., cos(nz),sin(nz). Note
that the frequency of cos(2x) is twice that of cos(x) and the frequency of cos(3x) is
triple that of cos(x). We will return to this topic.

Simplicio: Interesting.

Galileo: Since my father was a musician, I find this subject of particular interest and
would like to make a couple of additional remarks. Every piano has 12 notes from one
octave to the next. As you progress up the scale, the frequency changes by the factor
¥/2. In the key of C, you begin with middle C as the first note, D is the second note,
E is the third, F is the fourth, and G is the fifth. Thus, if you strike the fourth white
key to the right of middle C, you have the perfect fifth. The frequency of middle C
is 252 Hertz so the frequency of the perfect fifth is 252 x ( ¥/2).

Simplicio: What a strange way to tune an instrument? Why not simply tune the piano
so the frequencies are equally spaced? That method would seem more reasonable to
me.

Pythagoras: As I just remarked, if we were to use your strategy, then the frequency
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of C (or any other note) in one octave would not be twice the frequency of C in
the previous. Thus, our notes would not be harmonious. On the other hand, if the
frequencies are spaced multiplicatively, then harmony is preserved.

Simplicio: I have another question. If the note G is called the perfect fifth, then why
isn’t it computed as 252 x ( §/2)°?

Galileo: The modern piano has black keys as well as white keys. These black keys are
tuned as half notes (also known as semitones). The perfect fifth is seven half steps
above middle C.

Pythagoras: And note that the quantity ( V/2)7 ~

N

Simplicio: Interesting.
Galileo: People frequently remark that music and mathematics go together. Well,
there it is.
Now let’s get back to the mathematical issue of computing the n* root of a number
K by following the strategy used for computing cube roots. To that end, suppose we
have a number & which is a reasonably close approximation of /K. We now would
like want to approximate the quantity Az with the property that (z + Az)” = K.
Again, if Az is small, then for any integer k& > 1, the power Az” is even smaller.
For example, if Az = 0.1, then Az? = 0.01 and Az® = 0.001. Thus, by the binomial
theorem we find that

K =(x+Ax)"

— "+ nxnfle + n(n _ 1)$n72AJI2 + n(n _ ].)(TL _ 2)

T a0 2" PAL 44 Az

~ "+ nz" Az

K—zm"

nxn—1"

Thus, a good choice for the approximate Ax is to set Az = If we set x, = x

and 1, = x + Az, then we have the following recursive algorithm for any K > 0 :

Ty = ]_,

n
xp—K

Tpy1 = Tk — a1
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Simplicio: Given the previous discussions on square roots and cube roots, the tech-
nique is quite understandable.

Galileo: Again, note that we have taken a difficult problem, non-linear in the variable
Az, and made it linear in that variable.

Virginia: Is that so the problem is easier?

Galileo: Correct. Note also that we can again write x;,; as the weighted sum of xy

x’{il . In particular,
k

and

Th+1 = $k+ﬁ—x T

n—1 1 K
P
k

where the two weights are wy = ”T_l and w, = %

Simplicio: OK, this discussion is getting all too familiar. How about an example?

Example 5.2.1. Galileo:

We have presented the first siz approzimations for /2 in Table 5.2.

xp | 1.000000000000000

x1 | 1.200000000000000
o | 1.152901234567901
w3 | 1.148728886527325
x4 | 1.148698356619959
x5 | 1.148698354997035
xg | 1.148698354997035

Table 5.2: Six Estimates of /2

Simplicio: These computations are getting boring. I can see that the questions and

answers are the same as for square roots and cube roots.
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Example 5.2.2. Galileo: We have presented the first siz approzimations for N2 in
Table 5.35.

xo | 1.000000000000000
x1 | 1.083333333333333
x9 | 1.062153572038919
x3 | 1.059500262653840
x4 | 1.059463101529905
z5 | 1.059463094359296
Te | 1.059463094359295

Table 5.3: Six Estimates of /2

Simplicio: Finally something happened! At least we have a difference in the 15" digit

for the 5 and 6 estimates.

Galileo: This algorithm is worthy.

Exercise Set 5.2.

1. Compute v/2 using 2o = 1 to initialize the algorithm. How many iterations
does it take before the error is less than 0.0000017 (Make your computations
with 10 digits of accuracy.)

2. Compute v/2 using zp = 1 to initialize the algorithm. How many iterations
does it take before the error is less than 0.0000017 (Make your computations
with 10 digits of accuracy.)

3. Compute the first five iterations of the n** root algorithm to estimate ¥/2 using
2o = 1 to initialize the method. How many iterations does it take before the

error is less than 0.0000017 (Make your computations with 10 digits of accuracy.)

4. Compute the first five iterations of the n** root algorithm to estimate 3/2 using

2o = 1 to initialize the method. How many iterations does it take before the
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error is less than 0.0000017 Compare the number of iterations required with the

previous three problems. (Make your computations with 10 digits of accuracy.)

5. Compute the first five iterations of the n'* root algorithm to estimate Y/0 using
2o = 1 to initialize the method. How many iterations does it take before the

error is less than 0.00017 (Make your computations with 10 digits of accuracy.)
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Chapter 6

Cardano’s Method for Cubic

Polynomaials

Girolamo Cardano (1501-1576)

[ wrote it out five times, may it last the same number of millennia.-

Girolamo Cardano

Galileo: Since we now understand how to compute square roots, cube roots, and n'®
roots, we now turn to the problem of computing roots of cubic polynomials. First,
let us remind you that the solutions of the quadratic equation Az? + Bx + C = 0 are

. _ —B+VB?—4AC
given by r = o .

67
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Simplicio: Sure, I remember that formula. I learned it many years ago.

Galileo: Well then, can you solve the general cubic equation Ax®+ Bx?+Cx+D = 0?
Simplicio: I must admit I have forgotten that formula.

Galileo: Actually, the development of these formulas has a long and sometimes bitter
history.

While it may be true that the Babylonians were the first to solve quadratic equa-
tions sometime around 400 B.C.E., this statement is a bit of an oversimplification
since the Babylonians had no notion of “equation.” What they did develop was an
algorithmic approach to solving problems which, in our terminology, would give rise
to a quadratic equation. The method is essentially the technique of “completing
the square.” Of course, the ancient Greek mathematicians knew how to solve the

quadratic formula by ruler and compass.

Omar Khayyam (1048 - 1122)

Algebras are geometric facts which are proved.-Omar Khayyam

Nearly 1500 years later, we find the first success at solving a cubic equation. While
trying to solve the problem of finding a right triangle with the property that the
hypotenuse equals the sum of one leg plus the altitude of the hypotenuse, the Persian
mathematician and poet, Omar Khayyam (1048 - 1131), found a positive root to the
cubic equation z® + 200z = 2022 4 2000. The mathematics world would have to wait

another 400 years for a solution to the general cubic equation and the solution would
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not come easily. The Italian mathematician Scipione del Ferro (1465-1526) designed
algebraic solutions to cubic equations of the form z® + max = n.

Simplicio: Did del Ferro publish his work?

Virginia: He made the mistake of showing his ideas to his student Antonio Fior.
Simplicio: How so?

Virginia: Didn’t he compete in a challenge, where each contestant gave the other

thirty problems to solve?

Figure 6.1: Niccolo Fontana (1499-1557), aka Tartaglia, the Stutterer

When the cube and the things together

Are equal to some discrete number,

Find two other numbers differing in this one.
Then you will keep this as a habit

That their product shall always be equal
Exactly to the cube of a third of the things.
The remainder then as a general rule

Of their cube roots subtracted

Will be equal to your principal thing.-Niccolo Fontana
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Galileo: Correct. The other contestant was another Italian mathematician, Niccolo
Fontana (1499-1557), known as Tartaglia, the stutterer.

Simplicio: Why was he called the stutterer?

Galileo: When he was a teenager, the French invaded his home town. In the process,
a soldier bashed the young fellow in the head causing such severe and permanent
injuries he found it difficult to speak.

Simplicio: So what contribution did Tartaglia make to the problem of solving cubics?
Galileo: Tartaglia’s methods were more general and were able to solve cubics of the

form 3 + ma?

= n. Fior’'s methods cold not handle this case and Tartaglia won
the challenge. This challenge between Fior and Tartaglia sparked the interest of yet
another Italian mathematician, Girolamo Cardano (1501-1576).

Simplicio: So who was Cardano?

Galileo: Cardano was an unusually cantankerous fellow, who was schooled in the
field of medicine. However, because of his reputation as a difficult man he was not
admitted to the College of Physicians in Milan. This rejection forced him to establish
a small medical practice of his own. Cardano’s practice, however, could not pay his
gambling bills, so when a mathematics lecturing position became available at the
Piatti Foundation in Milan, he took it. After hearing of Tartaglia’s success with a so-
lution to the cubic equation, Cardano attempted, without success, to learn Tartaglia’s
methods. Cardano first contacted Tartaglia through an intermediary to request that
his method be included in Cardano’s soon-to-be published book. Tartaglia declined
Cardano’s request stating that he intended to publish the method himself. Cardano
then persuaded Tartaglia to explain his method.

Tartaglia did not just simply tell Cardano his results. Instead, he wrote them in a
poem, so that if it were to fall into the wrong hands, they would still be safe. Further-
more, he insisted that Cardano would not publish the results. Cardano, with the help
of Tartaglia’s method, was able to find proofs for all cases of the cubic. He even solved
the quartic equation. Some years later, Tartaglia still had not published his results.

Cardano then learned that del Ferro, not Tartaglia, had been the first to solve the
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cubic. Cardano used this new information to justify publishing Tartaglia’s method.
While Cardano gave Tartaglia full recognition, Tartaglia never forgave Cardano.
Virginia: I can understand why. The formulas are known as Cardano’s formulas.
Poor old Tartaglia is never mentioned.

Galileo: There are many bitter stories like this one in academics. The profession
seems to attract people who have a tendency to involve themselves in this type of
politics.

Simplicio: I think my decision to go into business may have been wise.

Galileo: As we noted the general cubic equation can be reduced to an equation of the
form, where the quadratic term equals zero. Thus, we can assume that the cubic has

the form:

p(z) =2 +pr+q=0.

For a cubic equation of this form, Cardano’s Formula 6.2 shows that one root can be

written in the form:

Figure 6.2: Cardano’s Formula

Virginia: I like this formula because it shows the roots of a cubic equation can be
written in terms of square roots and cube roots.

Simplicio: I agree that Cardano and his friends have produced an amazing formula.
Galileo: Not so fast. Note that care must be exercised when we actually apply the
formula. A problem arises because the square root always generates two answers and
the cube root function always generates three answers. (Of course, the square root
and cube root of zero is zero, so that number is an exception.) Thus, this expression
for r could generate as many as 12 different “answers.” However, this problem will
be avoided if we assume p and ¢ are real numbers and the expression ¢? + %p3 is

positive. In this setting, we can make the convention that we choose the positive



72 CHAPTER 6. CARDANO’S METHOD FOR CUBIC POLYNOMIALS

square root y/q% + %p3 in both parts of the formula for r. Since —g+4/¢*> + %p?’ >0
and —q — /¢? + %p3 < 0, we can always find a unique real cube root of each. If

we follow this convention and thus avoid choosing complex numbers, then r will be a
root.

Virginia: What if ¢* + 5-p? is negative?

Galileo: We then have to get distracted by the subject of complex numbers. Since
we have many more topics to discuss, let us move on.

Virginia: Are there similar formulas for polynomials of all degrees?

Galileo: Unfortunately, the answer to that question is no. While the general quartic
equation can also be solved using only square roots and cube roots, the Norwegian
mathematician Niels Henrik Abel (1802-1829) and the French mathematician Everiste
Galois (1811-1832) showed that no such formula exists for the equation z°+z+1 = 0.
Of course, we should not forget that Gauss proved the Fundamental Theorem of
Algebra around 1800. In fact, he produced five different proofs. The beauty of this
theorem is that it states that every polynomial

Pu(1) = 2" +ay_ 12" +an,_ox" % +. ..+ aix+ag, where each ay, is a complex number,
has the property that it can be factored as a product of linear factors in its roots. In
other words, roots ry, ry, ..., 7, can be found so that p,(z) = (x—ry)(z—7r2) ... (x—1y).
If we count multiplicities, we see that every polynomial of degree n > 1 has exactly
n real roots. Unfortunately, the bad news is that the work of Abel and Galois shows
that we will be unable to find a tidy little formula for these roots.

Simplicio: I notice that these two fellows Abel and Galois both died at an early age.
Galileo: While Abel died of tuberculosis, Galois was shot and killed in a duel over
politics or a woman. It seems that he had a penchant for getting into trouble. A year
before his death, he made threats against King Louis-Phillipe while at a dinner with
200 Republicans. While making his speech, he may have been holding a dagger in his
hand.

Virginia: Is it not true that trouble seems to have followed you as well.

Galileo: At least I left my daggers at home.
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Simplicio: Again, I think my decision to avoid a career in academics may have been

wise.

Exercise Set 6.1.

1. Compute a root of the equation 2® + 2 +1 = 0.
2. Find a root for Omar Khayyam’s equation x® + 200z = 2022 + 2000.

3. Show that the quantity r given by the Cardano Formula 6.2 actually produces
a root for the equation 2® + px + ¢ = 0. (Hint: Substitute z = r into p(z).)

4. Compute a root of the equation 2 + 22 +1 = 0.

5. Find a formula for a root of the equation z® + Az? + Bx + C = 0. (Suggestion:

Surf the internet to see what others have done.)

6. Show the equation 2 + x + 1 = 0 has exactly one real root.
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Chapter 7

Algorithms for Finding Roots

Isaac Newton (1642-1727)

If T have been able to see further, it was only because I stood on the

shoulders of giants.-Isaac Newton

Galileo: We now introduce the English mathematician Isaac Newton (1642-1727), who
is one of the giants in physics and mathematics. His treatise, Principia, is probably
the most important science book ever written because it created mathematical models
that explained the motion of the projectiles, planets, pendulums, fluids, and the tides.
These models are based on fundamental principles concerning the nature of force,

including gravitational and centripetal. His Second Law of Motion, F' = ma and his

75
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inverse square law for gravitation are probably his most famous. The mathematical
foundation for this work was geometry, geometry, geometry.
Simplicio: Wait a minute. What about Calculus?
Galileo: If you actually open this magnificent book, you will notice an abundance of
triangles, parallelograms, and ellipses. You will find no derivatives g—g. Old Is aac was
too smart to justify his methods on mathematics that was not quite ready for prime
time. Of course, the spirit of Calculus was present everywhere.
Simplicio: Sounds like a lot of math theory to me. Did he include any data to support
his theory?
Galileo: In fact, he did. Remember that the idea that the orbits of the planets might
be elliptical comes from Kepler. The basis for his ideas was the data set acquired by
Tycho Brahe (1546-1601). Newton actually included other astronomical data in his
“Principia.”

Tell us about yourself, Sir Isaac.
Newton: While I was interested in a variety of different subjects including chemistry
and theology, my main interest was in physics and mathematics. In physics, I made
fundamental contributions to dynamics, statics, optics, hydrodynamics, hydrostatics,
and of course I discovered Calculus.
Virginia: I thought Gottfried Wilhelm von Leibniz (1646-1716) also invented Calculus.
Newton: Yes, you might have heard about that controversy. However, as the president
of the Royal Society, I appointed an “impartial” committee to decide whether Leibniz
or myself was the sole inventor. The official report of this illustrious committee
concluded that I deserve full credit for the Calculus as we know it. Of course, I used
the Calculus to explain the motion of falling bodies, Kepler’s three laws of planetary
motion, as well as the tides.
Galileo: But who wrote the report?
Newton: Well, I did.
Galileo: Enough of that. Let us mention, however, that Joseph Raphson (1648-1715)

was a contemporary of yours, but used the same method to approximate roots of an
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equation. Raphson, however, was one of the few people who you allowed to see your
mathematical papers.

Newton: He took a clear position in favor of my claims over those of Leibniz. I
appreciated his support.

(Newton leaves.)

Virginia: I am not certain that I would like to converse with that Mr. Newton again.
He is a most unpleasant fellow.

Galileo: A great mind may possess a small personality. How about if we forgot all
that politics and refocus our energies on his method. Since has been such a cad about

the efforts of others, I think we should give Raphson equal credit?

7.1 The Method of Newton/Raphson

Galileo: Professor Newton, could you explain the ideas behind your method?

Newton: Certainly. Let us begin this section with the definition of the term root.

Definition 7.1.1. If X is an interval and f(x) : X — R is a function, then a point
r € X is called a root of f(x) if f(r)=0.

Newton: The fundamental principle underlying the method is to “linearize the prob-
lem” by approximating a non-linear function by a straight line. Thus, easiest starting
point is to find the root of the function f(x) = m(x — o) + b.

Simplicio: Even I can do that. All you have to do is solve the equation 0 = m(r —

b
g

x9) + b. As long as m # 0, the root r = zy —
Newton: My method is not much more difficult. Since the first derivative of a function
is the slope of the line that “best approximates” the curve y = f(x) at a given
point (xo, f(zo)), we begin the process by drawing a tangent line to the curve at
this point. Since the tangent line to the curve y = f(x) at a point zy is given by

y = f(xy) + f'(xo)(x — xg), and the root of this linear equation is found when y = 0,
the x-intercept is found by solving the equation 0 = f(xo) + f'(xo)(z — w0), for .
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When we do this, we find that = 2y, = xy— ;,(é?). If x,, represents the approximation
at the n'* iteration, then x,; = z, — ;c,(g;)).

The Newton/Raphson Algorithm:

Tp = an initial guess.
Tpp1 = Tp— f,(x”) for all n > 0.
f'(@n)

The recursive part of the algorithm can be thought of as a generalization of the
2K

s, where the denominator of the fractional

cube root algorithm z,.; = z, —

expression is also the derivative of the numerator.

Simplicio: Actually, I am quite comfortable with this algorithm.

Example 7.1.1. Galileo: We now include a practice problem. If we would like to
approzimate the value of \/2, then we can let ©o = 1 and begin computing using the
recursive formula stated in the algorithm. Notice that the first step is to think up a

function f(x) which has the property that r = /2 is a root.

Virginia: How about the function f(z) = x? — K?

Successive Approximations of the Newton/Raphson Method

The X Values

Figure 7.1: Five Steps Newton/Raphson Estimates for f(z) = z* — 2
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Galileo: The approzimations provided by the first five steps of the method are displayed
in Figure 7.1. Note that xo is between the root r = VK and x1, T3 1S between r = VK
and xo, and x4 is between 1 = VK and x3. This pattern continues indicating that
there is a strong probability that the sequence of x—intercepts for the tangent lines

will converge to the root.

Virginia: Is the concavity of the curve important?

Galileo: In fact, it is. But we will discuss that thought in more detail at a later time.

Example 7.1.2. Galileo: A second example is the polynomial p(x) = x® +x+1. This
example is of particular interest because our friends Abel and Galois showed we have
no option except numerical computation of the roots.

Here is the algorithm.

Step 0. vo = 1.0

g+ xo+ 1

Step 1. v, = xo—%
0

2+ a +1

Step 2. xo = xl—ﬁ
1

5

)+, +1

Step n. Tny1 = CUR—W
n

The first seven estimates of the real root are listed in Table 7.1 when the algorithm
18 1nitialized with xy = 1.
Simplicio: What a great algorithm! While not quite as good as the square root and
cube root methods, this technique s still in my comfort zone.
Galileo: The method of Newton/Raphson is popular.

Virginia: I can see why.

Simplicio: I do have one quick question. If this method includes the square root
and cube root techniques as special cases, why not skip them? It certainly would
have been more efficient to simply discuss the Newton/Raphson Algorithm at the

beginning.
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xo | 1.000000000000000
z1 | 0.500000000000000
Ty | -0.666666666666667
x3 | -0.768115942028985

x4 | -0.755162523060901

x5 | -0.754877799264274

Te | -0.754877666246722

x7 | -0.754877666246693

Table 7.1: Seven Estimates of a Root of p(z) = 2° + z + 1

Galileo: While we could have, there is a difference between presenting mathematics
in its most perfect final form and presenting concepts to someone unfamiliar with the
subject. In my experience, the human brain works inductively from particular cases
to more general ones. Mathematics is a process, which has been unfolding for several
thousand years. The pedagogic rule we will follow is to proceed from the particular
to the abstract.

Simplicio: I actually agree with this approach. Simple is good.

Galileo: We will soon discuss examples, where the method of Newton/Raphson fails.
These examples will encourage us to search for algorithms, which “always work.” The

square root and cube root algorithms do in fact enjoy this comforting property.

Exercise Set 7.1.

1. Set up the Newton/Raphson algorithm to compute /2. Test the method by

using x( = 2 to initialize the method and compute 6 iterations.

2. Use the method of Newton/Raphson to compute a root of the polynomial
p3(x) = 23+ +1 with error less than 107°. Initialize the method with zy = 1.0.

3. Use the method of Newton/Raphson to compute a root of the the polynomial
p3(z) = 2 +2*+1 with error less than 107°. Initialize the method with ¢y = 1.0.
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10.

11.

12.
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. Use the method of Newton/Raphson to compute a root of the polynomial

ps(z) = (z — 1)(z — 2)(x — 3)(z — 4)(z — 5) with error less than 10~°. Ini-
tialize the method with zy = 5.10.

Use the method of Newton/Raphson to compute a solution of Omar Khayyam’s
equation 2242002 = 2022 +2000 with error less than 10~°. Initialize the method
with 2y = 1.0. Compare your answer with the one produced by Cardano’s

Formula 6.2.

Use the method of Newton/Raphson to compute a root of the function f(x) =
x cos(z) with error less than 107°. Initialize the method with oy = 10. Be sure

to make your computations using radians rather than degrees.

Use the method of Newton/Raphson to compute a root of the function f(x) =
x e* with error less than 107°. Initialize the method with 2y = 1.00 and z¢ =

—2.00.

. Use the Newton/Raphson method to approximate a root of the polynomial

pr(z) = 2"+ 2z +1 with error less than 107°. Initialize the method with xy = 1.0.

Use the method of Newton/Raphson to approximate a solution of the equation
sin(z) = e” with error less than 10~°. Initialize with 2o = 0 and zy = 5. What

do you notice?

Use the method of Newton/Raphson to approximate a solution of the equation
e® = 3x? with error less than 1075, Initialize with z; = 0 and xy = 5. What do

you notice?

Use the method of Newton/Raphson to approximate a solution of the equation
loge(x) = — cos(x) with error less than 10~°. Initialize the method with 2y = 0.5.

If the initialization is changed to xy = 2.0, then what happens?

Let py(x) = (x —1000)? and ¢»(x) = 22 — 1000000. Note that z = 1000 is a root
for both po(z) and ¢a(x). Use the method of Newton/Raphson to approximate
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this root for both polynomials. Initialize the method with 2y = 1001. Compare
the number of iterations required to achieve an error of less than 107°. What

do you notice? What is different about the roots of the two polynomials?

7.2 The Secant Method

Galileo: We now turn to a variant of Newton/Raphson known as the secant method,
where the first derivative is approximated numerically as the slope of the line through
the two previous approximations produced by the algorithm. This modification is
important in applications, where the first derivative is difficult to compute using

the usual rules of differential Calculus. Instead of having the term f’(z) in the
f(@n)=f(@n-1)

Tn—Tn—1

denominator of the second term, the approximation is used.

Thus, the (n + 1) term becomes:

Topl = T f(xn)
f’(xn)
~ I T ) —f e 1)

— f(@n)(@n — 2n1)
" fla) = flonmr)

Since we require two values to initialize the algorithm, the secant method can

implemented as:

The Secant Algorithm:

Step 0. xg,x7 = initial estimates
f(xn)(xn - l‘n,1)
f(@n) = f(@n-1)

Simplicio: OK, I see that the secant method has the advantage that you don’t have

Step n. T, = T, —

to compute the first derivative. How about an example?

Example 7.2.1. Galileo: While this example is a bit embarrassing becasue the first
derivative 1s easy to compute, why not begin by applying the secant method to recom-

pute our old friend \/2? For this computation, we choose f(x) = x> —2. If we initialize
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the method with the points xqg = 1 and x1 = 2, the first secant line approximation is

given by the equation y = —1 + %(:}: —1)=3z—4.

Simplicio: I see that this secant line intersects the x—axis at vo = 1.33333333333333.

Galileo: Correct. A graph of the

mating secant line are graphed in

function y = f(x) = 2% — 2 and the first approzi-
Figure 7.2.

Figure 7.2: The First Secant Approximation for f(z) = 2% — 2

Galileo: In addition, we display the first eight data points generated by the algorithm

in Table 7.2.

Zo

1.00000000000000

X1

2.00000000000000

)

1.33333333333333

€3

1.40000000000000

X4

1.41463414634146

X5

1.41421143847487

Te

1.41421356205732

X7

1.41421356237310

xg

1.41421356237310

Table 7.2: Eight Secant Method Estimates of v/2 Initialized by ¢ = 1,2, = 2

Simplicio: While the algorithm seems to converge quickly, it does appear to be a shade
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slower than the method of Archimedes/Heron.

Galileo: Good observation. As it turns out, the convergence rate for the secant method
is generally slower than the convergence rate for Newton/Raphson. We will make that
statement more precise on another occasion.

Virginia: It doesn’t look like the sequence of approximations is decreasing.

Galileo: Another good observation. However, if we change the initialization to xo = 1
and x1 = 2, then the algorithm behaves the way you might expect. We have listed this
data in Table 7.3.

xo | 3.00000000000000

x1 | 2.00000000000000

xo | 1.60000000000000
x3 | 1.44444444444444
x4 | 1.41605839416058
x5 | 1.41423305925716
xe | 1.41421357508149
x7 | 1.41421356237318
xg | 1.41421356237309

Table 7.3: Eight Secant Method Estimates of v/2 Initialized by 2y = 3, 2, = 2

Virginia: Now the sequence is decreasing.
Simplicio: Does that always happen?

Galileo: Stick around and you will see.

Virginia: Are there any disadvantages to this technique?

Galileo: The first problem is that you need two starting points instead of one.
Simplicio: Why should that matter?

Galileo: If they aren’t chosen close to the answer, the estimates may fail to converge
to the desired answer. Later, we will give an example illustrating this issue.

Simplicio: Are there any other issues?
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Galileo: You also have to be careful not to divide by zero. This problem is a
real and dangerous possibility with the secant method whenever two successive ap-
proximations, f(z,) and f(z,_;) are approximately equal because their difference
f(zn)— f(z,_1) is close to zero and is in the denominator. In fact, if we had computed
a few more terms with our approximations of v/2, we would have had an explosion
caused by a division by zero.

Simplicio: I think I can program around that issue.

Exercise Set 7.2.

1. f K=2 f(x) =2 K,z =1, and x; = K = 2, then use the secant method

to compute x1; and x15. What happens?

2. f K =5, f(x) =2°—K,x0 =1, and x; = K = 5, then use the secant method to

1
10,000 °

compute the root with an accuracy of How many iterations are required?
Compare the estimates generated by the secant method with those generated by
the Newton/Raphson method when zy = 1. Which is faster: the secant method

or Newton/Raphson?

3. If K = 1,000,000, f(z) = 22> — K,zy = 1, and z; = K = 1,000,000, then use

1
10,000 °

the secant method to compute the root with an accuracy of How many
iterations are required? Compare the estimates generated by the secant method

with those generated by the Newton/Raphson method when zq = 1.

4. If K = 2,29 = 1,7y = K = 2, and f(z) = z° — K, then how many iterations
will be required for the secant method to estimate a root of f(x) to an accuracy
of m. Compare the number of iterations required for the secant method and

the number required by the Newton/Raphson method when zy = 1.

5. Use the secant method to compute a root of the polynomial p(z) = 2*+z+1 with
error less than 10~°. Initialize the method with zy = 0.0 and z; = 1.0. Compare
the number of iterations required for the secant method and the number required

by the Newton/Raphson method when zy = 1.
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. Use the secant method to compute a root of the polynomial p(z) = 2°+z+1 with

error less than 10~°. Initialize the method with 2y = 0.0 and 2; = 1.0. Compare
the number of iterations required for the secant method and the number required

by the Newton/Raphson method when zy = 1.

. Use the secant method to compute a root of the of the polynomial p(z) =

(z — 1)(z — 2)(x — 3)(z — 4)(z — 5) with error less than 107°. Initialize the
method with o = 0.5 and 2y = 1.5. Compare the number of iterations required
for the secant method and the number required by the Newton/Raphson method

when o = 0.5

. Use the secant method to compute a root of the Omar Khayyam’s equation

23 + 2002 = 2022 + 2000 with error less than 107°. Initialize the method with
xo = 0.0 and x; = 1.0. Compare the number of iterations required for the
secant method and the number required by the Newton/Raphson method when

.ZU[]:]_.

. Miller’s Method: Determine a recursive formula that uses three successive

points to determine the next approximation to a root r for a function y = f(z).
In other words, given three points g, x1, 22, find a parabola py(z) = A(x —
2)* + B(x — w3) + C with the property that py(wo) = f(x9),p2(21) = f(21),
and po(zy) = f(xs). After computing the constants A, B, and C, then use the
quadratic formula to compute an approximate root x3. Note further that since
the quadratic formula provides two roots, the choice with the largest denomi-

nator is preferred.
(Answer: A = (Il*IZ)[f((it;):wf;()ﬂ(?;)l]:gt))(;z?i)i{gl‘l)*f(wz)7

B — (9«’0—7«’2)2[f(9:1)—f(wz)]—(xl—x2)2[f(x0)—f(x2)}7 and C = f(2,).)

(zo—w2)(®1—22)(To—21)

Simplicio: But wait a minute. The functions in these exercises all have first derivatives

that are easy to compute. Wouldn’t we simply use Newton/Raphson?

Galileo: To illustrate a situation, where you might want to choose the secant method

consider the polynomial pyy(z) = (x — 1)(z — 2)...(z — 20). Note that the roots of
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pao(x) are the integers r = 1,2,...,20. While the value of py(z) can be computed
for any value of x, the first derivative requires you to either expand the function as
a 20 degree polynomial or compute 20 product rules. Take your pick. Better yet,
implement the secant method for finding a root for pyy(z) and then test the method
for two initial input points xy and 1, where xy and x, are chosen near the root r = 1
and near the root r = 20. Compare your results for two different sets of inputs.
Simplicio: I get the concept, but what about computing peg(z) when z = 217 By my
calculation, I get 20!, which is a very large number. In fact, it turns out to be equal
to about 2.4329 x 10,

Galileo: You are very perceptive. We will see shortly that the computation of the roots
of this polynomial lead to a fundamentally unstable problem. In fact, this problem
offers a view into exactly the type of problem applications people must either avoid

or enter into at great risk.

7.3 The Bisection Method

Galileo: The bisection method is probably the most basic method for finding a root of
a continuous function. This method is a straightforward application of the Interme-
diate Value Theorem 10.2 for the case when y = 0. We now give the exact statement

of the theorem.

Theorem 7.3.1 (Intermediate Value Theorem). If f(z) : [a,b] — R is contin-
uous at each x € [a,b] and f(a) < yo < f(b) (or f(a) > yo > f(b) ), then there is a
point zy € [a,b] such that f(z0) = yo.

Simplicio: This theorem is much too abstract. Bring it down to earth.

Galileo: The Intermediate Value Theorem states something quite natural about the
way we perceive the world around us. For example, I contend that at some point in
your life you were exactly 4 feet tall.

Simplicio: No problem. Since I was less than 2 feet tall when I was born and am now

over 5 feet, at some moment in time I must have been exactly 4 feet tall.
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Galileo: While our friends in philosophy and physics might have objections, that is
the answer I was looking for. Your reasoning is encapsulated by the Intermediate
Value Theorem, where the function f(x) represents your height at time .
Simplicio: How about another example?

Galileo: If the temperature is less than 50 degrees in the morning and more than
80 degrees in the afternoon, then at some moment during the day, the temperature
must have been exactly 70 degrees. For this example the function f(z) represents the
temperature at time .

Virginia: But why is this theorem called the Intermediate Value Theorem?

Galileo: In the examples just mentioned, the temperature 70 degrees is intermediate
between 50 and 80 and the height of 4 feet is intermediate between 2 feet and 5 feet.
Assuming temperature and height vary continuously with time, the Intermediate
Value Theorem will guarantee that there is some instant in time when these values
are attained exactly.

Simplicio: But what if I was a midget and never got to be 4 feet tall?

Virginia: If you don’t satisfy the hypotheses, the theorem does not apply.

Galileo: We will apply the theorem when f(x) is a continuous function on an interval
[a,b] and f(a) and f(b) have opposite signs. (i.e. Either f(a) > 0 and f(b) < 0 or
f(a) < 0and f(b) > 0). In this setting the value y = 0 is intermediate between f(a)
and f(b) so the function f(z) has a root between a and b. If we let ag = a, by = b, and
my = “F% then we have two cases. If f(ao) and f(mg) have opposite signs, then
define a; = ap and by = my. If not, then define a; = my and b; = by. Repeating this
process, let m; = % If f(a;) and f(m,) have opposite signs, then define ay = a;

and by = m;. If not, then define as = m, and by = b;.

Inductively, if ap_; and bi_; have been found, then define m,_; = a’“‘%b’“‘l If
f(ag_1) and f(my_1) have opposite signs, then define ar, = ay_, and by = my_. If
not, then define a;, = my_; and by = bp_;.

Note that a root will lie in the interval [ay, by] and the length of the interval is %2

— a+bg

5+ will approximate the root with an error no more than

Thus, the value my
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2b,j—+“l. In fact, for any given function f(z) the convergence rate only depends on the
length of the interval [a, b]. Thus, this estimate of the convergence rate is the same

for every function.

fx)

fx)

Figure 7.3: The Bisection Method for the function f(z) = 2% — 2

Galileo: In general, the technique can be stated as the

Bisection Algorithm:

1. Let f(z) be a continuous real-valued function on a closed bounded interval [a, ],

which has the property that f(a) and f(b) have opposite signs.

2. Let m = ‘LTH’

3. If f(a) and f(m) have opposite signs, then set b = m.
4. If f(a) and f(m) do not have opposite signs, then set a = m.

5. Continue this process (i.e. repeat steps 2-4) until the required accuracy has

been achieved.
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Simplicio: This method seems to be quite understandable.

Galileo: If a function f(z) crosses the x—axis at some point in an interval [a, b] and
f(a) and f(b) have opposite signs, then this method has the virtue that it “always
works.” While the method may always work, its downside is that the convergence
rate is slower than the method of Newton/Raphson.

Simplicio: How about an example?

Example 7.3.1. Galileo: Let’s revisit our old friend f(x) = x* — 2, where the method
is initialized with a = 1 and b = 2. The results of the bisection algorithm’s first eight

estimates are listed in Table 7.4.

xo | 1.000000000000000

x1 | 1.500000000000000

xo | 1.250000000000000

x3 | 1.375000000000000
x4 | 1.437500000000000
x5 | 1.406250000000000
xg | 1.421875000000000
27 | 1.414062500000000
xg | 1.417968750000000

Table 7.4: Eight Estimates of a Root of the /2

Simplicio: You are right. The convergence rate of this method is glacial in comparison
with either the Newton/Raphson or secant method. With theses other methods we are
almost perfect after eight steps. Since /2 = 1.414213562373095, we have achieved
only two digits of accuracy with the bisection method. Why would anyone use it?

Galileo: The method is important because it always works and because it can be used in
combination with other less stable methods such as Newton/Raphson. In particular,
the bisection method can sometimes be iterated enough times to guarantee convergence.

We will discuss this issue again in more detail. The combination of two such methods
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results in a hybrid, which is sometimes better than each used separately.

Virginia: What can you say about the error?

Galileo: Since the midpoint m is half way between the points ¢ and b, note that the

error is cut in half at each iteration. Thus, the initial error is b — a and the first
b—a

error is 5. The general formula for the error can be summarized in the following

proposition.

Proposition 7.3.2 (Bisection Error Formula). If f(x) is a continuous real-valued
function defined on the interval [a,b] and f(a) and f(b) have opposite signs, then the

error E,, at the n'™ iteration satisfies the inequality |E,| < l);_na

Proof. Since a root of the function lies in the interval [a,b] which has length b — a,
the error Ej satisfies |Ep| < b — a. Similarly, since a root of the function lies in either
the interval [a, %] or [“22,b] and both these closed intervals have length ¢, the
error |Ej| < %:%. Since the length of the interval containing the root is halved at each

iteration of the process, |E,| < %2. O

Example 7.3.2. Galileo: How many iterations are required for the bisection to guar-
antee 14 digits of accuracy when computing /2 on the interval [1,2]7?

Virginita: Sitmply find an integer n with the property that 2% < %. When we take
logs of both side of this expression, we find that this inequality will be satisfied iof
n > 15log(10)/log(2) — log(5)/log(2) =~ 47.5. Thus, if we choose n = 48, we will

achieve the required accuracy.

Simplicio: That’s worse than I thought it would be.

Galileo: In summary, while the method of Newton/Raphson may converge faster than
the bisection method, the bisection method has the advantage that it “works” as long
as the function f(z) is continuous and satisfies the initial condition that f(a) and f(b)
have opposite signs.

Simplicio: Something bothers me about the error formula |E,| < %2 While it con-

tains the initial endpoints ¢ and b, it seems to be the same for every function.
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Galileo: Yes, your observation is correct. While it is reliable, its convergence rate is
the same for all functions.

Virginia: I would like to back up and ask a question about the Intermediate Value
Theorem. While I have an intuitive idea what the word continuous means, I am not
sure I could define what it means for a function to be continuous. Could you give me
more precision here?

Galileo: While we won’t discuss that topic today, No worries. We will address all
these issues in detail when we discuss the theory underlying Calculus. We will even
provide a proof.

Simplicio: I can’t wait.

Exercise Set 7.3.

1. If K =2,5,20,000,a =1,b = K, and f(z) = 2* — K,2* — K or 2° — K, then
how many iterations will be required for the bisection method to estimate a
root of f(x) to an accuracy of 10,%? Compare the number of iterations with
that needed by the Newton/Raphson method. Which do you prefer?

2. Using the bisection method how many iterations will be needed to approximate
the real root of the function f(z) =2* + 2z +1if a = —1,b = 0, and the error
is required to be less than 0.0000017 Compare your answer with the answer
you get when the method of Newton/Raphson is used with 2y = 0 as the initial

guess.

3. If the bisection method is used to compute a root of the function f(z) = 2?+1,
then what goes wrong? Why does the bisection method fail when we were

promised that it “always works.”

4. If the bisection method is used to compute a root of the function f(z) = ze *"

initialized by the points ¢ = —2 and b = 3, then does the method work? How

many iterations will be required to estimate the root of f(z) to an accuracy of

1
10,000 *




Chapter 8

Problems With Root Finding

If anything can go wrong, it will.-Murphy
Nothing is ever as simple as it seems.-Murphy

Nature always sides with the hidden flaw.-Murphy

Galileo: We now devote a few minutes to a discussion of examples that require us to
be careful when computing roots.
Simplicio: Why discuss failure? Everything seems to be going well at the moment.

Galileo: Nothing is ever as simple as it seems.

8.1 Failure of Newton/Raphson

Galileo: Let us begin by reviewing the Newton/Raphson problems I assigned?
Simplicio: Everything went well. T had no problems. I even seemed to get all the
right answers.

Galileo: How about if we take a more careful look at the method? What if we begin
by computing the square root of K, where we initialize the method with a value of
xo =07

Simplicio: Since the method of Archimedes/Heron is given by the recursive formula

K
Tn+— 2_K P . . .
Tpy1 = — 5 = Ty — ngn , a division by zero occurs. Obviously, this event will not

93
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be well-received in the mathematics community.

Galileo: Since the general formulation of Newton/Raphson is given by the equation

Tns = Tn = Fi3

, the strategy will be to avoid roots of the first derivative f'(z).
Simplicio: Since the probability of making such a choice is about zero, we should not
worry too much about that case. Right?

Galileo: While this avoidance task is easy for functions like f(z) = 2* — K when
K > 0 and 2y = 1, it can actually happen in simple settings. For example, consider
the function f(z) = 2* + 1. While this polynomial has real coefficients, its two roots
are the complex numbers r = 44, where i = v/—1. If the method of Newton/Raphson
is initialized with xy = 1, then note that xy = 0, which leads to a division by zero
in the computation of x,. Thus, the value for x5 can’t even be computed. However,
even if we choose another number, say xy = 2, so that division by zero never occurs,
each recursively computed x,,,.; will always be a real number. Thus, the method has
no chance to converge to either 1, =i =+/—1 or ry = —i = —/—1.

Simplicio: Suddenly complex number have raised their ugly head, a worrisome situ-
ation.

Galileo: On the contrary.

Simplicio: You mean the method of Newton/Raphson can be used if the numbers are
complex? Your motivation and graphs only seemed to apply to real-valued functions.
Galileo: Not a problem. The key is that you can compute the first derivative.
The rules for derivatives are exactly the same as those you learned for real vari-
able Calculus. The only difference is that you change the letter x to the letter
z = a + bi. For the function we just considered, we let f(z) = 2?2 — K. The deriva-
tive turns out to be f'(2) = 2z and the recursive step in the algorithm becomes

2K
Zp4+1l = Zn — J{/((ZZ)) = 2n— Z%z

—. An amagzing feature of this example is that if the initial
guess 2y is chosen to be any complex number other than one of those on the real line,
then the method in fact works. Work the first problem in the set of exercises listed
below and you should begin to appreciate these remarks.

Simplicio: Interesting. What is the next example you have in mind?
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Galileo: While dividing by zero is an obvious problem, we might also worry about
functions with large derivatives near a root. For example, consider the function
f(x) = z3. Note that f(0) = 0 so z = 0 is a root. If we apply Newton/Raphson to

this function, we find that the recursive relation becomes

S ol

T
Tpyl = Tp — —— = Ty — 3Ty = —2Tp.

T

Wl

Thus, unless your initial guess o = 0, you will have problem:s.
Simplicio: Is that it?
Galileo: As you might guess, the situation gets worse.

T

Let us now consider the differentiable function f(z) =z -e” * which is graphed
in Figure 8.1. This function illustrates a fundamental problem with the method of
Newton/Raphson. While the function f(z) has a unique root at x = 0 and has a
graph which is almost a straight line near zero, a poor initial guess can lead to a

sequence of points that converge to infinity.

Successive Newton/Raphson Approximations of f(x) = x*exp(—xz)

I I I I I I
-3 -2 -1 0 1 2 3
The X Values

_z2

Figure 8.1: Failure of Newton/Raphson for the function f(z) =z -e

Simplicio: How does that happen?
Galileo: Since the derivative is f'(z) = (1 — 222)e™*", f(z) has critical points at

T = :I:?, which are the locations of the minimum and maximum. Thus, if the initial
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guess xg for the Newton/Raphson method is chosen to the right of the location of
the maximum, then it is clear that the subsequent terms in the sequence each be
further to the right than the previous. In other words, zqg < 27 < xy,etec. We can
actually show that the sequence converges to infinity. Similarly, if the initial guess x
is chosen to be to the left of the location of the minimum, then the resulting sequence
will converge to negative infinity. On the other hand, if the initial point is chosen
close to zero, then Newton/Raphson converges without a problem. Thus, the method
works in some situations and not in others. One of our tasks will be to establish
conditions which will guarantee convergence.

Virginia: Looks like we have a theorem to look forward to.

Galileo: Correct.

Simplicio: Groan. These examples make me worry that the method of Newton/Raphson
is not as perfect as I had hoped.

Galileo: Just another example, where Murphy’s Law applies to numerical methods.
However, our next discussion will focus on the success of the method. As you will
see, a number of very smart people have thought about these issues for a very long
period of time.

Simplicio: Could you summarize the problems with Newtion/Raphson?

Galileo: Sure, the previous examples indicate the types of trouble we can expect to

encounter with Newton/Raphson. These potential problems can be summarized as:

Example 8.1.1. (Division by Zero) The derivative f'(x,) = 0 for some integer n.
If f(z) = 2*—2 and Newton/Raphson is initialized with xoy = 0, then f'(x¢) = f'(0) =
0 so x1 cannot be computed.

If Newton/Raphson is initialized with any other real number xo < 0, then the
sequence x, converges to —/2. If Newton/Raphson is initialized with any other real

number zy > 0, then the sequence x, converges to \/2.

Example 8.1.2. (Unexpected Answer) The initial guess xy was not chosen sufficiently
close to the root x = r and the Newton/Raphson sequence converges to an unezpected

answer.
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If f(x) = sin(z) and Newton/Raphson is initialized with xo = 5 + 0.001, then the
sequence converges to a root r. However, the root r s far to the right of the initial

guess.

Example 8.1.3. (No Answer) The function f(x) fails to have a real root.
If f(z) = 2*+1 and Newton/Raphson is initialized with any real number x,, then the

sequence x,, simply bounces around and never has any hope of converging.

Example 8.1.4. (First Derivative Problem) The first derivative f'(z) does not exist
at the root and the Newton/Raphson sequence diverges.
If f(z) = 23 and Newton/Raphson is initialized with any real number xy # 0, then

Tpe1 = —2x, and the sequence diverges to co.

Example 8.1.5. (Poor Initialization) The initial guess xy was not chosen sufficiently
close to the root x = r and the Newton/Raphson sequence oscillates.
If f(z) = ze™® and Newton/Raphson is initialized with xy = 0.5, then the sequence

T, oscillates between £0.5.

Example 8.1.6. (Poor Initialization) The initial guess xy was not chosen sufficiently
close to the root x = r and the Newton/Raphson sequence diverges to infinity.
If f(x) = ze™® and Newton/Raphson is initialized with o = 1, then the sequence x,

diverges to +o0.

Simplicio: So if I am computing my Newton/Raphson Algorithm for a particular
function and it hasn’t converged in 200 iterations, then I need to take a second look
at the problem to make sure the method has a chance of working.

Galileo: Correct. And remember, the type of problem most likely to occur is the
one depicted in Figure 8.1. In higher dimensional vector spaces, this problem is so

common it is labeled “The Curse of Dimensionality.”

Exercise Set 8.1.

1. Use the method of Newton/Raphson to compute a root of the polynomial p(x) =
2?2 + 1. Begin by Initializing the method with 2y = 1 and compute a thousand
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terms. What do you observe? Can you decide whether or not the resulting
sequence diverges to infinity or is bounded? Initialize the method a second
time with the complex point xy = 1 4 ¢, where 7 = y/—1. What do you notice

about this sequence of iterates?

2. Use the method of Newton/Raphson to compute a root of the function f(z) =
3. Note that z = 0 is a root of f(z). Initialize Newton/Raphson with values
of zp = 0.1,0.2,...,1. What do you notice? How about if we initialize with

xo = 0.01 or zyg = 0.0017

3. If f(x) = x-e*, then implement Newton/Raphson with the values z, =
0.25,z9p = 0.50, and zy = 0.75. What do you observe with these three ex-
amples? Find the largest real number L such that if o € (=L, L), then the

Newton/Raphson sequence {x,}5°, converges to the root 0.

2

4. If the secant method is used to compute a root of the function f(x) = ze~

with zyg = 1/2 and x; = 1, then does the method work? How many iterations

_1

TR Compare the

will be required to estimate a root of f(z) to an accuracy of
number of iterations required by the Newton/Raphson method when zy = 1/2

or xg = 1.

5. Use the method of Newton/Raphson to compute a root of the function f(z) =
sin(z). Note that = 0 is a root of f(x). Initialize the method with values of

™

ro = § + 0.1 and 29 = § + 0.001. Does the method converge to a root? If so,

find it.

8.2 Newton/Raphson and Double Roots

Circles to square and cubes to double would give a man excessive trouble.-

Matthew Prior(1664-1721)

Galileo: We would now like to mention some examples, which reflect on the the rate
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of convergence for the method of Newton/Raphson. As it turns out, different choices
of functions f(z) may produce different rates of convergence. In some of the exercises
we assigned the convergence took 6 iterations to achieve as much convergence as you
could want, while others took more than 30.

Simplicio: Yes, I remember that computing the square root of 5 worked great, while

the square root of zero took much longer. I wondered about that.

Example 8.2.1. Galileo: Consider the ezample, where po(x) = f(x) = 2 — 1000% =

22 — 1,000, 000. Note that the roots are r, = 1000 and ro = —1000. The algorithm

for Newton/Raphson is given by the recursive erpression xp 1 = T, — Ty = Tn

2 2
r;—1000° __ 1 500,000
2Ty - 2xn + Tn

. We have the output from this algorithm summarized in Table

8.1, where the initialization was chosen to be xy = 1001.

xo | 1001.00000000000

z1 | 1000.00049950050

xo | 1000.00000000012

x3 | 1000.00000000000

Table 8.1: Three Estimates of y/1, 000, 000

Simplicio: Since the method converges in three steps, there is no problem.

Galileo: Correct.

Example 8.2.2. Galileo: Now let’s compute a second example that looks almost the
same. If ga(x) = f(z) = (x — 1000)?, then the roots are r; = 1000 and 12 = 1000.
(We have a double root!) The algorithm for Newton/Raphson is given by the recursive

erpression Tny1 = Ty — J{,(é’;)) =z, — % =x, — ‘”"’721000 = %xn + 500. The
computations from this algorithm are displayed in Table 8.2, where we again have
mitialized with the value xy = 1001.

Simplicio: Hey, this algorithm is as bad as the bisection method. The error simply

drops by 50% for each iteration. Not good.
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xo | 1001.00000000000

x1 | 1000.50000000000

x2 | 1000.25000000000

x3 | 1000.12500000000

x4 | 1000.06250000000

x5 | 1000.03125000000

x| 1000.01562500000

x7 | 1000.00781250000

xg | 1000.00390625000

Ty | 1000.00195312500

x10 | 1000.00097656250

x11 | 1000.00048828125

x12 | 1000.00024414063

x13 | 1000.00012207031

x14 | 1000.00006103516

Table 8.2: Three Estimates of /1, 000, 000
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Galileo: In both these examples, we see that the sequence of numbers {z,}2 | is
converging to the number 1000. In the first example we have a sequence that produces
11 digits of accuracy after only three iterations. In the second example, the algorithm
has produced ly 4 digits of accuracy after 15 iterations. It is getting there, but even
after 30 iterations, we have w3y = 1.00000000000093, which still isn’'t quite there.
Simplicio: What seems to be the problem?

Galileo: While the first example has distinct roots that are far apart, the second has
the double root r; = ry = 1000. Double roots slow down the convergence rate from
quadratic to linear.

Simplicio: What are these quadratic and linear convergence rates?

1
on

Galileo: The sequence x, = converges linearly to zero. The sequence x,, = 2%
converges quadratically to zero. These examples typify the different convergence
rates. Make a few calculations and you will see the difference. You do the math.
Virginia: Our initial guess xy = 1001 is reasonably close to the final answers. What
if we had made a poor initial guess?

Galileo: If we use xy = 1 as our initial guess, then the method of Newton/Raphson
produces x1p = 1296.191592707 for po(x) and z19 = 999.024414063 for the root of
¢2(x). However, after 14 iterations, the method produces x4 = 1000.000000000 for
pa(x) and x4 = 999.939025879 for g»(x). Thus, our convergence is complete for the
root of py(x), but still has an error of more than 0.939 for the root of ¢»(x). Thus,
while the linearly convergent sequence converges better for the first ten terms, the
quadratically convergent sequence quickly overtakes it once it gets close. The Mean
Value Theorem will provide our main tool for showing linear convergence. Taylor’s
Theorem will provide our main tool for showing quadratic convergence.

Simplicio: I am not quite sure what is going on here.

Galileo: Don’t worry. We will return to this topic.

Exercise Set 8.2.

1. If py(z) = f(z) = 2> — 10% and xy = 10,001, then how many iterations of

Newton/Raphson are required to achieve an accuracy of 10 decimal places?
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2. If go(x) = f(z) = (z — 10000)? and zy = 10,001, then how many iterations
of Newton/Raphson are required to achieve an accuracy of 10 decimal places?

Compare your answer with your answer to problem 1.

3. If f(x) = (z + 3)? and ¢ = 1, then compute the first 30 iterations of the
Newton/Raphson algorithm. Format your output in a column. How does the

convergence rate of the last five computations compare with the first 257

4. Compute 15 iterations in the Archimedes/Heron/Newton/Raphson algorithm
to approximate the square root of K = 1,000, 000. Initialize the algorithm with
xp = 1. Format your output in a column. How does the convergence rate of the

last five computations compare with the first 107

8.3 Instabilities With Root Finding

James Hardy Wilkinson (1919-1986)

Mother Nature is a bitch.-Murphy

Galileo: Before moving on to the topic of the theory of convergent sequences, let us
take a closer look at the problem of computing the roots of the polynomials. First, to

give you an idea of where the problems lie, let us look at the graph of the polynomials

pa(x) = (x —1)(x —2)(x —3)(x —4) and ps(x) = (z — 1)(z — 2)(z — 3)(z — 4)(z — 5).
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These polynomials are of particular importance because the roots are simple (i.e. not
double roots) and equally spaced. However, also note that the graphs are almost flat
between the roots. Thus, a small change of one of the coefficients can lead to a large

change in the placement of the roots.

WJL kins ew E xamerE 1zl

i L i i i i i 1 i
1] 0s 1 1.5 2 25 3 3.5 4 4.5 5

(Px) = Cx=0(x-2) (x-3Xx-4)

Figure 8.2: The Graph of the polynomial y = py(x)

The British mathematician, James Wilkinson (1919-1986), noticed that the roots
of the polynomial pyg(z) = (z —1)(x —2) ... (z — 20) have even more bazaar instabil-
ities. First, he noticed that if this polynomial is multiplied out, then the coefficient
of the 19" —degree term is —210.

Simplicio: That calculation is easy because that coefficient is simply the sum of the
integers —1,—2,...,—20. I know how to use the formula for the arithmetic sum to

compute this quantity.

Example 8.3.1. Galileo: Wilkinson also noticed that if this coefficient of x'° is
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Figure 8.3: The Graph of the polynomial y = ps(x)

changed by 272 ~ 1077, then the roots become

1.0,
2.0,
3.0,
4.0,
5.0,
6.0,
7.0,
8.0,
8.9,
10.1 + 0.64,
11.8 + 1.7,
14.0 + 2.5i,
16.7 + 2.8i,
19.5 + 1.9i,

20.8.
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In particular, a very small change in one coefficient can lead to a large change in

the values of the roots. Worse yet, half of the roots are complez.

Simplicio: That example is amazing!! Not only did the last root change by 0.8, but
ten of the roots suddenly became imaginary. It makes one worry about finding the
roots of any function.

Galileo: I couldn’t agree more. The rule is: Small changes in the coefficients may
lead to large changes in the values of the roots. This type of problem occurs when the
function is very “flat” near the root. Try graphing the function locally near r = 20.

Simplicio: Has anyone ever tried to build something using these high-degree polyno-
mials?

Galileo: Indeed, a group of my engineering colleagues tried to use 16 and 32 degree
polynomials in a mathematical model designed to control the motion of an arm of
one of their robots. Their efforts were a disaster. One of their students was almost
killed.

Simplicio: So avoiding an unstable mathematical method could save lives.

Galileo: If you model a phenomenon with an unstable method, you are asking for
trouble. As always, the mantra for numerical analysis remains the same: “The name

of the game is control.”

Exercise Set 8.3.

1. Note that the polynomial of degree 9 with roots 1,2,3,4,5,6,7,8,9 can be
expanded into the form py(z) = 2% — 45 % 2% + 870 % x7 — 9450 * 25 + 63273 *
2% — 269325 * xt + 723680 x 23 — 1172700 * 2% + 1026576 * x — 362880. Using
available software, compute the roots of the polynomials go(z), re(z), and sq(x)

listed below.

(a) go(w) = 2” — (45 + 155) * 2% + 870 % 27 — 9450 * 2% + 63273 * 2° — 269325 *
2t 4 723680 2% — 1172700 * 22 + 1026576 * 2 — 362880,

(b) ro(ax) = a° — (45 + 157) * «® + 870 % &7 — 9450 % 2 + 63273 * 2° — 269325 *

xt 4+ 723680 x 23 — 1172700 * 2% + 1026576 * 2 — 362880, and



106 CHAPTER 8. PROBLEMS WITH ROOT FINDING

(¢) so(x) = 2% — (45 + —5) * 2% + 870 % 27 — 9450 * 2° + 63273 * 2° — 269325 *

108

x4+ 723680 x 23 — 1172700 * 22 + 1026576 * 2 — 362880.

How many real and how many imaginary roots do each of these polynomials
have? What is the distance between corresponding roots of py(z) and go(z),

po(z) and ro(z), and pg(x) and s¢(z)?
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Chapter 9

Limits

Augustin Louis Cauchy (1789-1857)

Men pass away, but their deeds abide.-Augustin Louis Cauchy [His last

words?|

9.1 Sequences

Calculus has its limits.-unknown

Galileo: We now introduce Augustin Louis Cauchy (1789-1857) for an explanation
of the theory underlying limits. His text “Cours d’analyse” (written in 1821) was an

important step towards bringing rigor to Calculus. Professor Cauchy grew up during

109
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the French Revolution so he knows how to bring order out of chaos.

Virginia: If I count correctly, Newton’s Principia was written in 1689 so it took more
than 100 years to bring rigor to Calculus.

Galileo: Actually, this issue has been around since Plato recorded the paradoxes of
Zeno of Elea (490-450 B.C.E.) in his dialogue Parmenides.

Simplicio: As far as I am concerned, infinity has nothing to do with the real world.
Why don'’t we just focus on algorithms. Something useful an employer would appre-
clate.

Virginia: Your goal is to earn a blue collar wage?

Galileo: Before we begin, we let us take a minute and have a brief quiz to make sure

you will follow each nuance of the discussion.

Quiz:
1. What is a conditional sentence?
2. What is the purpose of a definition?
3. What is the difference between a definition and a theorem?

If you can’t answer these question, then there is no point continuing.

Simplicio: But we just covered these issues?

Galileo: I am never quite sure what you retain. Professor Cauchy, where should we
begin?

Cauchy: Let us begin by admitting we have a problem. Namely. some sequences
converge and some do not. The issue is simple. We must get the language straight.
Namely, we must make some carefully worded definitions that set the ground rules

for what we want. Let us begin with two examples, which encapsulate the issues.

Example 9.1.1. First, the alternating sequence of points defined by {x,}5°, =
{(=D)"}e, = —1,1,—-1,1,—1,..., causes trouble because it seems to converge to
two points at the same time, namely +1 and —1. However, if you are going to allow

a sequence to converge to two numbers, then why not three? Why not four? Now the
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situation is out of control so we decided that we wanted a sequence to converge to only

one number.

Example 9.1.2. Second, while some people might want the first sequence o con-
verge to both +1 and —1, I don’t think anyone would allow a sequence to converge
to infinity. Thus, the sequences {x,}5°, = {n}>, = 1,2,3,4,5,...,n,... and
{yn}oo, = {n?}20, = 12223242 5% ... n? ... march off to infinity. The theory
and applications work much better if we simply rule them out. For example, looking
ahead, we would like to have a theorem which states that the limit of the sum equals
the sum of the limits. However, if we had that theorem, we might try to compute the
limit of the sequence

Jim {z,}32, = lim {n— )2, = lim {n}2, — lim {n*}32, = 00 — 00 =777

Thus, we don’t want to deal with unbounded limits-at least not at this time.

Simplicio: How about something more positive?

Cauchy: No matter what your attitude, the following three sequences should converge.

Example 9.1.3. The sequence {%}Z":l =1, %, %, i, %, ..., should converge to zero.

Example 9.1.4. The sequence {#}Z"Zl = -1, —%, i, —%, ..., should also con-

verge to zero.
Example 9.1.5. The sequence {nT_l}fLo:l =0, %, %, %, %, ..., should converge to one.

Cauchy: To rectify the situation with the first two examples, we first need to decide
what the word convergence means.

Simplicio: You mean you we get to make up the rules?

Cauchy: You are in control. But remember, once you have made a choice, you have
to stick with it. You don’t get to change the rules.

Virginia: But how do you make up a rule to test for something that goes on forever?

Cauchy: First, we are given a sequence of numbers {z,,}°°,.
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Second, we have an idea of what number the sequence is supposed to converge to.
Since that number is going to be the LIMIT of a sequence, we will denote it by the
letter L.

Third, we need to devise a test (or criterion) to decide whether or not the sequence
converges to the number L.

Simplicio: What’s wrong with the rule that the sequence simply stabilizes. Namely,
a sequence converges when ay = agy1 = Agyo = Grr3 = .... That idea worked fine
when we computed square roots.

Cauchy: Unfortunately, that idea only worked because of the finite precision of your
calculator or computer. The successive terms just look equal. There are even exam-
ples of sequences that have the property that successive terms are equal, while the
sequence converges to 0o.

Simplicio: Like what?

Cauchy: Consider the sequence z,, =Y ;_, % Compute x,, when

n = 100, 000, 000, 000,000 and when n = 100, 000, 000, 000, 001 and then check to see
if they are the same.

Simplicio: But who would be dumb enough to ever compute that many terms of the
sequence.

Virginia: We are not talking about computing yet. We are simply trying to get the
language straight.

Galileo: T can think of a number of situations, where you might want to compute
even more terms.

Cauchy: In any case, there are valid mathematical and engineering reasons to proceed
with a bit of caution right at the beginning.

Galileo: Proceed.

Cauchy: The tricky part about the definition of a limit is the test (or criterion). This
test is given in terms of a conditional sentence.

Galileo: Remember: “If p, then q.”?

Virginia: I do.
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Cauchy: This conditional sentence can be thought of as a challenge, where I begin
by giving you a distance and then you are expected to show that almost all of the
terms of the sequence are within this given distance of the limit L. Historically, this
distance has been denoted by the Greek letter €. Since distances are always positive,
we insist that € > 0. In other words, eventually all the terms of the sequence are
within a distance of € from L.

Galileo: Mr. Simplicio, let me ask you one last time: Are you clear about the
difference between a definition and a theorem?

Simplicio: I know, I know. I was listening.

Cauchy: We have two different ways of measuring distance at our disposal. The first
is the open interval. The second is the absolute value function. These two different
techniques are equivalent. In other words, it doesn’t matter which you choose, the
results will be the same.

Simplicio: Why not just give us the easiest one?

Cauchy: The open interval definition is easier to visualize, while the absolute value is
usually easier to compute. The advantage of the absolute value function is that you
are often able to condense multiple cases in a mathematical argument into a single
case. Thus, the arguments are shorter.

Galileo: And sometimes it provides a more conceptual framework because you can
think in terms of distances from the limit L.

Cauchy: We begin by defining the terms interval, open interval, and closed interval.

We also let the symbol R denote the set of real numbers.

Definition 9.1.1. A subset X of R is called an interval if there are points a and b

in R such that one of the following four cases is true:
1. X =(a,b) ={r eR:a <z <b},
2. X =(a,b)={z eR:a<z b}

3. X =[a,b) ={r e R:a <z <b},
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4. X =la,b)={r e R:a <z < b}

If a,b € R, then an open interval has the form (a,b), (a, 00), (—o0, b) or (—o0, 00)
and a closed interval has the form [a, 0], [a, 00), (=00, b], or (—o0,00). In particular,
the set R is considered both an open and closed interval. While the empty set is
considered an interval, it will seldom be of interest. In fact, in the definition of limit,
we will want to rule it out by assuming our open intervals U are non-empty.
Simplicio: These ideas are easy so far. If someone gives you two points a and b, then
an interval defined by a and b will be all the points between a and b and possibly one
or both endpoints.

Cauchy: Maybe now is a good time to give a formal definition of the absolute value

function.

Definition 9.1.2 (The Absolute Value Function). If x € R, then the absolute

value of x 1s defined by the rule

xif x>0
x| = _ :
—xifr <0

Cauchy: This function is intimately connected with finding the distance between
two points. The properties of the absolute function are summarized in the following

proposition.
Proposition 9.1.3. If z,y € R, then
1. |z| >0,
2. |z| =0 if and only if v =0,
3. |z +y| < x|+ |y|, and
4o el =yl < |z =yl

Proof. The proofs of these items are straightforward. O
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Cauchy: While we are at it, why don’t we define the distance between two real

numbers?

Definition 9.1.4 (Distance). If x,y € R, then the distance between x and y is
defined to be dist(z,y) = |z — y|.

Cauchy: The properties of the distance function are summarized in the following

proposition.

Proposition 9.1.5. If x,y,z € R, then
1. dist(z,y) > 0, and dist(z,y) = 0 if and only if v =y (positive definite),
2. dist(x,y) = dist(y,z) (symmetry), and
3. dist(x,y) < dist(x, z) + dist(z,y) (triangle inequality).

Virginia: So, am I to understand that whenever I see the absolute value function, I
should think length. Also, whenever I see the absolute value of the difference of two
numbers, [ should think distance.

Cauchy: Absolutely. Note also that while these propositions are important, we have
not labeled them as theorems. We will save that designation for the big boys like the
Mean Value Theorem and Fundamental Theorem of Calculus. We now offer three
equivalent definitions for a sequence to converge to a number L. The first definition

is conceptual. If you don’t like it, ignore it. We won’t use it often.

Definition 9.1.6 (Convergence of Sequence 1). A sequence of real numbers
{z,}5°, is said to converge to a number L if for any non-empty open interval U
of the form U = (L — ¢, L + €), then all but a finite number of terms of the sequence
lie in U.

Simplicio: I am not sure I understand that definition at all.
Cauchy: In other words, for any open interval U containing L, there is an integer N

with the property that if n > N, then z,, € U. If you draw a picture with the first five
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terms of the sequence x1, 2, 3, T4, T5 outside the interval, but xg, 7, xs, . . . all inside
the interval U, then you have the idea. Let’s go back to one our successful examples.
Simplicio: I find the use of that symbol € annoying.

Cauchy: The use of the letter € has been around for a long time and probably won’t
change any time soon. While any other letter or symbol could be used, this letter
is indelibly etched in mathematical culture. If it helps, think of it as a tolerance or
precision forced on you by your employer. For example, if you are expected to build
some structure within a certain precision, then the amount of error you are allowed
is €. If you prefer, you can use any symbol you want. However, we will follow our

cultural traditions. Sorry.

Example 9.1.6. We would now like to show the sequence {%}20:1 =1, %, %, i, %, ce

converges to the limit L = 0. The procedure is as follows. If I give you an open

1 1

—15>1g)> Your job is to find an integer N, which has the property that

interval U = (
whenever n > N, then x, = % eU.

Virginia: Obviously, if N = 11, then x; = ﬁ,xlg = 1—12,:1:13 = 1—13,@4 = ﬁ, ... all lie
in U. Since all but 10 terms in the sequence lie in U, we are done.

Cauchy: Very good. Now, how about a smaller interval? Say, U = (—1555 155)-
Virginia: Obuviously, if N = 101, then x19; = ﬁ,xlm = ﬁ,xwg = ﬁ,xlm = ﬁ, .
all lie in U. Since all but 100 terms in the sequence lie in U, we are done.

Cauchy: Very good again. Now let’s try the case when ¢ = 0.

Simplicio: Even I can see that if € = 0, then the interval U = [0, 0] is simply a single
point and we will never have any terms of the sequence in U.

Virginia: Now I see why made this annoying distinction between open and closed
intervals. Obviously, we only want open intervals for these types of problems. While
the interval U = [0,0] is closed, it is not open. Thus, we don’t have to worry this
case.

Cauchy: Excellent. Now let’s try the case when e = —1.

Simplicio: But, if ¢ = —1, then the interval U = (+1,—1) is the empty set and we

will never have any terms of any sequence in U.
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Virginia: And we now see why the definition only expects us to consider NONEMPTY
open intervals.

Galileo: I think we are getting somewhere.

Cauchy: Of course, you realize that you haven’t satisfied the definition at all. These
first few choices of U were just for practice. The real test comes when we choose
U = (—¢,¢€), where € > 0.

Galileo: Howewver, before we do that, let’s follow the example of George Polya and
think in terms of his four steps to solving a problem. Do you know what they are?

Virginia: I know:
1. understanding the problem,
2. devise a plan,
3. carry out the plan, and
4. look back and review what was done.

Cauchy: She is good. How do you recruit such good students Professor Galileo? OK,
so do you understand the problem?

Simplicio: I am not sure.

Galileo: So, now may be a good time to devise a general plan of attack.

Cauchy: When using the definition to prove a sequence converges to a particular
number L, the plan of attack is always the same and can be broken down into three

steps:
1. The Challenge,
2. The Choice, and

3. The Check.

In the first example, we were considering the sequence x, = % and I Challenged

you with the interval U = (— 4, ).
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Virginia: We then noticed that if we C'hoose the integer N = 11, then it might be a
good candidate to separate the terms that are members of U and those that are not.
We then had to Check that if n > N = 11, then the term xz, = % s a member of U.
Simplicio: Fven I can see that when you gave us the interval U = (—T:O, T:O), the
process was exactly the same. The same three steps work.

Cauchy: OK, now I want you to consider the fourth step in Professor Polya’s plan.

Namely, let’s review what we have done and generalize the process. As you will see,

the first step is ALWAYS the same:
Step 1. The Challenge: Let € > 0 be given.

If you miss that step on an exam problem, your professor will classify you as a slow
learner. As you can see in our practice problems, the positive quantity € defines the
endpoints of our open interval U = (—¢, €). This quantity has to be positive because if
it equals zero, the interval is not open and if it equals a negative number, the interval
U is empty. We are only interested in nonempty open intervals. OK, what do you do
newt?

Virginia: Now it is time to choose the integer N. Obuviously, for this problem,
1
Step 2. The Choice: Choose N > —.
€

Simplicio: How did you know to do that?

Cauchy: In general, making an intelligent choice for N is almost always the hardest
of the three steps.

Virginia: But, for this problem, we simply work backwards from what we want.
Namely, since we would like % < €, then we assume what we want and solve for
n. In this case, this step is easy because if we multiply the above expression by n and
divide by e, then we get n > %

Cauchy: To complete the process, we must now Check that your Choice works.
Virginia: For this problem, this last step is easy because all we have to do is reverse

the process from Step 2.

1
Step 3. The Check: If n > N, then we must show x, = — € U = (—¢, €).
n
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Forifn> N > %, then 0 < % < % < €. Thus, x, :% lies in U = (—¢,€) and we are
done.

Cauchy: Ezcellent. Professor Galileo, you should be proud.

Galileo: I am.

Simplicio: How did you figure that out?

Cauchy: Did you notice that we used a conditional sentence in step three? Namely,
we only needed to check that x, = % s in U for “large” n. Namely, those larger than

N. In fact, in the definition of convergence, that’s what we meant by the phrase “all

but a finite number of terms of the sequence lie in U..”

Example 9.1.7. Cauchy: In this next ezample we will show the sequence {%}Z"Zl =

—1.1 —

' 5 ,—%, ..., converges to the limit L = 0. The procedure is the same as be-

=

Y

W=

fore. If e = %, then could you outline the process?

Virginia: Step 1. The Challenge:
We begin with the challenge: Let % be given. Again, this quantity defines the open

interval U = (— 15, 15)-

Step 2. The Choice:
We also choose N as before. Namely, we choose N = 11.

Step 3. The Check:
(=D

n

T3 = —1—13,.7014 = 1—14,... all lie in U = (—%,%). In general, if n >

We must now check that whenever n > N, then z, =

€ U. However, x,

1 1
—1v12 = 13

N =11, then —1—10 < (—;)n < 11—0.

Cauchy: Very good. Now, how about a smaller interval? Say, U = (—rio, Tio)'
Virginia: Obviously, if N = 101, then the discussion we just gave guides you through
the three steps.

Simplicio: Fven I am beginning to get it.

Cauchy: Very good again. As before, these first two choices of U were just for practice.

Now let’s attack the general case, where I give you the following

Step 1. The Challenge: Let € > 0 be given.
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How do you show all but a finite number of the terms of the sequence x, = CU" gie

in U = (—¢,€). Note that I just did 33% of the problem for you!

Virginia: Obuviously, we can make the same choice as before.
. 1

Step 2. The Choice: Choose N > —.

€

We now have to show that this choice works by giving the following short proof.

—1)n
Step 3. The Check: If n > N, then we must show x,, = (=1) € U = (—¢€).
n
Proof. For it n > N > %, then —e < —% < —% < (7;)71 and (7n1)n < % < % < €
Thus, z, = % lies in U = (—¢, €) and we are done. O

Cauchy: Professor Galileo, where do you find such excellent students?

Galileo: I am a lucky man.

Simplicio: I think I am beginning to figure it out. The open interval U needs to
surround the limit L so it traps terms of the sequence coming from both sides.
Virginia: That’s why the interval is nonempty and open.

Cauchy: In the spirit of Polya’s looking back, I would like to comment on the phrase
“all but a finite number of terms of the sequence lie in U.,” which appears in the
definition of a convergent sequence. While this phrase makes sense, it is a bit of a
mouthful and it is not expressed mathematically.

Virginia: But isn’t that why we went to the trouble to find the integer N with the
property that if n > N, then x,, € U.

Cauchy: Exactly. Note also that the phrase “if n > N, then z,, € U” is a conditional
statement. Thus, when we check a sequence converges, the Check will always be a
test phrased as a conditional sentence.

Virginia: Now we understand why we discussed conditional sentences when we re-
viewed logic and rigor.

Simplicio: I didn’t say anything. Why are you looking at me?

Cauchy: For practical problems we have two standard choices for €. To ensure that

1

our sequence is within single precision accuracy of the limit, we would choose € = 157.
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To ensure that our sequence is within double precision accuracy of the limit, we would

1

choose € = 1.

Thus, for single precision accuracy, we let U = (L — =, L+ 7). For
double precision accuracy, we let U = (L — 10%, L+ 10%) Of course, € can represent
any positive number. Conceptually, ¢ measures the distance from the center of the
interval to the two endpoints of U. I think you can now see why we insist e MUST
always be positive. If it were negative, the set U would represent the empty set. Also,
since it represents a distance, it must be positive.

From an engineering point of view this definition can be thought of as an em-
ployer/employee challenge, where the employer gives the employee the specs (or tol-
erance for error) on the project and the employee is expected to search until he/she
can guarantee that all the remaining terms of the sequence are within that specifica-
tion. The number € represents the tolerance forced by the employer on the employee.
For example, if I wanted to build a house with 2500 square feet and I gave you a
tolerance of 10 square feet, I would be upset if I ended up with only 2450 square feet.

We would now like to give a second definition of convergence.

Simplicio: You have got to be kidding. One definition was bad enough, but now I
have to deal with another one?

Cauchy: The idea behind the first definition is to get the language as simple and
natural as possible. The only difference between the first and second is the observation
that an open interval U = (L — ¢, L + €) is equal to the set of all numbers x € R such
that | — L| < e. For the sake of completeness, we formalize this bit of information

in the next proposition.

Proposition 9.1.7. If L,e,x € Re, then x is a member of the set U = (L —¢, L+¢)
if and only if |x — L| < e.

Simplicio: Am [ correct in noting in this proposition that if € < 0, then the set U is
the empty.
Cauchy: True, but we aren’t interested in negative values for e. The second definition

of convergence can be given as:
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Definition 9.1.8 (Convergence of Sequence 2). A sequence of real numbers
{x,}52, is said to converge to a number L € R if for every ¢ > 0 there is an

integer N with the property that if n > N, then |z, — L| < €.
Proposition 9.1.9. Definition 1 for convergence is equivalent to Definition 2.

Proof. By the previous proposition, we know z is a member of the set U = (L—e¢, L+¢)

if and only if |z — L| < e. Thus, we are done. O

Cauchy: While this last definition may be a bit less transparent, the test for conver-
gence has changed from open interval to distance. In other words, the test requires
the distance between z, and the limit L is less than e for all but a finite number of
the terms of the sequence. Since we now have the idea of distance, we see that the
sequence {x,}>, converges to L if for any positive distance €, we can find an integer
N with the property that if n > N, then the distance between x,, and L is less than
e. If the limit of a sequence {z,}°°, equals L, then we will write lim,_,{z,} = L.

Simplicio: So, let’s see if I can phrase the definition in engineering terms. First, the

inputs are:
1. a sequence {z,}% ,
2. a number L, and
3. a tolerance € > 0.

Second, if the test for convergence is successful, the output is an integer /N, which has

the property that if n > N, then |z, — L| < e. Moreover, if your employer has insisted

1

Torr> then you might as well have used my definition

your precision is within € =
that a sequence converges when you can find an integer N with the property that if
n > N, then x,, = T,41 = Tpio = Tpyz = ....

Galileo: I think he’s got it!

Cauchy: As with the first definition, each argument can be broken down into three

steps.
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Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice of N:

The second step in the limit definition is to choose an integer N that “work’s” If you
have no idea how to choose this integer, you might leave this step blank until after
you have made a few preliminary mathematical calculations. These calculations are
usually begin by assuming what you want to be true and working backwards until
you uncover an expression for n in terms of e.

Step 3. The Check that N “works”:

The third step in the process is to check that your Choice of N has the property: If
n > N, then |z, — L| <.

Another tip: When first learning about a new type of mathematical argument, it
is often a good idea to write down what you are expected to do. For limits, a helpful
starting point is to write the sentence: We MUST show: If whenever n > N, then
|z, — L| <.

Galileo: OK, let’s go through this process to prove that lim{%} = 0. I think you will

agree that the limit should equal zero.

Example 9.1.8. Cauchy: Using the definition of limit, show that lim,_.{~} = 0.
Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice of N:
Since we want |z, — 0] = |£| <€, we can multiply both side of the inequality by n and
observe that we require n > % Thus, our Choice for N 1is any integer larger than %
Step 8. The Check that N works:
Let us begin this step by writing down what we are expected to do. Namely, we MUST
show: If n > N, then |z, — L] = |+ — 0| = £ <.
Since we only have to test integers n > N, we know that n > N > %, we know
n > % By dividing both sides of the inequality by n and multiplying both sides by e,

we see that + < e. Thus, |, — 0] = = < € and we are done.
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Simplicio: That argument was the same as for the first Definition.

Galileo: T think you have got it. Let’s move on to the next example.

Example 9.1.9. Cauchy: Using the definition of limit, prove that limn%m{#} =0.
Galileo: How about if you present the argument this time?
Simplicio: To begin the discussion I simply write:

Step 1. The Challenge:
Let € > 0 be given.

Is that correct?
Galileo: Correct, you are 33% of the way to the goal. Moreover, you have absolutely
no excuse for getting this step wrong. It is the same for every problem of this type.
Simplicio: But I have no idea how to choose N.
Galileo: No worries. Stmply make the same choice we made for the first problem and
see what happens.
Simplicio: OK, I will simply repeat your choice. Not having to think is good.

Step 2. The Choice of N:
Choose N > %

Step 3. The Check:
We MUST show: If n > N, then |z, — L| = #—0| = % <eIfn>N > %, then
n > % When we divide by n and multiply by €, we find that % < € as before. Since

1 <n,n<n? Thus, |z, —L| =5 < + <e

Cauchy: Note that this last sequence converges to zero much more quickly than the
sequence lim,Hoo{%}. The difference in the rate of convergence will be discussed again
when we compare the bisection and Newton/Raphson methods.

Simplicio: I don’t see any reason for this new definition. How about an example that

illustrates the benefits of this second definition?

2n—3

) emists.

Example 9.1.10. Cauchy: OK, how about if we prove the lim,_,{
Virginia: Since we aren’t told what the limit should equal, we have a problem even

getting started. Maybe we should add an extra “Step” to the process, where we make
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an educated guess for L.. In this example, it isn’t too difficult to figure out that L = £
Simplicio: How so?
Virginia: If we divide both numerator and denominator by the integer n, then we

3
2n—3 __ 2-
see that 5n+1 = 5+

. Thus, if n s large, then the numerator is close to 2 and the
denominator is close to 5. Thus, the limit L should equal %
Step 0. The Candidate for L:
Let L = =
Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice for N:

Since I have no idea how to choose N, I will simply assume what I am trying to prove

and set |22 — 2| < e.

5n+1
Simplicio: Wait a minute. Even I know that that can’t assume what you are trying
to prove.

Virginia: The idea is that we will be able to make an “educated guess” for a value of

N that might work. In other words, if we are clever, we will be able to reverse the

steps. All we are going to do is solve this inequality for n in the following steps:

2n—
L5t -3l <e

9 |5(2n 3)—2(5n+1)

(5n+1 | <€

g —15-2

55n+1|<6

4- 15 5n+1|<6

17
5. 5@ﬁiﬁ'<:6

6. & < 25n+5.

7.1 5 < 25n.

7_p5

8. S5 < n.
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17
" > 17

Now choose N to be any integer so that N > -5 -

Note that if N > 21_5757 then 2;—3\[ < €.

Thus, to find the integer N all you need to do is:

1. Write down the absolute value of the difference between the limit L (in this case

L = 2) and the formula for x, (= 2=3),

2. Determine a common denominator (= 5(5n + 1)),
3. Simplify the numerator (= 17), and
4. Solve for n.

Step 3. Check N works:

If n > N, then
2n—3 2, [5(2n—3) —2(5n +1)|
s i A 5(5m + 1)
=152
- 5(5n+1)
_ [ =17]
“5(5n+1)
17 17
T5Gn+1) BN -

Galileo: For this example, Definition 2 has a technical advantage over Definition 1
because the absolute value function takes care of different cases that you would have
had to separate. Thus, the argument is cleaner. OK, Mr. Simplicio. How about if
you try the next example. It is going to reappear many times before these gathering

are finished.

Example 9.1.11. Using the definition of limit, prove that lim,_..{5=} = 0.
Simplicio:

Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:

Working backwards again, how about if we choose N so that QLN < €? If we solve this
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inequality, we see that % < 2N Taking logarithms of both side of the inequality, we see
that —log(e) = log(L) < log(2") = Nlog(2). Thus, we should choose N > —:sg((g
Step 3. The Check:

To complete the problem, simply reverse the steps. In other words, if n > N, then

n>N > —:gg((;; so that nlog(2) > —log(e). Thus, log(2") > log(%),2" > L, and

€> 5.

Cauchy: I think he has got it!

Galileo: While not all limit problems can be solved in such a straightforward fashion,
at least we have a method for these. In the spirit of Professor Polya, we should look
back at what we have done and generalize the method. The next proposition does

exactly that.
Proposition 9.1.10. If x € R and |z| < 1, then lim,_, 2™ = 0.

Proof. Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:
Working backwards again, how about if we choose N so that x|V < €? If we take
logarithms of both side of this inequality, we see that Nlog(|z|) < log(e). Since
|z| < 1,log(]z|) < 0. Thus, when we divide both sides of the inequality by log(|x]),

log(€)
log(|z]) *

the sign of the inequality reverses and we find that N >
Step 3. The Check:
To complete the problem, simply reverse the steps. In other words, show that if

n > N, then |z|" <. O

Simplicio: I really like that proof,

Virginia: Really?

Simplicio: But, why is it important?

Galileo: As you will soon see, we can use this fact to show that the square root
method of Archimedes/Heron always converges. For this application, x = %, which

tells you that the error drops by 50% for each iteration of the algorithm. For the cube
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2
3

root algorithm, z = £, which means that the error drops by 33% for each iteration.
This fact will also appear in the error formula for the Contraction Mapping Theorem.
Cauchy: Once again following the dictums of Professor Polya, we should review
what we have done and think bigger. At the beginning of our conversation about
convergence, we began by defining the absolute value function and a distance metric.
Distance is a very general concept and works in all dimensions.

Virginia: Pythagoras provides us with distance formulas for vectors in the plane and
three space.

Cauchy: Better yet, Pythagoras provides us with distance formulas in infinite dimen-
sional spaces.

Simplicio: I bet those formulas are really complicated.

Galileo: Actually, no. The formula for R" generalizes in a completely natural way.

Definition 9.1.11. If f(z),g(x) : [a,b] — R are continuous functions, the distance
between f(x) and g(x) is defined by

d(f( \// 2))? dx.

If you think of the points € [a,b] as coordinates, then this formula is exactly

the Pythagorean Theorem. Moreover, it satisfies the same symmetry and triangle
inequality properties that the absolute value function does. Thus, we can now talk
about limits of functions.

Simplicio: OK, but why would we want to? How could that formula be useful?
Galileo: Since a multitude of applications are based on frequency and since frequencies
can be modeled by the trigonometric functions cos(nx) and sin(nz) defined on the
interval [—m, 7], we confront these problems everywhere. The heat equation and the
wave equation are just the beginning.

Cauchy: True, but we are going to need to be more general than that. As it turns

out,

Exercise Set 9.1.
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1. Using either definition of limit, prove that limnﬁoo{%} =0.
2. Using the definition of limit, prove that limnﬁoo{#} =0.

3. Assume you have a sequence defined by the following rules:

) = 2.

1
In—ﬁ

xn—i—l — 9

After the first fifty terms are computed, are you close to convergence yet? What
can you conclude after the first million terms are computed? Do they seem to

be bounded? Is the sequence increasing?

3n—"7

4. Using the definition of limit, prove the following limit exists: lim,Hoo{Qn+5 .

2n+5
3n—77)"

5. Using the definition of limit, prove the following limit exists: lim,,

6. Prove: If lim, ,. 2, = L, then lim,_, |x,| = |L|. (Hint: This fact is easier
to prove if you select the right fact from the right proposition. Otherwise, you

have to consider a number of special cases.)

7. Find a sequence {z,}5° | with the property that the statement
limy, o |2, = |L| is true, but the statement lim,, ,,, x, = L is false. (Remark:

In other words, the converse to the previous problem may not be true.)

8. Using the definition of limit, prove that lim,_,.{+} = 0.

9.2 The Geometric Series

Galileo: Before we move on to more theoretical issues, we should discuss the Geo-
metric series. This special case has played an important role in mathematics since
Archimedes used it to compute the area under a parabola.

Virginia: But isn’t that a Calculus issue?

Galileo: If that Roman soldier hadn’t run the old man through with a spear, we

would have had integration several thousand years ago. Archimedes was an amazingly
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productive individual. When you read his proof of the volume of a sphere, all you
can do is wonder at his imagination and energy. In any case, we now turn from the
problem of computing the limit of a sequence to computing the sum of an infinite
series.

Simplicio: What is difference between a sequence and a series?

Galileo: The sum of an infinite series is a special case of a limit of sequence. Thus,
any fact we prove about the limit of a sequence immediately translates into a fact
about series. However, before we do that, let’s compute the sum of a finite series.

This formula should be familiar.

Proposition 9.2.1 (Sum Formula for the Finite Geometric Series). If v € R

and © # 1 and S, = S.1_, ¥, then S, = =22

1-x
Proof. If S, = Y i _, «*, then xS, = >_;_ 2" If we subtract these two equations,
then only two terms remain on the right hand side. Thus, (1 — )5, =1 — 2" and

the result follows by dividing both sides of the equation by 1 — x. O
Simplicio: That proof was too easy.

Example 9.2.1. Galileo: How about the special case when v = i? Archimedes needed
this case when he computed the area under a parabola.

Virginia: But that is easy. By the formula, we can see that

1 1 1 1 1— -1 4-1L
S, =1+ —4+—=—4+—=4+---4+— = ant? — an
+41+42+43Jr +4n 1-1 3

Galileo: So what number is this sum close to?

1

Virginia: If n is large, then

15 small, which implies S, ~ %.

Galileo: So, can you find a parabola with area % under the curve?

Galileo: This example leads to the question: How do you sum an infinite series?
When we computed in the proposition, note that we added up the first n terms of
the sequence, which we denoted by .S,,.

Virginia: We then observed the limit of this sequence of sums converges to %.

Galileo: We not make two definitions to formalize the ideas in this example.
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Definition 9.2.2. If Y°.° xy is an infinite series, then the sum S, = > p_, Ty s

called the n™ partial sum.

Definition 9.2.3. An infinite series Y, x), is said to converge to a number S, if
the limit of the n'* partial sums converges to S. More precisely, S = Y oreowk if and

only if lim,_,o S, = S, where S, = >~} _, .

Galileo: In other words, the infinite sum S equals the limit of the sequence of partial
sums. We are now in a position to compute the infinite version of the Finite Geometric

series.

Proposition 9.2.4 (Sum Formula for the Infinite Geometric Series). If v €

and |z| <1 and S, = > p_g 2", then Y o 2% = lim, 0 Sy, = .

-z

Proof. Step 1. The Challenge:
Let € > 0 be given. Step 2. The Choice:

Since S, = Y 2" = 1—111";1, we only need to find an integer n with the property

that
| 1 1 — xn+1 | _
— €.
1—-x 1—-uz
Since |1 — 1_1{"$+1| = |“’i7:+; |, we only need to show that |“ff;l| <e.
Working backwards, we see that
lz|"T < (1 —x)e
(n+ Diog(|z]) < log{(l — x)e}
l 1-
nil > lgll =)
log (=)
log{(1 — x)e} 1
log ()

log{(1—x)e} 1.

Thus, we choose N to be any integer with the property that N > Tog(Ta])

Step 3. The Check:

To check that N works, simply assume n > N and reverse the above inequalities. [
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Simplicio: I noticed you reversed inequalities in the middle of the argument, where
you chose .

Galileo: Good observation. Since we assumed that |z| < 1, the quantity log(|x|) is
negative. Thus, we must reverse the inequality.

Simplicio: Does the argument work better if z > 17

Galileo: Unfortunately, the proposition is false if z > 1.

Virginia: Which log function did you use? Natural or base 107

Galileo: Choose your weapons. Either, in fact, any logarithm will work just fine.
Exercise Set 9.2.

1. Sum the finite series S, =1+ 2+ 22 4 -.- + 2",

2. Sum the terms in the finite sequence S, =1+ 3 4 3% 4+ ... + 3",

3. Sum the terms in the infinite sequence S =1+ % + 2% +-+ 2% .

4. Sum the terms in the infinite sequence S =1 + % + 3% +--+ 3% e

5. Sum the terms in the infinite sequence S =1—1+ & — -+ (=1)"5L +....
6. Sum the terms in the infinite sequence S =1— 3+ 35 — -+ (—1)"55 +....

9.3 Limit Theorems For Sequences

Cauchy: We next turn to the idea of making limits a bit easier so we don’t always

have to grind our way through this three step process of proving limits. For example,

2n243n+5 —

T %, you will find that annoying technical

if you try to show that lim, .
difficulties arise. Thus, while we still want to have the capability of using the definition
to prove a limit, we would also like to have more weapons at our disposal. The point
of our discussion will be to make limits and convergence easier.

Simplicio: I like easy.

Cauchy: However, before we start, I would like remark that we are going to be proving

theorems and propositions. These proofs require that you understand the logic and
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rigor of a mathematical argument. Before we proceed, it is necessary that you can

answer the following questions.
1. What is the triangle inequality for the absolute value function?
2. What is the contrapositive of the statement “If p, then ¢.”?
3. What is a proof by contradiction?

4. What is the connection between a proof by contradiction and the contrapositive

of a statement?

Do you remember the contrapositive and modus tollens?

Virginia: Yes, I do.

Simplicio: I'm not sure.

Cauchy: Well, there is no point in proceeding until you know. Go back and review
these concepts.

Simplicio: I think we should move on before my brain melts.

Virginia: I am ready.

Cauchy: Good. Let us begin. While you should have already seen these ideas in
your previous study of Calculus, you may not have seen the proofs. The facts we will

establish are:
1. The limit of the sum is the sum of the limit.
2. The limit of the product is the product of the limit.
3. The limit of the quotient is the quotient of the limit.
4. The uniqueness of limits.
5. Several squeezing propositions.

The proofs of the first three facts will all have the same 3 step structure that we

just employed for our examples. For the sum, product, and quotient proofs, we will
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use the absolute value function extensively. For the uniqueness and squeezing facts
we will use a proof by contradiction strategy. Let’s now state and prove the first

proposition.

Proposition 9.3.1 (Limit Facts for Sequences). Let {z,}°%, and {y,}32, be
sequences in R. If lim, oo{x,} = L and lim, o {y,} = M, then

(i.e. The limit of the sum equals the sum of the limits or LS = SL.)

2. limy, oo{@y * yn} = lim, s oo{@n} * lim, s oo{yn} = L *x M,
(i.e. The limit of the product equals the product of the limits or LP = PL.)

3. If M # 0, then limn_mo{z—z} — limnyoofon} _ L

limp soo{yn} — M
(i.e. The limit of the quotient equals the quotient of the limits or LQ = QL.)

Proof. 1. Let us begin by proving lim, . {z, + ¥} = L + M.

Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:
Since we are assuming that lim, ,,{z,} = L, we can find an integer N; with the
property that if n > Ny, then |z, — L| < 3.

Since we are assuming that lim,, . {y,} = M, we can find an integer Ny with the
property that if n > Nj, then |y, — L| < 3.

Since we want both of these statements to be true, we choose N to be any integer
larger than both Ny and Ny. The best choice is N = maxz{Ny, Na}.

Step 3. The Check:

If n > N, then by the triangle inequality
[T+ yn — (L + M)| = [(xn — L) + (yn — M))|
§|$n_L|+|yn_M|
€ n €
2 2

= €.



9.3. LIMIT THEOREMS FOR SEQUENCES 135

2. Next let us prove lim, oo{@, * Y} = L x M.

While the proof of this proposition is often considered more difficult than LS =
SL, the approach is the same. The main difference is that we are confronted by the
distributive law.

Step 1. The Challenge:

Let € > 0 be given.

Step 2. The Choice:

Since we are assuming that lim, ,,{z,} = L, we can find an integer N; with the
property that if n > Ny, then |z, — L| < €.

Since we assume that lim, ,..{y,} = M, we can find an integer N, with the
property that if n > Ny, then |y, — L| < €.

We again choose N = max{Ny, Ny}.

After we make a couple of computations, we will figure out reasonable choices for
€1 and €9. For LS = SL, it was easy to see that €; and €3 should both be chosen equal
to .

Step 3. The Check:

If n > N and we have been smart enough to choose €y so small that |z,]e; < 5 and

e1|M| < g, then by the distributive law and the triangle inequality we see that

|y * Yy — (L x M)| = |2, * yp — 2, M + 2, M — LM|
= |#n(yn — M) + (2 — L) M|
< |zn|l(yn — M)| + [ (zn — L)[|[M]
< |xplee + €| M|

< |.1Cn|€2 + €1|M|

<e+e
2 3
< €.

Virginia: While I am not sure about €, I can see that we should choose ¢, = ﬁ,

then €, [M| < £.
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Cauchy: But if M = 0, then you are dividing by zero. Bad idea.

Virginia: You are correct. I guess I had better choose ¢; = so the denominator

ST
can never equal zero AND the choice of €; will still have the property that € |[M]| < 5.
Cauchy: Yes, you have now covered all the cases.

Simplicio: But what about choosing €, so that |z,[e; < §7 I don’t see that choice at
all.

Cauchy: We can begin addressing that question by observing that if we choose €; < %,
then we will know that |z,| < |L| + 5 for all n > Ni.

Virginia: In other words, if we had chosen e, = then we can guarantee that

_€e
3[L[+1°

[zales < (L] + %) * s < 5- Thus, to complete the argument, we only need to

choose ¢, = Min{3, T
Cauchy: Correct.

3. Next let us prove the quotient rule: If M # 0, then limn%oo{‘;—z} = ﬁ

Since the strategy for proof of LQ = QL is similar to LP = PL, we will leave

the proof as an exercise. However, since we have just proved that the limit of the

product equals the product of the limit, note that we only need to prove the special

case: limn%oo{yin} = % O

Simplicio: Thanks. I have had enough anyway. How about an example?

Example 9.3.1. Cauchy: Suppose you are asked to show limnﬁw{%} = % If

you try to use the definition, you will find the process annoying. However, with the

Basic Limit Facts, we simply make the following computations:

202 +3n+5 limy, oo{2 + 2 + 5}

y _ LQ = QL
24+0+0
—-r-r- LS =SL
7+0 ( )
_2

Cauchy: The next corollary shows that we can “pull” a constant across the limit sign.

Corollary 9.3.2. If K is a real number and {x,}32 | is a sequence of numbers such

that lim,, o x, = L, then lim,, ., Kx, = K lim,_,, x, = KL.
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Proof. This result follows immediately from the limit of the product equals the prod-
uct of the limits because we can define y, = K for all n. Since the limit of the constant

sequence K, K,...,K,... is K, we are done. O

Cauchy: We now give a second proof of the sum formula for the Geometric series.
Simplicio: A second proof?
Galileo: The result is useful and Repetition is a great teacher. You will see this

formula again.

Proposition 9.3.3 (Sum Formula for the Infinite Geometric Series). Ifz € R,

x| <1, and S, = >4y a¥, then D 0 o aF = lim, 00 S, = %

—T

Proof. Since we are assuming that |z| < 1, we know lim,, ,,, 2™ = 0. By the limit of

the sum equals the sum of the limits and the previous corollary we can see that

1 — g™t 1 1 1
lim S, = lim o= lim (1 — 2")
n—o00 n—soo 1 — 1 1 — 1 nooo

1
lim 2"t = )
l—2z 1—2noc 11—z

O

Cauchy: We now prove uniqueness for limits.

Simplicio: Uniqueness? I have been patient until now, but this theory stuff is killing
me.

Cauchy: While you may not think uniqueness is important, engineers really do want
to know when there is only one answer. In some sense, the sequence z,, = (—1)" has
both —1 and +1 as it limits. Rather than deal with this ambiguity, the mathematics
community has voted to say the sequence does not converge. While these facts may
seem obvious, they require proof.

Simplicio: But every test problem I ever did only had one answer. (To Virginia) Did
you ever bubble in more than one answer?

Virginia: No, but few of my tests were multiple guess.

Cauchy: OK, but quadratic polynomials usually have two roots. A multitude of
computational problems have more than one answer. Life is easier when we have

uniqueness.
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Simplicio: One wife, one mother-in-law?

o0

Proposition 9.3.4 (Uniqueness Theorem for Limits of Sequences). Let {x,}>

be a sequence of numbers in R. If lim, oo {x,} = L1 and lim,o{x,} = Lo, then

L1 — Lg.

Proof. Cauchy: By way of contradiction, we will assume the proposition is false.
In other words, we will assume L; # L. If you make a smart choice of e-namely
€ = tdist(Ly, Ly) = 5|L1 — Ly|, then you will find that all but a finite number of the
terms of the sequence must lie in both of the intervals (L —¢, L1+¢€) and (Ly—¢, Ly+-€).

However, by the choice of ¢, there are no points in both of these intervals. Thus, we

have a contradiction. Now, that wasn’t so bad was it? O

Simplicio: Short is good. It was OK.

Cauchy: Now it is time to squeeze.

Simplicio: And I must ask again. What are these facts good for?

Cauchy: A basic rule for applications is that inequalities are more important than
equalities. As physicist Werner Heisenberg (1901-1976) pointed out, measurements
are not exact and we are thus forced to settle for approximate answers. Under these
circumstances, we are comfortable if we can control a sequence by squeezing it between
two constants. Many of the algorithms we will be using can be controlled this way.
Simplicio: How about an example.

Cauchy: While root finding method of Newton/Raphson and the Contraction Map-
ping Theorem are the first settings where we will need these ideas, we will also need

tools of estimation everywhere in Fourier series. Squeezing helps.

P £ ¢
IR 2 AT T AR tHE
- R Aty )
4 Lpt=l8 Ly
/(‘ /19_ "j\l
- A

Figure 9.1: The Uniqueness of Limits
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Proposition 9.3.5 (The Squeezing Theorem for Sequences). Let {z,}5°,

{yn}S2,, and {z,}5°, be sequences in R, where x, < y, < z,.
1. Fact 1. If lim, yoo{xn} = L and lim, oo {2,} = M, then L < M.

2. Fact 2. If the sequence {y, }52, converges and y, < M for all n, then lim,, oo {y,} <
M.

3. Fact 3. Iflim, ,oo{x,} = L = lim,_, {2, }, then the sequence {y,}>° | converges

and lim,_,o{y,} = L.

Proof. Proof of Fact 1.

The proof of the first squeezing fact, is again by contradiction. Thus, we begin
by assuming that L > M. The next step is to let € = 2dist(L, M) = 1|L — M|. Since
L > M, we have the situation that all but a finite number of the terms of the sequence
{z,}52, lie in the interval (L — €, L + €) and all but a finite number of the terms of
the sequence {y,}>2, are in the interval (M — €, M +¢€). Since these two intervals are
disjoint and L > M, we have now created the problem that all ¥, < x, for all but
a finite number of the integers n. Thus, we have a contradiction to our assumption
that z, <y, for ALL n.

Proof of Fact 2.

This fact follows immediately from Fact 1 because the constant M can be thought
of as a sequence where 2, = M, for all n.

Proof of Fact 3.

Since we are not assuming that the sequence {y,}2° , converges to any number,
this fact doesn’t immediately follow from Facts 1 or 2. However, we can go back to
basics.

Step 0. The Candidate:

The only possibility is that the sequence {y,}>>, should converge to M.

Step 1. The Challenge:

Let € > 0 be given.



140 CHAPTER 9. LIMITS

Step 2. The Choice:

The integer N will be the maximum of the integers Ny and N,, where
1. If n > Ny, then x, € (M — ¢, M +¢).
2. If n > Ny, then z, € (M — ¢, M +¢).

Step 3. The Check:
Thus, if n > N, then both z,, and z, lie in the interval (M — ¢, M + €). Since we are

assuming «, <y, < 2, Yp € (M — ¢, M +¢€).

Exercise Set 9.3.

1. Using limit facts, prove that limn_m{#} =0.

2. Using limit facts, prove that limn_m{%} =0.

3n—=7\1 _ 3

2n+54 T 27

3. Using limit facts, prove that lim, ,{

2n+51 __ 2

3n—74 7 3°

4. Using limit facts, prove that lim,_,{

202477 _ 2

3n2-5J 7 3-

5. Using limit facts, prove that lim, ,,{

2n34+571 _ 2

3n3-7J 7 3°

6. Using limit facts, prove that lim,_,{

9.4 Every Bounded Increasing Sequence Converges

Numbers are the free creation of the human mind.-Julius Wilhelm Richard

Dedekind (1831-1916)

Galileo: We now turn to the problem of showing that every bounded increasing
sequence converges.

Simplicio: I hate to be predictable, but why should I care?
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Galileo: The short answer is that if we can show an algorithm produces a sequence
of numbers which is both bounded and increasing, then the method will “work.” For
an engineer, it is important that the method produce accurate answers reliably.
Virginia: The long answer?

Galileo: The long answer is that it took well over 2000 years to figure out how to fill
in the holes in the real numbers. Since checking all the details of this construction
is really really boring, we are only going to present the flavor of the ideas. This
topic is probably the most theoretical we will encounter in this tutorial. If you do
not remember our discussion of rigor and logic, it might be a good time to review
definitions, contrapositives, and proof by contradiction,

Simplicio: I believe in the real numbers. Maybe I will take a short nap.

Galileo: The following two examples should set the stage for the main theorem.
Example 9.4.1. The sequence x, = k? is increasing, but not bounded.
Example 9.4.2. The sequence x = (—1)* is bounded, but not increasing.

Simplicio: And?

Galileo: As we have already remarked, an engineer wants to have confidence in his
answers. In other words, if he hits the square root button on his calculator, he would
like to know the answer is correct. The beauty of the Archimedes/Heron square root
method is that it always produces a bounded decreasing sequence. The beauty of
the bisection method is that it produces a sequence of closed intervals, where the left
endpoints are increasing and the right endpoints are decreasing. Thus, the answer
is always “trapped.” Thus, if we can show that every bounded increasing sequence
converges, then we will have shown that these two methods “always work.”

Galileo: We now turn to a fascinating little problem that has caused 2000 years of
consternation. Namely, how do we “fill in” the “holes” in the real line so we can be
sure the irrational numbers such as v/2, e, 7, and €™ are well-defined.

Simplicio: Wait a minute. What does the word “well-defined” mean?
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Galileo: Julius Wilhelm Richard Dedekind (1831-1916) went to great lengths to
get arithmetic right. With his idea of a “cut” he showed that the associative,
commutative, and distributive laws for addition and multiplication can not only
be extended from the positive and negative integers Z to the rational numbers
Q = {%’ : p,q € Z and g > 0}, but can also be extended to the real numbers R.

A large part of this problem is the exact definition of a real number.

Definition 9.4.1. A non-empty subset S of Q is a called a cut if the following

conditions hold:
1. The set S is not equal to Q.
2. If whenever p € S and q < p, then q € S.
3. The set S contains no largest rational number.

Virginia: Thus, the number /2 can be represented by the set
s ={L: (%)2 < 2or? < 0}. In general, a real number can be represented by
a “connected” open interval of rational numbers! And the real numbers R is the

collection of all such connected open intervals.

Galileo: Correct.

Simplicio: But I thought a real number was a point? Now you tell me it is a set.
Galileo: No worries. You can go back to thinking a real number is a point. While this
construction represents an important milestone in establishing the rigor of arithmetic,
I agree that it can only be described as tedious. The details are guaranteed to put
even the sleep deprived into a sound slumber.

Simplicio: I am a man of faith. Let’s move on.

Figure 9.2: A Dedekind Cut Representing /2
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Galileo: The Least Upper Bound Principle is a consequence of Dedekind’s construc-
tion. The importance of this principle is that it “fills in” all the “holes” in the real
number line.

Virginia: When you use the word consequence, I suspect you mean that this Principle
is really a theorem which must be proved from other more basic assumptions
Galileo: Correct again. While the Least Upper Bound Principle is a theorem, which
can be proved from the properties of Dedekind’s construction, we will not go there.
In the interests of time, we will assume it is true.

Virginia: Like an axiom, a postulate, or a definition?

Galileo: Yes.

Simplicio: As I said, let’s move on.

Galileo: Before we can state this important principle, we must define what it means

for a set to have an upper bound.

Definition 9.4.2 (Bounded Above). A non-empty set S C R is bounded above if
there 1s a number M € R with the property that x < M for all x € S. The number M

15 called an upper bound for the set S.
Galileo: We now define the least upper bound (lub) of a set of real numbers.

Definition 9.4.3 (Least Upper Bound). If a real number L is an upper bound for
a non-empty set S C R, then L is called the least upper bound (lub) of S if for any
upper bound M of the set S, it is always true that L < M.

We now state the Least Upper Bound Principle.

Principle 9.4.4 (The Least Upper Bound Principle). If a non empty set S € R

18 bounded above, then it has a least upper bound.

Simplicio: I failed to get that principle at all. I need an example.
Galileo: If we consider the sequence z,, = (—1)", we notice that the terms oscillate
between +1 and —1. While the sequence has a multitude of upper bounds such as

2,47, and 1001, the number +1 is not only an upper bound but, in fact, the least
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upper bound. On the other hand, if we consider the sequence x, = we again

notice that the sequence has a multitude of upper bounds including 2,47, and 1001.
Again, the least upper bound of the sequence is +1.

Simplicio: Why did you give us two examples with the same answer?

Galileo: To point out that in the first example the least upper bound is equal to one
of the terms of the sequence, while the least upper bound in the second case never
equals any term in the sequence. If the least upper bound was always one of the
terms in the sequence, it never would have been invented. In fact, if the least upper
bound was always a rational number, it never would have been invented. In other
words, the Least Upper Bound Principle fills in the “holes” in the real number system
vacated by numbers such as v/2, v/2, e, .

Simplicio: Let’s move on.

Galileo: Certainly. We begin with two important concepts associated with sequences:
increasing and bounded. These two ideas will provide a test for when a sequence

converges. The definitions of these terms are now presented. We begin with the

definition of an upper bound for a sequence.

Definition 9.4.5. A sequence {x)}{2, is bounded above if there is a number M € R

such that x, < M for all integers k > 1.
Definition 9.4.6. A sequence {xy}52, is increasing if xy < x4y for all k > 1.

Theorem 9.4.7 (Every Bounded Increasing Sequence Converges). If a se-
quence {x, }2° | is both bounded above and increasing, then there is a number L such
that lim,,,o{x,} = L. In particular, if M is any upper bound, then x, < L < M for

all n.

Proof. The reason we mention the least upper bound principle is to identify the limit
L.

Step 0. The Candidate:

Set L equal to the least upper bound of the set of points consisting of all the terms

of the sequence {z,,}°° ;. In particular, L = lub{z,, : n=1,2,3,...,n,...}. We must
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now show that lim,, ,{z,} = L.

Step 1. The Challenge:

Let € > 0 be given.

Step 2. The Choice:

Choose N so that xty > L — €.

Simplicio: How do we know we can find such an N7

Galileo: Good question. Once again, the only viable proof for the existence of such
an integer N is by contradiction. To this end, we assume that no such integer N
exists. But, if we make this assumption, then zy < L — € for ALL integers N. Thus,
L — ¢ is also an upper bound for the sequence. Since L < L — ¢, we would have a
contradiction of the assumption that L is the least (or smallest) upper bound.

Step 3. The Check:

We must now show that if n > N, then z, € (L — ¢, L + ¢€). Since n > N, and we
are assuming the sequence is increasing, we know that Xy < xyi1 < axyio < ..., 2.
Thus, L —e < xny < xy,.

Since we are assuming that L is an upper bound for the sequence, z, < L < L+e.

Thus, x,, € (L — ¢, L + €) and the sequence converges to L. O

Galileo: Now that proof wasn’t so bad, was it?
Simplicio: This proof seems to have the same four steps as the others.
Galileo: An equivalent formulation of this theorem (and the one that we will need)

can be stated in terms of bounded decreasing sequences.

=&
Eaw lf(n.' Xz b:é‘ :
1 ,l(; - H— -~ |
X, Xs M Xou L M

Figure 9.3: Every Bounded Increasing Sequence Converges
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Definition 9.4.8. A sequence {xy}72, is said to be bounded below if there is a number

M such that x > M for all integers k > 1.

Definition 9.4.9. A sequence {xy}72, is said to be decreasing if xy > xy41 for all

integers k > 1.

Theorem 9.4.10. If a sequence {x,}°°, is both bounded below and decreasing, then

there is a number L such that lim,_,{x,} = L.

Galileo: For bounded decreasing sequences, we will see that the sequence will actually
converge to the greatest lower bound.

Simplicio: I have a question. In a real-world problem, you don’t know the answer so
you can’t begin to test if some number L is a limit. If you did, you wouldn’t do all
this checking. Why waste your time when a client wants the results yesterday.
Galileo: You have a good point. All we have done so far is set the context. We will
return to your question when we discuss Cauchy sequences. His sequences are the
ones engineers care about.

Simplicio: Cauchy again?

Exercise Set 9.4.

1. Compute the least upper bound of the sequence {% o ,- Compute the great-

est lower bound. Does the sequence converge to the least upper bound?

2. Compute the least upper bound of the sequence {(—1)"%-2}> . Compute the

greatest lower bound. Does the sequence converge to the least upper bound?

3. Prove: If a sequence {x,}52, is both bounded below and decreasing, then there

is a number L such that lim, ,{z,} = L.

9.5 Cauchy Sequences

Galileo: We now recall our friend Cauchy to provide a brief introduction to a criterion

that guarantees a sequence converges.
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Simplicio: I dread the thought of more theory.

Cauchy: The reason for defining this new concept is that we would like to be certain
a sequence converges even when we have no idea what the limit will be. If we know
the answer, then why waste time computing limits!! Since the limit is missing, the
setting is more like the situations engineers face with real-world problems. Namely,
they don’t know the answer before they start. However, it will turn out that while

we don’t know the limit exactly, it can be contained somewhere in a small interval.

Galileo: Actually, Mr. Simplicio has already encountered these ideas in Calculus

when he was introduced to the ratio and n'" root tests.

Simplicio: I liked the ratio test. It was easy because all you had to do was compute

r = lim, % If » < 1, then the series ZZOZO a, converges. If r > 1, then the

series diverges.
Galileo: Very good.
Simplicio: Actually, that is the only technique I remember on that subject.

Galileo: The only problem is that several cards were dealt from the bottom of the

deck.
Simplicio: How so?
Galileo: The technique didn’t actually give you the answer.

Simplicio: You are correct. The answer to those problems was simply “convergent”

or “divergent.”

Virginia: But wait a minute. If you think about the proofs of the ratio test, you are

dominating the given series by a Geometric series. That information ought to help.

Simplicio: I do my best to avoid proofs and here she comes.

Virginia: If we assume the series Y a, has the property % < r for all integers
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n=0,1,2,...,n,..., then |a,| < |a,_1|r for all n. Thus,

|ao| <lao|r®.
lay| <|ag|r.
las| <|ai|r < |ag|r.
|as| <|azlr < aolr®.

|aa| <|aglr < laglr®.

lan| <|an_1|r < lao|r™.
Adding these quantities, we see by the sum formula for the Geometric series that

|Zan| < Z|an| < |ao|Z = Jaol—

We can always estimate the error by comparing the tails of series

n+1

|En |—|Zak—zak|—| Z ax| < Z |ak| < laol Z r Iao| —

k=n+1 k=n-+1 k=n-+1

n+l
Since limy, s |ao| 5= = 0, we have convergence.

Galileo: Very good! However, it isn’t immediately clear that the symbol > 77 ay
actually represents a real number.

Simplicio: But isn’t that obvious?

Galileo: Show me the sum.

Virginia: If you think about it, the only general condition we have that guarantees a
sequence converges is that it is bounded and increasing.

Galileo: Correct. The reason for Cauchy sequences is to guarantee convergence. Once
we have completed this task, the ratio test will guarantee that the symbol Y 77 ay
makes sense. By the way, Cauchy is involved whenever we are apply any comparison
test. In particular, the root test and the integral test are involved.

Simplicio: OK, enough of these old tests, how about this Contraction Mapping The-

orem?
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Galileo: The strategy is the same with the Contraction Mapping Theorem, Namely,
you use an iterated function computation z, 11 = T'(z;) to create an infinite sequence
{n}52, of points. Since T'(x) is a contraction with contraction factor M < 1, we
can use the same Geometric series argument Virginia just mentioned to show that
|z, — on| < M5z lwe — 21| for all n > N. This inequality will be sufficient to show
that the sequence is Cauchy. Later we will see we have the same issues with Fourier
series. While it is easy to show the series > ' 2 cos(nz) converges for all z € R, it
is not so easy to figure out a tidy little formula for the function it represents.
Simplicio: So where do we begin?

Galileo: We begin with the definition, which poses the following challenge: If given
a sequence {x,}>° ; and a tolerance ¢ > 0, then find an integer N so that whenever
n > N, the point x,, will lie in the interval (Xy — €, Xy + €). In particular, all but a
finite number of the terms in the sequence will lie in the interval (Xy — ¢, Xy + ¢€).
As we did with the second definition for convergence, we will use the absolute value

function and distance in the definition of Cauchy Sequence.

Definition 9.5.1 (Cauchy Sequence). A sequence {z,}>° | is called Cauchy, if for

every € > 0, there is an integer N with the property that if n > N, then |z, —xy| < €.

Cauchy: Note that this definition is exactly the same as the definition of limit except

there is no mention of the limit L. Consider the following examples.

Example 9.5.1. The sequence x, = (D" g Cauchy.

n

The argument this statement is true is the same as we encountered for convergent
sequences.
Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice:
Choose N > %
Step 3. The Check:
If n > N, then |(7i)n - (71)N| < |G 4 - (71)N| <+ +
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Simplicio: That argument is certainly within my comfort zone.

Example 9.5.2. The sequence x, = (_n# 1s Cauchy.
Step 1. The Challenge:

Let € > 0 be given.
Step 2. The Choice:

Choose N > \/g Thus, N* > 2.
Step 3. The Check:

Ifn> N, then |55 - S5 < b+ < & <

Simplicio: So it looks like we need to choose the integer N a bit larger than before.
Cauchy: I knew you would like this topic.

Galileo: The beauty of the situation is that convergent sequences are Cauchy and
vice versa. Our first theorem is the observation that if a sequence is convergent, then
it must also be Cauchy. Note that the format of the proof exactly parallels the proofs

of the previous limit theorems. Note also, that the triangle inequality is evident.

Theorem 9.5.2 (Convergent Sequences are Cauchy). If a sequence of real num-
bers {wg}32, is convergent, then it is a Cauchy sequence. In particular, if there is a

number L so that lim,_eox, = L, then {x;}32, is Cauchy.

Proof. Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:
Choose N so that if n > N, then |z, — L| < 3.

Step 3. The Check:
We must show that if € > 0 is given, then we can always find an integer N such that
whenever n > N, then |z, — zy| < €.

However, since the sequence converges to some limit L, we know by the definition
of limit that there is an integer N such that if n > N, then |z, — L| < ¢/2.

Thus, |z, —oy|=|2n —L+L—ay| < |z, — L[+ |L—-2ay|< 5+ 5 =c¢

Thus, the sequence is Cauchy. 0
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Cauchy: We now prove the converse of the previous theorem, which shows that every
Cauchy sequence converges to some number.

Simplicio: But I thought you said we couldn’t find the number.

Cauchy: As you might have guessed, the answer comes to us as a least upper bound
or a greatest lower bound of a set of numbers. While it is a bit theoretical, we do

have it trapped in an arbitrarily small closed bounded interval.

Theorem 9.5.3 (Cauchy Sequences Converge). If a sequence of real numbers

{z,}0°, is Cauchy, then there is a unique L such that lim,_,-{x,} = L.

Proof. We will find two sequences {a, }°°, and {b,}3°, such that:
1. a, 1 <a, <b, <b,  for all integers n,
2. b, —a, < % for all integers n, and

3. for each integer n there is an integer N,, with the property that if & > N, then

Ty € [an, by

The essence of the argument is to simply set € equal to smaller and smaller numbers
and then apply the definition of Cauchy sequence. While any sequence of numbers
which converges to zero will do, we simply let € = % for larger and larger values of n.

Case n =1. Let e = 1.

Find an integer Ny such that if & > Ny, then |xy — zn,| < 1. Let a; = zn, — 1 and
by = zn, + 1. Note that by —a; = % a1 <z < b for all £ > N;.

Case n = 2. Let e = %

Find an integer No > Nj such that if & > Ny, then |z — zp,| < Let ay =

1
5
max{a, TN, — %} and by = min{by, xy, + %} Note that by — ay < % and a; < ay <

Tr < by < b for all £ > N,.

Case n = 3. Let e = %

Find an integer N3 > Nj such that if & > Ny, then |z, — zn,| < 3.
Let a3 = max{az, xn, — %} and by = min{be, rn, + %} Note that by — az < % and

ar < ag <az3 <o < b3|l€b2 < b1 for all k£ > N3.
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Case n =n. Let € = =.
Continuing inductively, find an integer IV, > N,,_; such that if & > N, then |z; —
TN, | <t

Let a, = maz{ap_1, xn, — =} and b, = min{by_1, zn, ++}. Note that b, —a, < 2
and a; <ap <a3 <---<a, < <by <o <by < by < by forall k > N,

Since the sequence {a,}52, is bounded and increasing, it converges to some num-
ber L. Since the sequence {b, }°°; is bounded and decreasing, it also converges. Since
b, —a, < % for all integers n, the sequences must converge to the same number L.
Note that a,, < L < b, for all n.

We now have to prove that the sequence {x,}2°, converges to L.

Step 1. The Challenge:

Let € > 0 be given.

Step 2. The Choice:

Choose N large enough that % < € and N large enough so that whenever n > N, then
ay < x, < by in the above construction. In particular, we know by — ay < % < €.

Step 3. The Check:

If n > N, then z,, € [ay,by]. Since L € [ayn,by], |2, — L| < by —ay < £ <e.

2
N

Thus, {z,}>°, must converge to L. O

Galileo: In the spirit of Professor Polya, let’s think about the key components con-

tained in this proof.
1. Construct a nested sequence of closed bounded intervals {[a,, b,]}32 ;.

2. Note that since a, < a,41 < bpy1 < b, for all n, both {a,}>°; and {b,}>°,

converge.

3. If lim,, 00 (b, — a,) = 0, then both sequences converge to the same number. In

other words, there is a number L so that lim,, ,,, a, = lim, ,, b, = L.

4. Any sequence which is frequently in each of these intervals has a subsequence

which converges to L. In other words, if {x,}5°, is a sequence with the property
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that there are integers n; < no, < --- < ngp < ngyp < ... such that z,, €

[a1, 1], xn, € [az,bs], Ty, € [as, bs], ete. then limy oz, = L.

5. Any sequence squeezed by these intervals also converges to L. In other words,
if {x,}22, is a sequence with the property that for every integer n there is an

integer N,, such that whenever k > N, then xy € [a,, b,], then limy_, o 2, = L.
The first three items in this construction can be encapsulated in a proposition.

Proposition 9.5.4. If {[a,, b,]}2° | is a nested sequence of closed bounded intervals
with the property that lim,_, (b, — a,) = 0, then there is a unique point L which is

contained in every interval [a,,b,]. Moreover, lim, . a, = lim, ,. b, = L.

We will see this construction again when we discuss compactness. We will need

this property when was show integrals of reasonable functions exist.
Exercise Set 9.5.

1. Show the sequence z,, = % is Cauchy.

2. If |z| <1 and S, = >,_, 2", then show the sequence S,, is Cauchy.

3. If |z] <1 and S, = Y"p_,(—x)", then show the sequence S, is Cauchy.

4. If S, = Yp_o(=1)*L, then show the sequence S, is Cauchy. (Hint: Think ratio
test.)

5. If S, = > p_o(—1)* 2, then show the sequence S, is Cauchy. (Hint: Think n'®

root test.)

9.6 Series

Galileo: Let us return to the topic of series by reminding you of what it means for a
series to converge. The idea is to bring precision to the addition of an infinite number

of terms.
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Simplicio: Where are we going to use these ideas?
Galileo: Approximation theory is all about infinite sums. Taylor series and Fourier

series are probably the most notable. We just want to make sure they make sense.

9.6.1 Series Facts

Virginia: As you mentioned earlier, we divide this definition into two pieces. The

first part is the definition of partial sum.

Definition 9.6.1. If Y 7° jxy is an infinite series, then the sum S, = >,z is

called the n'" partial sum.

Virginia: We now can define the sum of an infinite series to be the limit of the
sequence of partial sums. Thus, the study of series simply reduces to the study of a

special type of sequence.

Definition 9.6.2. An infinite series Y ., xx is said to converge to a number S, if
the limit of the n' partial sums converges to S. More precisely, S = >,z if and

only if lim,_, S, = S, where S, =Y p_, k.

Galileo: Correct.
Virginia: Actually, if series are a subset of sequences, life should be a bit easier
because you don’t have to prove theorems twice. For example, we immediately have

the Sum Theorem for Infinite Series.

Theorem 9.6.3 (The Sum Theorem for Infinite Series). If S = > 7z and
T =300k, then D707 o(Te + yr) = Dplo @k + D opeg b = S+ T.

Proof. Since the limit of the sum equals the sum of the limits for sequences 9.3.1,

n—00 n—00 R%OO

S+7T = lim S, + lim 7, = lim (S, +1},) Zxk—l—yk
k=0

Simplicio: We also can pull constants across the summation.
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Theorem 9.6.4 (The Distributive Law for Series). If S =Yz and C is a
real numer, then Y oo Cuayp = C > 2 ay = CS.

Proof. This theorem follows immediately from the fact that we can pull constants

across limits of sequences. 9.3.1. Namely,

iC:}:k = TLILIEO(ZH: Cuay) = T}Lrglo(CZn:xk) = CTLILIEO(ZR: Ty) = C’ixk =CS.
k=0 k=0 k=0 k=0 k=0

Galileo: Very good observation.

Virginia: Don’t forget uniqueness and squeezing.

Theorem 9.6.5 (Uniqueness for Infinite Series). If S; = Y .-z and Sy =
Y reo Tk, then Sy = Ss.

Proof. This theorem follows immediately from the Uniqueness Theorem for Sequences

9.3.4. ]

Theorem 9.6.6 (The Squeezing Theorem for Series). If S = > 4,
T =570k and x, < yi for all k =0,1,2,...,00, then S =17 2, <D 00 Yk =
T.

Proof. 1t S,, =37 _,x and 1), = >~} _ vk, then the assumption z < y; implies that
S, <1, for all n.

Thus, by the Squeezing Theorem for Sequences 9.3.5
S=1lmS, < limT,="1T.
n—r00 n—00

Simplicio: How about an example?

Example 9.6.1. Galileo: How about if we compute Y p- (255 + Tzr)?
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Virginia: How about if we decompose the sum into:

o0

Z(z—+7 Zz +Z7%
k=0 k=0
1
:223—k+72§
k=0 k=0

1 1 3 5 35 47
=2 7 =22 472 =342 =2
1—§+ 1 2 T T

1
5
Simplicio: That was easy. How about an example to illustrate the Squeezing Theorem

for series?

Example 9.6.2. Galileo: How about if we show the series > - kiﬂ?%k converges?

Virginia: FEasy. All we have to do is notice that 3% forallk =0,1,2,....

k+1 3k —

k1 __ 3 ; 0
Since Sy =Y 4o izE < Dp—o3F < q = 3, the sequence of partial sums {Sy}7
is bounded.
Since each term kiﬂ?%k is positive, the sequence {S,}°°, is also increasing.

Thus, the sequence {S,}5%, converges.

9.6.2 FEuler’s Constant

Galileo: We now turn to the important constant e discovered by the Swiss mathemati-
cian and astronomer Leonhard Euler (1707-1783). Professor Euler was probably the
most prolific mathematician of all time. He was amazingly productive. Any complete
collection of his books is an incredible nuisance to the librarian in charge of finding

shelf space.
Example 9.6.3. We begin with a definition of the constant that bears his name.
Definition 9.6.7 (Euler’s Constant). e = > " .

Simplicio: Even I remember that e = 2.71828182845905.

Virginia: How do you remember all those numbers?

Simplicio: Andrew Jackson (1767-1845) was elected president of the United States in
1828.

Galileo: But, does the infinite sum make any sense?
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Theorem 9.6.8. There is a constant e such that e =% " | +.

Proof. Virginia: Since e = > 7, % = lim,,_,oo Sy, where S, = >, %, all we have
to do is show the sequence of partial sums {5,}2° ; is bounded and increasing.

Simplicio: But S, .1 =5, + Ty SO the sequence is increasing.

n—|—1
Virginia: Since 1 i < 3 L forallk =0,1,2,. Zk:0%§1+zk 0%§1+2:3, for

all n = 0,1,2,..., Since the sequence of partial sums S, = >} _, % is bounded and
increasing, there is a real number e with the property that e = lim,, o, S,. [

9.6.3 Convergence Tests for Series

Galileo: In the spirit of Professor Polya, let’s take a second look at the argument that
the number e is well defined. What do you observe about the series?

Virginia: Since the terms of the series are positive, the sequence of partial sums is
increasing.

Simplicio: But that is obvious. The only hard part of the argument is to show these
partial sums are bounded.

Galileo: You have just generalized our example into a theorem.

Theorem 9.6.9. If >°  ay is a series with the property that a;, > 0 for all k =
0,1,..., and the partial sums S, = Y _,_,ar are bounded, then the series converges.

In particular, if S, < M for all n, then S =", ap < M.

Proof. Simplicio: Even I can see that this theorem is an obvious consequence of the
fact the sequence of partial sums S,, is bounded and increasing. Thus, the series

P 0
> heo Ok converges.

Galileo: Very good. Note that whenever we have identified a series > )~ aj as
convergent, we have observed that limy_,, ar = 0. Let’s encapsulate this observation

into a theorem.

Theorem 9.6.10. If the series ZZOZO ar 18 convergent, then lim,,_,, a,, = 0.
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Proof. Virginia: But this fact is easy to prove. All we have to notice is that

n n—1
lim a, = lim(g ay — E ar)
n— 00 n— 00

k=0 k=0

= lim (S, —95,1)=limS,— lim S, ;,=5-5=0.
n—oo

n—0o0 n—00

O

Example 9.6.4. Galileo: Before we move on, let’s consider an example, which shows
how this theorem can be applied. Consider the series > oo o(=1)F =1+ (=1) + 1+
(—1) + - -+ What do you think this series should be?

Simplicio: Since we can group the sum as
I+(-1+1)+(-1+1)+(-14+1)+---=14+0)+(0)+(0)+--- =1,

it looks to me like the series should equal 1.

Virginia: Since we can group the sum as
1+-D+1+-D)+1+-1D)+1+-1)+---=0+(0)+(0)+(0)+---=0,

it looks to me like the series should equal 0.

Galileo: Mathematicians decided a while back that certain expressions of symbols
should be classified as nonsense. Since the contrapositive of Theorem 9.6.10 states
that if the sequence {ag }32, does anything other than converge to zero, then the series
Y peo ar diverges.

Virginia: In other words, the series is nonsense.

Galileo: Correct.

Simplicio: Wait a minute! I have a better theorem:

If lim,,_,, a, = 0, then the series ZZOZO aj converges.

I am sure it is true.
Galileo: Whenever a mathematician proves a theorem, he/she immediately asks the
question: Is the converse? Are you making a conjecture that the converse of Theorem
9.6.10 is true?

Simplicio: I guess so.
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Example 9.6.5. Galileo: How about if we sum the famous Harmonic Series given

by the formula Y g, %? If we sum the first few billion terms, the series seems to

converge. In particular, consider the data in Table 9.1.

N Harmonic Sum

10 2.92896825396825
100 5.1873775176396
1,000 7.48547086055034
10,000 9.78760603604435
100,000 12.09014612986334
1,000,000 14.39272672286499
10,000,000 16.69531136585727
100,000,000 18.99789641385255

1,000,000,000

21.30048150234855

10,000,000,000

22.06477826202586

100,000,000,000

22.06477826202586

Table 9.1: The Sum of the Harmonic Series "r_ :

Simplicio: Looks to me like we have convergence. The last two computations are

identical.

Galileo: Sadly, while it looks like the series converges to a number a bit larger than

22.064778, our optimism is unjustified. Consider the following proposition.

Proposition 9.6.11 (The Harmonic Series Diverges). If N = 2" then

N 1_n ; © 1 g
Y oe1 % > 5. Thus, the series ) ", 1 diverges.

Proof. It n =1, then N = 2! and Ziv:l% =1+1>1
If n=2,then N =2%and 3 5 L =(1+3)+(
If n = 3, then N = 2% and Zgﬂ%: (1+i43i4+1

And so it goes.

I
w

N[

O
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Simplicio: OOPS! I was wrong.
Galileo: No worries. Not all of our first thoughts are correct.

Simplicio: So if n = 40, then N = 2% ~ 1.0995 % 10'2. Thus, the sum of the finite
harmonic series is 25:1% > 5 = % = 20. Hey, that’s about right! Looks like my

conjecture is out the window.

Virginia: I don’t quite understand this example yet. What will happen if you just

keep adding more numbers of the form %?

Galileo: If you are above the precision of the computer, you will simply be adding
real numbers of the form % Since k is “large,” % = 0. In other words, the activity

won’t be very productive.

Example 9.6.6. Now let’s modify the definition of Fuler’s constant and ask the

. . _1\k
question: Does the series > -, % converge?

(=D*o
2k -

Simplicio: Can we compare this series to the geometric series Y o,

Galileo: There are good ideas and bad ideas. Your itdea does not work so well. Vir-

ginia?

Virginia: While the sequence of partial sums fail to be increasing for these series, they
are still Cauchy. In particular, we can check this fact by following the steps in the

usual program.

Step 1. The Challenge

Let € > 0 be given.

Step 2. The Choice

Choose N so that ZLN < €.

Step 3. The Check
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If n > N, then the difference

B

|Sn _ SN| _ | (_1') _ Z (_1)

k=0
n

VAN

1 1 1 1 1

2k<2N+11_%:2N+12:2_N<6

<
k=N+1

Thus, we have shown the sequence of partial sums s Cauchy.

Galileo: Very good.

Galileo: In the spirit of Professor Polya, let’s take a second look at this example and

make a number of observations about this example.
1. The positive and negative signs don’t make a difference.

2. The comparison with a known series, the geometric series, does make a differ-

elrce.

We now generalize these examples and observations into a theorem.

Simplicio: Why didn’t you compare the series > - (_k—l,)k with the series for Euler’s
constant e = Y2 &7

Galileo: Good observation. While we could have done that, I thought you would be

more comfortable with the familiar geometric series. However, your observation is

useful because it leads to a general theorem.

Theorem 9.6.12 (Absolute Convergence). If the series Y .-, |ax| converges, then
the series Y oo, converges. In particular, if Y ;- ag| < oo, then Y p ay con-

verges.
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Proof. Virginia: Using the previous example as a guide, we need only show the se-
quence of partial sums {S, = Y ,_;ax}22, is Cauchy.

Step 1. The Challenge
Let € > 0 be given.

Step 2. The Choice
Since we are assuming the series > |ax| converges, the partial sums T, = >, |ay]
are Cauchy 9.5.2. Thus, we can find an integer N with the property that if n > N,
then |T,, — Ty| < e.

Step 3. The Check
If n > N, then the difference

n N
[Sn = Snl = 1D_ax =3l
k=0 k=0

n

=1 >
k=N+1
n

< >l

k=N+1

= |Tn—TN| < €.

Since the sequence of partial sums {5, }%2, is Cauchy, we know by Theorem 9.5.3

that it converges. O

Simplicio: How about an example?

Example 9.6.7. Galileo: How about the series Y .-, % (_kl!)k?

Simplicio: Now that we have the Absolute Convergence Theorem 9.6.12 all we have

to do is show the series > o |52 1

| is bounded.

However, by the Squeezmg Theorem for Series 9.6.6 we simply note that

oo o

k— 1 E—11 1
Z| L k kv32k|—€_1<oo
k=1 k=
Thus, the series Y .-, %(_k!)k converges.
Simplicio: Actually, we showed more. Namely, we showed the series > -, %% also

COMVETGES.
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Galileo: Once again, we can encapsulate this special case as a new theorem called the

Comparison Test 9.6.13.

Theorem 9.6.13 (Comparison Test). . If ay and by are real numbers for k =

0,1,2,..., such that
1. by >0 fork=0,1,2,...,
2. |ag| < bg for k=0,1,..., and
3 Y oo be <M < +o0,

then the series Y, i converges.

Proof. Simplicio: But even an engineer can now prove this theorem. By the the
Squeezing Theorem 9.6.6 > 7 lax| < > pogbr < M < 4o00. By the Absolute Con-
vergence Theorem 9.6.12, the series Y. a; converges.

O

Galileo: Very good. Note that the Absolute Convergence Theorem 9.6.12 and Com-

parison Test 9.6.13 inspire the following definition.

Definition 9.6.14 (Absolute Convergence). If a series of real numbers Y .-, ay

has the property that > -, |ax| converges, then the series converges Absolutely.

As it turns out, whenever you successfully apply a comparison test, you will be
able to declare your series converges absolutely. Most of your favorite tests will be
comparison tests. What I have found through the ages is that students have a great
preference for the Ratio Test 9.6.15. It is easy to understand and easy to apply. In
fact, it is easy to prove because all you have to do is compare a given series with the
appropriately chosen Geometric Series.

Corollary 9.6.15 (Ratio Test). If 0 < r < 1 and |ag41| < r|ag| for k=10,1,2,...,

then the series y .-, ay, converges. In particular, | Y oo ag] < 700 ag| < % < 00.

Ifr > 1, a9 # 0, and |agy1| > rlak| for k =0,1,2,..., then the series > -, ax

diverges.
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Proof. Since

1. |ao| = |ao| = r°|ao|

2. |ar] < rlagl = rtag]

3. |as] < rlay| < r?|ayl

4. as] < rlag| < r3|ay

5. |as] < rlas] < rtag)

6.

7. ] < rlag_1| < r*¥|ag)
and Y07 |aolr® = % < 00, the series Y. a; converges by the Comparison Test
9.6.13.

If r>1 and |agq1| > rlag| for k=0,1,2,..., then

1. |ao| = lag| = r°|ay|

2. |ay| > rlag| = rtao|

3. |as| > rl|ai| > r?|ay|

4. |as| > rl|as| > r3|ay|

5. |as] > rlas| > r*ag]

6.

7. |ag| > rlag_1| > r¥|ao] -
Thus, limy_,« |ax| = +00. By Theorem 9.6.10, the series >, a; diverges. O

Virginia: So the Ratio Test begins and ends with the Geometric Series?
Galileo: Correct.

Simplicio: How about an example?
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1

5c 18 convergent?

Example 9.6.8. Galileo: How about if we show the series Y, %
Simplicio: No problem. All we have to do is observe that %2% < 2% forall k >0 so

that Y pe o Bt e <D eg 96 = 2 < o0.

Galileo: Very good.

Example 9.6.9. Virginia: What if we modify the previous problem so it reads: Show
the series Y oo, k%k s convergent?

Galileo: I like this question because it forces us to rethink our choice for r. We also
have a problem making the comparison work for the first few terms.

Virginia: How about if we choose the ratio r somewhere between 0 and 17 Say, r = %?

Simplicio: I see that we have a problem with the first few terms. ap = k%k < %(k —

1
1) 5=t = ag_1. For example, if we compute the fraction —%— = 2k then we find
2 ag—1 (lc—l)2k71
that
a ]'i
255
2. If k =2, thenaz—::%:1§ =1
as _ 333
3. If k=3, thenal‘:—flzizé:%
a 4‘1
4. If k=4, thenal‘:—flzﬁzgzg

)
W

Virginia: But obuviously, if k > 4, then 0 < aZ—kl < % Thus, after the first four terms

of the series, our sum is dominated by the series

2 22y 2, 1 16 3 24

2B =G G =G =g e
k=4 k=0 3

Thus, the series converges. Note that we shifted the indices in the summation by 4.

Galileo: Once again, in the spirit of Professor Polya let’s convert this example into a

theorem.

Theorem 9.6.16 (Ratio Test 2). If a series Y ., ay has the property that

. a . . .
limy, locarl — 1 < 1, then the series converges. Moreover, if v is any real number
=00 gy ) ’
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strictly between L and 1 (i.e. 0 < L <r < 1), then there is a constant K > 0 so the

series 1s dominated by the series KZ;OZO rk = % If limy,_, o LSS N 1, then the

1 lak]
series Yy oo ar, diverges.
Proof. Virginia: Since the open interval (—r,r) contains the limit L, all we have to
do is find an integer N > 0 with the property that if n > N,then % € (—r,r).
The argument now repeats the exact same pattern discussed in the first Ratio

Test 9.6.15. The only difference is that we begin our comparisons farther out in the

series.
L Jan+o| = lan| = r°|ay|
2. |lay 41| < rlan| = rtlax]
3. |anso| < rlania] < 7r?lan]
4. Jayis| < rlayse| < r’lay]
5. lanal < rlanis| < 7tay]
6.
7. lansk] < rlanir 1] < r¥lay| or (substituting n = N + k)
lan| < rlan_1] < " Nayl.
Thus,

oo (o)
Z |antk] < Zrk|aN| IaN|Z |CLN|—-
k=0 k=0 "

Simplicio: So the secret constant K is equal to |aN|?

Galileo: Almost, but don’t forget the terms a; before ay. If they are larger than
ay, then K wil have to be increased so that the inequality |ax| < r*K holds for all
k=0,1,2,... While the constant K might have to be adjusted, it is the “tail” of the

series (i.e. the terms out "near” oo) that determine convergence. O

Simplicio: How about if we compute one easy example to show how to apply this

second Ratio Test?
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Example 9.6.10. Galileo: Moments ago we showed the series Y o, 2% converges.

Using Ratio Test 2, all we have to do is compute the limit

(k+1)
SR 1(k+1 1 k+1
L:limakH:lim 2k']:l:lim—( +):—lim(+):—<1
k—oo Qy k—o0 o k—oo 2 k 2 k—oo k

Since L < 1, the series converges.

Example 9.6.11. Galileo: How about if we compute one more example illustrating
how the Geometric Series can be used to show convergence? Namely, let’s show that
the series Y ki,c converges.

Virginia: This problem is easy because kik < 2% for all k > 2.

Galileo: True, but I don’t want to do it that way. Instead, I want to compute the
k™ root of ki,c and notice that {/kz,c = % < % for all k > 2. Thus, computing the
k™ power of both sides of this inequality we see that kik < 2% for k > 2. Thus,

o 1 © 1 _ 1§ 1 _ 1 1 _ 1
Zk:2ﬁ§2k:2ﬁ—22 Zk:O 2k T 22 L 7 9o

Galileo: Now let’s take a second look at this process and generalize it into a theorem.

Virginia: Professor Polya again?

Theorem 9.6.17 (n'* Root Test). If a series > ., ax has the property that
Yag| < r < 1 for all k = 0,1,2,..., then the series S = Y ;- a converges.

Moreover, |S] < = < oo,

Proof. Since {/]ay] < r < 1forall k =0,1,2,..., |ag| < r¥ for all k = 0,1,2,....
Thus,

1. Jao| < 7Y,

2. |ay] <7ty

3. |ag] <12,

4. |az] < 13,
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6. |ar| < rk.
Thus, Y07 lae] < Dop 1" = 5 < +oo. O

Simplicio: So, the secret to life is to compare with the Geometric Series!
Galileo: Not so fast.

Virginia: Actually, [ am a bit worried. It seems to me that we have neglected a

special case in Theorem 9.6.16 when the limit L = limg_, "T’;:‘l‘ = 1. I noticed that

the series >, % has the property that L = limy_, kiﬂ = 1. Yet, it diverges. Can

we conclude that a series always diverges when this limit L = 17

Example 9.6.12. Galileo: The standard student mistake is to apply the Ratio Test

to every series problem. For example, let’s consider the series - # Using Fourier

- 2
Series we can show that Zzozl kiz = %,

Virginia: I will interested to learn why that 1s true.

Galileo: However, if we apply the Ratio Test, we see that

T K’
R T k—l——l: . v . —2:
L=l = = i oy = (i ) = !

Simplicio: What does that tell us?

Virginia: Since we have observed there are both divergent and convergent series with
the property that the limit L = 1, the Ratio Test provides no useful information in
this setting.

Galileo: To be blunt, the Ratio Test cannot be applied.

Simplicio: So we need more techniques?
Galileo: Unfortunately, the answer to your question is yes.

Simplicio: So, math is not so easy after all.

Example 9.6.13. Galileo: Let’s now turn to a slightly more delicate series

Sy 11 ol
LSt AN R S IDRIR I N = ST
; I p Ty gt ot DT
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converges. From a geometric point of view, this series must converge because for n
equal to an even integer we see that
n
(—=1)F+1 1 1

=2 =gt

k=1

1. the difference 1 — 1 equals the length of the interval [3,1],

2. the difference % — I equals the length of the interval [%, %],
3. the difference % - é equals the length of the interval [%, %],
4. the difference ﬁ - % equals the length of the interval [ﬁ, %],

Since these intervals are pairwise disjoint, the partial sum is (at least for n even)

SRZZLISH:(l_l)JF(%_l)jL...jL( 1 _l)<1_

n—1 n’ -
k=1

Thus, the sequence of partial sum {Sa,}22 | is bounded and increasing and thus con-
verges to some number S. While the difference between S,, and S, 41 18 Spi1— S, = #1
and thus small, you have to be careful about about the difference S, — Sy because it
15 possible that the sum of many small differences could accumulate into a large one.

The argument is a bit cleaner if we simply show the sequence is Cauchy.
Virginia: I can finish the argument.

Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice:

Choose N to be an even number with the property that N > %
Step 8. The Check:



170 CHAPTER 9. LIMITS

If n > N, then (again since the intervals [,#2, #1] are disjoint)

n(—1)k+L N _1)k+L
|Sn—SN|=|Z( R o S
k;:

k: I
k=1 1
n (_1)k+1
=1 —
k=N-+1
| 1 1 | 1 |
a7y " s v T S Ve
PR
n—1 n
! 1 1 | 1 |
A vt e vt S v
PR
n—2 n
11
"N+l n ON"€

Simplicio: What if the integer n is odd?

Virginia: No worries. You simply get an extra copy of the fraction % hanging out on
the end. That is why we chose N > %

Simplicio: Is there any way to add up the terms of this series?

Galileo: Actually, we will see that ideas from Taylor Series can be used to show that

o (_1)k+1
In(2) = log.(2) = X5, Y

Galileo: In the spirit of Professor Polya, we would now like to generalize this example

into a theorem.

Theorem 9.6.18 (Alternating Series Test). If {a}72, is a sequence of real num-
bers with the property that ay > agy1 > 0 and limgooay, = 0, then Y po ap(—1)F

converges to a number less than ay.

Proof. Virginia: I would like to work this problem. Following the outline provided
by the example we just discussed, all we have to do is show the sequence of partial
sums is Cauchy.

Step 1. The Challenge:

Let € > 0 be given.
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Step 2. The Choice:
Choose N to be an even number with the property that ay < 5.
Step 3. The Check:

If n is an even integer and n > N, then

n N—-1
|Sn — Sn-1] = |Zak - Z ai|
k=0 P
=1
k=N
= (ay — an41) + (any2 — anys) + (ania — angs) + -+ (A — @y 1)

< (ay —ant1) + (an+1 — anys) + (anys — angs) + -+ (An — an1)

=anN — Qp—1 < ay < €.

Simplicio: In other words, if you increase ayis to ani1, an1q t0 anis, Gnie 1O Anys,

etc., then the sum ZZ:N ay collapses to ay — a, 1.

do
@) ar ?" (‘1; a. aq :
A~ v~ v
Ay-ds A% a5

Figure 9.4: The Proof of the Alternating Series Test

Virginia: Just like the picture in Figure 9.4.
Simplicio: What if n is an odd integer?
Virginia: If n is an odd, then we have one more term to deal with. Namely, the sum

|ZZ:Na’k|Sa'N_a'n—1+an+1§%—|—§:6_

Simplicio: So, are we done yet?

Galileo: The fact that the series Y ., % converges, while the series Y7, &

diverges leads to the concept of conditional convergence, which we now define.
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Definition 9.6.19. If the series Y .-, ai converges, while the series Y .-, aj diverges,

then the series is called conditionally convergent.

Example 9.6.14. Galileo: Obviously the series > po  (—1)**'1 is conditionally con-

vergent.

Simplicio: What about our Geometric Series and our comparison tests?
Galileo: Think about it. Whenever you apply a comparison test to show a series
converges, you ALWAYS prove absolute convergence. If a series converges absolutely,

it NEVER converges conditionally.

9.6.4 Power Series

Galileo: We now turn to the topic of Power Series. While Isaac Newton considered
every function to be a polynomial (finite or infinite) and while Power Series have a
life of their own, we are not going to spend an excessive amount of time on this topic,
Instead, our goal is to use this topic as a bridge between convergence tests for series
and Taylor Series.

Simplicio: So, what is a Power Series?
Definition 9.6.20. A Power Series is a series of the form >, apz*.

Simplicio: So a Power Series is a finite or infinite polynomial.

Galileo: The next theorem is an immediate consequence of the Ratio Test 29.6.16.

Theorem 9.6.21. If a series > ;- ,aj has the property that

lak+1]
lak|

L = limy,_, o , then the Power Series > o, arz® converges for all |z| < %

Proof. If |z| < £, then

k+1 1
lim laxne | = lim |z| [01+1] = |z| lim [01+1] = |z|L < —L < 1.
k—o0 |akxk| k—ro0 |ak| k—o0 |a,k| L
Thus, the series converges by the Ratio Test 2 9.6.16. U

Simplicio: How about some examples?
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Example 9.6.15. Galileo: You have five friends:

1 =Y raf=1+a+a®+a*+..., for|z] <1,

2. @I:Z]‘z"zoxk_';:1+x+x2—f+§—?+_,,, forx e R

5

9. cos(n) = Llo(-D' g =1-5F+ 5 -5+, forzeR

4. sin(z) = Z,zio(—l)ké;il), =z — g—? + T &G +..., forz e R and

5. ln(l—:r):loge(l—x):—zziof’;ﬁill — - L forze[-1,1).

Simplicio: Where did these formulas come from? How am I going to be able to
remember them?
Galileo: While we will wait until our discussion of Taylor Series to justify these series,

they should be in your comfort zone.
1. The first equation is our old friend the Geometric Series.

2. The second is the exponential function, where you need only remember the k!

z*

in the denominator of the fraction T

3. The third is the cosine function, which is almost the same as the exponential
except for the alternating sign. If you remember that the function cos(z) is an
even function (i.e. f(z) = f(—x), for all z € R), then only the terms z* with

even exponents will appear.

4. The fourth is the sine function, which is almost the same as the cosine. If you
remember that the function sin(z) is an odd function (i.e. f(z) = —f(—x), for

all z € R), then only the terms 2* with odd exponents will appear.
5. The function log.(z) is the integral of the Geometric Series.

Simplicio: I see the first example is our old friend the Geometric Series. The others
examples look familiar from my study of Calculus. Where did those formulas come

from?
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Virginia: These formulas are all special cases of the Taylor Series formula:

2 FR) (g, .
Flay =3 L)

where z is some point in R. Of course, we are assuming that the function f(z) has
infinitely many derivatives f®*)(z).
Galileo: Very good.

Simplicio: Could we work out the coefficients for one of these friends?

Example 9.6.16. Galileo: If f(x) = e*, then recall that f'(x) = € for all x € R.
Thus, all the higher derivatives f*)(z) = e® for all x € R. If we let zy = 0, then
fE0) =€’ =1 for all k=0,1,2,.... Thus, the Taylor series is

k ZEZ JIS

00
xr __ x .

e’ = E H—l-i‘l‘-i‘g'i‘a—l-...
k=0

Simplicio: That computation wasn’t so bad.
Galileo: The justification for the equal sign takes more work, but we are going to
dodge that issue for the moment. Let’s drive the remainder of our discussion by

asking three key questions.
1. Where and why does the series converge?
2. Can the series be differentiated term by term?
3. Can the series be integrated term by term?

For Power Series, the key to convergence is a comparison with a Geometric Series
and the associated radius of convergence. In Examples 1 and 5, each series has a
radius of convergence of R = 1. Examples 2, 3, and 4 each series has a radius of
convergence of R = 400. These radii can be computed using Theorem 9.6.21.

We now present the formal (and slightly more general) definition of radius of

convergence.
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Definition 9.6.22. If vy € R, then radius of convergence of the series

ZZO:O ap(x — x9)* is

= lub{r € R: if |x — x| <7, then Z |ag(z — 30)F| < o0},

k=0

where L = limy_, o |a"“+|1| The

interval of convergence is the set of all points R with the property that the series

Galileo: For all the examples we will consider, R = L,
> oo @z — x0)* converges.

Simplicio: But is this set necessarily an interval? Couldn’t it be disconnected?
Galileo: No, by the Ratio Test/Geometric Series we know that if the series Y2 ; ayr*

¥ converges. Thus, the set

converges and |z — x| < r, then the series >, ax (2 — o)
of convergence points is always an interval of the form (zy — R, z¢ + R) plus either
one or both endpoints zy — R or xy — R. Note that the interval of convergence for the
function In(z) is [—1,1).

Simplicio: Why did you make the definition more general to include powers of x —xy?
Galileo: When we discuss the rate of convergence of the Newton/Raphson algorithm,

we will let xy = r, where x = r is a root of the given function f(x). As you will see,

this slight change will appear in other applications as well.

Example 9.6.17. Galileo: By substituting y = 1 — x in In(1 — x) we generate a

second representation for In(z) centered at xy = 1. In particular,

i k+1 i k;+1
In(z) = loge(x Z k—i—l Z k+1 for x €0,2).
k=0 k=0

Note that the interval of convergence has shifted to the interval [0, 2).

Virginia: If we substitute x = 0 in the formula for In(z) we get

o0 k+1 1 1 1
1 o
Z k'—!—l 2+3 4+

=0

Simplicio: Very interesting.

Galileo: But, we do need theorems and proofs to justify these formulas.
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Virginia: Speaking of formulas, I noticed that if we compute the derivative of the
series for e” we simply get back e®. Similarly, if we compute the derivatives of the
terms of series for cos(z) and sin(z) we get the appropriate series for the derivatives.
Is that always true?

Galileo: In fact, yes. Aslong as you stay inside the interval of convergence, everything
is fine.

Simplicio: I noticed that if we integrate the Geometric Series, we produce the series

for the log function.

T

N > k1
k=0

0

What about integration?
Galileo: Again, as long as you stay inside the interval of convergence, you can integrate

a series term by term. The next theorem summarizes these remarks.

Theorem 9.6.23 (Differentiation of Power Series). If f(z) = > _,2 axa® for all
€ (=R, R), then f'(z) = >3, kaga*™! for all v € (=R, R).

Galileo: We have a similar result for integration.

Theorem 9.6.24 (Integration of Power Series). If f(t) = Y02, axt® for all
€ (-R,R) and x € (—R, R), then F(x) = [} f(t) dt = S50 yax’r.

Galileo: In every infinite sum of the form f(z) = .7 axz® the equal sign al-
ways means that for a fixed value of z, the sequence of partial sums S,, = S, (x) =
> h_o axx® forms a Cauchy sequence. (The Comparison Test 9.6.13 guarantees our
sequence of partial sums {5, = S,(z)}>2, will always be Cauchy.) Since a Cauchy
sequence always converges to some quantity, there is no problem denoting the limit by
the function f(x) = lim, . Sp(x). A consequence of these last two theorems 9.6.23
9.6.24 is that a function of the form f(z) = Y2, a,z* can be differentiated and
integrated with impunity.

Virginia: It all fits together.
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9.6.5 Trigonometric/Fourier Series

Galileo: We now turn our discussion to Trigonometric Series of the form

ap > .
> + ;{ak cos(kx) + by sin(kx)}, for x € [—m, 7.

Simplicio: Groan. More math?

Galileo: Maybe so, but a multitude of engineering and real-world applications are
connected with functions of this type. In particular, any application associated with
waves, vibrations, or periodic behavior can (and probably should) be modeled by
functions of this form. Sound, light, radio waves, ocean waves, and planetary motion
are only the beginning. Physicists love these functions. For the moment, however,

let’s limit our discussion to a few key questions.
1. Where and why does the series converge?
2. Can the series be differentiated term by term?
3. Can the series be integrated term by term?
4. How do we compute the coefficients a; and b;?
5. How can we use these series to compute certain infinite sums?

Simplicio: Sounds familiar.

Galileo: Before we get started though, let’s make a couple of remarks about the
big picture. First, we are now in the position of looking at the collection of all
integrable functions on the interval [—7, 7]. Since the sum of two integrable functions
is integrable and the product of a scalar (i.e a real number) and an integrable function
is integrable, it is easy to show that the collection of all integrable functions on [—, 7]
forms a vector space.

Simplicio: I am not sure I remember the definition of a vector space.

Virginia: A vector space is simply a collection of points with two operations: addition

and scale multiplication. These two operations obey the usual associative, commu-
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tative, and distributive laws of Algebra. The additive operation also has an identity
and inverses.

Simplicio: But when I took Linear Algebra, our points were in the plane or three
space. I never thought of cos(z) and sin(z) as vectors.

Galileo: Hermann Grassmann (1809-1877), Giuseppe Peano (1858-1932), and David
Hilbert (1862-1943) changed the equation, In particular, they made the axioms of a
vector space general enough to include functions as vectors?

Simplicio: So, what do I need to know?

Galileo: While we will give a more complete discussion of Linear Algebra in a day
or so, the key idea hear is the notion of writing a vector as a linear combination of
vectors residing in a given basis.

Simplicio: An example please.

Galileo: Since you like the plane let’s start with the vectors

e — and e, =

2
Given a vector v = , we can write v = 2e; + 3e,. Thus, we have written the

3
vector v as a linear combination of the vectors in the basis B = {e;, e,}.

Simplicio: No issue here.

Galileo: The polynomial py(z) = 3z + 5z + 7 is a linear combination of vectors in
the basis B = {1, z, 2?}.

Simplicio: So, you are thinking of the functions 1, z,z? and py(z) as vectors?
Galileo: You can add them; you can multiply them by a constant; the associative,
commutative, and distributive laws apply. Now consider the function 7)(z) = 2 +
3cos(z) + 5sin(z).

Virginia: This time we have the function 7)(z) written as a linear combination of
vectors in the basis B = {1, cos(z), sin(z)}.

Simplicio: I am not sure I like this discussion.
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Galileo: As a software engineer, you do write your subroutines to be as general as
possible. Don’t you?

Simplicio: Sure. It is expected.

Galileo: Then you should appreciate the economy of having one concept cover such
a broad collection of examples. Now let’s think about the infinite. If a particular
function f(x) happens to have derivatives of all orders, the Taylor Series expansion
shows that the function can be written as a linear combination of members from the
basis

Bp = {1,n,2% 2%, ... 2" ...}

Simplicio: Except that we now have the small problem that the sum is infinite.
Virginia: Fortunately, through our understanding of the convergence of series, we
know what the sum of an infinite numer of numbers means.

Galileo: The goal now is to change our representation form the basis Bp to a new
basis

B, = {1, cos(x), cos(2z), cos(3z), . . ., sin(x), sin(2x), sin(3x), . .. }.

Simplicio: How about a couple of examples to get started?

Example 9.6.18. Galileo: Here are a couple of series, where we have represented the

z

5 and 22 in terms of sines and cosines. Note that this strategy

polynomial functions

15 the opposite of the strateqy invoked for Taylor Series.
1. %= ZZOZI(—I)'““% sin(kz), for xz € (—m,m),
2. a2 =T — 430 (~1)"1L cos(ka), forw € [—m, 7,
g x| =%—-2507, ﬁ cos((2k — 1)x), for x € [—m, 7],

Simplicio: I hope there is a formula for computing the coefficients for these series.
Galileo: No worries. While we will eventually give you a tidy little formula, let’s focus
on the convergence, differentiation, and integration issues first. What do you notice?

Virginia: I notice with these examples that you gave an interval of convergence.
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Galileo: Since the functions cos(z) and sin(x) are 27w periodic and z represents an
angle (in radians of course), the interval of convergence will almost invariably be
chosen to as [—m, 7] or [0, 27].

Simplicio: I notice that the function 7 is odd and is written as a linear combination
of the odd functions sin(kz), for k = 1,2,3,... A also that the functions 2z and ||
are even and can be written as a linear combination of the even functions cos(kz),
for k=1,2,3,...

Galileo: In fact, you have noted a completely general property about Trigonometric
functions.

Simplicio: I also noticed that we won’t have to compute the radius of convergence for
this type of series.

Galileo: Correct.

Virginia: What about convergence?

Galileo: With Trigonometric Series, convergence is a delicate issue. There is good
news and bad news.

Simplicio: I vote to hear the good news first.

Galileo: OK, let’s begin by looking at examples 2 and 3 above. What do you notice

about the series

o0

Za Z 1’”112 and Za%l Zﬁf?

k=1
Virginia: They both converge absolutely.

Galileo: Correct. So what does that tell you about the series

0.9

1
Z(_l)kﬂﬁ cos(kz) and W——4Z k“ cos(k:r)

k=1

Simplicio: Since |cos(kz)| < 1 for any k and all z, they both converge absolutely by
the Comparison Test 9.6.13. In particular,

i| k“ coskx|<z

k=1

Galileo: Correct. So, could someone please state the next theorem?

Virginia: I can.
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Theorem 9.6.25. If

00
2{: |ak|+-|bk < +00,
k=1

then the series

Z{ak cos(kx) + by sin(kz)}

k=1

converges absolutely for oll x € [—7, 7].

Proof. Galileo: So, how about a proof?
Virginia: Easy.

If ¢ € [—m, 7], then

Z{|ak cos(kx) + by sin(kx)|} < Z{|ak| + |be|} < +o0.

k=1 k=1

O

Galileo: Watching the human mind extrapolate general theorems from a few special
cases is a wonderful thing. How about some more good news?
Simplicio: Good news is good.

Galileo: If we let x = 7 in the equation

_ m k+1
3 4 kz:; cos(kx)
then we see that
= o i k“ cos(kw) ~_ 4%(—1)2k+1i.
3 k=1 3 k=1 k2

Thus,
=1 .
Se-x
k=1

Simplicio: Magic!!

Virginia: Its even a good way to compute 7.

Galileo: Better than Archimedes’ method for computing ..

Simplicio: With all this good news, what’s the problem with these Trig Series?
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Galileo: How about if we go back to equation 17 If x = m, then
5 _i(_l)kﬂlSin(kW) =04+0+0+---=0
2 Lk = =0.

Simplicio: OOPS!
Virginia: Now I understand why you didn’t include £ in the interval of convergence.

Galileo: The news gets worse. What can you say about the convergence of the series

Z(—1)k+1% sin(ka)?

k=1
Simplicio: Nothing.
Galileo: That’s right.
Virginia: None of the Convergence Tests work. The Ratio, Root, and Comparison
Tests can’t be applied because the series >~ % diverges.

Simplicio: What about the Alternating Series Test?

k+11

¢ sin(kx) of the sequence

Virginia: Unfortunately, the sign of k* term ay = (—1)
alternates so irregularly (almost randomly) that no pattern emerges. Thus, there is
no hope for the Alternating Series Test.

Galileo: In fact, the argument that this series converges for x € (—m, 7) is quite tricky.
Simplicio: I don’t know if I can stand any more of this good news.

Galileo: The prrof will be left for another day.

Simplicio: Sounds like good news to me.

Galileo: Quickly now. I am running out of time. Lets finish with an observation
about differentiation and integration. Note that if we differentiate Equation 2, we
arrive at Equation 1.

Simplicio: And if we integrate Equation 1, we get Equation 2. What’s the big deal?
This technique worked fine for Taylor.

Galileo: Equation 2 has excellent convergence properties. Equation 1 has poor con-

vergence properties. Every time you differentiate a function of the form

tr(z) = ay cos(kx) + by sin(kx),
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you find that
t.(x) = —kay sin(kx) + kb cos(kx).

Every time you integrate a function of the form
tk(z) = ay cos(kx) + by sin(kx),

you find that
1 1
/tk(:r) de = s sin(kx) — Ebk cos(kxz) + C.

The factor k£ produced by differentiation retards convergence. The factor % produced
by integration improves convergence. The bottom line is that integration is good
while differentiation is dangerous.

Virginia: Wait a minute! [ see a problem if the constant C' # 0. For example, if
C= %, then if we integrate a second time then we will have that unhappy series for 7
appearing. [ anticipate the formulas becoming more complicated and the convergence

getting worse.

Example 9.6.19. Galileo: In fact, you are correct. While Mathematicians lust for
tidy little formulas, Mother Nature does not always cooperate. Here are a couple more

examples:

1. ”Z”E"Cs = 2:,‘;0:1(—1)’“’1,%3 sin(kz), x € [—m, 7]

9 % =Y, msin(kz), € 0,27]

Simplicio: How about a quick hint at an application before we leave?

Galileo: The First Harmonic (or Fundamental Overtone) of the series is the term
ay cos(x) + by sin(x). The Second Harmonic is given by as cos(2z) + by sin(2x). These
two harmonics are important in speech recognition, filtering, and a host of other
applications. In signal compression (e.g. JPEG), radio, and television the key idea is
to filter out the frequency terms ay cos(kx) + by sin(kx), where k is large.

Simplicio: How do you do that?
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Galileo: If you compute the Fourier Transform (i.e. compute the aj and by terms),
delete the high frequency components, and then compute the inverse Fourier Trans-
form, then this new signal is the filtered version of the old.

Simplicio: By the way, you promised to give us the formulas for the Fourier Transform.

Galileo: OK, here are the formulas for the coefficients.

Theorem 9.6.26 (Fourier Coefficients). If f(z) : [—m, 7] — R is continuous, then
1 ™
ap = —/ f(z)cos(kx) dx for k =10,1,2,3,...
7r —T
1 ™
b = —/ f(x)sin(kx) dx for k=1,2,3,...
7r —T

Simplicio: But where did these formulas come from?

Galileo: Pythagoras.

Simplicio: Pythagoras? Surely, you are joking, Professor Galileo. What did Pythago-
ras know about Trigonometric Series?

Galileo: We will explain. First, consider the following proposition, which effectively
states that that the functions cos(kx) and sin(kx) are orthogonal. This proposition

will get us half way to Pythagoras.

Proposition 9.6.27 (Orthogonality of Cos(x) and Sin(x)). If m and n are

positive integers, then
1. [T cos(ma) dx = 0.
2. [T sin(nx) do = 0.
3. [T _cos(mx) sin(nx) do = 0.
4. If m #n, then [7_cos(ma) cos(na) dx = 0.
5. If m#n, then ["_sin(mx)sin(nz) dz = 0.

Proof. Galileo: What about proofs?
1. [T cos(mzx) dz = 0.
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Simplicio: This integral is zero because when we draw the graph of the function
y = cos(x), it is obvious that the area under the curve is zero on both of the intervals
[—m,0] and [0, 7]. If m is a positive integer, then the function cos(mx) is the same as
cos(x) except that it goes up and down m times.

Virginia: You can also apply the Fundamental Theorem of Calculus 11.7.3 to observe

that [ cos(ma) do = 22 =0-0=0.

—
Simplicio: The Fundamental Theorem of Calculus works too.
2. [T sin(nz) dz = 0.
Simplicio: This integral is zero because when we draw the graph of the function
y = sin(nx) is an odd function on [—7, 7).
Virginia: The Fundamental Theorem of Calculus also works.
3. ["_cos(ma)sin(nx) dz = 0.
Simplicio: Since the function y = cos(mz) is even and the function y = sin(nz) is
odd, the product is odd. Thus, integral is zero.
4. If m # n, then [*_cos(ma) cos(nz) d = 0.
Simplicio: I don’t see how to prove this fact.
Virginia: Neither do .
Galileo: A little trigonometry goes a long way here. Recall your sum formulas for

cos(x) and observe.

1. cos(A — B) = cos(A) cos(B) + sin(A) sin(B)
2. cos(A+ B) = cos(A) cos(B) — sin(A) sin(B)
3. cos(A — B) + cos(A+ B) = 2cos(A) cos(B)

Note that the third equation is the sum of the first two. Thus,

cos(A) cos(B) = %{COS(A — B) 4+ cos(A+ B)}.

Virginia: I see how to finish the argument. All we have to do is let A = ma and
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b = nx and substitute into the integral. Thus,

/7r cos(mx) cos(nx) dx = /7r %{cos(m:r — nx) + cos(mx + nx)} dx
= /7r %{cos((m —n)x) + cos((m +n)x)} dz

—T

1 [ [
= 5/ cos((m —n)z) dx + 5/ cos((m + n)x) dx
=0+0=0.

Simplicio: Looks like we used Fact 1 twice to get the last two zeros.
5. If m # n, then [ _sin(ma) sin(nz) da = 0.
Simplicio: Once again, I don’t see how to prove this fact.

Virginia: I think I do. All we have to do is subtract the equations we had before. In

particular,
1. cos(A — B) = cos(A) cos(B) + sin(A) sin(B)
2. cos(A+ B) = cos(A) cos(B) — sin(A) sin(B)
3. cos(A — B) —cos(A + B) = 2sin(A) sin(B).

Note that the third equation is equation 2 subtracted from eqation 1. Thus,

sin(A) sin(B) = %{COS(A — B) —cos(A+ B)}.

The rest of the argument is the same as before because

/7r sin(ma) sin(nz) do = /7r %{cos((m —n)x) — cos((m +n)z)} do

—T —T

= %/Z cos((m —n)z) dv — %/1 cos((m +n)z) dx
=0+0=0.

O

Simplicio: While that proposition was a bit long, it really was quite understandable

because it only require you know basic facts from Trigonometry and Calculus.



9.6. SERIES 187

Galileo: The next proposition provides us with the lengths of the basis vectors
1, cos(nx), sin(nx).
Proposition 9.6.28 (Fourier Equal Lengths Formulas for Cos(x) and Sin(x)).
If n is a positive integer, then

1. [T 1 dx=2m,

2. [T _cos?(nx) do =,

3. [T sin®(nz) do = .

Proof. Simplicio: What Trig fact do we need this time?
Galileo: While the first integral is easy, the other two rely on the half angle formulas

relating the square of the functions cos(z) and sin(z) and cos(2z). In particular,

1. cos®(z) = e apq

2. sin?(z) = <) Cgs(h).

Virginia: Thus,
™ ™ 1 2 ™ m 2
/ cosZ(nx)dx:/ Ls(x)dx:/ —dx—i—/ dezw—i-O:W.

. 2

—_

-7 ™ —T

Simplicio: And,

™ 71'1_ 2 ™ 2
/sin2(nx)d:r:/ de: —d:r—/ dezﬂ'—l-o:ﬂ'.

—T —T —T —T

\:!
| =

O

Galileo: Now that we have discussed the Orthogonality and Equal Lengths Proposi-
tions 9.6.27, 9.6.28, we are ready to prove the Fourier Coefficients Formula 9.6.26.

Proof. Galileo: While the general proof of the Fourier Coefficients Theorem 9.6.26 is

difficult and requires a deep understanding of integration theory, we are now ready

to prove it for the finite dimensinal case. To keep the subscripts and notation out of
ag

the discussion, let’s consider the special case when f(z) = % +a1Qs(z) + az cos(2z) +
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by sin(x) + by sin(2x). How about if we show you how to compute the formula for the
coefficient as?
Simplicio: Simple is good.
Galileo: Step 1. Multiply both sides of the equation by the function cos(2x).
When we do this, we find that

f(z) cos(2z) =(% + ay cos() + ay cos(2x) + by sin(x) + by sin(2x) ) cos(2x)
:% cos(2x) + ay cos(x) cos(2x) + ay cos(2x) cos(2x)

+ by sin(z) cos(2x) + by sin(2x) cos(2x).

Step 2. Integrate both sides of the equation.
When we do this, we find by the Orthogonality Property (Proposition 9.6.27) and
the Equal Lengths Property (Proposition 9.6.28)

/7; f(z)cos(2z) dx = /7r % cos(2z) dx + /7r ay cos(x) cos(2x) dx

—T —T
™

+ / as cos(2z) cos(2x) dx +/ by sin(z) cos(2z) dx

—r -7

+/ by sin(2x) cos(2z) dx

—T

=0+0+ / as cos(2x) cos(2x) dz+ 040

—T

= a2/ cos(2x) cos(2x) dx = ay.

Thus,
1 ™
as = —/ f(z) cos(2z) dx.
™ -7

Simplicio: How about an example?

Example 9.6.20. Galileo: If f(x) =1 for x € [—m, 7|, then ap =2 and a, = by =0
forallk=1,2,....

Simplicio: That example was too easy. How about a more challenging one?
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Example 9.6.21. Galileo: If

1, z¢€[-m,0]

-1, z€[0,7]

Virginia: Since the function f(z) is odd, we know that ar, = 0 for all k =0,1,2,3,. ..

Simplicio: On the other hand, since f(x) is odd, the function f(z)sin(kx) is even.
Thus,

1 [7 2 [T
b = —/ f(z)sin(kz) dx = —/ sin(kx) dx
) . T Jo
_ 2 —cos(kz) "
T k z=0
= 2 (cos(km) — 1)
= ——(cos(km
21k
oo k
In particular,
= ifk=1,3,5,...
by =
0 ifk=246,...
and
4 : :
flw) = = (sin(x) + Smf’x) + Sm(;“””) o)

Example 9.6.22. Galileo: If f(x) = x for x € [—m, 7|, then f(z) is an odd function.
Thus, the function f(x) cos(kx) = x cos(kx) is an odd function for all k, which implies
ap = 0, for all k = 0,1,2,.... Since the function xsin(kz) is the product of two
functions so you have to integrate by parts. While not a bad exercise for you, the

antiderivative 1s

k in(k
/xsin(kx) de = _xcosl(g z) + Sm]; x)

Since the function f(x)sin(kx) = xsin(kx) is the product of two odd functions, it
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15 even. Thus,

1 [" 2 [T
b = —/ f(z)sin(kz) dx = —/ zsin(kx) dx
TJ) x T Jo
2 cos(kx) = sin(kz), .
- ;(_‘/L‘ k k2 ) =0
2 cos(km) cos(0)
S
2
— (=1 k+1_.
(-1

Simplicio: Actually, your answer agrees with the formula you posted at the beginning

of the discussion.

Exercise Set 9.6.

Exercises on Convergence of Series
1. Compute: Y7 (32r + 2+¢).

2. Show the series Y7, £ 4 converges.

3. Show the series > /7, (_k?k converges.

4. Show the series >~ (-1

Skl converges.

5. Show: If the series >~ a), diverges and a; > 0, then Y 72| li—’;k diverges.

Exercises on Power/Taylor Series

1. Determine the interval of convergence of the series Y~ %

2. Determine the interval of convergence of the series >~ k*z*.

3. Determine the interval of convergence of the series >~ i—lf(x — 3)k.

4. Determine the interval of convergence of the series >~ 'g—i(x — 1)k

5. Determine the interval of convergence of the series > 7 'g—z(x — 1)k

Exercises on Trigonometric/Fourier Series
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1. Use the Fourier Coefficient Theorem to show:

o0

Z k“ s1n (kx), for z € (—m,m),

=1

2. Use the Fourier Coefficient Theorem to show:

_ 42 ’”1 cos(kx) for z € [—m, 7.

3. Use the Fourier Coefficient Theorem to show:

T 4
—————E ((2k -1 fi -7, 7.
|| 5 (2k 1)? cos((2k )x), for x € [—m, 7]

00
k=1

4. Show:

5. Show:

Z%—l 8'

k=1

9.7 Limits of Functions

Galileo: We turn now to the topic of the limit of a function. I am sure you studied
this topic in your Calculus courses.

Simplicio: It has been a long time since [ took Calculus. Much knowledge has since
evaporated. So where are we headed?

Galileo: The first theorem we will discuss is the Mean Value Theorem, which contains
the idea that a function cannot grow faster than the maximum of its first derivative.
The second key theorem is Taylor’s Theorem, which basically states that a smooth
function can be approximated by a polynomial.

Simplicio: If we are interested in sequences and data, why should we have to discuss
functions?

Galileo: For the Archimedes/Heron algorithm, an understanding of the function

T(x)= IZZ;K becomes central. Since an easy calculation shows that [1"(z)| < 3 for
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all z > v/ K, we will be able to conclude that the difference between the n'* approxi-
mation z, and the answer /K drops by 50% for each iteration. Such a convergence
rate is known as linear (or first order) convergence. These ideas are completely general
and apply to a wide range of problems including cube roots and beyond.

Simplicio: A 50% improvement at each iterations sounds good.

Galileo: As you will see, we are actually doing better than 50%. Taylor’s Theorem
will be the key to understanding why this algorithm converges so rapidly. In fact,
of all the theorems you visited in Calculus, Taylor’s Theorem is probably the most
important for numerical computations. This theorem allows us to compute first and
second derivatives numerically. Thus, many differential equations and partial differ-
ential equations can be solved numerically including heat transfer, fluid flow, airfoil
design, electromagnetism, and weather modeling. The basic techniques of signal and
image processing also involve these methods. In other words, the applications are
everywhere.

Simplicio: I like these applications.

Galileo: Unfortunately, before we can even think about modeling a real-world prob-
lem, we have to develop the requisite language. Since the Intermediate Value Theo-
rem, the Mean Value Theorem, and Taylor’s Theorem have hypotheses where func-
tions are assumed continuous or differentiable, we begin our discussion with the def-
inition of the limit of a function. We begin our discussion with the definition of a

limit of a function.

Definition 9.7.1 (Limit of a Function). If X is an interval and f(z) : X — R,
then lim,_.f(x) = L, if for every ¢ > 0, there is a § > 0 with the property that if
re€X,|v—a|l <9, and x # a, then |f(x) — L| <.

Simplicio: Brutal. For sequences we had one Greek letter, now we are doubly blessed.
I am confused.
Galileo: True, but the real problem is that the definition is backwards. While the

function f(z) assigns a point x in the domain to a point f(z) in the range, the
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tolerance € > 0 is associated with a distance in the range of f(x), while the § > 0
measures a distance in the domain of f(z). The € appears first, while the ¢ is second.
Virginia: Hey, this definition is not so bad. In fact, it is almost the same as the
definition for the limit of a sequence. The € functions exactly as it did before, while
the integer NV is replaced by the quantity 0.

Galileo: In other words, a given an accuracy between f(x) and L can be assured if a
given precision between z and a is required.

Simplicio: OK, but why do you have that little condition that x # a?

Galileo: Because Calculus is the study of being close. For example, if we compute the

derivative of the function f(z) = z? at the point = 2, then we must investigate the

values of the difference quotient DQ(z) = % close to (but not at) the number 2.
If we are careless and substitute x = 2 into this function, we get DQ(z) = x;__; =1

Since division by zero is always evil, we must avoid that “bad” point z = 2. How
about if we use the definition to show that lim, ,oDQ(x) = 47
Virginia: We simply follow the same “Challenge, Choice, and Check” process we did

for sequences.

Example 9.7.1. Using the DEFINITION of limit show: lim:,HQ% = 4.
Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice of § :
While I am not exactly sure how to choose 0, I will make the guess that § = €. If we

are wrong, we will make adjustments and do it again.

fex)

a5 ad kE Lte
d TERY

v 3

a’ - ) F:K)J

Figure 9.5: The Definition of a Limit
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Step 3. The Check that 6 works:

If we can show the absolute value of the difference between DQ(x) = ‘f:; and 4 is

less than €, then we are done. However, if we assume that © # 2 and |v — 2| < § =,
then we see that

r?—4 4|_|(x—2)($+2)
x— 2 B -2

—4l=lxz+2)—4|=z—-2|<d=c¢
Thus, we are done.

Galileo: Very good.

Simplicio: How about another example?

Example 9.7.2. Using the DEFINITION of limit show: lim,_»(3x 4+ 5) = 11.
Virginia: I bet you can do it.
Simplicio: OK, I'll give it a try.
Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice of 9 :
Since I have no clue how to choose 0, I will simply follow your lead and let § = .
Step 3. (The Check that § works)
Again, following your lead, I will compute the absolute value of the difference between
3z +5 and 11. We find that |3z +5 — 11| = |3z — 6] = 3|z — 2| < 36 < 3e.
Simplicio: OOPS. Now I am stuck.
Virginia: But think about it. If you had simply been a bit smarter and had chosen
o=
32 45 — 11| = [3x — 6] = 3|z — 2| < 30 = 35 = €. Now you are done.

, you would have been fine. With this choice we now see that if |x —2| < 6, then

Simplicio: Actually, that wasn’t so bad.
Galileo: Note that there is a general strategy here. Namely, choose

5= 4

slope”

Simplicio: Sounds good, but what if the slope equals zero?

Virginia: And what if the slope is negative?
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Galileo: OK, choose § = m.

Virginia: Much better. Now we know that ¢ can never be negative or zero.
Simplicio: However, I do have just one more question. When I took Calculus, we
always described limits by saying that if a sequence of points x1,z9,...,%,,... gets
close to a point a, then the sequence of points f(z1), f(z2),..., f(x,),... gets close
to the limit L.

Galileo: Good question. In fact, your idea turns out to be equivalent to the definition

I just gave you. A more careful statement of the definition of limits in terms of

sequences is given in the following theorem.

Theorem 9.7.2 (The Sequence Definition for Limit of a Function). If X is an
interval, f(x) : X — R, and lim,_,, f(x) = L, then for any sequence {x,}°>, with the

property that x, € X, lim, o ©, = a, and x, # a for all n, then lim,_, f(z,) = L.

Proof. The proof follows the same format as our other proofs that sequences converge..
Begin by assuming we have a sequence {x,}°°; with the property that lim, ,, z, = a
and x,, # a for all n.

Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice of N :
Since we don’t have a formula for the function f(z), we are forced to use our hy-
potheses to find N. However, since we are assuming that lim, ., f(x) = L, we know
there is a 6 > 0 with the property that if |z — a| < 0 and = # a, then |f(z) — L| < e.
Since ¢ > 0 and since lim,,_,, x,, = a, we can find an integer N with the property that
|z, — a| < 4. This integer N is our choice.

Step 3. The Check that N works:

Since |z, —a| < ¢ and xz,, # a, we know immediately that |f(z,) — L| <. O

Galileo: Now that wasn’t so bad was it?
Simplicio: 1 guess the proof was similar to the others. But why would you bring up

this tangential topic?
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Galileo: It may be tangential, but from a pedagogical point of view, sequences are
probably a bit easier to visualize than functions.

Virginia: But, are sequences good enough?

Galileo: Actually, the converse of the above theorem is also true so we have actually
formulated an equivalent definition of limits that only involves sequences.

Virginia: Should we prove it?

Galileo: While similar to the proof that every Cauchy sequence converges, the proof

is by contradiction and we have other topics to cover. I will leave it as an exercise.

Exercise Set 9.7.

1. Using the definition of limit show: lim$_>3% = 6.

2. Using the definition of limit show: lim,_,,(mx + b) = ma + b.

3. Prove that the two Definitions of Limit are equivalent.

9.8 Limit Facts for Functions

Galileo: Just as we assembled basic facts for limits of sequences, we now mention
similar facts for limits of functions. The same sum, product, and quotient rules hold

for functions as hold for sequences. Note that the spirit of the proofs is the same.

Theorem 9.8.1 (Basic Limit Facts for Functions). If X is an interval, a € X,
and f(x),g(z) : X — R are functions with the property that lim,_,, f(x) = L and
lim,_,, g(z) = M, then:

1. Fact 1. im,o(f(x) + g(z)) = L+ M,
(The limit of the sum equals the sum of the limits or LS = SL.)

2. Fact 2. limg_,,(f(z) x g(x)) = L * M, and
(The limit of the product equals the product of the limits or LP = PL.)

3. Fact 3. If M 0, then nmm(%) =L

(The limit of the quotient equals the quotient of the limits or LQ = QL.)
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Proof. Fact 1. The limit of the sum equals the sum of the limits.

Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:
Actually, we need to make two choices.

Choice 1: Since lim, ,, f(z) = L, we know that there is a quantity d; > 0 with
the property that if v # a and |z — a| < 6,, then |f(z) — L| < §.

Choice 2: Since lim,_,, g(z) = M, we know that there is a quantity d, > 0 with
the property that if 2 # a and |z — a| < d,, then [g(z) — M| < 3.

Since we want both of the statements |f(x) — L| < § and |g(z) — M| < § to be
true, we choose § to be the smaller of the two numbers ¢; and 0s.

Step 3. The Check:
Thus, if z # a and |z — a| < §, then

[f (@) + g(z) — (L + M)| < |(f(z) = L) + (9(x) — M)
< [f(«) = LI+ [g(x) — M

€ €
S 5 + 5 = €.
Fex)

a_ls, ?X\’_\_\\) 1% itE

L ;

g 4 ai : LAt LHHAE
e Wk ey o

. P ,\g{x) Fex) 200

Figure 9.6: The Limit of the Sum Equals the Sum of the Limits
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Fact 2. The limit of the product equals the product of the limits.

Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:
Actually, we need to make three choices.

Choice 1: Since lim,,, f(z) = L, we know that there is a quantity 6; > 0 with
the property that if  # a and |z — a| < 01, then |f(z) — L] < AT

Choice 2: Since lim,_,, f(z) = L, we know that there is a quantity d, > 0 with
the property that if « # a and |z — a| < &, then |f(z) — L] < 3.

Choice 3: Since lim,_,, g(z) = M, we know that there is a quantity d3 > 0 with
the property that if x # a and |z — a| < 03, then |g(z) — M| < LT

Since we want all three of the statements |f(z) — L| < FIVIESE |f(z) — L| < 3, and
lg(z) — M| <
01, 02 and 93.

Step 3. The Check:

3‘L‘+1 to be true, we choose 9 to be the minimum of the three numbers

Thus, if z # a and |z — a| < J, then we know by the choices for ¢; and d, that

|f(2) * g(x) = L« M| = |f(z) x g(x) — f(z) « M+ f(z) * M — L= M|
< |f(z)*g(x) — fx) « M|+ |f(z) « M — L* M|
< [f(@)| lg(z) — M|+ [f(z) — L| [M]
V@l apm M <

< |f(x)|m t3

Since x # a and |z — a| < d2, we know by the second choice that

1@ = LI <] f@) -1 < 3,

which implies

@) | < LI+ 3
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Thus,
1 € 2
L+=)— <=
U+ 5)3 <3¢
and
F(@) £ g@) — Lx M| < [f@)|s— + = < (L] + 2) s+ S < 2+ £ <
x)*g(x) — L * )| + 3 - —<-e+-<e
g 3IL[+1 ' 3 2/3[Lj+1 33 "3

Thus, the proof is complete.
Fact 3. The limit of the quotient equals the quotient of the limits.

This proof is left as an exercise. O

Simplicio: But wait a minute, I don’t quite see why we know

1) € < 2
— —€.
2’3|LI+1 3

(L] +

Galileo: Whenever you are expected to show one fraction is less than another, simply
assume the relation holds, cross multiply, and simplify. More than likely, you can
figure it out.

We now turn to a special case of the theorem that the limit of the product is the
product of the limits when one of the functions is a constant. We single out this case
because it is one of the details that needs to be checked when we show the collection
of continuous functions forms a vector space. In particular, if f(z) : X — R is a
function which is continuous at each x € X and K € R, then the function K f(x) is

also continuous.

Corollary 9.8.2 (Pulling Constants Across Limit Signs). If X is an interval,
a € X, K is a real number, and f(z) : X — R is a function with the property that
lim, ,, f(z) = L, then lim,_,,(K * f(x)) = K % lim,_,, f(z) = K % L.

Proof. This fact follows immediately from the limit of the product equals the product
of the limit. (i.e. Fact 2, above.) You only have to set g(x) = K, forallz € X. O

Exercise Set 9.8.

1. Using your limit facts, show: lim, ,,(mz + b) = ma + b.
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2. Using your limit facts, show: lim,_,, 2? = a®.

3. Using your limit facts, show: lim,_,, 2® = a.

4. Using your limit facts, show: lim,_, x% = 8.

5. Using your limit facts, show: lim, .3 x% = 18.

6. To complete the proof that the limit of the product equals the product of the

L+i

limit, show: If L > 0, then TR

2
< 3

7. Prove: The limit of the quotient equals the quotient of the limits.



Chapter 10

Connectedness and Compactness

Galileo: A solid understanding of Calculus is a must. While we will review the big
named theorems, we do expect you to be able to compute derivatives and sketch
graphs. In particular, you should know the product rule, the quotient rule, and the
chain rule.

Simplicio: I have forgotten the chain rule. Remind me.

Galileo: Go look it up.

Simplicio: I sold my book.

Galileo: Sorry, I don’t have time to reteach all of Calculus.

Virginia: What about those word problems? I found them difficult.

Galileo: Any skills you learned solving extrema (e. g. max/min) problems should
help. Root finding and data fitting are techniques connected to real applications.
Real applications invariably involve transforming words into symbols.

Simplicio: Actually, while I also found some of those problems to be hard, I enjoyed
connecting the techniques to something in the real world.

Galileo: For Isaac Newton, Calculus was always connected to velocity, acceleration,
force, mass, and volume. Unfortunately, while these applications are the real reason to
study Calculus, we are now going to take a major detour and discuss the theory. You
should recall that the grandfather of all the theorems in Calculus is the Fundamental

Theorem of Calculus, which not only states that the two big ideas of Calculus are

201
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related, but that they are actually inverse operations of one another. While we will
prove this theorem along the way, our main goals are to prove the Intermediate Value
Theorem, the Mean Value Theorem, and Taylor’s Theorem.

Simplicio: And why do we care about these wondrous theorems?

Galileo: The Intermediate Value Theorem is exactly the type of information we need
to guarantee the existence of a root for a continuous function. This theorem assures
us that the bisection algorithm always works.

Simplicio: And the Mean Value Theorem?

Galileo: The Mean Value Theorem provides a tool for showing certain methods con-
verge linearly.

Simplicio: Linearly convergence?

Galileo: While the sequence {%}j’lo:l converges to zero, the rate is glacial. If you want
6 digits of accuracy, you have to compute more than a million terms. On the other
hand, the sequence {5:}22, converges much faster.

Simplicio: Looks to me like you only need 20 terms this time.

Galileo: Very good. In fact, the error drops by 50% for each new term. The Mean
Value Theorem helps us to uncover when this preferred convergence rate will occur.
In particular, under reasonable conditions, the method of Newton/Raphson converges
linearly. This theorem also sets the stage for the algorithm associated with the Con-
traction Mapping Theorem

Simplicio: And Taylor’s Theorem?

Galileo: Consider the sequence {22% o .- How many terms do you have to compute
before you have 6 digits of accuracy this time?

Simplicio: Looks like you only need to compute 5 terms this time.

Galileo: Excellent! You should have been a computer scientist. OK, now think about
it. If you only have a paper and pencil, which sequence would you rather compute.
I think the answer is obvious. In any case, as long as the function f(z) doesn’t have
multiple roots, the Newton/Raphson algorithm usually provides quadratic conver-

gence. Later, we will show how Taylor’s Theorem provides a technique for computing
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derivatives numerically. Thus, they can be used to solve differential equations and
partial differential equations. These derivatives are also used extensively in signal
processing and image processing applications. You can find employment in these

areas.

10.1 Continuous Functions

Galileo: When we discussed the bisection method, we mentioned that the Interme-
diate Value Theorem can be used to show that the method always works. Since
continuity of the function f(x) is not only a key hypothesis for this theorem, but also
for the Fundamental Theorem of Calculus, the Mean Value Theorem, and Taylor’s
Theorem, it is now time to nail the Jello to the wall. Before we can give careful proofs
of these theorems, we need to prove a number of other theorems along the way includ-
ing the Extremum Theorem and the Intermediate Value Theorem for Integrals. Every
one of these theorems requires the assumption that the function f(z) is continuous.
In fact, whenever we integrate a function, we will assume it is continuous to make
sure the integral exists. The bottom line: continuity is an omnipresent assumption
that insures good things will happen.

Simplicio: I guess theory awaits us.

Galileo: We now turn to the task of giving a careful definition of what it means for
a function f(z) : X — R to be continuous at a point a in an interval X. As we have
already mentioned, this idea is quite natural. Time is probably the best example of a
continuous phenomenon. At least, we would like to think time changes continuously.
A multitude of physical quantities are measured as functions of time in a continuous
way. Examples include: the distance a projectile has traveled, the distance from the
earth to the sun, your age, your height, and your weight.

Virginia: How does nature connect with mathematics?

Galileo: Since we think of time as a linear progression, we can think of time as a

copy of the real numbers. Since we are giving ourselves the Least Upper Bound
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Principle, we have no holes or jumps in the real numbers. The Intermediate Value
Theorem states that a function which is continuous at every point in an interval
actually preserves this property.

Virginia: In other words, the analogy is that time corresponds to the real numbers
and measurements dependent on time correspond to continuous functions.

Galileo: Deep in our hearts we believe atoms move through space in a continuous
fashion.

Simplicio: I bet your colleagues in Quantum Mechanics would have something to say
about this.

Galileo: No doubt. But we don’t have time for such a diversion.

Virginia: Let’s get back to the mathematics.

Galileo: As you will soon notice, a continuous function will be one whose limits are
EASY to compute. Namely, limits are computed by simple substituting. We now

give the precise formulation of the definition

Definition 10.1.1. If a € X, where X C R is an interval, f(z) : X — R is a

function, and lim,_,, f(x) = f(a), then f(z) is continuous at x = a.

Simplicio: How about a few examples?

Galileo: Moments ago, we showed that lim,_,, mx +b = ma+ b. This exercise showed
that the function f(z) = ma + b is continuous at the point x = a. Thus, straight
lines are always continuous. In fact, all your old friends including polynomials p,,(z),
trigonometric functions (e.g. cos(z) and sin(x)), and exponential functions (such as
e”) are continuous at every point z € R.. Any sum, product, or quotient of these

1

functions will also be continuous. While functions like f(z) = - and tan(z) = sin(z)

cos(z)

are continuous at most points, they both shoot off to co at points where the denom-
inator equals zero. For example, the function f(x) = % heads off to infinity at z = 0
and thus is not continuous at this point. However, they have the enjoyable property
that they are continuous at every point where the denominator is different from zero.
During our discussions, we will frequently need to assume that the functions under

consideration are continuous
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Virginia: How about an example of a function, which is not continuous?

Example 10.1.1. Galileo: Consider the Heaviside function

1ifz>0

H(z) = )
0ifz <0

Note that while it is continuous at every point except x = 0, there is no point x with

the property that H(x) = 3. Thus, the function H(x) tears apart the real numbers

into two sets. The first set is all the negative numbers, which gets mapped to zero.

The second s the set of all the non-negative numbers, which gets sent to 1. Thus,
1

nothing gets mapped to 5. This example will become important when we discuss the

Intermediate Value Theorem 10.2.

The purpose of the next theorem is to formalize the fact that the sum, product,

and quotient of two continuous functions is continuous.

Theorem 10.1.2 (Sum, Product, and Quotient of Continuous Functions).
If a € X, where X is an interval, and f(z),g(z) : X — R are both continuous at the

point x = a, then
1. the function (f + g)(z) = f(x) + g(x) is continuous at v = a.
2. the function (f * g)(z) = f(x) x g(z) is continuous at v = a.

3. if g(a) # 0, then the function (5)(@ = % is continuous at x = a.

Proof. It f(z) and g(x) are both continuous at = = a, then lim, ,, f(z) = f(a) and
lim,,, g(z) = g(a).
From the Basic Limit Facts for Function 9.8.1, we now make three observations:
L lim, o, f(2) + g(2) = limy, f(2) +lim, . g(x) = f(a) + g(a).
2. limg . f(2) * g(x) = limg_,, f(z) * lim,_,, g(z) = f(a) * g(a).
3. If g(a) # 0, then lim,_,, Ha)  limasa (@) L‘;

g(x) limg_q g(x) g(a
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Simplicio: OK, those three proofs are easy, but what can I do with them?

Galileo: Since f(x) = x is continuous, we now know that f(z)* f(z) = 2% and f(z) *
f(z) % f(x) = 2* are also continuous. In general, we now know that any polynomial
Pu(T) = 2" 4+ ap_12™ P+ ap_s2™ 2+ -+ a1 + ag is continuous at every point. Even
more generally, we know that if p,, () and ¢,,(x) are two polynomials, then the rational
_ pa(®)

function r(z) = 75

won't take the time to show it now, the trigonometric functions cos(z) and sin(z)

is continuous at any point x = a, where g,,(a) # 0. While we

also turn out to be continuous. Thus, functions like f(z) = 2z + 3 cos(x) + z* sin(z)
will be continuous.

Virginia: Wait a minute! I just noticed that the functions

cos(mx), sin(mx), cos(2mx), sin(27x) are not covered by our Sums, Products and Quo-
tients Theorem. In other words, how do I know these functions are continuous?
Galileo: You caught me. I forgot to mention that the composition of two continuous
functions is continuous. Since g(y) = cos(y) and f(x) = 27z are continuous at every
point, then the next proposition justifies the claim that the function h(z) = g(f(x)) =

cos(2mx) is continuous at every point .

Proposition 10.1.3 (The Composition of Continuous Functions is Continu-
ous). Let X,Y be intervals in R. Let f(z) : X =Y and g(y) : Y — R be functions.
If f(x) is continuous at a point a € X and g(y) is continuous at the point f(a) in'Y,

then the composition g(f(x)) is continuous at x = a.

Proof. Galileo: We can prove this proposition right from the definition. As usual,
the proof is backwards. Namely, we begin with the function ¢g(y) and then with the
function f(z). The only idea is that we have to choose two “0’'s.” We first choose d;
for the function ¢g(y) and then (depending on the size of 4;) we choose 4.

Step 1. The Challenge:
Let € > 0 be given.

Our job is to find a 6 > 0 with the property that if x € (a — d,a + ¢), then
9(f(z) € (9(fa)) — € 9(fa)) + ).
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Step 2. The Choice:
Since g(y) is continuous at y = f(a) and € > 0, choose §; > 0 with the property that
if y € (f(a) =61, f(a) +61), then g(y) € (9(f(a)) — €, 9(f(a)) +€).

Since f(z) is continuous at x = a and d; > 0, choose ¢ > 0 with the property that
ifr € (a—90,a+9), then f(z) € (f(a) — o1, f(a) + d1).

Step 3. The Check:
If 2 € (a—0,a+0), then f(z) € (f(a) — 61, f(a) + 61).

Since f(x) € (f(a) =01, f(a) + 1), g(f(x) € (9(f(a)) — € 9(f(a)) +€).

U
Simplicio: Not so bad.
Exercise Set 10.1.
1. Discuss why the function f(z) = sin(z? + 1) is continuous.
2. Discuss where the function f(z) = ££* is continuous. Justify your answer.
z—9
3. Show the function f(x) = |z| is continuous.
4. Explain why the function f(z) = 2255 is continuous at x = 3.
T 245
5. Evaluate the limit lim,_,3 Tl
6. Show the function f(z) = %= is continuous. Where does it fail to be continu-
ous?
sin(zx)

7. Explain why the function tan(z) = is continuous at most points. Where

cos(z)

does it fail to be continuous?

/yy& 2
oS s ﬁ(ﬁ/ﬁ. {m glfw)te
= L

J f@ ke
0 gltin)

Figure 10.1: The Composition of Continuous Functions [s Continuous
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8. Explain why the function f(z) = sin(x? + 3) is continuous. (You may assume

the function sin(x) is continuous.

9. Prove: If T'(x) : [a,b] — R is a function with the property that
|T(x1) — T(z2)| < M |xy — 25| for all xy,29 € [a,b], then show that T'(z) is

continuous at each x € [a, b].

10.2 Intermediate Values and Connectedness

Galileo: We now return to the Intermediate Value Theorem, which we already men-
tioned when we presented the bisection method.

Simplicio: Remind my why I should care about this theorem?

Galileo: The Intermediate Value Theorem is exactly what is needed to guarantee
the bisection method always works. The first mathematician/philosopher to attempt
placing these ideas on a firm mathematical foundation was Bernard Bolzano (1781-
1848). His goal was to make the idea of an infinitesimal precise. While he published
a proof in 1817, he achieved little recognition for his efforts until after his death.
In fact, he had a rough time since he lost his teaching position at the University of
Prague for his pacifist views. He was even put under house arrest and forbidden to
publish.

Virginia: I think you could identify with the plight of this fellow.

Galileo: Indeed I do. While unaware of Bolzano’s ideas, Augustin Cauchy (1789-
1857) published many of these results in 1821. We now state and prove a technical
proposition, which will help us prove the theorem. Intuitively, this proposition states
that if a function f(x) maps a point zy to a value above yg, then a whole open interval
of points must also be mapped above yy. A similar statement can be made if f(z)

maps a point xy to a location below yy,

Proposition 10.2.1. Let f(x) : (a,b) — R be a function, which is continuous at a

point xy € (a,b).
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1. If f(zo) > yo, then there is a 6 > 0 with the property that f(x) > yo for all
x € (xg — d,z09 + 0).

2. If f(xo) < yo, then there is a 6 > 0 with the property that f(x) < yo for all
x € (xg — d,z09 + 0).

Proof. 1. If f(zo) > yo, then let € = f(z) — yo > 0. Since f(x) is continuous at
x = xy, there is a § > 0 with the property that if z € (zg—0, zp+0), then f(z) €
(f(xo) — €, f(wo) +€). Thus, f(x) > f(xg) — €=y for all x € (xg — 0,20 + 9).

2. If f(zo) < yo, then let € = yo — f(xo) > 0. Since f(x) is continuous at x = xy,
there is a 0 > 0 with the property that if x € (o — 0,29 + ), then f(x) €
(f(xo) — €, fwo) +€). Thus, f(x) < f(xy) +€=1yp for all x € (xg — 0,29 + 9).

U

Simplicio: I didn’t like that proposition. I hope I never see it again.

Galileo: Unfortunately, we will see it again when we discuss extrema and compactness.
This proposition contains useful connections between continuous functions and open
intervals.

Virginia: Open intervals aren’t so hard.

Galileo: Let us now state and prove the Intermediate Value Theorem. If we use our
example to illustrate the theorem, we should let the function f(z) be your height at
time x. This function will be a continuous function of time. Since you were less than
2 feet tall when you were born, f(0) < 2. If b denotes your current age, f(b) > 5.
Since yo = 4 is intermediate between 2 and 5, the theorem guarantees that there will

be a time zy with the property f(z9) = 4. Now, for the theorem itself.

Theorem 10.2.2 (Intermediate Value Theorem). If f(x) : [a,b] — R is contin-
uous at each x € [a,b] and f(a) < yo < f(b) (or f(a) > yo > f(b) ), then there is a
point zy € [a,b] such that f(z0) = yo.

Proof. The proof rests on the Law of Trichotomy, the Least Upper Bound Principle,

and the previous proposition.
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Figure 10.2: The Intermediate Value Theorem

Simplicio: What the heck is the Law of Trichotomy?

Galileo: The prefix “Iri” indicates three possibilities. The Law of Trichotomy is a
fancy way of saying that if someone gives you two real numbers x and y, then one of
the following three possibilities must hold: z > y,x <y, or x = y.

Simplicio: That Law is obvious.

Galileo: Well OK, but it can be proved from basic principles. In any case, our strategy
is going to be to find a number z, with the property that if f(a) < yo < f(b), then
there is a number 2y € [a, b] such that the statements f(zy) > yo and f(zy) < yp are
both false.

Virginia: So, by the Law of Trichotomy, there is no other possibility except that
f(z0) = yo.

Galileo: Correct.

Virginia: But how do we find 2,7

Galileo: The point z, will be defined as the least upper bound of all those points x
in [a,b], such that f(z) is “below” the line y = yy. To formalize this statement, we
define this set by the rule S = {x € [a,b] : f(z) < yo}. A detail that needs to be
checked is that this set is non empty.

Virginia: Since f(a) < yo, we immediately know that a € S.
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Galileo: Correct. Now we simply identify 2y as the least upper bound of S.
Virginia: And show the two other cases f(2z9) > yo and f(29) < yo are both false.
Galileo: Correct.

Case 1. Suppose the statement f(zo) > yo is true.

By the previous proposition we can find a 6 > 0 so that if z € (29—, 29 +0), then
f(z) > yo. Thus, if & € (29—6,b], then 2 is NOT in the set S and the number z; = zp—9
must be an upper bound for S. Since z; = 2y — 0 < §, we have a contradiction to
the assumption that zq is the smallest upper bound. This contradiction forces us to
abandon the supposition that f(zy) > yo is true.

Case 2. Suppose the statement f(zp) < yp is true.

Again, by the previous proposition we can find a ¢ > 0 so that if x € (20—, z0+9),
then f(z) < yo. Thus, if x € (29 — §,20 + d), then = € S. In particular, the point
T = oner is NOT in the set S. Thus, we have a contradiction to the assumption that
2o is an upper bound of S.

O

Galileo: Notice that the idea underlying this proof is that the problem of “breaks” or
“jumps” in the curve y = f(x) is thrown back to the problem of no “holes” in the real
number line. Actually, what we are saying is that if X is an interval and the image
set Y = f(X) is defined by Y = f(X) ={y € R: y = f(x) for some x € X}, then YV’
is an interval. In other words, the continuous image of a connected set is connected.
Virginia: The Least Upper Bound Principle is what makes it all work.

Galileo: Before we leave this subject, let’s follow Professor Polya’s dictum that we
should look back at what we have accomplished. First, let me comment that the idea
of connectedness is a completely general concept, which is valid in any dimension.
In our setting, the point y, separates the real line into the two open intervals V; =
(—00,10) and V5 = (yo, 00). The proposition shows that the two sets S; = {z € [a, )] :
f(z) € Vi} and Sy = {x € [a,b] : f(x) € Va} are unions of open intervals. Such sets
are called open. Since the sets V; and V5 are disjoint, the sets S; and S, are disjoint.

Thus, we have separated the interval [a, b] into the union two non-empty disjoint open
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sets. The point zy we found shows this is impossible.
Virginia: Why do we need the assumption that the function is continuous?

Galileo: Recall the Heaviside example

H(x) - lifx >0 |
Oifx <0

where there is no point  with the property that H(x) = % Thus, the intermediate
value % is never attained.
Virginia: Where might we see these ideas again?
Galileo: In Complex Variables you will immediately be confronted by the Jordan
Curve Theorem, which says that any simple closed curve C' separates the plane into
two open sets, an “inside” and an “outside.” Thus, the set 2 — C' is not connected.
Simplicio: That stuff sounds way too theoretical to be useful.
Galileo: Not only is Complex Variables a beautiful subject, but it is used everywhere

in engineering and physics applications.

Exercise Set 10.2.
1. Show that the function f(z) = 2° + x + 1 has a root in the interval [—1, 0].
2. Show that the function f(z) = = — ¢® has a root in the interval [0, 1].

3. Prove the following theorem: If f(x) : [0,1] — [0,1] is a function that is con-
tinuous at each = € [0, 1], then there is a point z € [0,1] with the property
that f(z) = z. (Hint: Apply the Intermediate Value Theorem to the function

hr) =z — f(x).)

10.3 Extreme Values and Compactness

Galileo: We now turn to the Extremum Theorem for continuous functions. This the-

orem states that a continuous function f(x) : [a,b] — R always attains its maximum.
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In other words, there is a point 2y € [a, b] with the property that f(zy) > f(z) for all
x € [a,b].

Simplicio: So, if I toss a ball into the air and catch it a few moments later, then at
some instant 2y in time, the ball will be at its highest. Seems obvious to me.
Galileo: Not so fast. What about the function f(z) = 1 defined on the interval (0.1].
While the function is continuous, the graph becomes arbitrarily high as x gets close
to zero.

Simplicio: In other words, the ball just keeps on going up.

Galileo: Correct.

Virginia: How do we keep that from happening?

Galileo: Our friend the Least Upper Bound Principle will once again save us. Note
that the theorem states that not only is the function f(z) bounded above, but that

there is a particular point (or instant in time) zo which is the highest point on the

curve.

Theorem 10.3.1 (Extremum Theorem). If f(x) : [a,b] — R is continuous at each
point x € [a,b], then there is a point zy € [a,b] with the property that f(zy) > f(x) for
all x € [a,b]. Similarly, there is a point z; € [a, b] with the property that f(z1) < f(x)
for all x € [a,b).

Proof. This theorem is proved in two steps.

Our first step is to show the function f(z) must be bounded. In other words, there
is a constant M with the property that f(z) < M for all z € [a, b]. In particular, f(z)
cannot be unbounded the way the function f(z) = = is.

The second step in the proof is to guarantee that there is a point zy € [a, b
with the property that f(z9) = L, where L = lub(f([a,b])) = lub{y € R : y =
f(z) for some x € [a,b]}. By the definition of L, L > f(x) for all € [a,b]. If f(z) =
L, then f(z9) > f(x) for all z € [a, b].

Step 1. There is a constant M th the property that f(x) < M for all x € [a, b].

Suppose this statement is false. If false, then for each integer n the set S,, = {z €

[a,b] : f(x) > n}is nonempty. Note that each S, is nonempty and that S,1 C S, for
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all n. If b, = lub(S,,), then a < b, 41 < b, < b, for all n. Thus, the sequence {b,}°>°, is
a decreasing sequence, which is bounded below by the number a. Hence the sequence
converges to some number zy € [a, b]. Note that zy < b, for all n.

Choose an integer n > f(zp). Since the function f(z) is continuous at z = zj, we
know by Proposition 10.2.1 there is a 6 > 0 with the property that if z € (20—, zo+9),
then f(x) < n. Since no point x can be in both S,, and the interval (zy — 6, 29 + ),
the number z; — ¢ is an upper bound for the set S,,. Since zg — d < zy < b,, Thus,
the number zy — ¢ is an upper bound for the set S,, which is smaller than its least
upper bound b,.

This contradiction shows that there is a constant M with the property that f(z) <
M for all z € [a, b].

Step 2. If L = lub(f([a,b])), then there is a point zy € |a, b] such that f(zy) = L.

Suppose this statement is false. If false, then define the function g(z) = L+m
Since f(z) is continuous for all z € [a,b] and f(z) # L for all x € [a,b], we know

by Theorem 10.1.2 that the quotient g(z) = is also continuous. By Step 1,

1
L—f(x)
we know there is a constant A/ > 0 with the property |L+f(x)| = |g(z)| < M for all
z € [a,b].

Since L — f(x) > 0 for all x € [a, b], = f 7 S M forallz € a, b].

Thus, 57 < L — f(z) for all z € [a,b] or f(z) < L — 57 for all # € [a,b]. Thus,
L — - is an upper bound for the set {y € R : y = f(z) for some z € [a, b]}, which is
smaller than L.

Thus, we have a contradiction to the assumption that L is the least upper bound

for the set f([a,b]). Thus, there is a point zy € [a, b] with the property that f(z) =
L > f(x) for all z € [a, b]. O

Galileo: In the spirit of Professor Polya let us think about what we have accomplished.
Note that we have just considered two big ideas: connectedness and compactness.
Simplicio: So?

Galileo: So the continuous image of a closed bounded interval is a closed bounded

interval. Thus, continuous functions preserve this type of interval. Note also that our
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proofs of both the Intermediate Value Theorem and the Extremum Theorem employ
Proposition 10.2.1. What is the key idea embedded in this Proposition?

Virginia: It seems to start with an open interval in the range of the function and then
work backwards to the domain.

Simplicio: The resulting set in the domain turns out to be the union of a bunch of
open intervals.

Galileo: Exactly. If we introduce a bit of notation, we can clarify the concept. In
particular, if we define the open interval in the range of the function by the rule
V ={y € R:y >y}, then we showed that the inverse image set U = f~1(V) =
{z € (a,b) : f(z) > yo} is the union of open intervals back in the domain. Better
yet, if we combine the two parts of Proposition 10.2.1 we have shown that the inverse
image of an open set is open.

Simplicio: So why is this idea a big deal?

Galileo: First, it throws all the problems back to an open interval in the real line R.
Thus, once we understand the real numbers, we are ready to go.

Simplicio: I have understood the real numbers for a long time.

Galileo: Maybe so, but it wasn’t until Cantor and Dedekind came along that people
felt the Jello was nailed to the wall. Two thousand years is a long time. While students
think that complex numbers are weird, the real difficulties lie in the real numbers,
where Dedekind showed the associative, commutative, and distributive laws can be
extended from the rational numbers to this bigger set of numbers.

Simplicio: Is that all?

Galileo: A second reason to think in terms of open intervals is that these ideas
generalize to all dimensions. In particular, the generalization of an open interval is
an open disk in the plane and an open ball in three space. An open set is the union
these simple building blocks.

Simplicio: So.

Galileo: If we define a continuous function to be one with the property that U =

f7Y(V) is an open set whenever V is open then we can show that the properties of
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compactness and connectedness are both preserved by continuous functions.
Simplicio: But that means we have to go through all that theory again. More proofs!
Galileo: But this time the proofs are more conceptual and much easier because we
don’t have all those €s, ds, and limits. This branch of mathematics is called Topology.
Virginia: Why don’t we do it?

Galileo: We could, but it would be a distraction from our main mission.

Simplicio: If this approach is easier, why didn’t we skip all the limit stuff and just do
Topology?

Galileo: We could have, but you would have found the discussions weird and abstract.
You would have constantly been asking where this stuff came from.

Virginia: It is interesting that one little proposition could lead to a whole new view
on a subject.

Galileo: Topology provides a wonderfully elegant framework for these ideas.

Exercise Set 10.3.

1. Identify the extreme values of the function f(x) = z® —1 on the interval [—1,1].

2. Identify the extreme values of the function f(z) = 22 — 5z + 6 on the interval

2, 3].

3. Identify the extreme values of the function f(z) = 2* — 9z + 1 on the interval

[—4,4].



Chapter 11

Mean Value Theorems

11.1 Differentiation

Galileo: While you have seen the definition of derivative and the different rules for
computing the sum, product, and quotient of differentiable functions, we now provide
a quick review.

Simplicio: It has been years since I took Calculus. A review would be appreciated.
Galileo: We will need the assumption of differentiability as an assumption in many
of our theorems. We will also need to compute derivatives when we use the error
formulas to determine an upper bound on the error.

Simplicio: But aren’t continuous functions good enough? Every continuous function
is differentiable. I am sure that is true.

Galileo: Sorry, but you are mistaken once again.

Virginia: Don’t you remember that the function f(x) = |z| is continuous at every
point but has a sharp corner at x = 07

Simplicio: OK, OK.

Galileo: Since we have felt the impact of Murphy’s fist when we discussed the failures
of Newton/Raphson, our goal now is to get the language exactly right. As a polite

reminder we begin with the familiar definition for a function f(z) to be differentiable.

Definition 11.1.1. If X is an interval, f(z) : X — R, and the limit limh_ﬂ)w

217
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exists, then f(x) is said to be differentiable at the point x € X. The derivative is de-
fined by f'(z) = limh—mw.

Galileo: If y = f(z), we will sometimes write f'(z) = z—z. Just as we remarked
for continuous functions, the assumption of differentiability will occur in most of our
theorems including the Fundamental Theorem of Calculus, the Mean Value Theorem,

Taylor’s Theorem, and the Lagrange Error Formula for polynomial interpolation.
Example 11.1.1. If x € R, then recall the following derivatives.

1. If f(x) = cos(z), then f'(x) = —sin(z).

2. If f(x) =sin(z), then f'(z) = cos(x).

3. If f(x) = €", then f'(x) = €".

4. If © > 0 and f(x) = log,(x), then f'(z) = L.

Simplicio: No problem, I think I remember seeing all those rules.

Galileo: What about the derivative of h(z) = e**?

Simplicio: Hmmm. Not sure.

Virginia: That derivative follows from the chain rule, where you compute the deriva-
tive of the composition of two functions as the derivative of the outside holding the
inside fixed and then multiply by the derivative of the inside. For this example, you

simply think of the function h(z) as the composition of the two functions f(z) = z?

and g(y) = ¢?. Since h(x) = ¢” = g(f(x)), W'(x) = ¢'(f () ['(x) = e 2,
Galileo: Very good. The important computational facts about the sum, product, quo-
tient, and composition of two differentiable functions are summarized in the following

theorem.

Theorem 11.1.2 (Differentiation Rules). If X is an interval and f(x),g(z) :
X — Y C R are both differentiable at the point x € X and h(y) : Y — Z C R is

differentiable at the point y = g(x), then
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1. (f+9)(z) = f'(z) + ¢'(v),

(The derivative of the sum equals the sum of the derivatives.)

2. (fx9)(x) = fx) xg'(x) + ['(x) x (),
(The Product Rule.)

3. if g(x) £ 0, then (L)(z) = (RLEgLIE) g
(The Quotient Rule.)

4. hg(x))" = h'(g(x))g'(x).
(The Chain Rule.)

Proof. Galileo: You should be familiar with these formulas so we will skip the proofs.

O

Simplicio: Not a problem.

Galileo: Just as we commented for continuous functions, we see by the first derivative
rule that the sum of two differentiable functions is differentiable. By the second
derivative rule, we see that constants can pulled across derivative signs.

Simplicio: What?

Virginia: In other words, def;(‘”) — %)

dx

Simplicio: Why would I care?

Virginia: Because you now know that the collection of all differentiable functions on
an interval [a, b] forms a vector space.

Galileo: Correct.

Simplicio: Why is this important?

Galileo: The general rule is that the more smoothness you have in your data, the the
easier it is to find accurate approximations.

Simplicio: Smoothness?

Galileo: The more derivatives a function f(z) : [a,b] — R has, the smoother it is.
Let us make the following inductive definition for the n'* derivative as the derivative

of the (n — 1)% derivative.
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Definition 11.1.3. If f(x) : [a,b] — R, then the n'* derivative of y = f(x) is defined

as ZZ—,% = f(z) = W, where fO(z) = f(x), for all x € [a, b].

Simplicio: So, if y = f(z) = sin(z), then % = fW(z) = f'(z) = cos(z) and % =
fP () = f"(x) = —sin(a).

Galileo: Correct. In other words, not only is f(O)(z) = f(z), but also f)(z) = f'(z)
and f®(x) = f'(fM(z)) = f"(x), etc. The purpose of the next definition is to grade
a function by the number of derivatives it has. The more derivatives f(x) has, the

smoother it is. The smoother it is, the easier it is to find accurate approximations.

Definition 11.1.4. The symbol C[a,b] denotes the collection of all functions on the

interval |a, b] with the property that f(x) is continuous at each x € [a,b].

Definition 11.1.5. The symbol C"[a,b] denotes the collection of all functions on the
interval [a,b] with the property that f(z), f'(z), f"(z),..., f™(x) are all continuous

at each x € [a, b].

The larger the integer n, the smoother the functions in the collection.

The next proposition shows that if f(z) € C'[a,b], then f(z) € C°[a, b].

Proposition 11.1.6. If f(z) : [a,b] — R is differentiable at a point x = z € [a, bl

then f(x) is continuous at x = z.

Proof. We must show that lim,_,, f(z) = f(z).
Since the statement lim,_,, f(x) = f(z) is equivalent to lim,_,,(f(z) — f(z) ) = 0,
we need only prove this last equality.

We know by the limit of the product equals the product of the limits that

lim(f(@) ~ £(2) ) =tim 7T
=t H = e =
=f'(z)*0=0.

Thus, lim,_,, f(z) = f(2) and f(z) is continuous at = = 2. O
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Exercise Set 11.1.

L. If f(x) = sin(3), then compute f'(z).

2. If f(x) = €, then compute f'(z).

3. If f(z) = ez, then compute f'(z).

11.2 Rolle’s Theorem

Michel Rolle (1652-1719)

Galileo: Let us begin by introducing the ideas of Michel Rolle (1652-1719), a French
mathematician, who lived during the rein of King Louis XIV. While we will not
give a formal proof of this theorem, an easy physics application can be used to help
visualize where it comes from. In particular, if the variable x represents time and
f(z) represents the height of a ball thrown into the air, then the theorem states that
if the ball leaves your hand at 4 feet above the ground at time x = a and is caught
at this same height at a second time x = b, then there will be some time z when the
instantaneous velocity is zero. as it turns out, that time is at the exact moment when
the ball achieves its greatest height.

Simplicio: But what about a bungee jumper, who jumps off a bridge at time x = a

and returns to the same height a few seconds later at time x = b7
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Galileo: You are optimistic to think that the bungee jumper will return to his initial
height. However, if he does, then we can visualize the point z as the moment in time
when a bungee jumper is at the bottom of his fall. Both situations are covered in his

theorem.

Theorem 11.2.1 (Rolle). If f(z) : [a,b] — R, where f(z), f'(x) are continuous,
and f(a) = f(b), then there is a point z € (a,b) such that f'(z) = 0.

Proof. Galileo: To ease your pain we will skip the difficult part of the proof. You
might be surprised to learn that the difficulties lie in showing that the function actu-
ally attains a highest (and lowest) value at some point z. However, if we can find a
point z € (a,b) with the property that f(z) > f(z) for all z € [a, b], then all we have
to do is compute the difference quotient on each side. The difference quotient will be
positive on the left and negative on the right. Thus, the derivative at the top of the
mountain must be zero.

A more quantitative argument can be given by simply noticing when the numer-
ator and denominator of the difference quotient are positive and negative. Since
f(z) > f(z) for all € [a, b], the numerator of the difference quotient f(z+h) — f(z)
is negative. If the point z + h is to the left of z, then the quantity h must also be

fz4h)—f(2)
h

negative. Thus the fraction must be positive.

Similarly, if the point z 4+ h is to the right of z, then the quantity A must be

w equals a positive number divided

positive. Thus, the difference quotient !
by a negative number and thus negative. Thus, f'(2) is the limit of both a sequence

of positive numbers and a sequence of negative numbers. Thus, f'(z) = 0. O

Galileo: An application of Rolle’s Theorem is in the area of roof repair. For example,
when you are in need of a hammer and call to your assistant to get one to you right
away, what is the fastest method?

Simplicio: The answer is simple. You simply throw it at him.

Galileo: Very good. However, fewer injuries will occur if the highest point of the

trajectory occurs where you are standing on the roof. If the velocity is zero, then you
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can simply pluck the hammer out of the air.

Simplicio: [ think I am beginning to see that locations where a function has zero
velocity might be useful.

Galileo: Others have made this observation before you. The next definition makes

this idea official.

Definition 11.2.2. If X C R, and f(z) : X — R is differentiable at each point in
X, then a point ¢ € X is a critical point of f(x) if f'(¢) = 0. The value y = f(c) is

called a critical value.

In other words, a critical point is where the curve y = f(z) has a horizontal
tangent.
Simplicio: Ah! So the point x = ¢ is nothing but a root of the first derivative. Why
do you call it a critical point?
Galileo: Because something important might be happening at that point. For us,
the word important means a maximum or minimum value of f(z) occurs at that
location. If you remember from Calculus, maxima and minima occur at critical
points or endpoints. Finding a root of a function’s first derivative f’'(z) is a big deal.
Virginia: Aren’t we talking about roots tomorrow?
Galileo: Absolutely. However, our immediate need for Rolle’s Theorem is that it

provides a quick proof of the Mean Value Theorem.

//7';'
/1

=l
i

Figure 11.1: An Application of Rolle’s Theorem
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Exercise Set 11.2.

1. If f(z) = —2% + 3z — 2, then find a critical point for f(z). What is the critical
value? (Graph the function y = f(x).)

2. If f(x) = z® + 2z, then show that f(x) has exactly one real root. (Graph the
function y = f(x).)

_z2

3. Compute the critical points and critical values of the function f(z) = e

(Graph the function y = f(x).)

11.3 The Mean Value Theorem

Galileo: Now we turn to the proof of the Mean Value Theorem.

Simplicio: What is the idea underneath the Mean Value Theorem? How am I going
to remember it?

Galileo: Sometimes we refer to this theorem as the “Highway Patrol Theorem.”
Simplicio: Why is that?

Galileo: Suppose you decide to visit your grandmother, who lives 80 miles away. Since
you have just purchased a new car, you decide to drive. If you get there in one hour,
then do you deserve a ticket?

Simplicio: I am not sure. The time does sound a bit short.

Galileo: Hopefully, the local police officer will be taking a lunch break. If not, you
might warrant a speeding ticket, which could cost you a serious amount of money.
Simplicio: How so?

Galileo: Since the distance traveled in one hour was 80 miles, the average velocity is
80mph. The Mean Value Theorem guarantees that at some time during the trip your
instantaneous velocity will be exactly 80mph. If the maximum speed limit over the
duration of the trip is 70mph, then you will need a very bright and energetic lawyer
to get you off.

Simplicio: How about if I get a fuzz-buster?
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Galileo: Let’s turn to the theorem.

Theorem 11.3.1 (Mean Value Theorem). If f(x) : [a,b] — R has the property

that f(x), f'(z) are continuous, then there is a point z € (a,b) such that f'(z) =

f(b)—f(a)
b—a -

Proof. Define the function F(x) = f(x) — (f(a) + f(b,)) ﬁ( )(z —a)). Note that F(a) =
fa) = fa) = 0 and F(b) = f(b) — f(a) = (f(b) = f(a)) = 0. Since F'(x) = f'(z) —

W, we can conclude from Rolle’s Theorem that there is a point z € (a,b) such
that F'(z) = f'(z) — 102 = 0. Thus, f/(z) = 101, 0

Simplicio: I do not like that proof. How did some one think of that idea?

Galileo: While the proof of the theorem may appear artificial, the basic idea is to
reduce the Mean Value Theorem to Rolle’s theorem by subtracting the straight line
y = f(a) + L© - a( )(z — a) from the function f(z). The next version of the Mean
Value Theorem is rewritten into a form similar to Taylor’s Theorem, which we will

consider shortly.

Theorem 11.3.2 (Mean Value Theorem 2). If f(x) : [a,b] — R has the property
that f(x), f'(x) are continuous, then for every pair of points x,xy € (a,b) there is a
point z € (a,b) such that f(x) = f(xo) + f'(2)(x — o).

Proof. In the Mean Value Theorem 11.3.1 simply let xy = a,x = b, and substitute
into the expression f'(z) = W to get f'(z) = J@)=/@0) T1f e multiply both

T—To

Figure 11.2: The Mean Value Theorem for f(z) =4 — (z — 2)? on [0, 2]
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sides of the equation by xg, we see that f(z) — f(xy) = f'(2)(z — x) and the result
follows. O

Simplicio: So what is this Mean Value Theorem good for?
Galileo: The next theorem allows us to estimate how much a function expands or

contracts.

Corollary 11.3.3 (Corollary to the Mean Value Theorem). If f(z) : [a,b] — R
has the property that f(x), f'(z) are continuous and M = max{|f'(z)| : x € [a,b]},

then for every pair of points x,xy € |a,b] we know that | f(x) — f(xo)] < M|z — xo].

Proof. By Mean Value Theorem 2 11.3.2 we know that for any two points z, zy € [a, b],
there is a point z € [a, b] so that f(z) — f(xy) = f'(2)(z — x).

Thus, if M = max{|f'(x)| : © € [a,b]}, then |f(x) — f(z0)| = |f'(2)]|x — zo| <
M|z — xg]. O

Galileo: From an intuitive perspective, the Corollary states that if you drive your
rusty old car from your house to a party at your grandmother’s house 80 miles away
and the jalopy cannot go faster than 45mph, then you had better leave in plenty of
time or you will be late.

Simplicio: If you allow only an hour, then you will be assured of being late.

Galileo: There it is, a mathematical fact.

Example 11.3.1. If f(z) = sin(x), then we will show that |sin(x) —sin(y)| < |z —y|
for any two real numbers x and y.
Howewver, since f'(x) = cos(z) for all z € R and cos(x) < 1 for all v € R, we know

by the Mean Value Theorem 11.3.3 that |sin(z) —sin(y)| < |z — y| for all z,y € R.

How about if you practice on a couple of the following problems?

Exercise Set 11.3.

1. If f(z) = 2> —4,a = 0, and b = 1, then find the point z guaranteed by the
Mean Value Theorem 11.3.1. (Graph the function y = f(z).)
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2. If f(x) = 2* —4,a = 1, and b = 5, then find the point z guaranteed by the
Mean Value Theorem 11.3.1. (Graph the function y = f(z).)

3. If f(x) = €® and z,y € [0, 1], then show that | — e¥| < 3|z — y|. (Graph the

function y = f(x).)

4. K >0and T(x) = x—$22;K = 12+ £ then show that |T'(z)—-T(y)| < 1|z —y|
for any two real numbers z,y € [V/K,00). (We will see this problem again when

we analyze the Archimedes/Heron square root algorithm. Graph the function

y="T'v).)

5. f K > 0and T'(z) = x—‘”i;f = 22+, then show that |T'(z)-T(y)| < 2|z—y|

for any two real numbers z, y € [V/K, 00). (We will see this problem again when

we analyze the cube root algorithm. Graph the function y = 7"(z).)

6. If T(x) = 3 cos(2z) — 3, then show that |T(z) — T(y)| < 5|z — y| for any two

real numbers x and y.

11.4 Uniform Continuity

Galileo: We now turn to the topic of uniform continuity.

Simplicio: Yet a second type of continuity? Isn’t one enough?

Galileo: It really isn’t a new type of continuity, but rather is involved in the choice
of § when you have been challenged by an e.

Simplicio: I have no idea what you are talking about.

Galileo: Let us begin with a couple of examples.

Example 11.4.1. If f(x) : R — R is defined by the rule f(z) = 2z,xy € R, and e > 0
is given, then how small must 6 > 0 be chosen to guarantee that if v € (xg— 0,19 +0),
then f(x) € (f(xo) — €, f(xo) +€)?

Simplicio: Even I can answer that question. All we have to do is choose 6 = § because
to check that this choice works we simply note that |f(x) — f(xo)| = [22 — 2x¢| =

2w — o] <25 =€
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Galileo: Very good. Now consider a second example.

Example 11.4.2. If f(z) : ® — R is defined by the rule f(x) = 2%, 19 € R, and e > 0
is given, then how small must 6 > 0 be chosen to guarantee that if v € (xo — 0, x9+0),
then f(x) € (f(xo) — € f(xo) +€)7

Simplicio: This question is a bit harder, but let’s figure it out. If we assume that
§ < 1, then |z| < |wo| + 1. Thus, |f(z) — f(z0)] = |22 — 2| = |(xz — o) (x + 30)| =
|z — zol|x 4+ zo] < 0(|z] + |x0|) < 6(2|x0| + 1). Thus, if I choose § > 0 less than the

minimum of 1 and § < then I am done.

__ €
2wol+1°

Galileo: You are getting good at these computations. [ am impressed. OK, what is
the difference between the choice of ¢ in these two examples?

Virginia: In the first example, the choice of § does not depend on the given point z;.
Namely, 0 = 5 for any point x¢. In the second example, the choice of 6 must be made
smaller for larger values of xy.

Galileo: In other words, in the first example, the choice of ¢ is independent of the
point xzy, while in the second example, the choice of § depends on xy. Let’s modify

the second example and see if you can figure out what the choice should be this time.

Example 11.4.3. Ifz, € [—100, 100] and € > 0 are given and f(x) : [-100,100] — &
is defined by the rule f(x) = x?, then how small must § > 0 be chosen to guarantee

that if x € (xg — 0,29 + ), then f(x) € (f(xo) — €, f(xg) +€)7

Simplicio: This question is easy. If we choose d = 355, then | f(x)— f(xo)| = |2* =] =
(z — o) (2 + 20)| = | — 20[100 + 100] < 6(200) < 55200 = €.

Thus, we are done.

Galileo: Very good. Now, what is the difference between the second and third exam-
ples.

Simplicio: Obviously, the only difference is that the interval in the third example is
closed and bounded.

Virginia: And you choose § = =, where M > |f'(z)| for all  in the interval.

£
M

Galileo: Guess what! You have discovered two new theorems.
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Theorem 11.4.1 (Uniform Continuity 1). If X is an interval in R and f(z) :
X — R is a differentiable function with the property that |f'(x)| < M for all x € X,
then for any xy € X and any € > 0, there is a & > 0 with the property that if
|z — zo] < 6, then |f(z) — f(xo)| < e

Proof. Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice:
Choose 0 = 3,547
Step 3. The Check:
If |z — xo| < 6, then by the Mean Value Theorem 11.3.3

|f(.iL')—f(1‘0)|§M|.iL’—.iL’0|<M6<MM€+1=ML+1€<€.

O

Galileo: The next theorem provides the generality we desire. Note the hypotheses
have been changed so that it is no longer necessary to assume that the function is
differentiable. However, to make up for this weaker assumption, we must assume that

the interval is closed and bounded.

Theorem 11.4.2 (Uniform Continuity 2). If f(z) : [a,b] — R is a function with
the property that f(x) is continuous at each x € [a,b], then for any € > 0 there

is a § > 0 with the property that if xg,x € [a,b] have distance |x — x| < 0, then
/(@) = flzo)| <e.

Proof. By way of contradiction, assume that there is no such delta.
If this is true, then we have the following cases.
Case n = 1.
For ¢, = % = 1 we can find points yi, 21 € [a,b] with the property that |y; — 2| <

o1 = 1 and |f(y1) — f(z1)] > €.

Case n = 2.
For 6, = 5 we can find points ys, 2, € [a, b] with the property that |y, — 25| < 0, = 1
and [f(y2) — f(22)] = .
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Case n = 3.
For 63 = % we can find points ys, z3 € [a, b] with the property that |y; — 23] < 05 = %
and |f(ys) — f(z)] = €.

Case n = n.
For ¢,, = % we can find points y,, z, € [a,b] with the property that |y, — 2,| < J,, = %

and [f(ya) = f(za)| 2 €

Since we have assumed the interval [a,b] is closed and bounded, the sequence
{yn}o%, has a convergent subsequence. Without loss of generality, we can assume the
sequence {y, }°°, converges to some point . Since the function f(z) is continuous at
Ty, we can find a 6 > 0 with the property that if |z —x¢| < 6, then |f(x) — f(xo)| < 5.

Choose an integer N sufficiently large that if n > N, then |y, — zo| < g.

Since |y, — xo| <2 <6, [f(yn) — flxo)| < &.

VAN

Since |2, — Zo| = |20 — Yo + Yn — Tol < |2 = Yul +lyn — 20 < 2+ 5 < 5+ 5
5+ 5 =01f(2) — flao)| < 5.

Combining these last two pieces of information, we see that |f(y,) — f(zn)| =
|F(yn) = f(x0) + flwo) = f(zn)| < [f(yn) = f(@o)| + [f(20) = fzn)| < 5+ 5 =€

Thus, we have a contradiction to our assumption that |f(y,) — f(2,)| > € for all
integers n.

Thus, the theorem is proved. O

Simplicio: I have the creepy feeling I have seen that argument before.

Galileo: You have. As part of the proof of the Extremum Theorem, we showed that
a continuous function on a closed bounded interval is bounded. The argument is the
same except for the phrasing. In fact, our theorem on uniform continuity can be
used to show a continuous function on a closed bounded interval is bounded. The
argument is straightforward.

Simplicio: Well, why didn’t you give us this argument before? It would have been
more economical.

Galileo: True, but it would have seemed a bit contrived. In any case, repetition is a

great teacher.
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Simplicio: I have one last question. Why did we go to the trouble to discuss uniform
continuity? It seems like a detail.

Galileo: While you are correct that uniform continuity is a detail for an applications
person like yourself, it is the key idea in the proof that a continuous function on a
closed bounded interval is integrable.

Simplicio: As far as [ am concerned, any function can be integrated.

Galileo: The continuous functions on a closed bounded interval form a generally well
behaved collection. They possess the extremum and intermediate value properties. As
we will see momentarily, they are also integrable. Thus, they form an important subset
of the collection of integrable functions. In some sense the collection of continuous
functions are a nice subset of the collection of integrable functions. In an effort to
isolate the concept of Uniform Continuity and unify the two theorems Theorem 11.4.1

and Theorem 11.4.2, we make the following definition.

Definition 11.4.3. If X is an interval in R and f(z) : X — R is a function with the
property that € > 0 there is a & > 0 with the property that if xo,x € X have distance
|z — zo] <6, then |f(z) — f(x0)| < e

Exercise Set 11.4.

1. If f(z) = a® 4 3z is defined on the interval [—2,2] and € > 0, then find a
d > 0 with the property that if | — x| < 6, then |f(z) — f(xo)| < € for all

x, %y € [—2,2].

2. If f(z) = z*+x is defined on the interval [—3, 3] and € > 0, then find a § > 0 with
the property that if |z — x| < 0, then |f(z) — f(z0)| < € for all z,zy € [-3,3].

3. If f(x) = 5|z| + 3|z — 1| is defined on the interval [—2,2] and € > 0, then find
a 0 > 0 with the property that if |x — x| < §, then |f(x) — f(zo)| < € for all

x, % € [—2,2].
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11.5 Integration

Galileo: Since our proofs of both Taylor’s Theorem and the Fundamental Theorem
of Calculus require the Intermediate Value Theorem for Integrals, I guess we have no
choice but to define the integral of a function.

Simplicio: More theory?

Galileo: While you dislike the theory, the definition is in the same spirit as the
definitions we gave for limits of sequences and functions. If you have forgotten those
details, go back and look at your notes from those discussions.

Virginia: You mean you can phrase the definition in terms of a challenge?

Galileo: Absolutely. First, we have to define the ideas of a partition and a refinement

of a partition. These terms will appear in the definition of the integral.

Definition 11.5.1. A partition of an interval |a,b] is a finite ordered set of points

of the form P={a =19 < 11 < 13 < --- < x, = b}.

Definition 11.5.2. If P and P’ are two partitions of an interval [a,b], then P’ is a

refinement of P if every member of P' is a member of P.

Definition 11.5.3. A bounded function f(x) : [a,b] — R is integrable with integral
fabf(x) dz if for every ¢ > 0, there is a partition P with the property that if P' =
{a =2y <2y <w9y <--- < xy, = b} is any refinement of P and for any choice of
points ¥y € [Tk, Tp41), then

n—1

|Zf($;;)($k+1 — xy) — / f(z) dx| < e.

k=0
Since we have an excess of notation, we will use the notation

S(P) = Y328 flat)(wre1 — wx) to denote the sums approximating the integral. We

will write this sum with the understanding that x} € [z, xk41]. With this notation

we can reformulate the definition a bit more succinctly.

Definition 11.5.4. A bounded function f(x) : [a,b] — R is integrable with integral
fab f(z) dx if for every € > 0, there is a partition P with the property that if P' is any
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refinement of P, then

|S(P’)—/ (@) do| < e.

Simplicio: This definition seems unnecessarily complicated.

Virginia: Actually, no. I can already see that it can once again be phrased as a three
step process with the usual suspects: Challenge, Choice, and Check. If I challenge
you with an € > 0, then you are required to find me a partition P (The Choice) with
the property that any “bigger” partition P’ has the property that S(P') is within €
of the integral fabf(x) dzr. Once again the € is a measure of our distance from the
desired answer. Not complicated at all.

Galileo: The next proposition encapsulates the two most important facts concerning
integrals. The first states that the integrable of the sum is the sum of the integrals.
The second states that we can pull constants across the integral sign. Recall that
derivatives also had these two properties. Together these two properties state that
the derivative and integral are linear transformations and thus lie under the purview

of Linear Algebra. More about this later.

Proposition 11.5.5 (Linearity Property for Integrals). If f(z),g(z) : [a,0] — &

are integrable and K is a real number, then

1. fabf(:r) +g(z) do = fabf(:r) dr + fabg(:r) d.
(The integral of the sum equals the sum of the integrals.)

2. fabe(x) dz = Kfabf(x) dz.
(Pulling constants.)

Proof. Fact 1. Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice:
Choose a partition P with the property that if P’ is any refinement of P, then

1 |S§(P) — 7 f(x) da| < & and
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— fabg(:r) dz| < 5

where S;(P') and S,(P’) denote the approximating sums associated with f(z) and
g(x), respectively. (We assume that the choice of zj is the same for both approxima-
tions.)

Step 3. The Check: Since S;(P') 4+ Sy(P') = Spiq(P'),

S (P /f dx+/ o(z) de)| =IS; (P /f dx+/abg
=15 (P /f ) d + S, ( /bg ) de|

l\DIm
DO |

Proof of Fact 2.
Step 1. The Challenge:

Let € > 0 be given.

Step 2. The Choice:

Choose a partition P with the property that if P’ is any refinement of P, then
[Sp(P") = [, f(w) da| <
Step 3. The Check:

If P’ is any refinement of P, then | S ;(P') Kf f(z)dz| = |KS(P") Kf f(z)dz| =

|K|[|S¢(P") — f f(z dl‘|<|K|m<€. O

IK\+1

Virginia: Those proofs weren’t bad at all. They were almost the same as our limit
facts.

Simplicio: But why are they called linearity properties? I don’t see any proportions.
Galileo: Do you remember the definition of linear transformation from your studies
of Linear Algebra?

Simplicio: I am not sure what you are getting at.

Galileo: If you remember, a transformation L : U — V from a vector space U to a

vector space V' is called linear if it satisfies two properties:
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1. L(u; +uy) = L(uy) + L(uy) for all uj,uy, € U and

2. L(Ku) = KL(u) for allu € U and K € R.

Of course, the vector space of integrable functions is infinite dimensional.

Simplicio: I have no use for infinite dimensional vector spaces and their transforma-
tions.

Galileo: But you will.

Simplicio: Oh.

Galileo: The global strategy will be to approximate infinite dimensional spaces by
finite dimensional spaces and linear transformations by matrices. You have heard
of a matrix, haven’t you? Derivatives, integrals, and Fourier Transformations all
operate in the infinite dimensional arena. Fortunately, they all have finite matrix
representations. Thus, Linear Algebra will be involved.

Simplicio: OK, OK. An integration example please.

Galileo: Before we present an example, I would like to present two more notations

for the lower and upper sums.

Definition 11.5.6. If f(z) : [a,b] — R is a bounded function, P is a partition of [a, b],
and z;, € [Tk, Tk41) has been chosen with the property that my = f(z) < f(x) for all

n—1

T € [Tk, Tpt1), then define the lower sum on P by S(P) =Y, _o f(2,) (@11 — x%) =
S ko Mk (T — )

Definition 11.5.7. If f(z) : [a,b] = R, P is a partition of [a,b], and Zy € [vg, Tx41]
has been chosen with the property that f(x) < f(zx) = My, for all x € [xy, Tk41], then
define the upper sum on P by S(P) = 020 f(Zx) (wr1 — 1) = Sopee Mi(@y1 — ).

Virginia: Actually, [ hate to be picky, but I have a complaint about these last two
definitions. If we assume the function f(x) is continuous, we know we can find the
points z, and Z;. However, if we don’t make this assumption about f(x), we might
not be able to find such points. What do we do then?

Galileo: Good point. We would be on safer ground if we defined them more carefully

using the concepts greatest lower bound and the least upper bound.
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Definition 11.5.8. If f(z) : [a,b] — R is bounded and P = {a = zp < 21 < o3 <
oo <, = b} is any partition of [a,b], then define the notation my = glb{f(z) : x €

[k, Tpy1] and My, = lub{f(x) : x € [xk, Tpy1]-

Virginia: I see why you are assuming your functions are bounded. If you had un-
bounded functions, the quantities m; and My could be infinite.
Galileo: You are correct. We are trying to keep our discussion as simple as possible.

Let us begin by making a number of observations.

Proposition 11.5.9. If f(x) : [a,b] — R is bounded and P is any partition of [a,b],
then the lower and upper sums exist and S(P) < S(P) < S(P).

Proof. Since my, < f(x}) < My, for all x € [xy, xpq] and all k =0,1,...,n—1,

S(P) = S maloner — ) < S(P) = S F(p) (oper — 1)

k=0 k=0

Thus, we are done. O

Proposition 11.5.10. Let f(z) : [a,b] — R be bounded. If P and P' are any two
partitions of [a,b] where P' is a refinement of P, then S(P) < S(P') < S(P') < S(P).

Proof. Simplicio: Even I can see that this proposition is true.
Galileo: But, you might want to be a bit careful and increase the partition P to P’

by adding one point at a time. This technique is called induction. O

Simplicio: Our example please.
Galileo: OOPS! We need to remind you of one more detail. We need the sum formula

for the arithmetic series.

Proposition 11.5.11. >}  k=1+2+ - +n= n(n;l)-

Proof. Virginia: I remember the proof.
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If welet S, =1+2+---+n, then

Sp = 1 + 2 + + n
Sn = n + (-1 + + 1
2S5, = (n+1) + (n+1) + + (n+1)

Since the quantity 2S5, is written as n sums of the number n 4+ 1, we see that

25, = n(n+1). Thus, S, = 2t O

Virginia: Now we should be ready for our example.

Example 11.5.1. Galileo: How about if we compute the area under the curve y =
f(z) =z for x €0,1]7
Simplicio: Sure, but I already see the enclosed region is a right triangle with base and
height equal to one. The answer equals %
Galileo: We shall do as the young lady instructs.
Virginia:

Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:
Begin by choosing an integer n with the property that n > %

Now choose the partition P to be n + 1 equally spaced points between 0 and 1.
In other words, P = {0 = zy < 1y < oy < --- < z,, = 1}, where x = %, for
k=0,1,2,...,n.

Step 3. The Check:
Let P' be any refinement of P with x any choice of points in the interval [Tk, T41].

Before we discuss P', let’s make a couple of observations about P. Since Xy —x) = +
) + n

andmkzg,forallkzo,l,...,n—l,
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n—1
S(P) =Y my(wpsr — 1)
k=0
B n—1 k 1
o —nn
1 n—1
==Yk
n
k=0
1 (n—=1)n
T n2 2
B 1n—1
2

Simalarly, since My = %, forallk=0,1,...,n—1,

E(P) :Z_:Mk(.%'k+1 — .Cb'k)

Thus,

1n—-1
2 n

_1n+1

=S(P) < S(P') < S(P) < S(P) =5

IN
U

(P)

ntl 1n-l 2 1 .0 can see that
n 2 n 2n n’

|S(P') — 1| < = <. Thus, folx dr = 3.

Since we have chosen n > % and %

Virginia: Since each estimate of the integral is squeezed between a bit less than %

and a bit more than %, I see we have a squeezing type process taking place here.

Simplicio: OK, but I knew before we started that a triangle with height and base

equal to one has area equal to %
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Example 11.5.2. Galileo: OK, then how do you compute the area under the parabola
y= f(x) =22, forx €[0,1]7

Simplicio: I would use my antiderivatives from Calculus.

Galileo: But, what if you were Archimedes? He had no antiderivatives.

Simplicio: I would be in trouble.

Galileo: While we won’t give his proof, the next proposition provides the key to a proof
he would appreciate. Virginia, how about if you lead the way again?

Proposition 11.5.12. Yp_ k> = 12 + 2% 4 .- - 4 p? = 2Dt

Proof. Note the following special cases.

If n =1, then 12:%.

If n = 2, then 12 4 22 = 22t

Ifn:3,then12+22+32:w'

The formal proof is by induction. O

Virginia: Using the definition, we simply go through the same steps as before.

Step 1. The Challenge:
Let € > 0 be given.

Step 2. The Choice:
Begin by choosing an integer n with the property that n > %

Now choose the partition P to be n + 1 equally spaced points between 0 and 1.
In other words, P = {0 = xy < 11 < @3 < -+» < x, = 1}, where xp = %, for
k=0,1,2,...,n.

Step 3. The Check:
Let P' be any refinement of P with x any choice of points in the interval [Tk, T1].

Before we discuss P!, let’s make a couple of observations about P. Since Xy —x) = +
) + n

andmk:(%)2,forallk:(),l,...,n—l,
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Similarly, since My, = (£2)?2, for all k =0,1,...,n — 1,
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Since we have chosen n > %,

S(P) - S(P) <1(n+1)(2n+1) 1 -=1)(2n-1)

~6 612 6 6n?
20 +3n+1 20 —3n+1
- 6n? B 612

_6n 1

6w

and both S(P') and % are trapped between S(P') and S(P'), these estimates show that
|S(P') — 2| < = <. Thus, fol o? dr = 3.

Simplicio: These examples are not as bad as I would have expected. However, how
did you know that my = (£)? and M, = (&£1)2?

Virginia: Since the function y = f(z) = 2? is increasing on the interval [z zj 1], the
lowest point on the curve occurs at the left endpoint @y. Thus, my, = (z))* = (£)2
Similarly, the value of My, is computed at the right endpoint so that My, = (zx41)* =

()2

Example 11.5.3. Galileo: How about if we show that fol a® dx = ;7 The only fact
we need is that Y, k* = (@)2
Simplicio: Holy Mother of Jesus, save me from this maniac. Let’s move on. I would
rather we do it Isaac Newton’s way.

Galileo: So you do appreciate a good theorem when you see one! OK, we will leave it

for an exercise.

Galileo: OK, now it is time to move on to inequalities. Note that the next proposi-
tion is analogous to the squeezing theorem for sequences. Unfortunately, just as the
previous squeeze involved a proof by contradiction, the current proof does as well.
Simplicio: But, why can’t we avoid new proofs?

Galileo: Sadly, we did not define the integral in terms of sequences.

Simplicio: I can smell that contrapositive already.

Proposition 11.5.13 (Monotone Property for Integrals). If f(z), g(x) : [a,b] —
R are bounded, integrable, and f(x) < g(z) for all x € |a,b], then fabf(x) dr <

fab g(x) du.
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Proof. Begin by noting that if P is any partition of [a, b], then our assumption that
f(z) < g(z) for all x € [a, b], implies that

—

n— n—1

Sp(P) =) Fwp)(@hr1 — ap) <

0

(]

9(wp) (Tr41 — x1) = Sy(P).

B
Il
B

=0
By way of contradiction assume that fab f(x) dz > fabg(x) dx. We will show this

assumption leads to the absurdity that the number S;(P) is strictly less than itself.
Step 1. The Choice of epsilon:

Lot ¢ — Ja/@ dz;ffg(z) )

(Since we are proving the contrapositive, we get to choose € to be any number we
want. The smart choice is half the distance between the integrals fab f(z) dz and
fab g(z) dx

With this choice of €, we know 2¢ = f: f(x) dx— fabg(x) dx. If we write 2¢ = e+e

and move one integral to the other side of the equation, then

/abg(x) dx—l-e:/abf(x) dx — €.

Step 2. The Choice of the partition P :
(We now get to choose the partition based on the choice of ¢.)

Choose a partition P with the property that if P’ is any refinement of P, then
1St (P) f f(x) dz| < e and |S,(P") f g(z) dz| <e.

Step 3. The Contradiction:
(We now show that the number S;(P’) is less than itself.)

Since |S¢(P') f f(z) dz| <e,fabf(x) dr —e < Sp(P').

Since |S,(P") f g(z) dz| <€, S4(P) < fabg(x) dz + €.

Since S¢(P') < S,(P'), we see that

St(P") < S,(P') < / g(z) de +e :/ f(z) de —e < Sy(P").

Thus, S;(P') < S;(P'), a contradiction since no number can be less than itself.
Don’t let all the notation confuse you. The proof is easier than it looks. Draw a

picture.
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Simplicio: That proposition seems obvious to me. I don’t see why it was necessary
to prove it.
Galileo: The next corollary will provide the starting point in our proof of the Mean

Value Theorem for Integrals.

Corollary 11.5.14 (Integral Bounds). If f(z) : [a,b] — R is bounded, integrable,
and m < f(z) < M for all x € [a,b], then m(b—a) < fabf(:r) de < M(b — a).

Proof. This corollary follows immediately from the previous proposition.
First, set g(z) = M for all x € [a, b]. Thus, fabf(:r) do < fabM de = M(b— a).
Second, set g(z) = m for all z € [a, b]. Thus, m(b— a) = fabm dr < fabf(x) dz.
]

Simplicio: I have a quick question. Why all this generality in the definition of the
integral? In other words, as soon as you decided to compute, you immediately chose
your partition to have equally spaced points. Why not always limit your partitions
to equally spaced points?

Galileo: Excellent question! We have partitions with variable length intervals for
both practical and theoretical reasons. A practical reason is that the integral can be
estimated more efficiently and accurately if we have shorter intervals where the func-
tion y = f(x) is changing rapidly and longer intervals where the function is changing
more slowly. If the function happens to be differentiable, then the computations will
be improved if the lengths of intervals are chosen relatively small in regions where the
derivative is large and relatively long in regions where the derivative is close to zero.

This process can be automated.

Example 11.5.4. For example, our friends in statistics are always having to approxi-

10

10 e~ dx. Since the function f(x) = e *" and its first derivative

mate integrals like
are virtually zero on the intervals [—10, —5] and [5,10], our partition
P={-10=xy <z <23 <--- <21 <x, =10} can be chosen so that x; = —5.

and x,—1 = 5. The intermediate points can be clustered in the interval [—5, 5.
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Virginia: And the theoretical reasons?

Galileo: If we use the definition of integral we just gave, it is easy to prove the rule
fabf(x) de = [ f(z) dv + fcbf(x) dx for ¢ € [a,b]. We simply add the point ¢ to
an arbitrary partition P = {a = 2y < x; < --+ < z,, = b} to create a refinement
P={a=zy<z < - <z << Tpyy <---<x, =0b}. The proof of this fact is a
bit of a nuisance if we had only considered equally spaced partitions. We will prove
this fact momentarily.

Simplicio: Is that all?

Galileo: As you will see during this discourse, many techniques have difficulty when
making approximations near the boundary. The Runge and Gibbs example stand out
as examples of this type. Some of these problems can be alleviated when we choose
our partition so that most of the points are clustered out near the boundary of the
interval. For numerical integration, Gauss Quadrature provides an elegant way to
make this choice.

Simplicio: Any other thoughts?

Galileo: While most of our discussions will be restricted to the 1-dimensional setting,
most real applications take place in 2,3, or even higher dimensional spaces. While
upper sums and lower sums may not be well-defined in these settings, the expression
S(P) = Y07, f(@})(wgs1 — 1) makes sense as long as the value f(x}) lies in a
real vector space and the quantity (zx,1 — 2) is a real number. The other issue is
convergence for the partial sums. However, if we define the metric on the range of
the function so convergence implies convergence on each coordinate, then we are back
to dimension one. Pythagoras does that for us. He is our man. This heavy-handed
discussion implies that when we integrate a function of the form r(t) = (x(¢), y(t)),
we simply integrate the two coordinates separately.

Simplicio: Hmmm.

Virginia: I also have a question. When you computed the examples, you immediately
turned to the lower and upper sums. If you have equally spaced points, then the

lower and upper sums are sequences so you simply could have defined P, to be the
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partition of the interval [a, b] with n equally spaced points. The integral can now be

defined simply as the limit of the sequence lim,_, S(P,) = lim,_, S(P,). While these

two limits might not be equal, I doubt that happens. Can these limits differ?

Example 11.5.5 (A non-Integrable Function). Galileo: Now you are asking for
a bizarre example. However, the following function has the property that all the upper

sums equal +1, while all the lower sums equal —1. Thus, it cannot be integrable.

Definition 11.5.15 (A non-Integrable Function). Define the function f(x) :
[0,1] — R by the rule

-1 of x  is a rational number
flz) =

1 if © s not a rational number

Virginia: Yes, I can see that no matter what the choice of the partition, P, it will
always be true that my = —1 and M = 1.

Simplicio: How so?

Virginta: Since there will always be a rational number zj, between xy, and Ty, my =
—1. Thus, S(P) = —1 for any partition P. Since there will always be an irrational

number x}, between xy and w1, My = 1. Thus, S(P) = 1.

Galileo: While this example makes the point that we should be careful, we won’t use
it much. However, it does set the stage for a criterion that guarantees the existence of
the integral. The criterion is similar to the Cauchy criterion we had for sequences. In
fact, the proof involves the same construction we went through for Cauchy sequences
where all but a finite number of terms of a sequence are trapped in a nested sequence
of intervals [ay,, b,|, where b, — a, < %

Galileo: OK, now it is time provide conditions, which guarantee the integral exists.
Simplicio: This discussion will be for the math majors.

Galileo: True, but it will reinforce your understanding of the definition of the integral.

Theorem 11.5.16 (Cauchy Integrability Criterion). If f(z) : [a,b] — R is a
bounded function, which has the property that for every e > 0, there is a partition P
such that S¢(P) — S;(P) <€, then f(x) is integrable.
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Proof. The proof is constructive, where a sequence of partitions {P,}> | are found
with the property that P, refines P, and S;(P,) — Sp(P) < %

Casen = 1. Let e =1.

Choose a partition Py with the property that S;(P;) — S (P1) < 1.

Case n = 2. Let e = 1.
Choose a partition P, with the property that Sy(P;) — S;(P,) < 3. Since refinement
only forces the upper and lower sums to be closer, assume that P, refines P;. (If it
doesn’t, then add the points of P, to P,.)

Case n = 3. Let € = %
Choose a partition Py with the property that Sy(Ps) — S;(Ps) < 3. Since refinement
only forces the upper and lower sums to be closer, assume that P; refines P,. (If it
doesn’t, then add the points of P, to Ps.)

Continue in this manner for arbitrary integers n to obtain a sequence of partitions

with the property that

S;(P) < Sy(Py) <--- < Sy(Py) < Sp(Py) < --- < Sp(Py) < S¢(P)

and Sy(P,) — Sp(Py) < +.
Since the sequence {S,(F,)}5, is bounded increasing, it converges to some num-
ber, call it f:f(x) dz.
Since the sequence {S;(P,)}2°, is bounded decreasing, it also converges to some
number.
Since Sy (P,)—S;(P,) < +, the sequence {S;(P,)}22, also converges to fab f(z) dx.
Thus, the function f(x) is integrable.
Simplicio: But, wait a minute. Don’t you have to go through the same Challenge,
Choose, and Check routine we did before?
Galileo: Of course, you are correct. Since you asked, here it is.
Step 1. The Challenge:

Let € > 0 be given.
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Step 2. The Choice:
Choose an integer n with the property that n > %

Now choose the partition P = P,, where P, denotes the partition we just con-
structed.

Step 3. The Check:
Let P" be any refinement of P with x} any choice of points in the interval [z, Tgi1].

Since S;(P,) < Sp(P') < S¢(P,) and S;(P,) < f f(z) dz < S¢(Py),

() = [ f(x) da] < Sp(P) — S,(P) < <.
Simplicio: You told me more than I wanted to know.
Virginia: But the argument really was the same as those given before. Namely, you
simply trap the two numbers S;(P’) and fab f(z) dz in the interval [S(P,), Sf(P,)].
Since the length of this interval is less than €, the two points can’t be separated by

more than e. Thus, we are done. Think visually.

Virginia: What about the converse?
Galileo: The converse is easy because the integral is given to you for free. No infinite

process is required.

Proposition 11.5.17. If f(x) : [a,b] — R is a bounded integrable function, then it
has the property that for every e > 0, there is a partition P such that S;(P) —S¢(P) <

€.

Proof. Let € > 0 be given.
Since f(z) is integrable with integral fb f(z) dz, there is a partition P with the prop-
erty that if P’ is any refinement of P, then |S¢(F”) f f(x) dz| < 5. Since the choice

of the point z} is arb1trary in the approximating sum S;(P) = Y070 f () (241 — 1),
we see that |Sy(P f f(x) do] < § and |S,(P f flx) dx] < §.
Thus,

S1(P) = 5,(P) /f dx+/f ) do - S,(P) < 5+

l\.’JIm
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O

Galileo: The next proposition provides us with conditions when we know there will

never be a problem integrating.

Theorem 11.5.18 (Continuous Functions are Integrable). If f(z) : [a,b] — R

is a function which is continuous at each x € |a,b], then f(x) is integrable.

Proof. To prove this proposition all we have to do is check the Cauchy Integrability
Criterion. As with the definition of the integral, we have the Challenge, Choice, and
Check.

Step 1. The Challenge:

Let € > 0 be given.

Step 2. The Choice:
By Theorem 11.4.2 we can find a 6 > 0 with the property that whenever |z — 2’| < 9,
then |f(z) — f(2')] < 7% . Now choose P = {a = xy < 21 < --- < x,, = b} to be any

partition with the property that xy, —xp <0, forall k =0,1,...,n — 1.

Step 3. The Check:

By the Extremum Theorem 10.3.1 we know that there are points o}, x}* € [Tk, T441]

with the property that f(z;) = myg and f(a}*) = M.
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Thus,
S/(P)— 5,(P) = Mi(e — 21) Zm< ~ )
=:Z_‘;<Mk = ) (e — @)
_ :2_‘;<f(xz*> ~ J@) @ — )
< k_; 0 - oy e = @)
g En
:(bfa)(b—a,) =

Galileo: There it is.

Virginia: In fact, the argument is virtually the same as for the two examples we
discussed earlier. The main difference is that we replaced those tricky summation
formulas by Theorem 11.4.2, which actually makes the argument easier.

Galileo: And MUCH more general.

Simplicio: But there is one difference. With the examples we knew the answers before
we started. Now we don’t.

Galileo: True. However, for the special case when a function is differentiable, we
can use Theorem 11.4.1 to help choose your partition. In particular, this theorem
provides a tool for measuring the difference S¢(P) — S;(P).

Simplicio: How about an example?

Galileo:

Example 11.5.6. If f(x) = ® on the interval [—3,3] and € = 5, then find a

partition P = {=3 =2y <z, < -+ < 2, = 3} with the property that S;(P)—S,(P) <

1

GZW'
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Simplicio: Let me give this problem a try.

First, compute the first derivative f'(x) = 2x.

Second, compute the mazimum value of |f'(x)| = |2z| on the interval [—3,3]. For
this function the maximum is M = 2% 3 = 6.

Third, choose § > 0 sufficiently small that whenever |x — x'| < 0, then |f(z) —
f@")] < Mz —2a'| < M.

Fourth, the difference

n—1

Sp(P) = 54(P) :iMk(xk-l-l — ) = Y (g — o)

k=0

:i(Mk — mg)(Tp1 — k)

n—1

:Z M5($k+1 - LL’k)
k=0

n—1

<Mo Z($k+1 — T)

k=0
=6 0(3 — (—3)) = 36 4.
Fifth, if we choose § < 55 = %e = %%, then we guarantee that
St(P) = S;(P) < 55 for any partition P = {=3 = 1o < 21 < -+ < 2, = 3} with the

property that vy, —x, < 6 for allk=0,1,...,n—1.

Galileo: You should appreciate this control.

Simplicio: It might surprise you, but I do appreciate the ability to measure the error.
Galileo: In the spirit of Professor Polya, let us take a second look at this last example.
Note that the key is being able to choose a partition P with the property that ¢ <
m. The Mean Value Theorem 11.3.3 tells us the constant M is needed in the
denominator.

Simplicio: It still bugs me that only justification for our discussion of Uniform Con-

tinuity is one inequality in the middle of Theorem 11.5.18. Mathematicians are neu-

rotic.
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Galileo: It is hard to argue with your thought, but they have a need to get it right.
At some point your future employer may apply the same test to your performance.
If you like neurotic details, you will love this next proposition, which states that if a
function is integrable on a closed bounded interval, then it is integrable on any closed

bounded subinterval.

Proposition 11.5.19. If f(x) : [a,b] — R is integrable and a < ¢ < d < b, then
fcdf(x) dx exists.

Proof. The proof of this proposition depends on Theorem 11.5.16. In order to use this
theorem properly, we need to notate the function f(z) restricted to the subinterval
[e,d] by fr(z):[c,d] = R. (i.e.fr(x) = f(z) for all z € [¢,d].) Now all that is required
for the proof is to show that for every € > 0 we can find a partition Py, = {¢ = z¢ <
Ty <---<--- <z, =d} with the property that S(P(fr)) — S(P(fr)) <e

However, since we are assuming that f(z) : [a,b] — R is integrable, we can find a
partition P of [a,b] with the property that S(P) — S(P) < e. Since refinement always
makes the upper and lower sums closer together, we might as well assume that the
two points ¢ and d are included in P. Now simply create a partition P(fg) of [¢, d] as
the members of P with the points less than ¢ and the points larger than d deleted.

Thus, S(P(fr)) — S(P(fr)) < S(P)) — S(P) < e so we are done. O
OK, it is now time to mention a version of the distributive law for integration.

Proposition 11.5.20. If f(z) : [a,b] — R is integrable and ¢ € [a, b], then fab f(z) do =
JE f@) do+ [ f(a) de

Proof. Step 1. The Challenge:
Let € > 0 be given.
Step 2. The Choice:
Since we know by the previous proposition the function f(x) is integrable on the
interval [a, ¢|, we can find a partition P, = {a = 2y < 2 < --- < x,, = ¢} with the

property that if P] is any refinement of P, then |S(P]) — [ f(z) dz| < &.
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Similarly, we can find a partition Pr = {¢ = yo < y; < -+ < Y, = b} with the
property that if P}, is any refinement of P, then |S(P},) f f(z) do] < 5.

Choose P=P,UPr={a=a0<x, < - <xp,=c=yp <y < - < Ypy=b}.

Step 3. The Check:
If P'is any refinement of P, then note that the members of P’ can be written as
P" = P, UP},, where P] contains all the members of P’ to the left of ¢ and P, contains
all the members of P’ to the right of c. create a partition of the left subinterval [a, c|
defined by P] = {a = x¢y < x; < --- < x, = ¢} and a partition of the right subinterval

Pi={c=xy <zg41 <+ -+ <mx,=0>b}. Thus,

—(/acf(x)dx+/cbf(x)dx)|: S(P!) /f ) de + S(P)) /f ) da|

(11.5.1)
<Is() ~ [ 1) wl s 15— [ 00) ar
(11.5.2)
<t 4= (11.5.3)
5t5 =€ 5.
0
Simplicio:
Exercise Set 11.5.
1. Using the DEFINITION of the integral, show that [z dz = 2.
2. Using the DEFINITION of the integral, show that ff a? do =1
3. Using the DEFINITION of the integral, show that fol o de = 1.
4. If f(z) = 2* + 3z is defined on the interval [—2,2] and € > 0, then find a

partition P with the property that |S(P f f(x) dx| < e.

5. If f(z) = z* +x is defined on the interval [—3, 3] and € > 0, then find a partition
P with the property that [S(P) — [°, f(z) dz| < e.
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6. If f(z) = b|z|+ 3|z — 1] is defined on the interval [—2, 2] and € > 0, then find a
partition P with the property that |S(P) — fi f(z) dz| <e.

11.6 The Intermediate Value Theorem for Inte-
grals

Galileo: We now turn to the Intermediate Value Theorem for Integrals. Some people
call it the Mean Value Theorem for Integrals. Actually, its a bit of both.
Simplicio: Isn’t one Intermediate Value Theorem enough?
Galileo: Well no. These theorems provide the key steps in the proofs of the Funda-
mental Theorem of Calculus and Taylor’s Theorem. While you are already familiar
with the Fundamental Theorem of Calculus 11.7.3 and 11.7.4, the remainder form of
Taylor’s Theorem will probably require some work on your part. In my experience,
students are only visit Taylor Lite these days.
Virginia: Even for me, it seems like we are a bit over the top on the theory. Why do
we need Taylor’s Theorem?
Simplicio: Looks like I am beginning to get some support from the rear.
Galileo: The short answer is that this theorem will provide the key step in explain-
ing why the method of Newton/Raphson converges more quickly than the bisection
method. When we discuss this topic, we will make numerous computations of roots
of functions. For example, we will find that the method of Newton/Raphson will
only require six iterations to achieve 14 decimal places of accuracy when approxi-
mating v/2. On the other hand, the bisection method will require more than thirty.
Even with today’s speedy computer’s this difference could become important in a big
computational project where these computations must be made millions of times.
The long answer is that Taylor’s Theorem will provide a systematic way to numer-
ically compute first, second, and higher order derivatives. These numerical derivatives
are used to numerically solve two point boundary value problems in differential equa-

tions and partial differential equations. They are also used every where in image and
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signal processing. Taylor is a big deal.

Simplicio: While I don’t care anything about differential equations, I like the signal
processing connection.

Galileo: Just as the derivative detects the amount of change that is taking place with
a function, an edge detector is designed to identify those pixels in an image, where
rapid change is occurring. Edge detectors are often constructed from numerical first
and second derivatives. We now state and prove the Intermediate Value Theorem for
Integrals. Note that this theorem is a formal statement of the fact that the area under
the curve is the area of a rectangle with base of length b — a and height somewhere
between the highest and lowest possible values of the function. For a visual of the
geometry see Figure 11.3. Note also that the key idea of the proof is that the mean
of the function, - fabf(x) dx, is intermediate between the lowest (i.e.f(z1)) and
highest values (i.ef(zp)). Thus, we named it the Intermediate Value Theorem for

Integrals.

Theorem 11.6.1 (Intermediate Value Theorem for Integrals). If f(x) : [a,b] —
R is continuous at each point x € [a, b, then there is a point z € [a, b] with the property
that [ f(x) dz = f(2)(b— a).
Proof. Since f(x) is continuous at each = € [a, b], we know it is integrable. Thus, the
symbol f: f(z) dz makes sense.

By the Extremum Theorem 10.3.1 there are points 2, 21 € [a, b] with the property
that f(z1) < f(x) < f(zo) for all x € [a,b]. Since the numbers f(z) and f(z;) are

constants (wrt x), we know by Integral Bounds Corollary 11.5.14 that

F)(b - a) = f(z) / 1dz < / f(2) dz < f(z0) / Ldz = f(20)(b — ).

Thus,

Fe) < = [ @) da < £

so the value ;1 < f;f(:r) dx is intermediate between f(z1) and f(z). By the In-

termediate Value Theorem 10.2, there is a point z € [a,b] with the property that
b
f2) =45 [, f(2) da.
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Thus, [* f(z) de = f(2)(b— a). O

/

Figure 11.3: The Intermediate Value Theorem for Integrals

Galileo: The next theorem is a generalization of the Intermediate Value Theorem for
Integrals.

Simplicio: What!!!? Another one?

Galileo: OK, I know you have had it with all this theory, but this theorem is exactly
what we need to prove the error formula for Taylor’s Theorem. This error formula
is essential to our understanding of the convergence rates of sequences generated
by Newton/Raphson. Error formulas guide us when, where, and things go wrong.

Remember, the name of the game is control.

Theorem 11.6.2 (Intermediate Value Theorem for Integrals 2). If f(t), w(t) :
[a,b] — R are continuous at each point t € [a,b] and w(t) > 0 for all t € [a,b], then
there is a point z € [a,b] with the property that fab ft)w(t) dt = f(2) fabw(t) dt.

Proof. Since f(t) is continuous at each ¢ € [a, b], we know by the Extremum Theorem

that there are points zy, z; € [a,b] with the property that f(z1) < f(t) < f(zo) for
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all ¢ € [a, b]. Since w(t) > 0 for all t € [a,b], f(z1)w(t) < f(H)w(t) < f(zo)w(t) for all

t € [a,b]. Since the numbers f(zp) and f(z;) are constants (wrt ¢), we know

1z >/ ) dt = /le
/fzo

—_f ZO)/a w(t) dt.

Thus,
- 2 Ftyw(t) d

T [Pw() dt

is intermediate between f(z1) and f(2¢). By the Intermediate

< f(20)

Ju FOw)) dt
Sy w(t) dt
Value Theorem 10.2, there is a point z € [a, b] with the property that

P Ftyw(t) d

[Pw(t) dt

a

so the value

flz) =
Thus, [7 f(tyw(t) dt = f(2) [ w(t) dt. O

Virginia: If you think about it, not only is this last theorem a generalization of the
First Intermediate Value Theorem for Integrals, but the proof is the same.

Galileo: Correct.

Virginia: But how are we going to use it to prove Taylor’s Theorem?

Galileo: While the function w(t) is completely general, the case most interesting to
us is when w(t) = (x — t)", where t € [z, z].

Simplicio: But if 2y > x, then the interval [z, z] has no points in it.

Galileo: Technically, you are correct. However, we only care about values of ¢ between
x and xg.

Virginia: OK, but if the integer n is odd and =z <t < xy, then the quantity x — ¢ is
negative so that w(t) will be a negative number. The theorem does not apply.
Galileo: Technically, you are again correct. However, if you take a second look at the

theorem, you will realize that the theorem is still true if we assume w(t) < 0 for all .
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Exercise Set 11.6.

1. If f(x) = 2% for z € [0,2], find a point z € [0,2] with the property that
f(z) = %f(f 2? dz = 3. Draw a graph of the function y = f(z). Indicate the
t

placement of the point (2, f(2)) on the graph.

2. If f(x) = 2® for z € [0, 2], find a point z € [0, 2] with the property that f(z) =
%fg 23 dx. Draw a graph of the function y = f(z). Indicate the placement of
the point (z, f(z)) on the graph.

3. If f(x) = 2% for x € [0,2] and w(x) = (x — 2), then find a point z € [0, 2] with
the property that f02 fHw(t) dt = f(z2) fOZw(t) dt.

4. If f(x) = 2® for z € [0,2] and w(z) = (z — 2)?, then find a point z € [0,2] with
the property that [ f(t)w(t) dt = f(z) [} w(t) dt.

11.7 The Fundamental Theorem of Calculus

If T have been able to see further, it was only because I stood on the

shoulders of giants.-Isaac Newton

Galileo: Let us now introduce our colleague Sir Isaac Newton (1642-1727). Professor

Newton made more contributions to our understanding of the world around us than
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almost any other scientist. Not only was he an inventor of Calculus, but he also ap-
plied it to real physical problems. His Second Law of Motion F' = ma is fundamental
to the understanding of the motion of a cannonball dropped from the Leaning Tower
of Pisa, the orbits of the planets around the sun, the motion of a pendulum, and the
motion of a particle through a fluid. His contributions to optics were also remarkable
and included building the first reflecting telescope and his recognition that that white
light can be refracted into the many beautiful colors we have in the visible spectrum.
His Principia (1687) and Opticks (1704) are two of the greatest scientific works ever
written.

Newton: You forgot to mention that I served as the Lucasian Professor of Mathemat-
ics at the University of Cambridge during the years 1669-1701 and I was president of
the Royal Society during the years 1703-1727.

Galileo: Thank you for reminding me of these details. Good sir, could you give us a
few insights into the Fundamental Theorem of Calculus?

Newton: The Fundamental Theorem of Calculus provides the bridge that connects
the two main themes in calculus: derivatives and integrals.

Simplicio: I must admit that the slope of a tangent line and an integral do not seem
to have anything in common.

Newton: But they do. Let us begin our discussion by visualizing the area of a region
and the length of its boundary. How about if we begin with a circle?

Simplicio: From Geometry, I know the area of a circle is given by the formula A = r?;
the circumference is given by C' = 27r. So?

Newton: But did you ever notice that % =2mr =C7

Simplicio: Seems like an accident of nature to me.

Newton: Not so. This simple observation points out the general fact that the rate of
change of the area of a region is the length of the changing part of the boundary.
Simplicio: Sounds like double talk to me.

Newton: How about a rectangle with height A = 1 and base b = x. If we think of the

area as a function of the length of the base, then the area A = x and % = 1, which
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equals the height of the moving edge.

Simplicio: A second accident of nature?

Newton: Actually, these two examples are completely general. For if we have a
function f(¢);[a,b] — R, which is continuous at each t € [a,b], then the function
F(x) = [V f(t) dt, computes the area under the curve at each point = € [a,b]. The
first part of the Fundamental Theorem of Calculus states that F'(z) = f(x).
Virginia: Which generalizes the example you just presented! Namely, the rate of
change of the area under the curve y = f(¢) equals the length of the right hand side
of the region, namely f(z).

Galileo: Very good.

Newton: But that observation is obvious. The first proposition is exactly what we
need to prove the second part of the Fundamental Theorem of Calculus. It basically
states that if you have no velocity, then you aren’t going anywhere. Maybe some of

our students should achieve a little velocity.

Proposition 11.7.1. If f(z) : [a,b] — R is differentiable at each point x € [a,b] and
f'(z) =0 for all x € [a,b], then f(x) = f(a) for all x € [a,].

Proof. If © € la,b], then by the Mean Value Theorem 11.3.1 we know there is a
z € [a,b] with the property that f'(z) = W Since we are assuming f'(z) =0
for all x € [a,b], f'(2) = 0, which implies the fraction W = 0. However, if a
fraction equals zero, then the numerator also equals zero. Thus, f(z) — f(a) = 0,

which implies f(x) = f(a). O

Definition 11.7.2. If f(x), F(x) : [a,b] = R and F'(x) = f(x) for all x € [a,b], then
the function F(z) is called an antiderivative of f(x).

Example 11.7.1. If F(z) = 2* and f(x) = 3z?, then F(x) is an antiderivative of
f(z).

Example 11.7.2. If F(z) = 2® + 1 and f(z) = 322, then F(z) is an antiderivative
of f(x).
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Virginia: From these last two examples, we see that a function may have many
antiderivatives.

Galileo: Correct.

Newton: The Fundamental Theorem of Calculus shows that there is a close relation-
ship between area and antiderivatives. For convenience, the theorem is split into two
parts. The first part relates the derivative of the area under a curve and the height of
the changing boundary. The second part is what every Calculus student remembers

about computing areas.
Theorem 11.7.3 (Fundamental Theorem of Calculus).
1. If f(t) : [a,b] = R is continuous at each t € [a,b] and F(z) = [ f(t) dt, then
F'(z) = f(x).
2. If f(t) : [a,b] = R is continuous at each t € |a,b] and G(t) is any antiderivative
of (1), then [ f(t) dt = G(b) = G(a).

Proof. Part 1.
If F(x) = [ f(t) dt, then there is a z = z(h) (i.e. z depends on h) between x and
x + h so that

=lim

o JGE) [T de

~ a5 h

_ i S0 (2 + b — )
h—0 h

= lim f(2(n) )

=lim f(2) = f ()

Note that we used the Intermediate Value Theorem for Integrals 11.6.1 to justify the

z+h z+h
equality Sz IJz(t) dt _ f(Z(h))iw at
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Simplicio: Why did you write the point as z = z(h)?
Newton: Since the point z varies as the point A varies, the point z is actually a
function of h. The last equal sign is valid because the function f(z) is continuous at
the point z and the values of z(h) converge to x as h converges to 0.

Part 2.

Let H(z) = G(x) — F(x). Since H'(z) = G'(xz) — F'(x) = f(x) — f(z) = 0 for all
x, we know by the previous proposition that H(z) = H(a) for all € [a,b]. Thus,
G(z) = F(x) + H(a) for all z € [a,b]. If G(¢) is any antiderivative of f(¢), then
G(b) —G(a) = F(b)+ H(a) — (F(a)+ H(a)) = F(b) — F(a) = F(b) — 0 = fabf(t) dt.

O

Newton: We now give a simplified statement of the Fundamental Theorem of Calcu-

lus, which is in the form we will need.

Theorem 11.7.4 (Fundamental Theorem of Calculus 2). If z,xy € X, where
X is an interval in R and f(t) : X — R is a function with the property that f'(t) is
continuous at each t € X, then fwo f'(t) dt = f(z) — f(xp).

Simplicio: I like simplified.

Virginia: What about Archimedes’ formula for the volume of a sphere?

Simplicio: What about it?

Virginia: If V = §7r7”3, then ‘fi—‘t/ = 47r?, which just happens to be the surface area of
a sphere. Is that an accident?

Newton: And now it becomes obvious where all those theorems in higher dimensional
Calculus come from.

Simplicio: Enough of all this theory. How about an example?

Galileo: OK, let’s begin with an easy one.

Example 11.7.3. Compute fol zt du.

Virginia: Since F(x) = %5 is an antiderivative of f(x) = x*, we know by the Funda-

mental Theorem of Calculus 11.7.3 that
P01

/0x4dx:F(1)—F(0) "5 "%



262 CHAPTER 11. MEAN VALUE THEOREMS

Simplicio: No fancy summations. No partitions. Now I'm in my comport zone. How
about another such beast?

Galileo: Don’t think those old guys were any less delighted.

Example 11.7.4. Compute fol " dx.

Virginia: Since F(z) = f::: is an antiderivative of f(x) = ™, we know by the

Fundamental Theorem of Calculus 11.7.3 that

1n+1 0n+1 1

/lm” de = F(1) — F(0) =

n+l n+l n+1l

Example 11.7.5. If F(z) = [ t* dt, then compute F'(x).

Simplicio: I can do this one too. Here goes. Since the function G(t) = ? is an
3 03
3

antiderivative of f(t) = t2, we know F(z) = fox t?2 dt = G(z) — G(0) = z—
Thus, F'(x) = 2°.

z3

Virginia: But you forgot to pay attention when we discussed the first part of the
Fundamental Theorem of Calculus. You worked much too hard. All you have to do is
substitute the upper limit of the integral, namely x, into the function f(t) =t* to get
F'(x) = f(x) = 2*. You are finished with zero effort.

Galileo: Theorems are good.

Example 11.7.6. ]fF f 2 dt, then compute F'(z).
Virginia: Since F(x f ¢ dt =— [ ¢ dt, F'(z) = —2”.

Simplicio: I understand that example.

Example 11.7.7. IfF f f(t) dt, then compute F'(x).
Virginia: Since F(x f f(t) dt = — [T f(t) dt, F'(x) = — f(x).

Example 11.7.8. If F(x fo t dt, then compute F'(x).
Simplicio: An antiderivative of f(t) =t is the functzon G(t) = 2, which of course
has derivative G'(t) = t. Thus, by Theorem 11.7.3 F(x fo t dt = G(z*) — G(0).

By the Chain Rule for derivatives, F'(x) = % - 7 = G'(2*)2z = 2*2x.
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Virginia: If you notice that the function F(x) can be written as the composition
F(x) = G(H(z)), where G(y) = [t dt and H(x) = 2*, then F'(z) = G'(H (z))H'(v)

and you are done.

Simplicio: Your method was a lot easier.
Virginia: Easy is good. The general method is summarized in the following proposi-

tion.

Proposition 11.7.5. If f(t) : [a,b] — R is continuous at each t € |a,b], and F(x) =
Iy £(0) de then F'(x) = F(A(e))I (@) = F(g(@))g'(x).

9

Galileo: How about one last example?

Example 11.7.9. Compute [, (v —t) dt.

(z=t)*
5

[e-pa=-ET, —o- (o) foml

Virginia: Since the antiderivative of the function f(t) =x —t is —

Simplicio: Why did you present this last example?
Galileo: That computation is exactly what we will need for the last step in the proof
of Taylor’s Theorem.

Simplicio: How about a less abstract example?

Example 11.7.10. Galileo: OK, how about if we compute fooo e dx?
Simplicio: That’s an easy one. By the Fundamental Theorem of Calculus, we know

that
/ e der=—e"X,=0—-(-1)=1.
0

Galileo: Very good. we will see that integral again.
Simplicio: How about another easy example?

Example 11.7.11. Galileo: OK, how about if we compute f; cos®(z) dx?

Simplicio: I am not sure about that problem.
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Virginia: If you remember your half angle formulas from trigonometry, then you recall

that cos?(x) = H%S(ZI) Thus,

7l' 71'1 2 71'1 71'1
/COSQ(.%')dl‘:/ H%(x)dx:/ §dx+/ §COS(21‘)d.%'=7T+0:7T.

-7 -7 - -

Simplicio: Why did you choose this last example?

Galileo: We just showed that the length of the function f(x) = cos(z) on the interval
[—m, 7] is /7.

Simplicio: Interesting. So there actually is a reason for computing this example.
Galileo: This piece of information will provide a key fact when we discuss Fourier

Series.

Exercise Set 11.7.

1. Compute [" sin*(z) dz.
2. If F(z) = [ t° dt, then compute F'(z).
3. If F(z) = fxo 9 dt, then compute F'(x).
$2
4. If F(z) = [, t° dt, then compute F'(x).
5. If F(z) = [; sin(t* 4 1) dt, then compute F'(z).

6. If F(z) = fst sin(t? + 1) dt, then compute F'(z).

7. Compute [ (z —1)* dt.
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11.8 Integration By Parts

Brook Taylor (1685 - 1731)

Galileo: Let’s now invite Professor Brook Taylor (1685-1731) to remind us about
integration by parts. Professor Taylor has many achievements to his credit. Virginia,
what can you tell us about Professor Taylor?

Virginia: Professor Taylor was born into a family of culture and means. His father
provided him with a fine education in mathematics both at home and later at Cam-
bridge. While his first wife was from a good family, she had little money and his
father disapproved of the match. Unfortunately, she died in childbirth. While his
father approved of his second marriage, she also died in childbirth.

Simplicio: He suffered a sad life.

Virginia: Life is uncertain.

Galileo: But he achieved great mathematics! In addition to inventing the technique
of integration by parts, Professor Taylor also developed methods for approximating
functions by polynomials. These methods are now known as Taylor series. As you
will see, these methods can be used to numerically approximate derivatives. To this
day these methods are used in a multitude of applications from the design of an
airfoil to predicting the path of a hurricane. These techniques are now known as

finite difference methods. We welcome you Professor Taylor.



266 CHAPTER 11. MEAN VALUE THEOREMS

Taylor: Let us begin our discussion of integration by parts by remarking that inte-
gration generally has fewer tools than differentiation.

Simplicio: How so?

Taylor: With differentiation we have the product, quotient, and chain rules. Unfor-
tunately, integration has no such rules.

Simplicio: Which means there is less to learn. I like that.

Taylor: Maybe so, but then you are left with functions which can be differentiated, but
not integrated. For example, try integrating the functions f(x) = log(z)e®, f(x) =

+* While computing the derivatives of these functions is straight-

e or flx) =e
forward, they are impossible to integrate using the Fundamental Theorem of Calculus.
Virginia: Is that because you can’t compute their antiderivatives?

Taylor: You got it. On the other hand, the technique of integration by parts is an
attempt to rescue a product rule for integrals.

Simplicio: What does that mean?

Taylor: Sometimes it works, sometimes it doesn’t.

Simplicio: An example please.

Taylor: We will show that the technique works great for the integral [z cos(z) du
and is helpless for the integral ff log(z)e” du.

Galileo: Let’s move on to the theorem and its proof.

Taylor: Since we would like to be more formal, we state this method as a theorem

with definite integrals. The idea underneath the proof is to simply differentiate the

product u(z)v(x) and then manipulate a bit.

Theorem 11.8.1 (Integration by Parts). If u(z) and v(z) are differentiable func-
tions on an interval [a,b], where u'(x) and v'(x) are continuous at each x € [a,b],

then fab w(z)v'(z)dz = u(z)v(z)’_, — fab v(z)u'(x)dz.

Proof. By the Product Rule for Derivatives 11.1.2, we know that

du(z)v(z) dv(x) du(x)
dx dx +olo) de

= u(x)

Thus,
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u(x)dv(:r) _ du(z)v(z) o(2)

dx dx

Integrating both sides of the equation on the interval [a, b], we find that

/abu(x)dz(j) dx:/ab%dx_/:v(x)dzgj) .

Since the function u(x)v(z) is an antiderivative of du(z)v(z)

o the result follows. O

Simplicio: How about an example?
Taylor: For actual computations, we will simplify the theorem to f udv=uv— f v du,

where we understand the functions v = u(z) and v = v(x) depend on z.

Example 11.8.1. Compute the integral fol z(x —1)3 dz.
Simplicio: I can do that problem. All you have to do is expand the expression

z(r —1)% = x(2® — 32% 4+ 32t — 1) = 2* — 323 + 322 — = and integrate each one of the

four terms.
Taylor: Instead, if we let u = x and dv = (x — 1)3, then du = dx and v = % we
see that
s g (fr—l)“_/(fr—l)4 _ @-1t (@1
/:r(x 1)’ de ==z 1 1 de =x 1 50
Thus,

' RN (e DA (x—-1°, (-1)° 1
/Oxu—l) dr=a ", - O =) =

The worst aspect of the technique is keeping track of the minus signs.
Simplicio: How about another example?

Example 11.8.2. Compute the integral [ x cos(x) da.
If we set w = x and dv = cos(z), then du = dx and v = sin(x).

Thus,

/Oﬁzrcos(x) de = xsin(x)|]_, — /Oﬂ sin(x) doe = —(—cos(x))|i_o, = —2.



268 CHAPTER 11. MEAN VALUE THEOREMS

Example 11.8.3. Compute the integral folx e dx.
If we set u=x and dv = €*, then du = dx and v = €”.

Thus,
1 1
/xemdxzxeﬂ;_o—/ e"dr=e—(e—1)=1.
0 0

Example 11.8.4. Compute the integral ff log(z) € du.
If we set u = log(z) and dv = €®, then du = %dx and v = €*.

Thus,
1
/log(:r) e’ dr = log(x)e® — /ex— dx.

x
So, what do you do with the integral fe"”% dx?
Simplicio: I have no clue.
Taylor: Ezxactly my point. The method provides no useful information.
Virginia: What if you set u = €* and dv = log(x)?

Taylor: You end up with an even bigger mess.

Galileo: How about a set of guidelines for using your technique?
Taylor: To reduce the complexity of the integral [u dv for the following examples,

make the following choices.

1. If nis a positive integer and [ 2™ cos(z) dz, then choose u = 2™ and dv = cos(x).

(This choice will have to be repeated n times.)

2. If n is a positive integer and [ 2™ sin(z) dz, then choose u = 2™ and dv = sin(x).

(This choice will have to be repeated n times.)

3. If n is a positive integer and [ z™e* dx, then choose u = 2™ and dv = €*.

(This choice will have to be repeated n times.)
4. If n is a positive integer and [ z"log(x) dx, then choose u = log(x) and dv = ™.

5. If [ e sin(x) d, then choose u = e* and dv = sin(x).

(This choice will have to be repeated twice.)
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6. If [ e cos(x) dx, then choose u = e* and dv = cos().

(This choice will have to be repeated twice.)
Exercise Set 11.8.

1. Compute the integral [z sin(x) da.
2. Compute the integral [ «?sin(x) da.

3. Compute the integral [ log(x)x dz.

11.9 Taylor’s Theorem: Degree One Polynomials

Brook Taylor (1685 - 1731)

Galileo: We now turn to the final topic in our review: Taylor’s Theorem.

Simplicio: Does this mean the pain of all this theory will soon lift?

Galileo: Actually, no. Let us now invite Professor Taylor for a second visit. Good
sir, could explain your methods for approximating functions by polynomials?
Taylor: The idea behind these approximations is that calculus would be a lot easier
if we considered only polynomial functions. As you have noticed, polynomials are

attractive because the computation of derivatives and integrals is easy. Unfortunately,
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numerous useful functions such as cos(x), sin(z), e*, -, and In(x) don’t quite fit into
this setting. The beauty of my theorem is that it provides a strategy for approximating
these functions by polynomials.

Simplicio: I like this idea. Calculus would certainly be easier if every function was a
polynomial.

Taylor: That is the concept.

Simplicio: Where do we start?

Taylor: The idea is to write a function f(z) = p,(x) + E,(x), where p,(x) is a
polynomial of degree n and E,(z) represents the error. In the next theorem, we
approximate a function f(z) by the straight line y = pi(z) = f(xo) + f'(x0)(x — xp).
The error is represented as the integral F(x f f'(@t)(xz —t) dt

Theorem 11.9.1 (Taylor Theorem 1). If z,xy € X, where X is an interval in R
and f(t) : X — R is a function with the property that f"(t) is continuous at each
t € X, then

f(@) = Flwo) + f'(m0) (@ — w0) + / P — 1) d.

Proof. The idea of the proof is to apply integration by parts to the last term. In
particular, if we let u(t) = x — ¢ and dv = f"(t)dt, then du = —dt and v = f'(¢).
Thus, by parts and the Fundamental Theorem of Calculus, we have the following

sequence of equalities.

/;f"@)(x—t) — (=) W, - /f

—(z = 20) f'(w0) + f(2) = [ (o).
Thus, f(z) = f(zo) + (x — o) ['(x0) + f;o f'(#)(z —1) di. [

Simplicio: While the proof of this theorem is easier than I expected, I don’t like the
formula for the error term.
Galileo: Surprising you should mention this concern. I think you have someone who

agrees with you. Let me introduce Professor Joseph Louis Lagrange (1736-1813), who
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was a survivor of the French Mathematician. He did much to explain and exploit
Professor Taylor’s ideas. Welcome Professor Lagrange, but please don’t mumble.
Lagrange: 1 agree that the form of the error term is a nuisance. If you recall the second
version of Intermediate Value Theorem for Integrals 11.6.2, then we can present a form
for the error that is easier to remember.

Simplicio: You mean we are actually going to use that theorem?

Galileo: We discussed it for a reason.

Lagrange: My version of Taylor’s Theorem now becomes:

Theorem 11.9.2 (Lagrange Form of Taylor’s Theorem). If x,zq € X, where
X is an interval in R and f(t) : X — R is a function with the property that f"(t) is

continuous at each t € X, then there is a point z € X so that

f”(Z)
2

fx) = f(xo) + f'(wo)(w — mo) +

(z — x9)2.

Proof. To prove this theorem will apply the Intermediate Value Theorem for Integrals
11.6.2 to the integral f;} f"(t)(x —t) dt. To be certain we can apply this theorem we
have to check the function w(t) = x — ¢ does not change from positive to negative for
values of ¢ between x, and z. Once we have made this check, the hypotheses hold.

We have two cases to consider.

Case 1. If © > xy, then we are considering ¢ € [z, z].

For this case, the function w(t) = 2 — ¢ > 0 for all ¢ € [z, ].

Case 2. If © <z then we are considering t € [, x¢].

For this case, the function w(t) = 2 — ¢ < 0 for all ¢ € [z, z].

Now, we can apply the Intermediate Value Theorem for Integrals 11.6.2 to the
integral ffo f"(t)(z —t) dt and to find a point z € [z, x¢] so that

(x —t)*

[ roe-nda=re [@-na=-ret e, - e

(z — .7/'[])2'
2

O

Lagrange: Notice that we have written the function f(z) in the form f(z) = pi(z) +
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E\(z), where py(z) = f(zo) + f'(x0)(z — x) and Ey(x) = @(w — 79)?. Thus, the
error term now has the form of a second degree polynomial.

Galileo: There it is. Both the statement and proof are elegant and easy to understand.
Simplicio: I agree that this form of the remainder is easier to remember. How about

an example?

Galileo:

Example 11.9.1. Use Taylor’s Theorem to compute py(x) = f(xo) + f'(xo)(x — o)
for the function f(x) = cos(z), where xy = 0.
Simplicio: Even I can do this problem. All we have to do is compute f'(x) = — sin(x)
and notice that f(0) =1 and f'(0) = 0.

Thus, p(x) = 1. I wish all problems were this easy.
Galileo: What about a bound on the error?
Virginia: Since f"(x) = —cos(x), |f"(x)| <1 for all x € R.

Thus, |E1(z)] < 1(x — 39)* = 2% for all x € R.

Galileo: You should now understand Taylor.

Simplicio: Wait a minute. You promised that we would approximate a function by
a polynomial of degree n. The only polynomial I see is the straight line p;(z) =
f(zo) + (x —x0) f'(x0). Even I can see that a line y = 1 is not going to provide a close
approximation to the function f(x) = cos(x).

Galileo: While you are correct, we only need this special case for our discussion of the
Newton/Raphson method for computing roots. No worries. We are going to invite
Professor Taylor to return when discuss approximation theory. We will definitely see
the general case then.

Simplicio: You are making an assumption.

Galileo: Well folks. We have now concluded our discussion of the background material
required for tomorrow’s gathering.

Virginia: Wait. What is tomorrow’s topic?

Galileo: We will show you how to compute roots.
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Virginia: We have covered an enormous amount of material today. Could you sum-
marize the essentials of what we need for tomorrow?

Galileo: You must have acquired the following skill set.
1. the ability to comprehend a mathematical argument,
2. the ability to define and apply limit facts,
3. be able to state and apply the Mean Value Theorem 11.3.3, and

4. be able to state and apply Taylor’s Theorem 11.9.2.

Tomorrow we will begin to see how all this theory impacts finding the root of a
function.
Simplicio: After discussing all these different topics, we are only required to have
acquired four skills?
Virginia: Math is easy.

Exercise Set 11.9.

1. Use Taylor’s Theorem to compute p; (z) = f(xo)+f'(x¢)(x—x0) for the functions
f(z) =sin(x),In(l — z) and e* at the point zy = 0.

2. Use Taylor’s Theorem to compute p;(z) for the function f(x) = In(z) at the

point xy = 1.

3. If f(x) = sin(x), for x € [—m, 7] and 2y = 0, then use Taylor’s Theorem to

_ e

52 (x—x0)?. Repeat the exercise for the function

estimate a bound on F (x)
f(z) = ¢€”.
4. If f(z) = In(1l — ) for x € [—0.5,0.5], and xy = 0, then use Taylor’s Theorem

to estimate a bound on Fy(z) = @(:}: — xp)*.

Simplicio: But wait a minute, you never answered my question about approximation
by polynomials of degree greater than one.

Taylor: We will address that question at another gathering.
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Chapter 12

Successful Root Finding

Galileo: Our next goal is to establish conditions when our root finding methods
“work.” In particular, we will show that the method always converges when computing
the bisection method, square roots, cube roots, and n'* roots. Of course, the square
root methods and the cube root methods are special cases of the n'® root method,
but they are worth doing because the geometry and arguments are so clear. Actually,
the three arguments are all based on the idea that a bounded decreasing sequence
converges.

Virginia: So that’s where the idea for those theorems on convergence sequences came
from.

Galileo: Light bulb time.

12.1 The Bisection Method

Galileo: Showing that the bisection method always works is easy. All we have to do
is find a bounded increasing sequence or a bounded decreasing sequence.

Virginia: In fact, we have both. For if [a,,b,] denotes the interval that has been
found at the n'™ stage of the bisection algorithm, then the sequence of points {a,,}°°,
is bounded and increasing, while the sequence {b,}>° , is bounded and decreasing. In

other words, you have two sequences from which to choose.
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Simplicio: But what if they converge to two different points?

Virginia: Remember that the error formula E, < b, — a, = ";—n“, which converges to
zero. Thus, lim,_, a, = lim,,_. b,.

Simplicio: Good. So the method always works.

Virginia: Well, you do have to remember that the function f(z) is continuous and

that f(a) > 0 and f(b) < 0, or vice versa. Other than that, you are in your comfort

zone.

Example 12.1.1. If f(z) = z + sin(z) — 13, for x € [0,15], then we have to check
two conditions to make sure that the bisection method will find a root in the interval
0,15).

First, we have to check that f(x) is continuous. However, since f(x) is the sum
of three continuous functions, it is continuous.

Second, we must check that f(0) and f(15) have opposite signs. However, since
f(0) = =13 <0 and f(15) = 15 +sin(15) — 13 > 0, this condition is satisfied and we

are done.

Example 12.1.2. If f(z) = 32 + 2, for v € [—1,1], the even though f(x) is contin-
uous, the signs of f(—1) and f(1) are the same. Thus, the bisection method does not

guarantee a root will be found.

Simplicio: What about the function f(x) = 32% — 2, for z € [—1,1]?

Galileo: Good point. Despite the fact that the function is continuous, the values
of the function at the two endpoints do not have different signs. In fact, we have
f(=1) = f(1) = —1. Thus, the only problem with applying the bisection method is a

poor choice of interval. If we had chosen the interval [0, 1], we would have been fine.

12.2 The Archimedes/Heron Algorithm

Galileo: We now show that the square root method of Archimedes/Heron always

produces a bounded decreasing sequence. Recall that when we computed /2, our data
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showed this property. The proof that this property always holds will be completed in
three steps.

1. The geometric mean is less than or equal to the arithmetic mean.

2. The points generated by the algorithm are bounded from below by VK.
3. The sequence is always decreasing.

The next three propositions formalize these three statements.

Proposition 12.2.1 (Geometric/Arithmetic Mean). If z1,z5 > 0 then

T1+T2
A/ L1T2 S s -

Proof. Since (z; — x2)* > 0, the result follows by simply expanding the product and

manipulating the factors. O
oe Tt
Proposition 12.2.2 (Boundedness). If K > 0,79 = 1, 2341 = —5%, and k > 1,
then x, > VK.
) " SET K
Proof. By the previous proposition, T, = —5% > /g * ol VK. O
xk-l-%

Proposition 12.2.3 (Decreasing). If K > 0,z = 1,24, =
x> VI then xp < x.

sk >0, and

. . T+ - 2—K
Proof. Since z, > VK, xi—K > 0. 5ince T4 = —5* =T —

2
57, and 7 — K >0,

the result follows. U

Galileo: The next theorem proves that the algorithm of Archimedes/Heron always

works.

Theorem 12.2.4 (Square Root Convergence for Archimedes/Heron). If K >

K

+E
0,00 =1, 2511 = t 5, then the sequence {x}72, is bounded and decreasing and thus

converges. Moreover, if L = limy_,o @%, then L = /K.
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Proof. Since the sequence {xj}7, bounded and decreasing, it converges to some

number L. Thus,

. limy oo {2p} + ﬁ L+ &
L = klggo{xk‘i‘l} _ 5 imy oo {Tr} ; L
K
which implies that L = “2%. Thus, 2L = L + £ and L* = K. O

Virginia: Now I see why we proved that the limit of the sum is the sum of the limits.
This argument is easy.
Simplicio: While I do not have the disposition or time to endure many proofs, I agree

that this one isn’t too bad.

Exercise Set 12.2.

1. Show the secant method produces a bounded decreasing sequence for the func-
tion f(x) = 2* — K, when the algorithm is initialized by the points zy and 1,

where VK < x1 < xy.

12.3 Cube Roots

Joseph-Louis Lagrange (1736-1813)

I regard as quite useless the reading of large treatises of pure analysis:

too large a number of methods pass at once before the eyes. It is in the
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works of applications that one must study them; one judges their ability
there and one apprises the manner of making use of them.-Joseph-Louis

Lagrange

Galileo: We now turn to the problem of showing that the method for computing cube
roots always works. While it is virtually the same as the proof of the square root
method, it unfortunately has a new technical difficulty.

Virginia: What seems to be the problem?

Galileo: For cube roots the proof that the geometric mean is less than the arithmetic
mean becomes a bit more complicated. Let us introduce Joseph-Louis Lagrange
(1736-1813). Though self taught, he was able to make significant contributions to the
Calculus of Variations, Group Theory, the three body problem, differential equations
(the Euler-Lagrange equations), and the theory of constrained maxima and minima.
Virginia, could you tell us more about his life?

Virginia: While he is always thought of as French, Professor Lagrange was born in
Turin in what is now a part of Italy. In 1755 he began a series of collaborations with
Leonhard Euler on problems related to the cycloid. He also worked on the three body
problem, the motion of the moon, and the perturbations of the orbits of comets by
the planets. He made contributions to algebra and number theory including the first
proof of Wilson’s theorem: If p is a prime number, then p divides (p — 1)! + 1. In
abstract algebra, he proved that the order of a subgroup divides the order of a group.
Galileo: In 1793, he almost lost his life during the French Revolution. If the chemist
Lavoisier had not spoken on his behalf, he would have been executed. Unfortunately,
Lavoisier was not so lucky since a revolutionary tribunal condemned him to death
the next year.

Virginia: Need I reiterate, science seems to be a most dangerous business.

Simplicio: I think [ am going to like this guy. He works on real-world problems.
Galileo: I agree. You will also get to meet him again when we discuss the error
formulas for Taylor’s Theorem and polynomial approximation. Joseph-Louis could

you provide us with a bit of insight into your method of constrained maxima and
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minima? In particular, we would like to show that the geometric mean never exceeds
the arithmetic mean.

Lagrange: While this fact can be shown algebraically, my method of (Lagrange!)
multipliers is more elegant. The technique can also be generalized to any number of

points.

Proposition 12.3.1 (Geometric/Arithmetic Mean). If x1, x5, 23 > 0, then

T1+ To + T3

ST T3 <
VO1T2T3 S 3

Proof. An elegant way to prove this result is to recast the problem as a constrained
optimization problem, where the function F'(x,y,z) = zyz is maximized subject to
the constraint x +y + z = M. By the method of Lagrange multipliers, we know
that the solution to this problem will be found at a critical point of the function
G(z,y,2,\) = F(z,y,2) — Ma +y+ 2z — M). In particular, we must solve the system

of 4 equations and 4 unknowns:

g—f = yz — A =0
% = xz— A =0
%—f = Ty — A =0
9% — —(z+y+z2—M) =0.

From the first 3 equations, we see that the only non-zero solution of this system
is when yz = 2 = a2y or v = y = 2. From the 4 equation we see that z +y + z =
r+x+x = 3z = M. Since the maximum value of F(z,y,z) = xyz occurs at
x =y =z = M/3and never exceeds &+« & = (24y+2)3/27, xyz < (a+y+2)*/27.

The result follows by taking the cube root of both sides of this expression. O

Simplicio: Unfortunately, I don’t remember my Calculus well enough to appreciate
that proof. I think I will simply accept this proposition and ask that we move on.
At least the statement is easy enough to understand. How did he come up with that
complicated proof anyway?

Galileo: He was a smart fellow. In any case, you will be pleased to note that the rest

of the argument is virtually the same as the one provided for square roots.
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then

Proposition 12.3.2 (Boundedness). If K > 0,20 = 1,241 = x) — xz =

Tpy1 > VK.

a:k+a:k+
————g———— :> 3 Tk * T * é% = 6 I{. ]
k

W\w

Proof. By the previous proposition, zj.; =

Proposition 12.3.3 (Decreasing). If K > 0,2y = 1,251 = 2% — k>0, and

1, > VK, then xpyq < .

327

X and 23 — K > 0, the

. . x
Proof. Since x, > VK, x} — K > 0. Since zyy1 = xp — £
k

result follows. O

We can now use these two propositions to prove the following convergence theorem

for the cube root method.

—-K
3$k2 )

Theorem 12.3.4 (Cube Root Convergence). If K > 0,29 = 1,251 = 2 —
then the sequence {xy}52, is bounded and decreasing and thus converges. Moreover,

Proof. Since the sequence {xy}7°, is bounded and decreasing, it converges to some

number L. Thus, we immediately observe that L = L — ;gz and L? = K. O

Simplicio: Well, after we passed that initial technical detail, the ideas are not so
difficult. In fact, the proof is virtually the same as the one you presented for the
square root method.

Galileo: You seem to be getting more comfortable with these proofs. Maybe you
should consider becoming a mathematician. You might like the profession.
Simplicio: I fear my economic aspirations are higher than yours.

Galileo: Good family, loyal friends, a glass of red wine, what more is there?

Exercise Set 12.3.

1. Show the secant method produces a bounded decreasing sequence for the func-
tion f(r) = 2* — K, when the algorithm is initialized by the points 2y and z,

where VK < x; < xp.
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12.4 n'" Roots

Galileo: Just as we were able to determine a method for finding cube roots from the
square root method, we can also determine a method for finding n'* roots. We have
the following recursive algorithm for n'* roots of K, where K > 0 :

JIO:]_,

Ty — K
Tk+1 = Tk — 1
k

This algorithm leads us to the convergence theorem for the n'* root method.

n

Theorem 12.4.1. If K > 0,29 =1, and xp1 = T — z’;;ﬁ then the sequence {xy}°
k

s bounded and decreasing and thus always converges to v K.

Again, to prove the convergence theorem we use the following three propositions.
The first proposition states that the geometric mean is always less than or equal to

the arithmetic mean.

Proposition 12.4.2 (Geometric/Arithmetic Mean). If x1,29,23,...,2, > 0,
then {/T1TyTs . . . T, < DAL2ELaE et s

Proof. The proof is the same Lagrange approach to the cube root case. Just more
variables. 0J
zy—

Proposition 12.4.3 (Boundedness). If K > 0,29 = 1,241 = 2z} — FE, then
k
Ty > VK.

Proof. By the definition of the sequence and the previous (i. e. Geometric/Arithmetic

Mean) proposition,

Ty — K
Tk+1 = Tk — =1
n:rk
K
(n — l)xk + =
_ Ty
n
K
n n—1
Z xk * n—1
L,
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]
Proposition 12.4.4 (Decreasing). If K > 0,2y = 1,211 = o% — xg;f, k>0 and
TlCBk
xr > VK, then xp < xy.
Proof. Since x > VK for all k > 1, we see that 2} — K > 0. Since x4, = o} — wz;ff

ny

and both the numerator and denominator of the expression Zi;ﬁ are both non-
k

negative, rp,1 = Tp— non-negative number. Thus, 1 < xk. O
Theorem 12.4.5 (nth Root Convergence). If K > 0,z9 = 1, 2441 = @ — %,

n

then the limy,_, o x exists and limy_,oc v, = VK.

Proof. Since the sequence {xy}72, is bounded and decreasing, it converges to some

number L. Thus, by the limit theorems we know that L = L — £=& Simplifying this

nLn—1"

expression we see that L™ = K and the result follows. O

Exercise Set 12.4.

1. Show that the method for computing the fifth root of a number always con-
verges. Use your method to compute the 5 root of 10. How does the rate
of convergence compare with the rate of convergence when the square roots of

these numbers are computed? Repeat for the numbers 100,000 and 0.000001.

12.5 The Newton/Raphson Algorithm

Galileo: We would now like to build on the success of the method of Archimedes/Heron.
To do that, we need to consider the key ingredients that guarantee the method will
always work.

Virginia: In the discussions of the success of each of the square root, cube root, and
h

n' root methods, we only had to worry about three issues:

1. The geometric mean does not exceed the arithmetic mean.

2. The sequence is bounded from below by the root we are seeking.
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3. The sequence is always decreasing.

Galileo: So how do these properties interact?

Virginia: The only reason we need the geometric and arithmetic means is to show
that z,, > r, where r = VK or r = VK is the root. We showed the sequence is
decreasing by showing that z,,1 = x, — Q,, where @),, equals a positive number that
becomes smaller for each iteration.

Galileo: How did we show @, is positive?

Simplicio: The quantity @, = Q(z,) = J{,((:’;’:L)) is positive because both f(z) and f'(x)

are positive for all x > r.

Galileo: Is this sufficient?

Virginia: I am not sure it will suffice to only have f(z) > 0 and f'(x) > 0. Think of
the example f(z) = ze*’. If we initialize the method of Newton/Raphson with a point
just to the left of the bump at x = g, then the first iteration x; will be negative and
be to the left of the root r = 0. For example if zy = 72 — 0.001, then I suspect we
will have a problem.

Galileo: Let’s consider the shapes of the curves y = f(z) = 2? — K and y = f(z) =
ze®”. Recall from Calculus that concavity is one measure of the shape of a curve. If
f"(x) > 0 for all x in some interval X, then the curve y = f(z) is concave up.
Virginia: And thus holds water!

Galileo: Correct. On the other hand, if f”(z) < 0 for all z in some interval X, then
the curve y = f(x) is concave down.

Simplicio: And thus does not hold water!

Galileo: Note that the first curve is concave up on the interval [0, 00), while the second
is concave down on the interval [0,1/32). Note further that when we use the method
of Newton/Raphson to find roots of these functions, the approximations differ.
Virginia: In what way?

Galileo: As we have established, the approximations for the positive root of f(x) =
22 — K form a decreasing sequence which is bounded from below by the root r = VK.

However, for the function f(z) = ze®” with a choice of 2y = 0.4, the sequence of
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iterates oscillates between positive and negative estimates. The goal of this discussion
is to build on the success of Archimedes/Heron. To this end we first state and prove
a small proposition, which states that if the method Newton/Raphson produces a

sequence which converges to a number L, then L will be a root of the function.

Proposition 12.5.1 (Newton/Raphson Convergence). Let f(z) : [a,0] — R
be a differentiable function with the property that |f'(x)| < M for all x € [a,b]. If

a sequence of points {x,}52, in [a,b] is defined recursively by xy € [a,b], Tpi1 =

T (@)’

f(z).)

and limy, oo, = 1, then f(r) = 0. (i.e. The point x = r is a root of

Proof. We will prove this theorem by showing that if ¢ > 0, then we can find an
integer NV with the property that |f(x,)| < € for all n > N.

Step 1. (The Challenge)

Let € > 0 be given.

Step 2. (The Choice of N)

Choose N so that if n > N, then | z, — r| < 55;.

Step 3. (The Check)

Since 11 = T, — J{,((fc’;)) , we begin by subtracting x,, from both sides of the equation

and multiplying by f/(r,) 50 that f(5) = —F'(a)(@ner — 7). Thus, |f(z)] =
[F' @)l [ngr = 2.
However, if |f'(x)] < M for all € [a,b], then |f(z,)] < M |zp41 — x| <

M(jns =7+ 7 = 2l) € Mz = 7l +1r = al) < M +557) <25 = O

Simplicio: Actually, I think I can visualize this proposition in the following way. If
this proposition were to be false and f(r) > 0, then as the the points x,, get close to r
the slope of the tangent lines get steeper and steeper. Thus, the slope of the tangent
line at © = r should be infinite.

Virginia: While a good idea, I think you have in mind the special case when z, > r
for all n and f(z) > 0 and f'(z) > 0 for all x > r. In this setting, we know that
f(zn) > f(L) > 0 which I agree would force f'(r) = +o0.
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Galileo: The next theorem is a generalization of the proof of the convergence of

Archimedes/Heron.

Theorem 12.5.2 (Newton/Raphson Convergence 2). Let f(z) : [r,+00) — R

be a function with the following properties:
1. f(z) has a root at x =r,
2. f(x), f'(x), and f"(x) exists for all z € (1, +00),
3. xy is any point € (r,4+00), and

_ _ f(xn)
A Tt = Tn = iy

If f(x) >0, f'(x) >0, and f"(x) > 0 for each x € (r,+00), then
1. Tpyy <z, (decreasing),
2. 1 < xpy1 (bounded below by r), and
3. limy, 00 ©,, = 1. (convergence)

Proof. Step 1.

Py = o = b

Tni1 < x, and the sequence is decreasing.

If z, € (,+00), then x,.; = z, — = x, — pos < x,. Thus,

~

Step 2. If we suppose that x,, > r, then we must show that z, ., > r.

If x,, > r, then the vertical distance between the curve y = f(z) and the tangent
line y = f(xy,) + f'(zn)(x — ) at the point © = x,, is d, = f(w,) + f'(2,)(r — x,) —
f(r) = f(zy) — f(r) + f'(xp)(r — x,). But, by the Mean Value Theorem, there is a
point z € [r, z,| with the property that f(z,) — f(r) = f'(2)(z, — 7).

Thus, d,, = f'(2)(x, — 1)+ f'(@n)(r — zn) = f'(2)(@n — 1) — f'(2n)(xy, — 1) =
(f'(2) = f'(zp) )@y — 1) = = f"(22) (2, — 2)(xy, — ) < 0. Thus, the tangent line is a
negative number at the point x = r and the approximation x,; must be between r
and x,,.

Step 3.
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Since the sequence {x,}5° , is bounded from below and decreasing, it converges
to some number L. By the previous proposition, we know that f(L) = 0. Since we
are assuming f(x) > 0, for all > r, then we have a contradiction if f(L) > 0. Thus,

it must be true that L = r. O

Simplicio: Despite your motivation, that proof was a bit over my head. How about
an example?

Galileo: Sure, how about the polynomial p(z) = 2 + 2z — 17

Example 12.5.1. If p(x) = 2® + x — 1, then note that

3. p'(x) =322 41> 0 for all x, and
4. p'(x) = 6x >0 for all x > 0.

Thus, the polynomial has a root x = r between 0 and 1. Since both the first and
second derivatives are positive for x > 0, we know above theorem applies. Thus, if we

initialize Newton/Raphson with any point xy > 1, the method will always converge.

Virginia: I was just thinking about the proof of the Proposition you just presented.
If you apply the proof to the function f(z) = 2? + 1, then we know the sequence
derived from Newton/Raphson cannot possibly converge. As we showed by computing
millions of terms, the sequence bounces all over the place. The inequality |f(z,)| <
M |xy41 — | is useful here because with our function we know that f(z) > 1 for
all z € R. Thus, if we restrict our attention to a particular interval, say [—1, 1], then
f'(z) =2z so that |f'(x)] < 2= M forallz € [—1,1]. Thus, 1 < f(x,) < 2 |Xp11—T4],
which implies that no two consecutive terms of the sequence can be within % of one

another.

Simplicio: Hmmm.

Exercise Set 12.5.
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1. If p(x) = 2° + 23 — 1, then show that the method of Newton/Raphson can

always be used to compute the positive real root.

2. If p and ¢ are positive numbers and p(z) = 2% + px — ¢, then show that the
method of Newton/Raphson can always be used to compute the positive real

root.



Chapter 13

Convergence Rates For Sequences

Galileo: While we have mentioned linear and quadratic convergence, we now turn to
the problem of making these ideas precise.

Simplicio: You mean you want to know why the method of Archimedes/Heron takes
5 or 6 iterations to compute /2, while the bisection method takes more than 307
Galileo: Correct.

Virginia: I think it is interesting that it might be possible to make these ideas precise.
It seems like you would only be able to compute a few simple examples and then hope
they are representative when ou are confronted by a new problem.

Galileo: T think you will be surprised how easy it is to understand the difference.
Simplicio: Easy is good.

Virginia: What do we have to know?

Galileo: The Mean Value Theorem will be the key for linear convergence, Taylor’s

Theorem will be the key for quadratic convergence,

13.1 Linear Convergence

Galileo: While the next discussion may appear a bit annoying at first, we now need
to define the Newton/Raphson method in terms of functions instead of sequences.

The reason for this increase in difficulty is to provide a context so we can present a

291
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careful discussion of the convergence rate.

Example 13.1.1. Galileo: Let us begin with the simple example T(x) = %x Note
with this example, we have a root at x = 0. Better yet, we can find that root by letting

xp = 1 and making the following computations:

1. T — T(l‘o) =

N[

—

2. xy=1T(x) = 321 = 53, and

3. T3 = T(JIQ) = %CEQ = 2%

What do you notice about this sequence?

Simplicio: Well, it is obviously converging to zero.

Galileo: Sure, but how fast?

Simplicio: The error seems to be cut in half at each iteration.

Galileo: Your observation is on target.

Example 13.1.2. Galileo: Now, we present a slight variation on the previous example
by defining T'(x) = %x?

Simplicio: Well if we let oy = 1 and iterate, we see that

1. xlzT(,To):g,
2. g =T(x1) = %xl = (%)2, and
3. T3 = T(JIQ) = %CEQ = (%)3

Thus, the sequence {xy}32, converges to zero. However, this time the error is reduced

by only 33% at each iteration.

Galileo: Now I think you can see that these examples lead us to the following defini-

tion.



13.1. LINEAR CONVERGENCE 293

Definition 13.1.1 (Linear Convergence). If a sequence {x;}3, converges to a
number L, then the rate of convergence is called linear or (13' — order) if there are
constants K > 0 and 0 < M < 1 and an integer N with the property that if & > N,
then |z — L] < KM*.

Galileo: In the examples given above, note that the limit L = 0, K = 1. In the

first example, M = %, while in the second M = % Note also for these examples
that lim, oM™ = 0. The next proposition will show that if 0 < M < 1, then this
will always be true. Actually, this proposition will be used on a number of different
occasions during our future discussions. In particular, we will need this fact when we

discuss the convergence of the Geometric Series.
Proposition 13.1.2. If |[M| < 1, then lim, .o M™ = 0.

Proof. If M = 0, then the proof is easy so let us assume that M # 0.
Step 1. (The Challenge) Let € > 0 be given.

Step 2. (The Choice of N.) Choose N > l(f;a(]\?‘).

Step 3. (The Check that N is sufficiently large.) If n > N, then n > l;;a(]\?‘).

Since |M| < 1,log(|M|) < 0. Note that the inequality changes signs when we
multiply both sides by log(|M]).
Thus, we know nlog(|M]) < log(e). By the properties of logarithms, log(|M|") <

log(€) and we are done. O

Simplicio: I hate to be annoying, but which log function did you use?
Galileo: I guess I was a bit sloppy on that point, but it really doesn’t matter. Re-
member that all log functions are the same up to some constant multiple.

The purpose of the next proposition is to establish sufficient conditions for when
we know a sequence converges linearly. Sometimes mathematicians actually use this
criterion as the definition for linear convergence. Since our first goal will be to show
that the bisection method produces a sequence which converges linearly to a root and
since it is not obvious that this criterion is satisfied for the bisection method, we will

use the weaker definition given above.
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Proposition 13.1.3 (Test for Linear Convergence for a Sequence). If |M| < 1
and {xy}32, is a sequence with the property that |vg.1 — L| < M|z — L] for all k > 0,
then the sequence {x,}5°, converges linearly to L. In particular, |v,—L| < |xo—L|M"

for alln > 0.
Proof. Since |xg41 — L| < M|z — L] for all k, we know
1. If k=0, then |z, — L| < M|zy — L.
2. If k =1, then |zy — L| < M|z, — L| < M?|zy — L.
3. It k =2, then |z3 — L| < M|zy — L| < M?|xo — L|.
4. If k =n —1, then |z, — L| < M|z, — L| < M™z — LJ.

In the definition of linear convergence, note that K = |zo — L|.

Since |M| < 1, we know that lim, oM™ = 0. Thus, lim, 2, = L. O

Virginia: Can you give us an example of a sequence, which converges but does not

converge linearly?

Example 13.1.3. Galileo: While the sequence xy = % converges to zero at a reason-
able rate, it does not converge linearly.

To show this we actually have to give a short proof by contradiction.

Proof. By way of contradiction, assume there are constants K and M so that 0 <
M <land|f—0/<KMFforallk=1,2,....
However, if this is true, then by computing the logarithms of both sides, we see

that
1
log(%) <log(K) +k log(M)

log(k)  log(K)

—log(M) <
og(M) < ’

Since 0 < M < 1, —log(M) > 0.
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log(k)
k

log(K)
k

Since limy,_, =0 and limy_,, = 0, we conclude that

0 < —log(M) <0,
a contradiction. O

Virginia: So [ guess this sequence is in the “slow” group.

Galileo: You got it.

Exercise Set 13.1.
1. Determine whether or not the sequence x,, = % converges linearly to zero.
2. Determine whether or not the sequence x, = nin converges linearly to zero.

3. Prove: The sequence xp = k—lz does NOT converge linearly to zero.

Tpy1—L

4. Prove: If limy, 0|22 57| = M < 1, then the sequence {w,};°, converges

linearly to L.

13.2 Linear Convergence for the Bisection Method

Galileo: Now let us now show that the bisection method converges linearly. All we

have to do is show that our error formula satisfies the definition for linear convergence.

Proposition 13.2.1 (Linear Convergence for the Bisection Method). Let
f(z) : [a,b] = R be a function, which is continuous at each x € [a,b] and either
fla) > 0 and f(b) < 0 or f(a) < 0 and f(b) > 0. If [ay,,b,] denotes a sequence of
intervals defined by the Bisection Method, 1 is a root of f(x) with the property that
r € lan, by, for all n, and E, = r — a, denotes the error between a, and r, then

Bl = law — ] < (0 — a) .

Proof. Let [ag, by] = [a, b]. Since r € [ay, b,] for all n, we know
|Ey| = Jay — 7| < (b — a1) < (bo — ag)3-
|Es| = |ag — 7| < (by — a) < (by —a1)5 < (bo — o) 3

|En| - |an - T| < (bn - a'n) ~ (bn 1 — Op— 1)2 (bO - a'O) U
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Galileo: Actually, we could have made a slightly smarter choice for the approximation
to the root if we had chosen the midpoint m, = % With this choice we see that
then |E,| < (b— a,)(%)”“.

Simplicio: Is that all there is to it?

Galileo: Some topics are easy.

13.3 Linear Convergence For Newton/Raphson

Galileo: I chose these examples because they provide insight into why the square root

and cube root algorithms converge.

Proposition 13.3.1 (Linear Convergence for Archimedes/Heron). If K >
K

0,20 > VK, and x4 = xn;“”” , then the sequence {x, }22, converges linearly to VK.

Moreover, |z, — VK| < (3)"z — VK].

Proof. If f(x) = 2 — K, where K > 0, the square root algorithm is given by the

function T'(z) = x — J{,((?) = — "”’22;[{ = Lo+ £ Since T(z) > VK for all z >

VK, the domain and range of this function can both be taken to be the interval
[VK,+00). Since T"(z) = £+ — & € [0, 1] for all z > VK, we can apply the Mean

Value Theorem to the function T'(z) at the values a = zy and b = 441 to get
tes1 = VE = T(a) = TWE) = T'(2) (- VE).

Thus, if we initialize our algorithm with a choice of z, > V'K, then for all integers
k> 1 we see that |21 — VK| = |T"(2)(zx — VK)| < |ox — VK|. Thus, by the Test
for Linear Convergence we see that the sequence {z,}>, converges linearly to VK

and |z, — VK| < (3)"zo — VK] O

Thus, the difference between the (n)” estimate and /K is less than 50% of the
difference between the previous estimate and v/K for all n.
Simplicio: I noticed that you suddenly changed the assumption in the Archimedes/Heron

algorithm from zy =1 to xy > VK. What is going on here?
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I 1 i 1 i 1 i
1 2 3 4 5 B 7 8 =] 10
The & Values

Figure 13.1: The Graph of y = T"(z) = § — 55 when T'(z) = 10+ &

Galileo: I tried to slip that past you, but you caught me. The reason is that |77(1)|
may exceed 1. Even though it will always be true that x; = T(xy) > VK, the
statement of the proposition is cleaner if we assume xy > VI . Maybe we should have
always initialized the algorithm with z, = % If K > 4, we will always know that

zo > VK.

Simplicio: What about the cube root algorithm?

1 1 i 1 i 1 i
1 2 3 4 5 B T g 2] 10
The & alues

Figure 13.2: The Graph of y =T"(z) = 2 — & when T'(z) = 22 + .5
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Galileo: Same game. Begin by letting f(x) = 23 — K. If we initialize our algorithm

with a choice of 2y > v/ K, then for all integers n > 1 we see that

fl@ P -K 2 K

fllz) v 322 3° T3

T(x)=x—

Thus, T"(z) = 2 — 25, By looking at the graph of the function we see that 1”(z) €
[0, 2] for all z > VK. By the Mean Value Theorem we can again apply the Linear
Convergence Criterion to make the estimate |z, — VK| = |T(2v, 1) — T(VK)| <
2z, — VK| < (3)"|zo — VK| so that the sequence converges linearly to VK.

Example 13.3.1. In our ezample where f(x) = (x — 1000)? and o = 1, recall that

the sequence of Newton/Raphson iterates converged to the root r = 1000. If we once

again let T(x) = x — J{,((?) = 2 4+ 500, then note that T(1000) = 1000 and T"(x) = 1.
Thus, |T'(x)| = &+ < 1 for all x € R. By the Mean Value Theorem, we can see
that if @, denotes the n' iterate generated by the method of Newton/Raphson, then
|z — 7| = |z — 1000 = |T(2n—1) — T'(1000)| = |3|[#n—1 — 1000| = $|zp_1 — 1000] for

all n. Thus,
1. |zy —1000| = %|x0 — 1000,
2. |zy — 1000] = %|x1 —1000| = (%)2|x0 —1000],

3. |5 — 1000 = L]y — 1000] = (1)3|zy — 1000,

4. |z4 —1000| = |z — 1000] = (3)*|zo — 1000],

6. |z, —1000] = |z,—y — 1000 = (5)"]zo — 1000,

Thus, our error is reduced by 50% for each iteration. Note also that the closer
the initial guess is to the final answer, the better the approximation. This example
should help make the Theorem on Linear Convergence for Newton/Raphson more

concrete.
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Let X be an interval in R. If the function f(z) € C*(X), then define a new

transformation by the rule T'(z) = = — J{,((‘?). If f'(x) # 0 for all z € X, then T'(x)

will be well-defined for all z € X. We assume f(z) € C?(X) because we will want to
compute T'(z) and f"(z) appears as a factor in the formula for T'(z). Also, if r is a

root of f(x), then T'(r) = r. Conversely, if T'(r) = r, then f(r) = 0. Note also that

the sequence of points generated by the method of Newton/Raphson can be written

22— K
2z

as Tx41 = T'(zy). For example, if f(x) = 2* — K, then T(z) = 2 —
Galileo: The first step is to compute the derivatives of T'(x). This information is

stored in the following proposition.

Proposition 13.3.2. Let X be an interval in R. Let T(x) : X — R be defined by
the formula T'(z) = v — L% where f(z) € C2(X) and f'(z) # 0 for all x € X, then

fr(x)?
T'(z) = W for all x € X.
Proof. Use the quotient rule from Calculus to compute the derivative of T'(z). O

Galileo: Note in the previous proposition that the minus sign in the formula T'(z) =

T — J{,((‘?) is the key to the simplification.

Simplicio: The minus sign?

Galileo: Note that if f(z) = 2? — K and T'(z) = z — J{,((?) = 12+ £ then the domain
and range of T(z) are the intervals [V/K,o0o). Thus, T(z) : [VK,o0) — [V, o).

The first derivative is 7(x) = 3 — 555, which has the property that 0 < 1"(z) < 3 for

et
all z € [VK,00). We showed earlier that if 2y € [VK,00) and .1 = T(z4), then
the sequence {x;}$2, converges to VK.

The next proposition provides general conditions which guarantee that the New-
ton/Raphson sequence will converge to a root. While it may appear a bit forbidding
at first, it is not so difficult to remember if you keep the previous examples in mind

when you read it. Better yet, the proof is no more difficult than the these examples

already discussed.

Theorem 13.3.3 (Linear Convergence for Newton/Raphson). Let X be an
interval in K. Let f(x) : X — X be a function with the property that the functions
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f(x), f'(z), and f"(x) are continuous at each v € X. If

1. © =1 is a root of f(x),

2. f'(x) #0 forallz € X,

4. T(x) € X forallz € X, and
5. |T"(x)| <M <1 forall xz € X,

then for any choice of xy € X the sequence defined by x,, = T (x,,) converges linearly

to the root r. Moreover, |z, —r| < M™xo — r| for all n.

Proof. Let xy € X.

For any integer n we know by the Mean Value Theorem that there is a point z
between zy and r such that T'(z,) — T(r) =1"(2)(x, — r).

Since T'(zy,) = xpy1 and T'(r) =1, 1 = r+71"(2) (2, —7). Since |T7(z)] < M < 1,
|z — 7| < M|z, — r| so that ,4; is not only between r and z,, but closer to r
than the previous estimate.

Since xp1 —r =T1"(2) (v, — 1), |1 — 7] < M|xg—7r|so that |vo—7r| < Mz, —r| <
M?|zy—r], |xs —7r| < M|zy—71| < M?|35—7|, etc. Thus, the general pattern emerges
that for all n |z, — r| < M"|zy — r|. Since M < 1, the sequence {M™}° , converges

to zero. Consequently the sequence {z,}°°, converges to 7. O

Simplicio: OK, the examples helped in following the proof, but what if M = 0.997
Galileo: If M = 0.99, then number of computations required to achieve a reasonable
degree of accuracy could be quite large. For example, if we would like to find the

number of iterations required to guarantee accuracy of 0.1, then we have to find an

integer n so that (0.99)" < 0.1. Solving for n we find that n > —2U% — 999 1053. If

10g(0.99)
—log(100) __

we would like accuracy of less than 0.01, then we would have to choose n > T09(099) —

458.2106.
Simplicio: What if M > 1.07
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Galileo: First, the proposition doesn’t allow for this case so from a technical point of
view your question is irrelevant. However, if the function 7'(x) has the property that

|T"(x)| > 1.0 for numerous points = € X, then the iterates may even diverge.

Example 13.3.2. Galileo: If f(z) = x5, then T(x) = —2x. Thus, if ¥y = 1 and

Tp1 = T(x,,), then we obtain the following sequence of iterates.

xp | 1.000000000000000

x1 | -2.00000000000000

T 4.00000000000000

x3 | -8.00000000000000

x4 | 16.00000000000000

x5 | -32.00000000000000

xg | 64.00000000000000

Table 13.1: Six Computations of z,, 11 = 1'(z,) = —2x

Simplicio: Fven I can see that this sequence is oscillating to +oo.

Virginia: Now that we have discussed all this theory, how about a simple question we
can all understand. In particular, we know that the Newton/Raphson method works
for all cubic polynomials of the form f(z) = 2* — K. Right?

Galileo: Correct.

Virginia: But what if we ask: Does Newton/Raphson work for any cubic polynomial?
In fact, let us make the question even easier by restricting our attention to polynomials
of the form f(x) = z® + pxr + ¢, where p > 0. Since we know that the Cardano
formulas can be used to write down an answer, it would be reassuring to know that
Newton/Raphson will also produce an answer. We also know by the examples we
have discussed that Newton/Raphson may fail. The reason the question interests me

is because if f(x) = 2> + px + ¢, then

B fl) 2’ +prtg
T(:r)—:r—f,(x)—:r BT




302

Thus,
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f)f"(x) _ (z° +pz +q)(6z)
f'(z)? (322 +p)?

T'(z) =

For large = we know that |T"(z)| < 84+ € =< %+ { = I <1 so this problem seems to

fit the above Proposition if = is “out near infinity.” Of course, if x is near zero, T"(z)

could

be quite large so the condition that |T"(z)| < & < 1 will not always be satisfied.

Galileo: T don’t know the answer immediately.

Exercise Set 13.3.

. If f(z) = 2° — K, then find T'(z).

If f(x) = 2° — K and zp = 1, then show that the Newton/Raphson algorithm

converges linearly to the root v K.

If f(x) =27 — K and 2y = 1, then show that the Newton/Raphson algorithm

converges linearly to the root v K.

. If f(x) = (z — 10,000)? and zy = 1, then show that the Newton/Raphson

algorithm converges linearly to the root r = 10,000. How much is the error

reduced for each iteration?

If f(x) = (z — 10,000)® and 2, = 1, then show that the Newton/Raphson
algorithm converges linearly to the root r = 10,000. How much is the error
reduced for each iteration?

If f(x) = ze*", then find an interval (—a, a) so that the function T'(z) = :r—/{,((‘?)

has the property that |7"(z)| < 1.0 for all € (—a,a). Show also that the

Newton/Raphson algorithm converges linearly to the root x = 0 in that interval.

Compute 7"(z) for the functions f(z) = 2° — K, f(z) = 2" — K, and f(z) =
2" — K. What do you notice about T"(z) when z > r, where r = /K is a root?
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13.4 Quadratic Convergence For Newton/Raphson

Galileo: We now address two key issues associated with the Newton/Raphson method.
Since our computational experiments indicate that it converges rapidly, our first goal
is to understand exactly what the phrase “rapid convergence” means. Since the
method fails (with a poor choice of initial point) for functions as easy to define as
f(z) = ze~™ , the second issue is to determine an interval of convergence for the
method.

Again, we call on our friend Taylor to explain the issues involved with this analysis.
Taylor: We begin by defining two key functions, which generate sequences exhibiting

the difference between linear and quadratic convergence.

Ti(z) = %:r

Th(z) = ja°

Example 13.4.1. Sequences generated by T\(x) converge linearly to zero.

Using the function Ti(x) and a real number xq, define the following sequence:

) = Tl(.%'g) = %.7/'0

T2 = Tl(CEl) = %CE‘l = il‘o
I3 = T1($2) = %xz = %xo
Ty = T1 (.7}3) = %.7/'3 = 1—16.1‘0
trpr =Ti(ze) =336 = gz

Thus, for any choice of xqg the limit limg_, o xx = 0. If we define Ti(x) = Mz,
where M € (—1,1), then the resulting sequence also converges to zero. The closer M
is to zero, the faster the sequence converges. If the value of M is close to 1.0 (e.g.

M =0.99), then the sequence converges slowly.

Example 13.4.2. Sequences generated by To(x) converge quadratically to zero.

Using the function Ty(x) and a real number xy define the following sequence:
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T = TQ(JI()) = %JI%

o =T(r) =321 = g3

ry  =Ty(ry) =305 = Faf

zy  =D(r;) =333 =i
T = Tozy) = %xi = W%xgk

Note that if xg € (—2,2), then limg ooz, = 0. If zp = 1, then limg oz = 2.

If |xo| > 2, then the sequence {|xy|}52, becomes arbitrarily large and thus does not

converge.

Simplicio: OK, let’s see some numbers.

Galileo: Note that if o = 0.1, then the sequence will be within single precision accu-

racy (i.e. within 107°) after only 3 iterations and within double precision accuracy

(i.e. within 107'*) after only 4 iterations.

X

T = T1(90k71)

Ty = T2(5Uk71)

Zo

1.00000000000000

1.00000000000000

X

0.50000000000000

0.50000000000000

X2

0.25000000000000

0.12500000000000

€3

0.12500000000000

0.00781250000000

Lyg

0.06250000000000

0.00003051757812

X5

0.03125000000000

0.00000000046566

L

0.01562500000000

0.00000000000000

Table 13.2: Six Computations of x, ., = T\ (x,) = 52 and z,1, = Th(x,) =

Galileo: How about those numbers?

1 1,2
2 R

Simplicio: They sure look familiar. In fact, they are almost the same as the sequence

we computed for /2.

Galileo: You got it.
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Galileo: Let us summarize these two examples by making the following observations

for more general choices of the initial value xg.

1. If 2o € R and Ti(z) = 3z, then the sequence of points {z,}>>, generated

recursively by x,.; = T1(z,) always converges to zero.

2. If |zg| < 2 and Th(x) = 3% then the sequence of points {z,}°2, generated

recursively by x,.; = Ty(x,) always converges to zero.

3. If |zg| > 2, then the sequence of points {z,, }2°, generated by the function 75 (x)

always diverges.

4. If xy = 2, then the sequence of points {z, }°, generated by the function T5(x)

converges to one.

5. If &y = —2, then the sequence of points {z, }>° ; generated by the function T5(x)

oscillates between 1 and —1 (and thus diverges).

6. If |xo| < 2, then the sequence of points generated by T,(x) converges to zero

faster than the one generated by 77 ().

The rate of convergence associated with Ty(x) is called quadratic (or 2"¢-order)
convergence.

Taylor: We formalize the above concepts in the following definitions.

Definition 13.4.1 (Quadratic Convergence). If a sequence {x,}> , converges to
a number L, then the rate of convergence is called quadratic (or 2™ — order) if there

is a constant M and an integer N such that if n > N, then |2, — L| < M|z, — L|*.

Example 13.4.3. Galileo: Let’s begin by showing the method of Archimedes/Heron
generates a quadratically converging sequence. Note the similarity between this dis-
cussion and the sequence generated by Ty(x).

IfK > 1, f(z) = 2> — K and 2o > VK, then the the method of Archimedes/Heron

generates a sequence, which converges quadratically to v K.
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Let T(x) = x — J{,((‘?) =x— $22;K. As we have noted many times before, the point

r =K is a root of f(z).
If v > VK and zo = r, then by Taylor’s Theorem we know there exists a point

z € [VK,00) with the property that
T(w) = T(r) + T'(0) (o — ) + = (5 — )2,

Since r = VK,
T(x)=TWVK)+T'(VK)xz - VK) + Téz) (z — VK)?
Since T'(x) =z — xZZ;K = i+ £ note that
1. T'(z) =1 — &5 and
2. T"(x) = 5.

Thus,
1. ifx € [VK,o0), then T(z) € [VK, 00),

2. T(VK) = VK,

J. T,(\/F) - % - 2(VE)? %
4. if K > 1, then |T"(z)| < |T"(VK)| =1
we see that for any x € [VK, +00),

=0, and

L
2

1.

IN

2=

Also, since T"(z) = %,
K 1
<1

T"(2)| < |T" \/E — - =
1"(z)| < [T"(VEK)] TR S
Thus, the constant M = 1 will have the property that |T"(x)| < M = 1, for any

v € [VK, o).
Thus, by Taylor’s Theorem there is a point z € [\/E, +00) with the property that

I(VE )+ TWE) e~ VE ) + (e - VE )

T(x) =
T i,
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Figure 13.3: The Graph of y = T"(x) = 3.

If n is any integer, v = x,, and x,+1 = T(x,), then there is a point

z =2, € VK,+o0) so that

[@ni1 = VK| = |T(2,) = T(VE) |

- el vE Y < L VE Y

To illustrate the power of what we have achieved, let’s consider the special case
when K = 3% = 9. Of course, this choice implies that the root r = /9 = 3. If the

initial guess is xg = 4, then

o1 = 3] 50 — 37 = -3 =5

o2 = 3] <3l — 3 < S =3 =3 (5 =)

o 3] <gles — 3P < S =3 =3 ()P =5
o1 = 3] <3l — 3 < Sl =37 =3 () = (5)"

In general,

L on
.= 3 < (=)L
20 —3] < ()

Simplicio: But wait a minute, what if I choose the initial guess to be xy = 57 With
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this choice, we see that

|x1—3|§%|x0—3|2: %(5—3)2:%22:2,
|x2—3|§%|x1—3|2§ %(ml—?)) :%22:2,
|x3—3|§%|x2—3|2§ %(:@—3) :%22:2,
|x4—3|§%|x3—3|2§ %(.703—3)2:%22:2

Galileo: Thus, if our initial guess that is far from the root, then these inequalities do
not provide any useful information.

Virginia: But the same is true of our function T5(x) = 32?. If we choose zy = 2, then
the sequence z,,41 = Ty(x,) diverges. Mr. Simplicio, you have simply pointed out
that poor initial choices lead to evil outcomes.

Galileo: The next theorem shows that this example generalizes to any function f(z).
Simplicio: This theorem looks complicated.

Galileo: Even though it has 6 separate hypotheses, they all say something you would

want to have happen with the function and its first and second derivatives.

Theorem 13.4.2 (Quadratic Convergence for Newton/Raphson). Let X be
a closed interval in R and let f(x) : X — X be a function. If

1. f(z), f'(x), f"(z), and f"(z) are all continuous at each x € X,

2. v =r¢€ X is aroot of f(x),

3. f'(x) #0 for all x € X,

4. T(x)=x— J{,((?) €X forallz e X
5. |T'(x)| < My <1 forall z € X, and
6. |T"(x)| < My for all x € X,
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then for any choice of xy € X the sequence defined by x,1 = T(x,) converges

quadratically to the root r. In fact, for all n we know that |vyiy — r| < 22|z, — r|%

Proof. If f(x) : [a,b] — R is a function with the property that f(x), f'(z), and f"(x)

are all continuous at each z € [a,b] and f'(z) # 0 for all z € X, then T(z) = z — 2

is differentiable and

ey 1 @@ = @) @)@

(f'(x) )? (f"(@))*

Since |T"(z)| < M; < 1 for all z € X, we know by the Mean Value Theorem that

the sequence defined by x,.; = T'(x,) converges linearly to the root x = r.

By Taylor’s Theorem we know that there is a point z € X such that

T”(Z)

T(x) =T(r)+T'(r)(x—7) + (@ —1)*.

Since f(r) =0,7(r) =r — Jf,((rr)) =71 —0=r. Since T"(z) = ’E;’fgg(ﬁ), T'(r) = 0.
(Thus, if r is a root of f(z), then r is a fixed point of 7'(z) and also a root of T"(x).)

Thus,

Tx)=Tr)+T(r)(z—7r)+

Hence, for any = € X, there is a point z € X so that

T(x)—r= TI2(Z) (x — )2

If |T"(x)| < M for all # € X, then
M
T(z) —r| < 7(1‘ —7)? for all 7 € X.

If n is any integer, x = x,,, and x,,.; = T'(x,), then just as in the special case with

Archimedes/Heron we see that
M.
|xn+1 - 7”| = |T(xn) - 7”| < 72(:5” - T)Z'

Since the sequence {x,,}°, converges to r, the convergence is quadratic. O
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Galileo: Actually, we can now compute an error formula for Newton/Raphson the

same way we did for the sequence {z,}° ; generated by the function T5(z).

Corollary 13.4.3 (Quadratic Error Formula for Newton/Raphson). If the hy-
potheses of the Quadratic Convergence Theorem for Newton/Raphson are all satisfied

and n 1s any integer n > 0, then

RS TR

Proof. Since

M.
|xn+1 - T| = |T(1‘n) - T| S 72(1‘71 - T)Q for all n,

|3L"1 - T| < 7@0 - T)2
M- M, M 2 M
[z — 7] < 72(351 —r)* < 72(72(900 r)?)? = E[TZ(% —r)]*
M- My, 2 M. 2 M
3 — 1] < 72(552 —r)* < 72(@[72(% —r)]")? = E[TZ(% —r))°

Example 13.4.4. Galileo: Note that we have already discussed this error formula
for the function f(z) = x* — 9 with initial guesses of Ty = 4 and xy = 5. In general,
if K> 1,f(z) = 2® — K, and xo > VK is arbitrary, then we still notice that the

constant My = 1 will dominate the 2"¢ derivative of T (x). Thus, we see that the root
r=+vK and
[ — VK| < =[5 (w0 = VK < 2[5 (w0 — VK"
My 2 2
Simplicio: So if we are smart enough to choose o close enough to VK so that
13(xo — VK) < 1, then the error estimate will tell us that the sequence will converge
rapidly to the root.

Galileo: Correct.
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Example 13.4.5. Galileo: If K > 1, f(z) = 2* — K, and zy > V'K is arbitrary, then

T(x)=2— ;,((I)) =o— ‘”;;ZK = 20445, Thus, T'(x) = 3 — 25 and T"(x) = 2%, Thus,
|T"(z)| < \/_ = \/_ < 2. Thus, we see that the constant My = 2 will dominate the

second derivative |T"(x)| and

2 M n 3
o — | = fro — VE] < <[5 0~ V)P < [0~ VE)P
2
Simplicio: Again, If we are smart enough to choose xy close enough to /K so that
((wg — VK) < 1, then the error estimate will tell us that the sequence will converge
rapidly to the root.

Galileo: Correct again.

Simplicio: OK, I understand this error formula now. However, I would like to ask
one simple question about that Quadratic Convergence Theorem.

Galileo: Yes.

Simplicio: Why do we have all those hypotheses? Can’t we just say that the conver-
gence is always quadratic?

Galileo: Actually, I am sorry to report that the answer to your question is: “No!”

Example 13.4.6. For example, the polynomial p(x) = (x — 5)? has a double root at
x = 5. If we apply Newton/Raphson to find this root, we discover that

While it is easy to show that the convergence rate is linear, the convergence rate fails
to be quadratic. The root cause of the problem (pardon the pun) is that the first
derivative p'(z) = 2(x — 5) happens to also have a root at x = 5. Thus, p'(5) =0 and
hypothesis 8 in the Quadratic Convergence Theorem is violated.

Simplicio: So?

Galileo: While the error is reduced by 50% at each iteration, the convergence never
speeds up the way it does for Archimedes/Heron. Make a few computations and you

will see that I am correct.
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Virginia: Murphy strikes once again!
Galileo: We now define the term simple root to make this distinction. For New-
ton/Raphson, the bottom line is that we are on firm ground as long as we have

simple roots.

Definition 13.4.4. If f(z) is a differentiable function defined on the interval (a,b)
with root x =1 € (a,b), then r is called a simple root if f'(r) # 0.

Taylor: Note that if K > 0, then the roots of p(z) = 2™ — K are simple.

Simplicio: Since p'(z) = na™", I can see that p'(V/K) = nVE" # 0.

Taylor: In general, a polynomial p,(x) will have a simple root if and only if it is not
repeated. For example, if p, (x) has a repeated root x = r implies the function p(z) has
a factor of (x—7)2. If the root is repeated three times, then p(z) has a factor of (x—7)3.
The Fundamental Theorem of Algebra states that any polynomial can be completely
factored. Gauss provided five different proofs of this intuitively obvious theorem
several hundred years ago. The proofs involve a knowledge of complex variables—a

beautiful subject you should know.

Theorem 13.4.5 (Fundamental Theorem of Algebra). If a, 1,a, o,...,a1,a9
are complex numers and p(x) = 2" +a,_12" 1 +. ..+ a1x +ag, then there are complex

numbers ri,ry, ..., 1, with the property that p(x) = (x —r)(x — 1) ... (T — ).

Taylor: The next proposition characterizes polynomials, which have a simple root at
x = r. In particular, a polynomial p(x) has a simple root if and only if it is divisible

by the factor (z —r) and not by (z — )%

Proposition 13.4.6. If a,_1,a,_2,...,a1,a9 are complex numers and p(x) = z™ +
U 12"+ .+ @y + ag, then p(z) has a simple root at x =1 if and only if p(x) =
(x —r)g(z), where ¢'(r) # 0.

Proof. By the Fundamental Theorem of Algebra we know that p(x) = (v — ry)(z —
r9)...(x — ry) so that p(z) = (z — r)g(z). By the product rule from Calculus, we
know p'(z) = (z — r)¢'(z) + g(x). Thus, p/(r) = g(r) so that p'(r) # 0 if and only if
g(r) #0. O
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Taylor: I hope you agree that we now completely understand the role of simple roots
and quadratic convergence when we use the method of Newton/Raphson to compute
roots of functions.

Virginia: Yes, I do. However, [ have one question. Namely, when used New-
ton/Raphson to compute a root of f(z) = x* — 0.000001, the convergence rate was
noticeably slower than when we computed a root of f(z) = x? — 2. This function has
simple roots. What is going on here?

Taylor: Excellent question. I think you will understand the answer when if you simply

compute the constant M. Give it a try.

Exercise Set 13.4.

1. Determine whether or not the sequence x,, = % converges quadratically to zero.
2. Determine whether or not the sequence x,, = ,%n converges quadratically to zero.

3. Show: If zy € R and T} (x) = 3z, then the sequence of points {z, }22, generated

recursively by x,.; = T1(z,) always converges linearly to zero.

4. Show: If |zy| < 1 and T5(x) = 22, then the sequence of points {z,}22 gener-

ated recursively by z,1 = Ti(z,) always converges quadratically to zero.

5. Show: If 2y € R and T1(2) = 3z, then the sequence of points {z,}32, generated
recursively by ,, 41 = T3 (x,,) fails to converge quadratically to zero. (Hint: This

problem requires a short proof by contradiction.)

1

=r. More specifically,

6. Determine the rate of convergence for the sequence z; =
first show the sequence converges linearly to zero, then decide whether or not it
1

converges quadratically to zero. Repeat this exercise for the sequence x; = o

7. Prove: If T'(x) : R — R is differentiable for each x € R, zo € R, M € [0, 1), the
sequence 1 = 1T'(x,) converges to L, and |T'(z)| < M for all x € R, then the

sequence {x,}> ; converges linearly to L.



314

8.

10.

11.

12.

13.

CHAPTER 13. CONVERGENCE RATES FOR SEQUENCES

Show: If K > 1 and zy > v/K, then the method of Newton/Raphson produces
a sequence which converges quadratically to the root r = v/K of the function
f(xz) = 2° — K. (Compute the constants M; and M,.) Note that if K = 32,
then the root r = 2. If xy = 3, then compute the constant %MO —2|. How close
does the initial guess xy have to be chosen to the root » = 2 to guarantee that

Melwg — 2| < 17

. If f(x) = 2 +3x+1, then show that the method of Newton/Raphson converges

quadratically to a root in the interval [—1,0]. (Suggestion: Use a graphing
program to show that |7"(x)| < 0.9 for all z € [—10, 10].)

If f(z) = (z —1000)? and xy = 1, then show that the method of New-
ton/Raphson does NOT converge quadratically to the root r = 1000. Why
doesn’t the Quadratic Convergence Theorem apply? Which hypothesis is not

satisfied?

If f(z) = (z —1000)* and xy = 1, then show that the method of New-
ton/Raphson does NOT converge quadratically to the root r = 1000. Why
doesn’t the Quadratic Convergence Theorem apply? Which hypothesis is not

satisfied?

If f(x) = 2% or 2 and T(z) = = — %, then show the sequence defined by
xy = 1, g1 = T(xy) converges to 0 at a linear, but not quadratic rate. Do
these examples contradict the quadratic convergence of the Newton/Raphson

method?

If f(z) = 2* — 0.00001, then use the method of Newton/Raphson to compute
the constant M,. What do you conclude about the Quadratic Error Formula for

Newton/Raphson?
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The Contraction Mapping

Theorem

Stefan Banach (1892-1945)

Mathematics is the most beautiful and most powerful creation of the hu-

man spirit. Mathematics is as old as Man.-Stefan Banach

Galileo: We now turn to Stefan Banach’s (1892-1945) Contraction Mapping Theorem.
Simplicio: Who was this Banach guy?

Galileo: He was a hard drinking, heavy smoker, who liked to socialize with his friends
late into the night at the Scottish Café in Lvov, Ukraine. You probably would have

enjoyed his company.

315
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Simplicio: I think I should.

Galileo: His theorem constitutes an amazing generalization of Archimedes/Heron and
Newton/Raphson. Not only can this method be used to compute roots of non-linear
equations, but it also has applications to areas you would never expect.

Simplicio: Like what?

Galileo: The method can be used to solve a system of linear equations.

Simplicio: We have the technique of row operations. Isn’t that good enough?
Galileo: While row operations work fine for small systems, these alternative methods
work much better for large sparse systems.

Simplicio: What does “sparse” mean?

Galileo: A matrix is sparse if most of its entries equal zero. Recall that the idea
behind row operations is to transform the given matrix into an upper triangular (or
even diagonal) form. Thus, the goal is to generate a new matrix with most entries
equal to zero. Two problems may arise if the original matrix has most entries equal
to zero. The first problem is that we may be wasting our time if we make an entry
zero when it is already zero. If we are not careful, we might actually transform zero
entries into non-zero entries.

Simplicio: OK, how about another application?

Galileo: The Contraction Mapping Theorem can be used to show the existence and
uniqueness of solutions of differential equations.

Simplicio: I don’t want to hear math talk about existence and uniqueness.

Galileo: What if the problem you are trying to solve has no solution? You might
want to know if a solution exists. If you know a solution exists, you might want to
know if there is more that one solution. Uniqueness is useful because once you find a
solution, you can go home.

Simplicio: But I don’t like differential equations.

Galileo: Unfortunately, many of the most important real-world applications require
a differential equation as part of their model. If change occurs, a good bet is that

there is a differential equation lurking nearby. How about fractals?



317

Simplicio: What is a fractal?

Galileo: Fractals are sets with the property that any part of the set is similar to the
whole set. More specifically, the entire set can be translated, rotated, and shrunk to
fit on top of any subset. In other words, the set is self similar. Fractal techniques can
be used to produce beautiful pictures. The wallpaper in my bath is of fractal origin.
Virginia: I have seen the snowflake and the fern and agree they are captivating.
Galileo: Fractal methods can also be used to compress images.

Simplicio: Now that is an application even I can appreciate.

Galileo: As it turns out, the Contraction Mapping Theorem can often be used to
solve a problem written in the form 7'(z) = x, where |T"(z)| < M < 1, for all z. The
solution of such an equation will be a fixed point of T'(x).

Simplicio: What is a fixed point?

Galileo: A point z = F'is a fixed point for a function T'(z) if T'(F) = F.

Virginia: Just as F' = V/K is a fixed point of the function 7'(z) = z — xz;xK!

Galileo: Correct.

Virginia: I now understand why you began our discussion with the method of Archimedes/Heron.
The ideas of yesterday are the ideas of today.

Galileo: Correct again.

Simplicio: So how do we solve for this fixed point?

Virginia: How about if we begin by making an initial guess = xy and then iterate
by setting x,; = T'(x,). That strategy worked before. My hunch would be that the
sequence {x,}>, converges to the point F.

Galileo: You should be teaching this seminar.

Simplicio: What about the convergence rate? I like quadratic.

Galileo: While the convergence rate for Newton/Raphson usually turns out to be
quadratic, the convergence rate for the Contraction Mapping Theorem usually turns
out to be linear. The contraction factor M controls the rate of convergence. If
T'(F) = 0, then the argument we used for Newton/Raphson can be used to show the

convergence rate is quadratic.
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14.1 Contraction Mapping Examples

Galileo: We now turn to a more detailed discussion of the Contraction Mapping
Theorem.

Simplicio: How about if we begin with a simple example?

Galileo: Let us begin with the problem that you are to solve the equation x = %x+3.
Simplicio: But this problem is too easy. Obviously, the answer is x = 6.

Galileo: The answer is easy because you have an excellent understanding of algebra.
Remember that more than 1000 years passed between the geometry of the ancient
Greeks and the appearance of the commutative, associative, and distributive laws

from algebra.

Example 14.1.1. Solve the equation © = %x + 3.
If we let T'(x) = %x + 3, and xy = 0, then we can iterate in the same way we did
for the method of Newton/Raphson. Note that the last computation, namely 5.9766,

s beginning to approach the correct answer.

zy =T (x9) = 3

o =T(x1) = %3-{—3 = 45

g =T (19) = %4.5 +3= 525

74 = T(xs) = %5.25 +3= 5.625

w5 = T(x4) = %5.625 +3= 58125
e = T(x5) = %5.8125 1 3= 5.9062
7 = T(z6) = %5.9062 +3= 59531

1
1 =T(er) = 559531 +3= 5.9766

Simplicio: This method is too much work. After a million iterations, we still won’t

have the exact answer. I prefer using the laws of algebra for this problem.
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Galileo: We now repeat this technique to solve a simple non-linear equation.

Example 14.1.2. Solve the equation z = % sin(z) + 13.
If we let T(z) = %sin(x) + 13, and xo = 0, then we can iterate in the same way
we did for the method of Newton/Raphson. Note that the sequence {x;}32, seems to

be converging to a number approximately equal to 13.35.

xy =T (z9) =13

g =T(xq1) = %sin(l?)) +13=13.21
xgzzzxe)::%snm1321)+-13==1330
24 = T(xs) = %sin(13.30) 413 =13.33

1
25 = T(2s) = 5 sin(13.33) + 13 = 13.35

Galileo: Note that no algebraic manipulation of the expression x = %sin(:r) + 13 can
be used to solve this equation for x.
Simplicio: Now I see the point of this example.
Galileo: One final remark is in order. Namely, the method is constructive.
Simplicio: What do you mean by constructive?
Galileo: The method doesn’t simply say a solution exists. Instead, the technique
provides a procedure to approximate the desired answer. As you might expect, engi-
neers vastly prefer methods where you simply make a guess, compute, and the answer
magically appears. The Contraction Mapping Theorem fits that mold exactly.

In fact, the technique can be implemented in the following four lines of computer
code:
Let © = xg be the initial guess.
forn=0,1,...,N

x = T(x);
end

Exercise Set 14.1.
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1. Use the above iterative technique to approximate a solution of the equation

x = 5 cos(x) + 3. Begin the process with o = 0.

2. Use the above iterative technique to approximate a solution of the equation

x = e~". Begin the process with xq = 0.

3. Use the above iterative technique to approximate a solution of the equation

x = e*. Begin the process with zy = 0.

14.2 The Contraction Mapping Theorem in R

Simplicio: That discussion contained many more technical details than I can tolerate.
Let’s move on to something more understandable.
Galileo: It isn’t as bad as you think, but OK. let’s get back to the Contraction
Mapping Theorem.
Cauchy: We now check a few technical propositions, which will be used to prove
the contraction mapping theorem. The first proposition is the familiar formula for
summing a finite geometric series.

The next proposition provides a bound on the difference between two successive

terms in a sequence.

Proposition 14.2.1. If |vp 1 — 2| < M|z, — x| for all k > 1, then |xg — x| <

Mk|l'1 - 1‘0|.

Proof. If k =1, then |zy — 21| < M|z — x¢].
If k=2, then |3 — 25| < M?|z; — xy].
If k=3, then |z4 — x3| < M?|x1 — 9]
If k=4, then |5 — 24| < Mz, — 0]

Inductively, |zg1 — 2] < M¥|ay — xq]. O

The next proposition provides a bound on the difference between any two terms

in a sequence. This proposition is fundamental to proving the contraction mapping
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theorem. It is also the key to unlocking the rate of convergence, which is important

in real applications.

Proposition 14.2.2 (The Contraction Mapping Error Estimate). If0 < M <
1 and |zgyq — x| < Mg — 21| for all k > 1, then whenever n > N, |z, — zy| <

N
IJ\E—M|$1 — £E0|.
Proof. By the triangle inequality and successive applications of the previous propo-
sition, we know that

[T — TN = |Tp — T 1+ Tp 1 — Tp 2+ Tp2 — ..+ TNy — TN

<y = Tpoa| + w01 — Tpoo| + (T2 — Tps| + ...+ 2N — 2N
< M" Hay — o] + M"2|zy — mo| 4+ ... 4+ MY |z — 20
= (M" '+ M2 4+ MY) |, — 20
= MN(M"NT 4 MR M+ 1) | — ).

Since 0 < M < 1,

1— MmN MN
Troar o ls

"= < MY
|z zy| < ST

|z — 2]
O

Proposition 14.2.3. If 0 < M < 1 and |vg41 — x| < M|z — x| for all k > 0,

then there exists a unique real number L such that limy_,.oxr = L.

Proof. Step 1. Let € > 0 be given.

MN

7121 — wo| < ¢ foralli > j > N.

Step 2. Choose N large enough that

MN

m|$1 — 1| < €.

Step 3. By the previous proposition, we know |z, — zy| <
Thus, the sequence {z;}72, is Cauchy. Since every Cauchy sequence converges,

there is a unique real number L such that limy_ oz = L. ]

Definition 14.2.4. If X is a closed interval in R and T : X — X, then T'(z) is called
a contraction if there is a number 0 < M < 1 such that |T(x) — T(y)| < M|z — y|
for all z,y € X.
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The constant M is called the contraction factor of T'(z).
Simplicio:: So what is this contraction factor?
Galileo: The intuitive idea of a contraction is exactly what the word implies. Namely,
if given any two points z,y € X, then the function 7'(x) always moves the two points
so that they are closer together. Since the absolute value function always produces
a measure of distance we know that dist(x,y) = |v — y| and dist(T(z),T(y)) =
|T(x) —T(y)|. This, if M < 1, then dist(T(x),T(y)) < Mdist(x,y). Thus, the points
x and y are moved closer together. If M = %, then they will be 50% closer than they
were before.
Simplicio:: What if the contraction factor equals 27
Galileo: If |T"(x) > 2 for many values of x, then we have an expansion rather than a
contraction. While these functions are sometimes studied, we will not consider them.
Simplicio:: How do we tell whether or not a function is a contraction?
Galileo: The purpose of the next proposition is to present a criterion for when a
function can be identified as a contraction. The answer is to simply compute the first
derivative and check to see if it is always less (in absolute value) than 1. Note that this

proposition already appeared in the discussion on the method of Newton/Raphson.

Proposition 14.2.5. If X is a closed interval in R and T(x) is a differentiable
function T : X — X with the property that |1"(z)| < M <1 for all v € X, then T'(x)

1s a contraction with contraction factor M.

Proof. 1f z,y € X, then by the Mean Value Theorem we know that there is a point
z € X such that T'(z) = %f(y) Since |T"(2)] < M < 1, |%§(y)| < M. Thus,
T'(x) = T(y)| < Mz —yl. O

Galileo: Before we turn to the next idea, we need to prove that contractions are
actually continuous functions. This detail will be needed in the proof of the Con-
traction Mapping Theorem, where we need to know that limits commute with con-
tinuous functions. In particular, we need to know that if lim, .2z, = P, then

limy oo () = T(limy_00ty,) = T(P). Another way to phrase this fact is to state
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that if a function is continuous at a point P, then limits can be evaluated at P by
simply substituting the point P in the function.
Simplicio: In other words, we didn’t need limits in the first place.

Galileo: You could say that.

Proposition 14.2.6 (Contractions are Continuous). If X is an interval and
T(x) : X — R is a contraction with contraction factor 0 < M < 1, then T(x) is

continuous at every x € X.

Proof. Let T € X.
Step 1. Let € > 0 be given.
Step 2. Choose § = e.

Step 3. Since T'(x) is a contraction, we know that if | —Z| < J, then

T(z) —T(T) < Mz —Z| < |z —T| <J =€ O

Galileo: We now turn to the second idea embedded in the Contraction Mapping

Theorem.

Definition 14.2.7. If T : X — X is a function and T(F) = F for some F € X,
then the point F € X is said to be a fixed point for T(z).

Galileo: Consider the following examples.

Example 14.2.1. If T\ (2) = 3, then F = 0 is a fived point of Ty(x). Note that

Ti(x) has exactly one fized point,
Example 14.2.2. If T'(z) = x + 5, then T(x) has no fized points.

Example 14.2.3. If T5(x) = 22, then F = 0 and F = 1 are fized points for Ty(x).
Note that Ty(x) has two fizved points.

Example 14.2.4. If T3(z) = 23, then F = 0, F =0, and F =1 are all fized points
for Ts(x). Note that Ts(x) has three fized points.
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Example 14.2.5. If T(z) = z — “=X then T(VK) = VK. Thus, T(z) has VK for

2

a fized point. In Figure 14.1, this fized point is displayed as the intersection of the

2= K
2z

curves y =x and y =T (x) =z —

The ¥ Values

Figure 14.1: The Fixed Point for the Function 7'(z) = x — xz;K.

Example 14.2.6. If T(z) = & — =K then T(V/K) = /K. Thus, T(z) has VK for

32
a fized point. In Figure 14.2, this fived point is displayed as the intersection of the

3—K
32

curves y =x and y =T (x) =z —

Example 14.2.7. If we want to solve the equation If & = T(x) = § sin(x) + 13, then

the solution is the fized point F of T'(x). In Figure 14.3, this fized point is displayed

as the intersection of the curves y = x and y = T'(z) = 3 sin(z) + 13.

Example 14.2.8. If T'(x) = © — f(ﬂ;))

0y where f(r) =0, then T(r) = r. Thus, T(x)

has x = r as a fired point.
Galileo: We now prove the Contraction Mapping Theorem. Note that the proof mir-

rors exactly what we have discussed with the root finding method of Newton /Raphson.

Namely, begin with an initial guess xy and create a sequence of numbers by iteratively
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The ' "Values

Figure 14.2: The Fixed Point for the Function T'(x) =z — w;;f(

Figure 14.3: The Fixed Point for the Function 7'(z) = 3 sin(xz) + 13.
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computing T'(z,,) and defining z,,11 = T'(z,). Note that we actually produce a unique
fixed point.
Simplicio: But why should I care if [ only have one fixed point?

Galileo: If you only have one fixed point, then you only have to compute once.

Theorem 14.2.8 (The Contraction Mapping Theorem). If X is a closed in-
terval in R and T'(z) : X — X is a contraction, then T'(x) has a unique fived point
F € X. Moreover, if the contraction factor for T(x) is M, xy is any initial point
in X, and z, = T(xy_1), then the error at the n'* iteration is given by the formula

|z, — F| < M|z — ol

Proof. Let xy be any point € X. Let x5y = T(xy) for all & > 0. Since T'(x) is a
contraction, |41 — x| < M|zg —xk_1| for all £ > 1. Thus, the sequence {z;}32, con-
verges to some point F. Since the interval X is closed, the point F' € X. Since xp,1 =
T(xg) and T(x) is a continuous function, F' = limy_oo{zr} = limgeo{Tri1} =
limgoo{T (zx) } = T(limgoo{xk}) = T(F). Thus, F is a fixed point for T'(x).

The fact that the fixed point is unique follows from the fact that the function
T'(x) is a contraction. In particular, if F; and F; are two distinct fixed points of
T(x), then |Fy — Fy| = |T'(F)) — T(F)| < M|F, — F3| < |F} — F,|, which is a
contradiction. Thus, T'(z) has exactly one fixed point. The error estimate follows

from the contraction mapping error estimate. O

Simplicio: So what is the important information that I need to remember from this
discussion?

Galileo: Remember this:

1. The mapping T'(x) MUST be a contraction. (You can usually check this fact
by showing |7"(z)| < M < 1 for all z.)

2. The choice of initial point x; is arbitrary.

3. A sequence is created by computing zy = T(zx_1).
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4. The sequence {z,}% , always converges to some number F, which is a fixed

point of T'(x).

5. The convergence rate of the sequence {z,}>°, is linear and controlled by the

inequality: |z, — F| < 2|21 — xo|. (Thus the error can be precontrolled. )

Example 14.2.9. We will now show how the Contraction Mapping Theorem can
be used to solve the equation v = %sin(m) + 13 with the given prescribed accuracy of
0.00001. We begin by defining T(x) = % sin(x)+13. To show that T'(x) is a contraction,
all we have to do is to notice that T'(z) = ;cos(x) so that [T"(x)| < 5 for all
x € R. Thus, T'(x) is a contraction with contraction constant M = % If vy = 0,
then xy = T(x¢) = T(0) = 13 so that |xg — x1| = 13. Thus, to find an integer n with
the property that

Ty is within 0.00001 of the solution F = %sin(F) + 13 all we need to do is to
find an integer n with the property that |z, — F| < % * |zg — x| = (1%_); x13 =
(L)m*+! % 13 < 0.00001.

Taking natural logarithms of both sides of this last inequality we see that we should

choose n large enough that n +1 > In(0.00001/18) _ —14.0779 _ 9() 3115, Thus, we must

“In(2) ~0.6931
choose n > 20.3115 — 1 = 19.3115.

Simplicio: So, the bottom line is that the formula tells us we get faster convergence
if we make a smart choice of xy and we are blessed with a small value for M.

Galileo: Correct.

Exercise Set 14.2.

1. Use the Contraction Mapping Theorem to solve the equation x = %COS(QJZ) -5
with error less than 0.000001. If xyg = 0, then how many iterative steps are

required to guarantee that the required accuracy.

2. Use the Contraction Mapping Theorem to solve the equation z = e 2% with
error less than 0.00001. If zy = 0, then how many iterative steps are required

to guarantee that the required accuracy.



328 CHAPTER 14. THE CONTRACTION MAPPING THEOREM

14.3 The Contraction Mapping Theorem in R”

Galileo: We begin this section with an example, which demonstrates an iterative
method for solving a system of linear equations. Compare this method with the
row operations you learned in linear algebra. Remember that this example is for
demonstration purposes only. In a real application, the matrix might be as large as

1000 x 1000 or even larger.
Example 14.3.1. Solve the following system.

2r+y=3

r+2y=3
Note that the answer is: © =1,y = 1.

To solve the problem using the technique of the contraction mapping theorem, we
begin by manipulating the equation until it is in the form x = T(x), where x is a
2-dimensional vector. This task can be completed by solving the first equation for x
and the second for y. When we do this manipulation, we obtain 2 equations: = = ?“Ty

and y = ?’_Tx These 2 equations can be written in vector/matrix form as:

3y 1 3
3 1 3
y 573 -3 0 y )
3
If we initialize the process be letting xo = , then x; = T(x,) = | *
0 2
3 9
x; =T (x)) = ; and x5 = T(x,) = Z
1 8

If we let x,,11 = T(Xy,), then the sequence of vectors {x,}2°, seems to be con-

1
verging to the vector

1
Simplicio: Magic!! This technique looks good to me.

Galileo: I am glad you like this method. Now let’s take a look at another example.
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Example 14.3.2. Solve the following system.

r+2y=3

2e+y=3

Note again that the answer is: x =1,y = 1.

Simplicio: But we just solved this problem.

Galileo: Solving for the variables x and y, we can again find the function T(z).

x 3—2y 0 -2 x 3
T = = _l_
Y 3— 2w -2 0 Y 3
o L : 0
We can again initialize the iterative process with the vector xq =
0

When we compute x; = T(xg),x2 = T(x1),xs = T(x2),, etc, notice what hap-

pens to the sequence of vectors.

3
Simplicio: I see that x; = ;
3
-3 9 —15
Xo = , Xg = 72111(1}{4:
-3 9 —15

The sequence of vectors seem to be oscillating their way out to infinity.

Galileo: Excellent observation.

Example 14.3.3. Now consider a system of three equations and three unknowns. In

particular, solve the following system.

4o +y=5
r+4y+2=6
y+4z2=5

Note that the answer is: t =1,y =1,z = 1.
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Again, these equations can be written in vector/matrix form as:

T 0 —i 0 T 2
_ 1 1 6
Tly =] =1 0 —1 y [T %
z 0 —i 0 z g
0
If we initialize the method with xo = | 0 | and define x,,,; = T(x,), then the
0

sequence of vectors again seems to converge to the correct answer.
Galileo: The beauty of the contraction mapping theorem is that it is valid in a
multitude of different settings. In particular, it works in R” as well as abstract
settings suitable for differential equations and fractals.

Even better, the proof just provided for the 1-dimensional case can be immediately
translated to a proof in any dimension. To accommodate the new setting in R", the

only changes that need to be implemented are:

1. The closed interval X must be replaced by a closed subset of R™. (Thus, we

need to define what it means for a set to be closed.)

2. The absolute value sign must be changed to a norm appropriate for the setting.

(Thus, we need to define what a norm is.)

Note that while norms can be defined in many different ways and can be quite
abstract, the underlying idea is always the same: measure the distance between two
points. Thus, if P, and P, are two points in ", then the distance between them is
the norm of P, — P,. This distance is usually written in an expression of the form
dist(Py, Py) = ||P, — Py||.

While the definition of a contraction can now be defined in terms of norms, it will
be helpful if we can establish a criterion, which can be used to show a given function
is a contraction. Since the condition |T'(x)| < M < 1 implies the function T'(z) is

a contraction for functions of one variable, the analogue for R" is the norm of the
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derivative dT'(z), where dT'(x) denotes the n x n matrix of derivatives. (Recall that
the matrix of derivatives is nothing but the matrix of partial derivatives.

To keep the discussion simple, let’s not waste mental energy defining what it
means for a subset of R" to be closed. Instead, let us consider only the set " and
then remark that it is, in fact, closed. While numerous different norms can be defined
on RN”, let us consider the one defined as the maximum of the absolute values of the

n coordinates. The next definition formalizes this in a more mathematical way.
Definition 14.3.1. Ifx € R®, then ||x||c = max{|xk| : xx is the k-th coordinate of x}.

Simplicio: I don’t like this notation, could you give me a simple example?
Galileo: The co—norm of the vector (1,—2,3, —4) is 4.
Simplicio: Why are we interested in knowing about norms?
Galileo: Because we can use them to compute the distance between two vectors (or
points) in K. In particular, if x,y € R", then the distance between x and y is
||x —¥||oo- Once we have the distance between two vectors defined, then we can define
what it means for a sequence to converge. In particular, with the co—norm it is easy
to show that a sequence of vectors converges to a particular vector if and only if it
converges in each coordinate. Thus, all the hard work we did in the 1—dimensional
case is immediately transferable to the setting in R".

We now define the term contraction for a function 7'(x) : R™ — R". This definition

is given in terms of the co—norm.

Definition 14.3.2. If T'(x) : R" — R", then T'(x) is called a contraction if there is
a real number M € [0,1) with the property that ||T'(x) — T'(X')||co < M||x — X'||s0 for

all x,x" € R™.

Simplicio: But how do I recognize a contraction when I see one?
Galileo: You simply show the norm of the function (or more formally “the operator”)
is less than one.

Simplicio: But what is the norm of an operator?
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Galileo: You ask the right questions. We begin with the definition of the norm of a

matrix.

Definition 14.3.3. If A € R™*", then the oco—norm of A is defined by

[Alloo = maz{[[aclly, lazll1; - - llan]l1},
where a, denotes the k™ row of A and ||ag||y = |ar| + |ak2] + - - - + |Ghm]-

Proposition 14.3.4. If A € ™" ||Allx = M, and T'(x) = Az + b, then for all
x, X' € R ||T(x) = T(x')||ooc < M||x — X||00-

Proof. This proof is left as an exercise. O

Simplicio: And we can see from this proposition that the matrix given in the previous
exercise has oco—norm equal to % and is thus a contraction.

Galileo: Very good. Now you are ready for a bit of formalism from Professor Cauchy.
First we give the definition of what it means for a sequence to converge. Second, we
give the definition of a C'auchy sequence. As in the 1—dimensional setting, these two

ideas are equivalent.

Definition 14.3.5. A sequence of vectors, {xx}32, in R™ is said to converge to a
vector x;, € R"™ if for every € > 0 there is an integer N, such that if k > N, then

1%k — X1 |]00 < €.

Definition 14.3.6. A sequence of vectors {x;}32, in R" is said to be Cauchy if for

every € > 0 there is an integer N, such that if n > N, then ||x, — Xn||eo < €.

Theorem 14.3.7. If a sequence of vectors {x;}32, in R™ converges to a vector x;, €
R", then it is Cauchy. Conversely, if a sequence of vectors {xy}3>, in R" is Cauchy,

then it converges to some vector x;, € R".

Proof. While the proof of the first statement in the proposition is straightforward.
In particular, it is left as an exercise. The proof of the second statement is left for

another day. O
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Galileo: Thus, if a sequence of vectors in R” is Cauchy, then it is Cauchy on each

coordinate. Since the sequence of vectors converges on each coordinate, it converges.

Theorem 14.3.8 (The Contraction Mapping Theorem in ®"). If T : " —
R"™ is a contraction, then T'(x) has a unique fized point x1, in R™. Moreover, if the
contraction factor for T(x) is M, xg is any initial vector, and x = T(xx_1), then the

error at the n'™ iteration is given by the formula ||x, — x1||oe < 2257 (1%0 — X1 ]oo-

Proof. Let xg € R™ and xx,1 = T(xx) for all £ > 0. Since the same argument used in
the 1-dimensional version can be used to show that the sequence {xx}32 is Cauchy
in R”, the sequence is Cauchy in each coordinate. Since the sequence converges on
each coordinate, it converges. The proof of the error estimate is virtually the same as
the proof given in the 1—dimensional case. The only difference is that each absolute

value sign must be replaced by the symbol for the infinity norm. O

Simplicio: Hey, I think I am beginning to get the hang of this theorem for R", but
I already know how to solve systems of linear equations using the method of row
operations or Gaussian elimination. Why would [ want to bother with this new

method?

Exercise Set 14.3.
1. Use the Contraction Mapping Theorem to solve the system of equations

4o +y=95

r +4y = 5.

Initialize the method with the vector

0
0

Xg =

How many iterations are required to guarantee an accuracy of less than 0.00001

on each coordinate?
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Chapter 15

Aitken’s Method

Alexander Craig Aitken (1895-1967)

Ever the road beneath

Changes: now night begins to fall,

And I see the last long road of all,

The road to dusty death.-Alexander Craig Aitken

Galileo: The purpose of the technique presented in this section is to speed up the
rate of convergence of a given sequence.

Simplicio: While the idea seems reasonable, how can that be possible?

Galileo: Alexander Craig Aitken (1895 - 1967) came up with the idea that if a sequence

converges linearly, then we can give it boost towards the ultimate answer. If we could

335
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improve the convergence rate from linear to quadratic, we would be quite satisfied
with the technique.

Simplicio: Who was this Aitken fellow?

Galileo: Professor Aitken was born in Dunedin, New Zealand and attended the Uni-
versity of Otago. He had an incredible memory being able to recite m to 2000 places.
He could also instantly multiply and divide large numbers. An excellent memory is
not always a blessing. He had trouble forgetting all the bad things that happened in
his life.

Simplicio: I can see the dark side in his poetry. I am not sure I want to compete with
him in any way.

Galileo: His idea is the following. If we assume the sequence {z,}>°, converges to L
(i.e. limy, 00, = L) and for large n enjoys the property

fL‘n+1—L
—— = M<1
T, — L ’

then we know the convergence will be linear. Thus, this condition is a bit stronger

than linear convergence. In any case, if limn%oox;ﬂ_f = M < 1, then both the
xn+1—L

quotient o and the quotient

ni—L .
%. will be approximately equal to M.

If we make this assumption about the two quotients, then we see that

Tn+1 — L -~ Tpt2 — L

.’L'n—L .l'n+1—L,

which implies that
(Tnt1 — L)2 ~ (Tni2 — L)(zn — L)

or
2 =2 L+ L*~ — (@, + )L+ L?
.l‘n+1 Tn+1 ~ Tp4+2Tn Tn Tn+42
or
2 ~
Ty —2 Tny1 - LR Tpyg - @y — (0 + Tng2) L.
Therefore,

2
L(—Zpio 4+ 2xp41 — &y) R Th ) — Tpgaly
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and

2 2

I ~ xn+1 — Tpt2 " Tn — (xn—l—l - xn)
~ _— n - .
—Tni2 + 2$n+1 — Ip Tpy2 — 2xn+1 + Zn

Therefore, we can (hopefully) accelerate convergence to L if we define a new

sequence by the rule:

Definition 15.0.9 (Aitken’s Method). If {z,}’2, is a sequence of numbers, then

($n+1*$n)2

the Aitken’s Method for accelerating the convergence is given by &,, = x,— P T

Definition 15.0.10. If {z, }5°, is a sequence, then the forward dif ference formula
is given by Awx, = Tni1 — T,. Higher powers are defined inductively by AFz, =

A(AFLg,).

Virginia: Is there any connection between this formula and the first derivative? They
look similar.

Galileo: In fact it is. If you think of the first derivative as a limit of the quotients

f@+A)—f(z)
A
Tn+l1—Tn __ Tn4+l—Tn

pa T = Tpt1 — Tp. Of course, we can’t compute limits because we have

, then the “derivative” of a sequence should be the “limit” of

a discrete set of points. Instead, we simply think of the two points z,; and z, as

“close” to one another.

Example 15.0.4. The only reason we need higher powers of the forward difference
formula for Aitken’s Method is to compute the second forward difference A%x, =

A(Azy) = A(Tp1 — Tp) = Tpyo — 2241 + 2y

Virginia: This formula should represent the 2" derivative. Correct?

Galileo: You are correct.

Proposition 15.0.11 (Aitken’s Method). If {x,}°, is a sequence of numbers,

(Azp)?

then the Aitken’s Method for accelerating the convergence is given by T, = &y — 352

Simplicio: This formula looks suspiciously familiar.

Galileo: It should. Note the similarity between this formula and the formula 7'(z) =

f(z)
f'()

Aitken’s formula.

r — given by Newton/Raphson. This association should help you remember



338 CHAPTER 15. AITKEN’S METHOD

Example 15.0.5. Let us begin by applying Aitken’s method to the linearly convergent

Sequence T, = 2% With this special case, we see that

_ 2
.if?n =, — (xn-i-l xn)
Tp42 — 2xn+1 + Ty
1 (g — 37)°

1 1 1
2" o 2% too

1 B 2n+2(2n1+1 _ 2%)2

on 1—4+4
1 2n+2
:27_%
11
T on
= 0.

Thus, Aitken’s Method converts a linearly convergent sequence to one that converts

instantly!!

Simplicio: Hey, this method works great. Does it give any relief for the bisection
method?

Galileo: To answer your question properly, we must first decide how we are going to
implement the method. In the previous example, we were given a formula for the
n'™ term of the sequence. Unfortunately, nature is not so kind. The algorithm of
Johan Steffensen (1873-1961) computes two terms of the sequence and then makes
an Aitken’s computation. Try integrating this idea into a bisection algorithm and see

how it does when you compute V2.

Exercise Set 15.1.

1. Apply Aitken’s method to the sequence x,, = 3% How many steps does it take

to converge to zero?

2. Apply Aitken’s method to the sequence x,, = 3". What number does the se-

quence converge to? How many steps does it take to converge?

3. Apply Aitken’s method to the sequence z, = % Do you find any benefit by
applying Aitken’s method?
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4. Apply Aitken’s method to the sequence x,, = 22% How many steps does it take

to converge?

. Devise a hybrid Bisection/Aitken’s Method to find the positive root of the
function f(z) = 22 — K, where K > 1 and the initial interval is [1, K]. Apply
your algorithm to the function when K = 10%°. Does your algorithm provide a
significant improvement in the rate of convergence? While there are a multitude
of different ways to create a hybrid algorithm, you might begin by alternating
the two methods.

. Devise a hybrid Newton/Raphson/Aitken’s Method to find the positive root of
the function f(z) = 2? — K, where K > 1 and the initial guess is zo = K. Apply
your algorithm to the function when K = 10%°. Does your algorithm provide a
significant improvement in the rate of convergence? While there are a multitude
of different ways to create a hybrid algorithm, you might begin by alternating
the two methods.

. Devise a hybrid Contraction Mapping Theorem/Aitken’s Method to solve the
equation z = 1 sin(z) + 13. find the root of the function f(z) = z* — K, where
K > 0. Apply your algorithm to the function when K = 10'°. Does your
algorithm provide a significant improvement in the rate of convergence? While
there are a multitude of different ways to create a hybrid algorithm, you might

begin by alternating the two methods.
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Part V1

Day 6. Linear Algebra Review

341
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wrid

Giuseppe Peano (1858-1932)

Ambiguity of language is philosophy’s main source of problems. That is
why it is of the utmost importance to examine attentively the very words

we use. -Giuseppe Peano

Galileo: Linear Algebra is probably the most important prerequisite for applications.
Simplicio: I took Linear Algebra from Professor Poubelle. All we did was solve
systems of equations using row operations. It was easy.

Galileo: Unfortunately, Linear Algebra is probably the most important mathematics
course you will ever take.

Virginia: More important than Calculus?

Galileo: Man has been making observations and measurements since the beginning
of written history. This data leads to conjectures. Conjectures lead to mathematical
models. Whenever you model a problem, your first instinct is to make it linear.
Linear models are easy to understand and compute.

Simplicio: How about an example?

Galileo: If I paid twice as much for a house as you did, then mine ought to be twice as
big. In other words, if you double the price, then you should double the size. These
ideas go back several thousand years to the ancient Greeks with their discussions of
similar triangles and proportions.

Simplicio: But what if your house is on a Florida beach and costs twice as much as
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my student ghetto trash littered dump, then my house might still be the same size
as yours. Mine might even be larger.

Galileo: That’s correct. Life is often nonlinear.

Virginia: How about a more scientific example?

Galileo: My colleague, Aristotle (384-322B.C.E.), asserted a linear relationship be-
tween the distance a dropped object travels and the time of flight. In other words, if
the time of flight is doubled, then the distance should also be doubled. Unfortunately,
my data showed that his speculation was not correct.

Virginia: So what do we need to know from Linear Algebra?

Galileo: Despite Euclid’s concern for detail, the story of Geometry wasn’t completed
until Hermann Grassmann (1809-1877), George Cantor (1845-1918), Bernhard Rie-
mann (1826-1866), Giuseppe Peano (1858-1932), David Hilbert (1862-1943), Kurt
Godel (1906-1978), Bertrand Russell (1872-1970), and others finally reduced all the
mathematical and logical issues to the axioms of set theory. (While not quite accu-
rate, I refer to these fellows as the “grumpy, 19" century, German mathematicians.”)
Thus, this effort to “get it right” took several thousand years to unfold.

Simplicio: Weren’t we talking about Linear Algebra? Why have we digressed once
again to Geometry?

Galileo: Every geometric idea corresponds with an algebraic expressions in Linear
Algebra. Do you remember Euclid’s 14 axioms?

Virginia: [ remember a couple of them:
1. A point is that which has no part.
2. A line is breadthless length.

Galileo: Very good. Now, do you remember Peano’s 10 axioms for a vector space?
Simplicio: Not a chance.

Galileo: While you might prefer that all of Linear Algebra was limited to a discus-
sion of R", remember that the definition is given more abstractly. Namely, a vector

space V' is a set V' together with two operations addition, denoted by +, and scalar
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multiplication, denoted by -. These operations satisfy a number of rules including the
associative, commutative, and distributive laws. We also have an additive identity
(namely 0) and additive inverses.

Simplicio: Why all this unnecessary abstraction?

Galileo: Because when we study approximation theory, we need geometric ideas ex-
pressed in algebraic language. Notice that the idea of a vector in a vector space is
Euclid’s idea of a point. All the scalar multiples of that point produce a line. All the
positive multiples of a non-zero vector produce a ray so we are ready to talk about
the angle between two rays emanating from the same point.

Virginia: What about triangles and parallelograms?

Galileo: We can build a triangle by taking linear combinations of two sides.
Simplicio: The same idea works for parallelograms.

Virginia: Except we have to be careful the sides of the figure are linearly independent.
Otherwise, we will end up with a ray. In fact, we need the idea of linear indepen-
dence to generate n—dimensional figures. If I remember correctly, a vector space has
dimension n if it has a basis with n elements. We spent a lot of time in our Linear
Algebra class showing that any two bases have the same number of elements.
Simplicio: Why did you do that? Isn’t that obvious?

Virginia: I found those proofs to be difficult.

Galileo: Peano’s axioms are exactly what you need to slug through those proofs.
Let me now turn your attention back to Euclid’s idea of a point. Note that his
definition contains the implicit assumption the reader already knows a point should
lie in the plane. The definition is rather negative because it does not tell you what it
is, but rather what it is not. Rene Descartes (1596-1650) recognized that a point can
be thought of iin a more positive way as a pair of real numbers (x,y). Cantor and
Peano realized that Euclid’s definitions of a point was totally inadequate for modern
applications. In particular, they realized that the functions could be thought of as
points.

Simplicio: Your kidding? Functions are’t points. They are defined for points in their
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domain.

Galileo: It is an interesting leap forward, isn’t it? In any case, they decided is
worthwhile to abstract the idea of a point to such functions as 1, z, 2?%,..., 2"
Virginia: And note that these functions (or should I say points) are linearly indepen-
dent. Thus, the vector space they span is n + 1-dimensional.

Galileo: Similarly, Jean Baptiste Joseph Fourier (1768-1830) recognized that for any
positive integer n, the functions 1, cos(x), cos(2z), . .., cos(nz), sin(x), sin(2z), . . ., sin(nx)
represent 2n + 1 linearly independent functions (or points!) which span a 2n + 1-
dimensional vector space. During our tutorial we will also discuss orthogonal poly-
nomials, splines and wavelets. These new sets of functions all form vector spaces in
a natural way. While the definition of a vector space is a bit abstract when you first
encounter it, the beauty is its generality. In other words, you don’t have to keep
reiterating the same definitions and theorems over and over again. Think of it as a
well-written subroutine for some computer program you are writing. The software
should be concise so it is simple to comprehend, but it should also be general so it
can be used in as many different settings as possible.

Simplicio: What you said is interesting. 1 will have to think about it.

Virginia: I guess Euclid’s concept of a line is similarly limited.

Simplicio: I would have to agree.

Galileo: We should now move on to the geometric ideas of distance, angles, and
projections. These ideas were distilled and abstracted into a single concept: the inner

product.

Definition 15.0.12. If u = (u1,us, ..., u,)" and v = (vy,ve,...,v,)" are vectors in

R", then the inner product of u and v is defined as < u,v >=ulv =Y 7 | uyvy.

Simplicio: Why did you write the superscript ¢ on the vectors?

Galileo: In the culture of Linear Algebra, we prefer to think of points as column
vectors. Unfortunately, in the culture of publishing, it is more convenient to write
row vectors to save space on the page. The superscripts ! denotes the transpose,

which flips a row vector to a column vector and vice versa. Thus, the inner product
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< u,v > is simply equal to the matrix product of the row vector u’ and the column
vector v.
Simplicio: So you have simply defined the dot product of two vectors.

Galileo: Exactly. Now let’s turn to the problem of defining length and distance.

Definition 15.0.13. If u = (uy, us,...,u,)" is a vector in R™, then the length (or
2 —norm) of u is [|ulls = /< u,u >.

Simplicio: What is that little subscript 2 doing there?

Galileo: Actually, I must apologize, but that subscript comes from the Pythagorean
Theorem. As it turns out, there are a multitude of different norms. In fact, for any
real number p > 1, there is a p—norm. However, as someone interested in applications,
the only values of p that you might ever use are p = 1,2, co.

The 1—norm is sometimes called the taxi-cab metric and is defined as follows:

Definition 15.0.14. If u = (uy, us, ..., u,)" is a vector in R", then the 1 — norm of
wis [fully = S5 fu.
The oco—norm is sometimes called the sup norm and is defined but the following

rule. This metric

Definition 15.0.15. If u = (uy, us,. .., u,)" is a vector in R™, then the oo — norm

of w is ||ul|eec = max{|u|, lusl, ..., |us|}-

Note that the taxi-cab and sup metrics do not involve computing a square root.
Thus, they are faster and easier to compute than the 2—norm.

We now use the 2—norm to define the distance between two vectors.

Definition 15.0.16. If u = (uy, us,...,u,)" and v = (vy,ve,...,v,)" are vectors in

R", then the distance between u and v is [[u — v||a.

Simplicio: Since I saw these definitions in Calculus, I am comfortable with these
ideas.
Galileo: Good. Now we are ready to define the cosine of the angle between two

vectors and the projection of one vector onto another.
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Definition 15.0.17. If u = (u1,us, ..., u,)" and v = (vy,ve,...,v,)" are vectors in

R", then the cosine of the angle 0 between u and v is cos(f) = m

While people in applications expect a method to “always work,” they may not
be so fortunate. As the patient reader will see, most techniques have to be used
with caution. The purpose of many of the theorems is to provide conditions and
guidelines when the techniques will provide useful estimates. Remarkably, one key to
a multitude of stable methods is the concept of orthogonality, which is nothing more
than another word for right angle. Thus, numerical techniques look to Geometry as
a source of ideas for methods that always work. We will see this theme throughout
these notes.

Galileo: You might be surprised to learn you have an ally in the mathematician
Pafnuty Chebyshev (1821-1894), who once remarked: “To isolate mathematics from
the practical demands of the sciences is to invite the sterility of a cow shut away from
the bulls.”

Simplicio: I bet Professor Chebyshev and I would get along just fine.



Chapter 16

Stable Techniques: The Role of
Orthogonality

Galileo: T am a believer in “Applications driven mathematics.” However, before we
move on, I must add that the concept of orthogonality is essential to the success of
a multitude of numerical methods. To say two vectors are orthogonal is just a fancy
way of saying they are perpendicular. A triangle is called a right triangle if its two
shorter edges are perpendicular. As Virginia just noted, my colleague Pythagoras has
a lot to say about right triangles. More recently, Professor Chebyshev showed that
his polynomials also have special orthogonality properties.

Simplicio: But why should I care?

Galileo: Some techniques are stable, while others are unstable.

Simplicio: Stable? Unstable? I don’t get it.

Galileo: Will no one rid me of this meddlesome fellow?

Virginia: OK, OK. I think it is time to relax here.

Galileo: Think of a mathematical technique as a black box that produces answers
for given types of inputs. An example of such a black box is a calculator. Anyone
working in applications should worry about whether or not a technique produces
“reasonable” outputs when given “reasonable” inputs. Many techniques lack this

important property—at least some of the time.

349
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Simplicio: An example please.

Galileo: Suppose A is a 2 X 2 matrix and we are suppose to solve the system of
linear equations Ax = b. In this example, the inputs are the the matrix A and the
2-dimensional vector b. The output is the 2-dimensional vector x.

Simplicio: No problem. I remember the formula that solves such a system.

Virginia: If [ remember correctly, the formula requires that you divide by the deter-
minant of A. Thus, if det(A) = 0, there may be a problem.

Galileo: Yes, Virginia. You have pointed out an important hypothesis to that theo-
rem. Namely, we must assume det(A) # 0.

Simplicio: I still don’t see the problem.

Galileo: Consider the following two systems of linear equations in the plane:

System 1:

1.001z +y = 2.001

r+y = 2

Note that the equations of these two lines are close to being parallel. Solving the

system we find =1 and y = 1.

1 \

i i i i i i i i i
-5 -4 -3 -2 -1 0 1 2 3 4 5
The X Values

Figure 16.1: The Almost Parallel Lines for System 1

Now consider a slight modification of this system of equations.
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System 2:

1.00lz +y = 2

r+y = 2

Solving this new system we find x = 0 and y = 2. Thus, we have modified only one

entry in the vector b by the minuscule amount 0.001.

-5 L L L L L L I I |

The X Values

Figure 16.2: The Almost Parallel Lines for System 2

This change has led to a difference of 1 in both entries of the answer. If we define

the coefficient matrix by

then note that det(A) = 0.001 # 0. Thus, the matrix equation can be solved by row
operations. However, considering the size of the change in the inputs, the size of the
change in the outputs is large. This is evil.

A second phrasing of stability is: If given two different sets of inputs which are
close together, then the outputs should also be close together. Our little example
fails to possess this important property. If you are an engineer, you come to avoid

unstable methods because they produce weird untrustworthy answers. If a technique
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lacks this property, then engineers won’t use it. This issue appears repeatedly in a

multitude of numerical techniques.

Simplicio: But we are talking about row operations here! People still use this method
every day. I have solved dozens of problems using row operations and have never
observed this problem. How come nobody ever warned me about this problem before?

What is the problem?

Galileo: Its all in the hypotheses. Note that the two columns of A are almost parallel,
which implies that the matrix A is mildly ill-conditioned. I am willing to bet that
the matrix equations you solved in your previous courses all had integer entries.
Your professors were being easy on you so you could compute the answer without
having to keep track of a lot of decimal places. In real-life applications, don’t expect
integer entries. Let me finish the discussion of this example by remarking that this
problem disappears if the columns of A are orthogonal (or almost orthogonal). We
will revisit this issue numerous times in our future discussions. We will find that
matrices associated with polynomial approximations of data are evil, while matrices
associated with Fourier series, spline, and wavelet approximations are good. As you

will see, the mantra for numerical techniques is: “The name of the game is control.”
Simplicio: OK, let’s get back to a discussion of the prerequisites for this tutorial.

Galileo: Of course, you also need to have a solid background in Calculus. I use the
phrase “solid background” to mean that you either remember the material or are
willing to make an effort to review it on your own. At a minimum, you should be
able to compute derivatives of functions using the sum, product, quotient, and chain
rules. You should also be able to compute easy integrals using substitution. We
will review integration by parts, the Fundamental Theorem of Calculus, and Taylor’s
Theorem. Recall that the big concept in Differential Calculus is that the tangent
line at a given point on a curve is the line that best approximates the curve at that
point. The slope of this line is computed as the derivative of the function. By the
way, Brook Taylor (1685-1731) was a British mathematician, whose ideas are used

everywhere in Numerical Analysis. We will see a lot of him.
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Simplicio: I think I can handle the Calculus prerequisite.

16.1 Linear Algebra = Geometry 4+ Algebra

Galileo: As for Linear Algebra, I can only say it is probably the most important
course you will ever take in mathematics. The first instinct of an engineer is to
transform a given problem into a linear one—at least over a short time span. General
interest in this magnificent subject is easy to understand: With only two techniques
you have the ability to solve virtually any linear problem. The first technique is the
method of Gaussian elimination, otherwise known as row operations. The second is
the diagonalization of a matrix using eigenvalues and eigenvectors.

Simplicio: Until a few minutes ago, [ had no problem with row operations. However,
[ must admit that I have always been a bit insecure when it comes to eigenvalues.
Professor Poubelle covered the topic at the end of the semester and we ran out of
time and energy.

Galileo: And so it is. You learned one of the two big ideas.

Virginia: I will agree with Mr. Simplicio. 1 had Professor Picky Picky Picky for
Linear Algebra, While he was a good teacher, we rarely computed anything. We also
had the problem that we got bogged down in lots of definitions, theorems, and proofs.
The good Professor said the purpose of the course was to teach us about abstract
mathematics. I worked hard and enjoyed the material, but was never quite able to
master the topic of diagonalizing a matrix. Some how, I always got the transition
matrix backwards. That stuff at the end of the semester was very confusing.
Galileo: And there it is: the psychotic bifurcation of a beautiful subject. My view
is that deep down Linear Algebra is the fusion of geometry and algebra. If you will,
it is the “algebratization” of Euclid’s Geometry. Maybe it should have been called
Linear Algebraic Geometry. Of course, it is too late now. The beauty of Linear
Algebra is that algebraic expressions and formulas are provided for each geometric

concept. Points, rays, and lines can be represented by vectors; angles and distances
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can be computed using the inner product; areas and volumes can be computed with
the determinant function; and congruences can be represented by the combination
of orthogonal and translational matrices. This strong connection between the two
subjects is no accident. For the 100 years of the 19%* Century, mathematicians worked
incessantly to get Geometry “right.”

In fact, the subject matter you studied in your Calculus, Linear Algebra, and
Vector Analysis courses is a direct result of this effort to algebratize geometry. The
first reason was to make geometry rigorous; the second was to facilitate the incorpo-
ration of geometric ideas into the modeling of real-life applications. In the process
of proving the Fundamental Theorem of Algebra, Gauss recognized that complex
numbers could be represented as vectors in the plane. Sir William Rowan Hamilton
(1805-1865) generalized the idea of the complex numbers to the quaternions, which
provide an algebraic structure for R*. This structure satisfies the associative and dis-
tributive laws, but the multiplication fails to be commutative. He also invented the
word “vector.”

Simplicio: Can’t the complex numbers be thought of as a subset of the quaternions?
Galileo: Correct. Three other mathematicians, who contributed to this search for the
est blend of geometry and algebra were Hermann Grassmann (1809-1877), Arthur
Cayley (1821-1895), and Josiah Willard Gibbs (1839-1903). While Grassmann con-
tributed to many aspects of the subject, his efforts were focused on making the subject
as abstract and general as possible. In particular, he formalized the terms inner and
outer product in terms of their properties instead of their formulas. These ideas will
become important when we investigate Fourier series. Cayley worked with Hamilton
on matrix algebra. In fact, he invented the term. Do you know what the word matriz
means in Latin?

Simplicio: No clue.

Galileo: Womb.

Simplicio: Oh.

Galileo: Gibbs was the first high quality American mathematician. Trained in Eu-
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rope, he studied thermodynamics and heat transfer. Entropy and enthalpy were his
ideas.
Simplicio: Why would I care about thermodynamics? Thank heavens I never had to
study that difficult subject.
Galileo: Thermodynamics is a subject that grew out of the invention of the steam
engine. You drive a car, don’t you?
Simplicio: Sure.
Galileo: Gibbs was also one of the founding fathers of Vector Analysis. He even
invented the notation for the dot product and the cross product. His Vector Analysis
emerged as the winner over Hamilton’s quaternions for most applications. Giuseppe
Peano (1858-1932) was a clear-thinking Italian, who has numerous credits to his
name including the formal definition of induction on the integers, the construction of
continuous functions which raise dimension, and the formal definition of an abstract
vector space. Peano is responsible for that abstract definition you should have learned
in your first course in linear algebra. The reason for the abstraction was to get away
from the idea of a fixed coordinate system in Euclidean n—dimensional space R".
My colleagues Professors Giuseppe Peano (1858-1930) and David Hilbert (1862-
1943) were instrumental in setting up the axioms for a vector space so they fit a
multitude of different applications. It seems that different research groups were all
doing the same thing. They just didn’t realize it. Peano and Hilbert completed this
work at the end of the 19" Century. At the same time they put Euclid on a solid
foundation.
Simplicio: OK, that is enough history.
Galileo: Let us now turn to the idea of a vector space, which plays a fundamental
role in the topics we will discuss.
Simplicio: What is a vector space? Professor Poubelle never discussed that topic.
Virginia: A vector space is a set together with two operations: addition and scalar
multiplication. The axioms include associative, commutative, and distributive laws

as well as additive identity and inverses. The plane R2, three space 13, and R" are
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examples of vector spaces, where the set of scalars is the set of real numbers. The
elegant feature of a vector space is that a function f(z) continuous at each x € [a, b]
can be thought of as a vector. If we denote the collection of all continuous functions
on [a,b] by C°[a,b], then it is straightforward (but boring, boring, boring) to show
that C°[a,b] is a vector space.

Simplicio: When I think of vectors, I think of little arrows with a poison tip. Which
way does f(x) point?

Galileo: Just as a vector in the plane has two coordinates and a vector in three space
has three coordinates, a function f(x) has a coordinate for each = € [a, b]. Thus, the
space C%a, b| is looking like an infinite dimensional vector space. (Galileo sips from
his goblet.)

Simplicio: This infinite dimensional stuff is just mathematical games to keep you guys
off the streets. We live in three space. 1 say three space is as high as we need to go.
Galileo: What about time?

Simplicio: OK, I will concede four dimensions.

Galileo: What about phase space in Physics? Those guys like to have a particle move
around in six dimensional space: three coordinates for position and three for velocity.
Simplicio: OK, six.

Galileo: String theory puts us at 11. Actually, a signal with n terms can be thought
of as a vector in R". Similarly, the set of all digital images in bitmap format with 256
rows and 256 columns lie in a 256 x 256 = 22° dimensional space so you might as well
concede the point. You get one dimension for each pixel location.

Simplicio: Those last two examples make this discussion more interesting. I like
images.

Galileo: What about a careful definition of this notion of dimension?

Simplicio: It is what you said. The definition of dimension is simply the number of
coordinates. I don’t see the problem.

Galileo: Virginia, do you have any thoughts on this matter?

Virginia: Dimension is a tricky concept to make mathematically rigorous. If I re-
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member correctly from Professor Picky’s class, we first defined the notions of linear
combination and linear dependence. Once we had defined linear dependence, the
definition of independence is easy. Namely, a set of vectors is independent if it is not
dependent. A basis is defined as any subset of a given vector space with the property
that it is both linearly independent and maximal with respect to the property of being
independent. The definition of dimension for a vector space can now be defined as the
number of vectors in a basis. Professor Picky also defined the notion of a spanning
set and then proved that any minimal spanning set is a basis.

Simplicio: That definition doesn’t sound too bad. What’s the problem.

Virginia: The problem is that there can be a zillion different bases for a given vec-
tor space. Professor Picky spent several days going through some kind of exchange
argument, which showed that any two bases have the same cardinality.

Simplicio: Cardinality? What is that?

Virginia: The cardinality of a set is the number of points in the set.

Simplicio: Well why didn’t you say so? Professor Poubelle was right. All this math
stuff is rubbish. You make the easiest ideas difficult for absolutely no reason. You
math people are all neurotically obsessed by details. Boring, boring, boring. So I
guess [ should be polite and ask why should we care whether or not two bases have
the same cardinality?

Virginia: Consider your favorite vector space R2. It is easy to check that the standard
basis B = e; = (1,0),es = (0,1) is a basis. From the discussion I just gave, we now
know that any other basis will also have two members. Similar comments apply to
R3.

Simplicio: Big deal. The standard basis is good enough for me. Why should I
transform something easy into something complicated?

Galileo: Actually, the opposite is true. Do you happen to remember my colleague
Apollonius (262-190 B.C.E.)?

Virginia: He was the one with the conic sections. Right?

Galileo: And what did his theorem say?
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Virginia: If you cut (or intersect) a plane with a cone, then you get either a parabola,
a hyperbola, or an ellipse. Actually, you can also get some less interesting cases such
as a point, a line, two lines, and even the empty set.

Galileo: Very good. Now what did my friend Rene Descartes (1596-1650) show?
Virginia: I am not sure I remember.

Galileo: Descartes showed that if you consider the subset of the plane defined by
S ={(z,y) : Az* + Bay + Cy* + Dz + Ey + F = 0}, then the set must be a conic
section. The argument proceeds in two steps. The first is to translate the x and y
axes so that in the new coordinate system the constants D = E0. This step is easy
and leaves us with the expression Az? + Bxy + Cy? + F = 0. The second step is to

rotate the coordinates so that B = 0. This rotation is carried out by the matrix

S = ,
s ¢
where ¢ = cos(f) and s = sin(f) for an appropriately chosen angle §. With these
two transformations, we end up with the same seven cases you just mentioned. If
we define the discriminant by the formula A = B? — 4AC, then the three interesting

cases become:
1. If A =0, then the set S is a parabola defined by y = ax?.

2. If A > 0, then the set S is a hyperbola defined by z—j — *z—j =1.

3. If A <0, then the set S is an ellipse defined by z—j + z—j =1.

This process has reduced a complicated expression to one in standard form, where
the three interesting cases can be identified by simply computing A.
Virginia: In other words, the discriminant discriminates!
Simplicio: OK, all well and good, but what employer is going to pay me a worthy
salary for knowing this little theorem about conic sections?
Virginia: You can always teach.

Simplicio: Fat chance of that ever happening.
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Galileo: While I will admit that this theorem may seem a bit old fashioned, it pro-
vides the concept for a multitude of applications. In particular, an employer will
be interested in whether or not you are knowledgeable about Fourier Series. Fourier
didn’t invent Fourier series and he never got the math right, but he did manage to
draw attention to a technique that works over a broad range of applications. He knew

it worked.
Simplicio: Who is this Fourier and how did he get started?

Galileo: Jean Baptiste Joseph Fourier (1768-1830) accompanied Napoleon Bonaparte
to Egypt as his chief scientist in 1798. While Fourier enjoyed the sunny weather, it
seems that the English did not particularly appreciate the French having control of
this important region. As a result, Lord Horatio Nelson attacked and defeated the
French in the Battle of the Nile in 1798. With his subsequent return to France, Fourier
chose to live in Grenoble, where the winters are long, cold, and miserable. While he
turned up the heat in his apartment and put on extra coats, he was unable to keep
out the winter chill. He suffered mightily. In his misery, he began his investigations

into the heat equation.

Simplicio: Why are you telling me this sad story about poor old Mr. Fourier? I care

nothing about his heat equation.

Galileo: You might reconsider that statement. While Fourier investigated the heat
equation, his series continue to be used in a multitude of applications even 200 years
after their invention. Two reasons for this longevity come to mind. First, Fourier
series are simply linear combinations of sines and cosines so they should probably be
considered when modeling any phenomenon associated with the motion of a wave. If
you think about it, waves are involved in a multitude of application areas including
optics, electromagnetic waves, communications, acoustics, and speech recognition.
For an electrical engineer or computer scientist, Fourier also provides the basis for
the acquisition, transmission, compression, and filtering of signals and images. When
one speaks of “applications driven mathematics,” Fourier series should be one of the

first topics to come to mind. In any case, Fourier is a core subject for students in
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both pure and applied mathematics. I apologize for the extended soliloquy.
Simplicio: Now you have my full attention.

Galileo: Before we move on to Fourier, let’s take one more look at Descartes’ rotation
matrix S. The new coordinate system can be described by the basis formed by the

two column vectors of S. More specifically, the two new basis vectors are:

c —58
and
s c

These vectors have two fundamentally important properties. First, they are or-
thogonal. Second, they both have length one. In the language of modern Linear

Algebra, we have diagonalized the matrix

which allows us to write the quadratic expression Az? + Bzy + Cy? as the matrix

product:

2 2 A g X
Az® + Bxy + Cy” = (x,y) B
3 O] \y
If Ay and )\ are the eigenvalues of M, then
A O c s A g c —s
0 Ay —-s c, g C s ¢

In other words, if A\; > 0 and Ay > 0, then the conic section is an ellipse; if A\; > 0
and Ay < 0, then the section is a hyperbola; and if either A\; = 0 or Ay = 0, then the
section is a parabola. Thus, the eigenvalues can also be used to distinguish the three
cases.

Simplicio: OK, OK, that ugly word orthogonal is now looking better.

Galileo: The question now becomes: How do you compute lengths, distances, and

angles in a vector space?
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Virginia: There is nothing in the definition of a vector space that says anything about
either property.

Galileo: You are, in fact, correct.

Simplicio: So what do we do?

Galileo: Leave it to another grumpy German geek from the 19" Century, one Her-
mann Grassmann (1809-1877), to invent the idea of an inner product. The virtue of
this idea is that it solves all three problems at the same time. In particular, this de-
vice can be used to make abstract definitions for length (also called norm), distance,
and angle. His ideas were so ahead of his time, nobody could understand what he
was talking about.

Simplicio: Why would anyone want all this abstraction? Why not keep it under-
standable?

Galileo: Think about your computer software classes. When you write a subroutine
or procedure to make some computation, you should make it as generally useful as
possible. If you are sloppy and write a new subroutine for each new situation, your
software will expand out of control. The same strategy has existed in mathematics
since the ancient Greeks, where it has taken the best minds to recognize that a
hodgepodge of different special cases sometimes fall under the same umbrella. As an
inexperienced beginner, the problem becomes a lack of familiarity with all the relevant
special cases that gave rise to the abstract definition. The problem with modern
mathematical pedagogy is that we begin with the final product. This approach tends
to be elegant, but sterile.

Simplicio: Don’t think I haven’t noticed.
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16.2 Linear Algebra: The Role of Inner Products

Figure 16.3: Hermann Grassmann (1809-1877)

Galileo: To begin our discussion of inner product spaces, let us begin with the special

case of the inner product defined on R".

Definition 16.2.1. If u = (uy,u9,...,u,)" and v = (vy,ve,...,v,)", are column

vectors in R, then the inner product is < u,v >=u'v => 7" uvy.

Simplicio: Remind me about that little ¢ next to the vector u.

Galileo: That exponent ¢ indicates the transpose of the column vector to a row vector.
While publishers would like all vectors to be written horizontally, we would like to
think of them as column vectors.

Simplicio: What useful purpose does this serve?

Galileo: We would like to consider a matrix as a particulary useful type of function,
whose domain consists of all the column vectors in 1" and whose range consists of
all the column vectors in R™. These column vectors will be considered to be points.
This function function can be computed by the rules of matrix multiplication.
Simplicio: Thus, the product u'v simply indicates the usual dot product. For exam-
ple, if u = (uy, uz)" and v = (v, v2)", then < u,v >= u'v = u v + usvy.

Galileo: Yes, you are correct. Now, using this inner product, we can define the length

of the vector.
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Definition 16.2.2. ||ul]s = /< u,u >.

Simplicio: Wait a minute. What is this notation ||ul|,? More to the point. What is
that little subscript 2 doing there?
Virginia: Once again, I bet it is Pythagoras lurking around.

Galileo: We can also define the distance between two vectors.

Definition 16.2.3. If u = (uy,us,...,uy)" and v = (vy,vs,...,0,)", are column

vectors in R", then the distance between u and v is dist(u,v) = |ju — v||.

Simplicio: In other words, the distance between two vectors is the length of their
difference.
Galileo: Correct. In addition to length, the notion of inner product allows us to

compute the cosine of the angle between two vectors u and v.

Definition 16.2.4. The cosine of the angle 0 between two vectors u and v is defined

by the formula
<u,v>

O = faf v

Thus, we can now compute the angle # by the arccosine function. We can also
check to see if two vectors are 90 degrees (or orthogonal) by simply computing the
inner product < u,v > . If this quantity equals zero, they are orthogonal. For
example, if u = (¢, —s)" and v = (s,¢), then < u,v >= ¢s — ¢s = 0. Thus, the
vectors u and v are orthogonal.
Simplicio: What is that little subscript 2 doing on the length formula ||ul|y?
Galileo: We put a subscript there to remind you to compute the square root of the
sum of the squares of the coordinates of u. As it turns out, we will sometimes find it
convenient to compute |[ul|,. This symbol represents the p™ root of the sum of the
p" powers of the coordinates of u. You computer types tend to like it when p = 1 or
p = 0.
Simplicio: In God’s green earth, how can p = co? If p = oo, then we are summing

the infinite power of a bunch of numbers.
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Galileo: The case p = oo denotes the maximum of the absolute values of all the
coordinates. Don’t worry. We will return to that point. OK, what can we observe
about our rotation matrix S?

Simplicio: The two columns are orthogonal.

Virginia: And hence we won’t have the problem with stability we had with our matrix
Al

Galileo: You got it. Looking ahead, you might also like to know that the 2 x 2 Fourier

matrix is defined by the equation:

NG
2

V2

2

F2:

NN

so this matrix has orthogonal columns each with unit length. In fact, if we interchange
the two columns of Fj, the matrix represents a rotation of © = —45. Note that
det(F) = —1, which implies that there is a “flip” across some line in the plane. The
beauty of the general Fourier matrix F,, is that it will have orthogonal columns of
unit length.

Simplicio: This stuff is OK.

Galileo: Unfortunately, I have bad news for you. The situation deteriorates a little
from here.

Simplicio: How so?

Galileo: When we begin approximating a function f(z) on an interval [a, b], we will
have many different bases to chose from. For example, we can approximate the func-
tion by linear combinations of functions from the basis Bp = {1,z,2?%,...,2"}. This
type of approximation is by polynomials. We have a number of different techniques
including Taylor and polynomial interpolation. We can also approximate f(z) by
linear combinations of functions in the basis

Br = {1,cos(z),sin(x), cos(2z),sin(2x), ..., cos(nz),sin(nz)}. As it turns out for
most applications, the second basis is preferred to the first. First, as we mentioned
a few minutes ago, there are a multitude of applications involving some kind of wave

phenomena. Since the functions cos(nz) and sin(nz) certainly look like waves, they
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should provide a good model. Second, as we shall see in a moment, these functions
have marvelously stable mathematical properties.
Simplicio: How so?
Galileo: T hate to tell you but the answer once again is, you guessed it, orthogonality.
Simplicio: But wait a minute. How the heck can two functions be orthogonal? That
makes no sense.
Galileo: Now we are back to grumpy Grassmann, who recognized that we can compute
the inner product of two continuous functions f(z) and g(z) defined on an interval
[a, b] by simply compute the integral. In other words, simply define the inner product
by the formula: ,

< f@).9(a) >= [ f@)g(o) do.

a

If you think of the integral as simply a fancy summation symbol and the values of = as
coordinates, this formula is just an extension of the dot product. Thus, the functions
f(z) and g(z) are orthogonal if fab f(z)g(x) de = 0. In particular, if we consider the
functions cos(ma) and sin(nz) to be defined on the interval [—7, 7], then it will turn
out that [" cos(ma)sin(nz) do = 0. Thus, these two trigonometric functions are
orthogonal. Are you back in your comfort zone yet?
Simplicio: I am getting there.
Virginia: If I hear you correctly, we can now compute the length of a function f(z)

by the formula

1@ = V< F@), f (@) > = /f@ﬁm.

We can also compute the cosine of the angle between two functions f(z) and g(z) by

the formula
_ < [flz),9(z) >
1f (@) ll2llg ()2

cos(f)

Galileo: Correct.
Simplicio: But what does it mean to talk about the length of a function? What sense
does it make to talk about the angle between two functions? In particular, what is

the angle between the functions ™ and x™?
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Galileo: Unfortunately, the news here is not good. While we can easily compute the
required integrals on any interval, say [—1,1], the cosine of the angle between them
can be arbitrarily close to one implying the functions are close to being parallel. As
we have already observed, this situation can lead to evil.

Virginia: I can visualize the problem here.

Galileo: Before we leave the topic of inner product, let’s mention one more special
case. In particular, if the functions f(z), g(z), and w(x) are continuous on the interval

la,b] and w(z) > 0 for all x € [a,b], then we can define an inner product by the rule

< @) 9(@) > = < F(a).9(0) > = [ (@) 9la) (o) do

The function w(z) can be thought of as a weighting function.

Simplicio: Once again, I see this definition as just one more playground for the math
geeks. It looks to me like abstraction for the sake of abstraction.

Galileo: Unfortunely, I think Professors Adrien-Marie Legendre (1752-1833), Charles
Hermite (1822-1901), Pafnuty Chebyshev (1821-1894), and Edmund Nicholas La-
guerre (1834-1886) might beg to differ. They each contributed to the study of
orthogonal polynomials. As the name orthogonal polynomials suggests, these fel-
lows studied polynomials, which by the appropriate choice of weighting function also
happen to be orthogonal on some interval [a,b]. In each case, their method pro-
vides an elegant new basis for C°[a, b]. Professor Legendre studied the case when the
weighting function w(xz) = 1 for all © € [—1, 1]. Professor Hermite studied the case
when w(x) = e for all 2 € (—00,00). Professor Chebyshev studied the case when

1

w(x) = 7= forall x € [-1,1]. Professor Laguerre studied the case when w(z) = e~

for all z € [0, 00). For Professor Legendre the first few basis vectors are

Lg(l‘) = ]_,
Li(z) = =,

1
Ly(z) = . 3

Li(z) = 52° — 3z, etc.
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For Professor Hermite the first few basis vectors are

Hy(x) =1,

Hy(x) = 2w,

Hy(z) = 4a® — 2,
Hj(z) = 82° — 3z, etc.

Ty(z) =1,

Ti(z) = =,

Ty(z) = 22* — 1,
Ts(z) = 42° — 3z, etc.

Ll(l') = —.’E+]_,

1
Lg(l‘) = 5(1‘2 —4x + 2),

1
Ly(x) = 6(—:53 + 927 — 18z + 6), ete.

These polynomials can be computed using their definition, integration by parts, and
the Gram-Schmidt orthogonalization process you learned in a beginning Linear Al-
gebra course.

Since the weighted integral f;f(:r)g(:r)w(:r) dx is an inner product, anytime a
fact is demonstrated about an inner product space, it will also be true for these
orthogonal polynomials. The Pythagorean Theorem is the most notable example.
These orthogonal polynomials not only have notable mathematical properties, but
also have applications to differential equations and Physics. Legendre polynomials
are closely associated with Laplace’s equation, heat transfer, and the topic of spherical

harmonics in physics. The literature written on these topics is vast.
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Simplicio: I never studied these properties in my physics class. These applications
sound difficult.

Galileo: We are now in a position to understand the virtues of orthogonal projections.
Simplicio: I hate to think.

Galileo: Well then, visualize for a moment that you are holding two cannonballs in
your hands. If you let go, they drop to the floor. If they were close together at the
beginning, they will land side-by-side when they hit the floor. Note that the angle
between the flight-path of each ball and the floor is 90 degrees. In other words, any
vector lying in the floor is orthogonal to the flight-path of each ball.

Simplicio: T see.

Galileo: On the other hand, suppose I fling the cannonballs sideway towards the edge
of the room.

Simplicio: So?

Galileo: Even if they are close together when they are in your hands, they may still
strike the floor at points far apart. If the room is large, they may land very far
apart. The virtue of Fourier series approximation is that it amounts to an orthogonal
projection from an infinite dimensional space into a finite dimensional space. Small
errors in measurement at the beginning remain small. This is good.

Virginia: It is better to drop than fling?

Galileo: You have it. Moreover, the technique of linear least squares is also based on
this same concept. Statisticians give daily thanks to the Greek Goddess Orthogonal.
Simplicio: This is more than I can stand.

Galileo: Since it took people decades to understand Grassmann, it is not too surpris-
ing you might have to think about these ideas for a minute or two. However, let me
comment that an inner product can be defined on an abstract vector space by simply
stating four simple properties. The whole process is amazingly elegant and simple.
(Galileo sips.)

Virginia: I like these ideas. Simple is good.

Simplicio: I think I am going to have a bad hangover.
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Galileo: No drinking for you. Alcohol kills brain cells you cannot afford to lose. In
fact, we now summarize the connections between Geometry and Linear Algebra in

Table 16.2.

Geometry | — Linear Algebra
point — vector
line — vector
ray — vector
distance — inner product
angle — inner product
right angle | — | orthogonality (inner product)
area — determinant
volume — determinant
congruence | — linear transformation
similarity | — linear transformation

Table 16.1: The Connections Between Geometry and Linear Algebra

Virginia: So the key ideas of Geometry are encapsulated in the four concepts: vector,

inner product, determinant, and linear transformation.

Galileo: You got it. Better yet, it is rigorous and set up for making computations.

The subject is perfect for our computer guys.
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16.3 A Linear Algebra Version of Pythagoras

David Hilbert (1862-1943)

David Hilbert: “He who seeks for methods without having a definite prob-

lem in mind seeks in the most part in vain.”

Galileo: Let us introduce David Hilbert, an expert in Linear Algebra. He wrote
a classic work on the foundations of geometry, where his mission was to formulate
the logical structure of geometry into the most mathematically correct framework
possible. He also enjoyed applications as well as dancing on Saturday nights. We will
ask him to present a more modern version of the Pythagorean Theorem.

Simplicio: Well, at least we don’t have to deal with that logic guy. He was a downer.
Virginia: You try my patience.

Hilbert: In the interest of keeping the discussion accessible and concrete, we begin

with an example.

Example 16.3.1. Let

and
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Note that the square of the length of the vector u equals 2. Note that the square of
the length of the vector v also equals 2.
Note that the square of the length of the vector

2
0

u+v=

equals 4. Since 2 4+ 2 = 4, we have proved a special case of the Algebraic Version of

the Pythagorean Theorem.

Simplicio: Even I can handle that computation.
Hilbert: We now generalize this example by proving the theorem for column vectors

in R™ which have the form

Uy

where each u; € R.

Theorem 16.3.1 (Algebraic Version of Pythagoras ). If u = (uy, us, ..., u,)"
and v = (vy,va,...,0,)" are two orthogonal vectors in R, then ||[u+ v||3 = [|ul|3 +

v 13-

Proof. By the properties listed in the previous proposition combined with the as-

sumption that < u,v >=<v,u > = 0, we see that

lu+vl =<u+v,utv>
=<ug,u>+<y,v>+<v,u>+<Vv,v>
= [lull3 + 040+ []v[}

= Jlull3 + [Iv[5-
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Simplicio: While the proof is short, I still don’t like this unnecessary abstraction.
Hilbert: Do you understand how the theorem applies to the examples?
Simplicio: No problem, for the vectors u = (1,1)" and v = (1, —1)*, we simply observe
that u+v =(2,0)" and 4 =2 + 2.

For the vectors u = (3,4)" and v = (—4,3)", we simply observe that u + v =
(=1,7)" and |lu+v]|3 =1+49 =52+ 5% = |jull3 + ||v]3
Hilbert: Good. To help you visualize the theorem in two dimensions, we have included

a diagram in Figure 16.4.

Fa]

Z¥
=i

Figure 16.4: The Linear Algebra Version of the Pythagorean Theorem

Hilbert: Unfortunately, the abstraction gets worse. However, before we move in that
direction, I would like to point out that the proof only used the properties of the inner
product we showed in the proposition. You have now seen Hermann Grassmann at
work. Namely, first identify and isolate the key properties associated with an idea
and then prove as much as you can about the properties. A benefit of this process

is that complicated summation notation is replaced by a pair of brackets. Once you
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get used to this method of doing business, the ideas underlying the technique become
more transparent. Later we will reprove the theorem for Fourier series, which live in a
more general inner product space. In an effort to prepare you for Fourier Series, how
about if we restate the Pythagorean Theorem the vector w is a linear combination
of two orthogonal vectors u and v, which have the same length L. For Fourier series
the constant L = /7. Note also, that if the constant L = 1, then the statement is

the same as the theorem we just presented.

Example 16.3.2. Let

and

As we noted before, the length of the vectors u and v both equal /2.
If w = au + bv, then ||w||5 = 2(a® + b%). Note that this observation is a special

case of the next Theorem.

Theorem 16.3.2 (Algebraic Version of Pythagoras 2). Let u = (uy, uz, . .., uy,)"
and v = (vy, v, ..., v,)" be two orthogonal vectors in R™ with the property that ||ul|s =

V]2 = L. If a,b € R and w = au + bv, then ||w||3 = L?(a* + b?).
Proof. Since w = au + bv,

Wl = =<w,w>
= <au+bv,au+bv >
= d’<uu>+ab<u,v>+tba<v,u>+b?<v,v>
=d<uu>+0+0+0<v,v>
=a’L* + V’L?

= L2(a2 + b2).
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Simplicio: OK, why should I care about this last theorem? Why don’t we just leave
these ideas in Geometry where they belong?

Hilbert: We are looking ahead to Fourier series, which we will be discussing at a later
date. The 2 x 2 matrix

F, =
1 -1

is the matrix representing the discrete Fourier transform. Note that the columns of
this matrix are the vectors u and mathbfV we just discussed in the previous example.
The advantage of Peano’s abstract definition of vector space is that functions can also
be thought of as vectors. In particular, trigonometric functions such as 1, cos(z), and
sin(x) can now be considered vectors in a very large (i.e infinite dimensional) space.
While you may think of the inner product as the dot product of two vectors in R",
we can also define the inner product of two functions as the integral of their product
over some interval [a, b]. When we discretize these functions, we end up with the 3 x 3

Fourier matrix

1 1 0
1 V3
1 = 5
1 _ V3
1 = —%

Note that the columns of this matrix are pairwise orthogonal.

Simplicio: So?

Hilbert: This observation is important because the Pythagorean Theorem can now
be applied to these three column vectors to inforce stability.

Simplicio: I see that the columns are orthogonal. Infinite dimensional spaces?

Example 16.3.3. Hilbert: The idea of an infinite dimensional space is not so strange
when you realize that each point x € [a,b] can be thought of as a coordinate for
a function f(x). Since trigonometric functions are usually defined on the interval

[—m, 7] (or[0,27]), the inner product becomes

< f(@)g(x) > = / " f(o)gla) de.
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The make the connection between Fourier series and Pythagoras, let

h(xz) = acos(x) + bsin(z). Since it is an easy exercise from calculus to show that

1. < cos(z),cos(x) >=<sin(x),sin(x) >= 7 and
2. < cos(x),sin(x) >=< sin(x), cos(x) >= 0,
we observe that

/7r (h(z))? dox = < acos(x) + bsin(x), acos(z) + bsin(z) >

—T
= a”® < cos(z), cos(x) > + 2ab < cos(w), sin(z) >
+ b* < sin(z), sin(z) >
= a*t + 2% 0+ b’ = 7w(a® + b?).
Grassmann would be proud to see his abstract definition of the inner product be-
coming a central focus in this important application.

Virginia: I see the potential here for some interesting mathematical ideas.

Exercise Set 16.1.

1. If u, v, and w represent the columns of the matrix

1 1 0
I
-
then show that [[u+ v+ w|2 = ||u||3 + [|v]]3 + ||w]|3.
2. Prove the Pythagorean Theorem for three vectors: If u = (uy,us,...,u,),
v = (v1,02,...,0,)" and w = (wy, ws, ..., w,)" are three vectors in R™ with the

property that u L v, u L w, and v L w, then |[u+ v +w|2 = ||[u||3 + [|v]]3 +

[Iwlf3.
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3. Prove the following theorem: Let u = (uy, uz, . .., u,)", v = (v1, vs,...,v,)", and
w = (wy, ws, ..., w,)" be pairwise orthogonal vectors in ™ with the property
that |[ulls = [|[v|l2 = [|w]|l2 = L. If a,b,¢c € R and z = au + bv + cw, then
2l = L(a? + 87 + ).

4. Prove the parallelogram law: If u = (uy,ug,...,u,)" and v = (vy, vy, ...,v,)",

then [lu+v|[3 + [[u = v[[5 = 2[5 + 2[|v]3.

5. Prove the Law of Cosines.
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Chapter 17

Taylor Polynomials

Brook Taylor

Galileo: We now ask Professor Taylor to rejoin us so he can explain the general
version of the theorem that made him famous. While strictly speaking it is not a
method of interpolation, it does provide an entry point into the topic of polynomial

interpolation. Professor Taylor, tell us your theorem:.

Taylor: Actually, it is a straight forward generalization of what we presented when we
showed the method of Newton/Raphson converges quadratically. Again, the concept
is to write a given function f(x) = p,(x) + E,(z), where p,(x) is a polynomial of

degree n and E,(z) represents the error. In other words, a smooth function can be

379
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written as the sum of a polynomial and an error. With luck, the error term will be

small.

Theorem 17.0.3 (Taylor). Ifa < z,zy < b and f(z) € C""'[a,b], then

. ) Lo k ‘ n+1 n
ey =3 I s L e

Proof. The proof employs the same technique as the one given for the case n = 1.
The idea is to always attack the error term using the technique of integration by
parts, where we integrate f("*1)(¢) and differentiate (z — ¢)”. Since we have already
demonstrated the proof for n = 1, we will prove the next case when n = 2.

For n = 2 we let u = (v — t)? and dv = f"(t) dt so that du = —2(x — t)dt and

v = f"(t). When we apply integration by parts, we get the following reduction.
[ o= iie= @00, - [ o -
= (=20 (aw) +2 F1(8) (o — byt
— (= 20)?f" () + 207 (o) (& — 0) + F(x) — Fwo)]

Thus, f(z) = f(zo) + (z — z0) f'(z0) + w(ﬁﬁ —x0)? + 5 [ f"(2)(x —1)* dt.

The general case is proved by applying the technique of integration by parts n
times to the integral [ f"*'(t)(z —t)"dt, where u = (z — )" and dv = f"*'(t)dt. If
n = 47, then the technique will have to be applied 47 times.

O

Taylor: Note that any polynomial of the form py(z) = ag + a12 + aa?

is a Taylor
. . . th . n k
series. Similarly, any n'" degree polynomial p,(x) = Y, _, axz” represents a Taylor

series. Here is an example to work out.

Example 17.0.4. Compute the first n + 1 non-zero terms of the Taylor series for
the function f(x) = cos(x) at the point x = xy = 0. Since cos(x) = cos(—x), for all
x € R, the function cos(x) is an even function. This fact should tip you off that the

Taylor series expansion will only have even powers of x represented.
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Solution: When we compute the derivatives of f(x), we find that f(0) =1, f'(0) =
07 f”(O) = _17 f”,(o) = 0, f(4)(0) = ]_, etc.

Thus, the series expansion at v =0 is

1 1 1 1
cos(z) ~ 1 — 5902 + Ex‘l e (1) " = Z(—l)k—x%.

Simplicio: Where did the formula for the polynomial

pa(z) =0, f(k;(!‘co) (z — mp)* come from? How did you ever think of that?

Taylor: You can figure out the formula for yourself. Just work out the next example.
Example 17.0.5.

Problem: If py(z) = 2 + 3z + 52° and xy = 7, then find constants A, B,C so that
p(x) =A+B(x—T7)+C(z — 7).

Solution: If po(x) = A+ B(x —7) + C(x — 7)%, then po(7) = A.

Since ph(z) = B +2C(x —7), phy(7) = B.

Since ply(x) = 2C, ph(7) = £.

Thus, ps(x) = pa(7) + ph(7) (@ = 7) + 2 (x = 7)2.

Taylor: This last exercise provides formulas for a polynomial when expanded about
an arbitrary point zy. This formula is exactly my theorem for the special case that
the function is a polynomial.

Simplicio: But what about the error term?

Taylor: Since you have begun the process with a polynomial, the errors are all zero.
In other words, there is no error term.

Simplicio: And of course, I have to complain about the proof. While I understand
integration by parts, I must say [ am curious about how you came up with that idea.
Galileo: Now you are asking the more difficult question: How does the creative process
take place in your brain? While the answer will probably never be known, hard work
and careful thought are definitely prerequisites.

Lagrange: I would like to intercede a second time to insist that [ have a more elegant
form of this theorem, where the integral in the error term is replaced by a derivative

similar to the ones in the polynomial part.
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Theorem 17.0.4 (Taylor). If a < b and f(x) € C""{a,b], then for every pair of

points x,xy € (a,b) there is a point z € (a,b) such that

") (2 \ (n+1) ( i

Proof. As before, we will only prove this form of the theorem for the integer n = 2.
In this case, we have the equation f(z) = f(zo) + (x — o) f'(x0) + @(m — z9)? +
: ; f"(t)(z —t)* dt. Again, by the Intermediate Value Theorem for Integrals, we see

that there is a point z between xy and x such that

5[ 1 —vf =) [z a

Zo

_ 1 " (.CL' B x0)3
"G
=5 (x — x9)

Simplicio: While all this mathematics is quite lovely, could you give me one useful

application.

The Graph of y = sin(x) and Taylor Approximation
T T

The Y Values

Figure 17.1: Successive Taylor Approximations of f(x) = sin(z)
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Galileo: This request is not a problem. Consider the question of designing a calcula-
tor. On that calculator you would like to have a button, which computes the value
of sin(z) for a given value of .

Simplicio: That feature would be convenient.

Galileo: So how do you think you might design such a device?

Simplicio: Since there is no formula for sin(z), [ have no earthly idea.

Galileo: While Taylor’s theorem does not provide a formula for the exact value of
sin(x), it does manage to provide a formula for an approximation to an accuracy as

close as you wish. In particular, the strategy can be described in the following steps:

1. Decide the accuracy you require. For single precision, this requirement is %.

1

For double precision, this requirement is 5.

2. Decide the size of the interval (a,b) you would like to compute. Since sin(x) is

27 periodic, this interval might be [—m, 7).

_ M) (

3. Find an integer n so that the error term F, (x) = D) — )" is less than

the required accuracy for all = € (a,b).

Simplicio: That strategy sounds reasonable.

Galileo: Well then, here are some problems to practice on.

Exercise Set 17.1.

The Graph of y = Log(x) and the Taylor Approximation
T T T T

The Y Values
]

The X Values

Figure 17.2: Successive Taylor Approximations of f(z) = In(x)
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1. Compute the first 5 non-zero terms of the Taylor series for the functions sin(z) tan(x

) 1+IZ7
and e® at the point © = xy = 0. Note that while the function —— requires only
even powers of x, the functions sin(x) and tan(z) have only odd powers of x
represented. Do you remember the definition of what it means for a function

to be even or odd?

2. Compute the first 5 non-zero terms of the Taylor series for the function In(x)

at the point © = x5 = 1.

3. Given the function f(x) = sin(z) defined on the interval [—m, 7|, 2o = 0, and

a tolerance tol = determine an integer n with the property that the

10,000 ooo
polynomial p, (z) = >, _, f(k) (#0) (1 — )* has the property that |f(z)—p, ()] <
tol for all x € [—m,7]. Could this technique be effectively programmed into a
calculator to estimate the function sin(x) to single precision? What if we reduce

the size of the interval to [—7/2,7/2]7 What about double precision?

4. Given the function f(x) = cos(z) defined on the interval [—7/2,7/2] and a

tolerance tol = determine how many terms of the Taylor series will be

10, 000 000

required to guarantee that the error between the function and the Taylor series

is less than the tolerance.

5. Given the function f(x) = e® defined on the interval [—1,1] and a tolerance

tol = m determine how many terms of the Taylor series will be required

to guarantee that the error between the function and the Taylor series is less

than the tolerance.

6. Given the function f(x) = In(1 + z) defined on the interval [}, 3], 20 = 0,

and a tolerance tol = determine an integer n with the property that the

10,000 ooo
polynomial p,(z) = > 7 _, f(kz, (x—x0)¥ has the property that | f(z)—p,(z)| <

tol for all z € [Z, 2

]. Could this technique be effectively programmed into a
calculator to estimate the In(x) to single precision? What if we reduce the size

of the interval to [}, ]? What about double precision?

474
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. What about the Taylor Series error formula for the functions H% and tan(x)?

(Assume that zp = 0.)

Show that the Mean Value Theorem is a special case of Taylor’s Theorem when

n =20.

Use Taylor’s Theorem to compute the square root of 3. (Hint: Let f(x) =
Vr,rg = 4, and x = 3.) How many terms of the Taylor series will be needed
to to guarantee an accuracy of less than 0.000017 What happens when zy = 1,

and z = 2 are used to compute /27

If po(x) = 2+ 32+ 522 and zp = 7, then show that py(z) = po(7) +p5(7)(x —T7) +
’@(w — 7). (Hint: Let py(z) = A+ B(x —7) 4+ C(x —T7)?, compute derivatives,
substitute x = 7, and solve for A, B, and C')

If po(z) = ag + a1z + azz? and zp is any real number, then show that py(z) =

pa(wo) + ph(wo)(z — x0) + @(:}: — xp)?.

If po(z) = Y p_,akx® and zg is any real number, then show that p,(z) =
5

Zk 0 k' (ff—xo)k-

Given the function f(:r) = In(x) defined on the interval [3,2], 2y = 1, and

a tolerance tol = determine an integer n with the property that the

1) (zo)

10,000 000

polynomial p,(z) = > p_, (z—x0)" has the property that |f(x) —p,(z)] <

tol for all z € [3,3].
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Chapter 18

Polynomial Interpolation

Galileo: Let us begin with an investigation of three simple and easy to understand
sequences.

The first sequence begins 1,3,5,7,9.

The second sequence begins 1,2, 4,8, 16.

The third sequence begins 1,1, 2,3, 5, 8.

The question 8 year old kids are often asked in their elementary mathematics
classes is: What is the next term in each of these sequences?
Simplicio: Even I can answer these questions. Since the first sequence is clearly
arithmetic, the next term will be 2 more than the last and thus 11. Since the second
sequence is clearly geometric and each term is twice the previous, the next term will
equal 32. The last sequence is clearly Fibonacci where the rule is that each term is
the sum of the previous two terms, the answer is 13.
Galileo: Not so fast. I contend that the next term for each sequence should equal 47.
Simplicio: Impossible!
Galileo: Actually, you provided evidence that indicates your prejudice when you
identified the sequences as arithmetic, geometric, and Fibonacci. 1 did not provide
that information. Thus, you read a structure into the problem that was not present.
Simplicio: But that is what I did when I was a kid and I always got the right answers

then. Are you telling me that the rules of mathematics have changed?

387
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Galileo: No. I am telling you that the structure of the answer was implied, but not
explicitly provided, which means that a a unique answer is not forced. In particular,
your teachers were sufficiently sloppy that any answer is correct. This problem could
have been avoided if they had been more specific when they asked the question. Of
course, you have worked enough of these problems that you instinctively know which

answer the teacher wants so you have no problem.

Simplicio: To think that I have been misled all these years. This turn of events is

quite disturbing.

Galileo: No worries. We will now show how to produce a formula to interpolate
any set of data using the technique of polynomial interpolation. The idea is the
following. For any given finite set of data points (zx, yx), k = 0,1,2,...,n, where the
xy’s are distinct, we can find a degree n polynomial p,(z) such that p,(zy) = y; for
all k =0,1,2,...,n. In particular, we can find a 5 degree polynomial ps(x), which

interpolates the data (0, 1), (1, 3),(2,5), (3,7), (4,9), and (5, 47).

Simplicio: I will be interested to see that polynomial ps(x).

Galileo: In this presentation we will provide three different techniques used to perform
the interpolation, a statement of the Lagrange error formula, and the classical example
of Runge, which indicates that polynomial interpolation can be dangerous. Note that

while three different techniques are presented, they all produce the same answer.
Simplicio: If the method is dangerous, then why would we play with it?
Galileo: Because the methods are easy to understand and they give insight into least

squares, Fourier, and spline methods, which are used on a daily basis in today’s world

of high technology.
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18.1 The Method of Lagrange

Joseph Louis-Lagrange: “As long as algebra and geometry have been sep-
arated, their progress has been slow and their uses limited; but when these
two sciences have been united, they have lent each mutual forces, and have

marched together towards perfection.”

Galileo: The first interpolation technique to be presented is the method of Lagrange
polynomial interpolation. While Joseph Louis-Lagrange (1736-1813) made numerous
contributions to algebra, analysis, and differential equations, his observations con-
cerning polynomial interpolation also bear his name. Napoleon named Lagrange to
the Legion of Honour and Count of the Empire in 1808. He summarized his life’s
work with the quote “I do not know.”

We begin the discussion of our first technique for polynomial interpolation with a
definition.

Note that the following statements are easy to check.

Proposition 18.1.1. If (zx,yx), k = 0,1,2,...,n are given points with the xy’s
distinct and wy(x) = (x — xo)(x — x1) -+ (& — k1) (x — Tgy1) - -~ (¥ — xy,), then the

functions Li(x) = % satisfy the following relations:

1. deg(Ly(x)) = n,
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2. Li(z) =1, and

Definition 18.1.2. If the data points (xg,yk), k = 0,1,2,...,n have the property

that the x1’s are distinct, then Lagrange interpolating polynomials are defined by the
formula p,(z) = > yi - L(x).
k=0

Proposition 18.1.3 (The Method of Lagrange). If points (xy,yx), k =0,1,2,...,n
are given, where the xy’s are distinct, then the polynomial p,(x) = > yx - Lg(z) has
k=0

the property that p,(xy) = yx, for all k =10,1,2,...,n.
Proof. This proposition is immediate since Ly(z;) =1 and Lg(x;) =0, if j # k. O

Exercise Set 18.1.

1. Use the method of Lagrange to find a quadratic polynomial py(x) such that
p2(1) = 3,p2(2) =5, and py(3) = 7.

2. Use the method of Lagrange to find a cubic polynomial p3(z) such that p3(1) =
37p3(2) = 57p3(3) - 7, and p3(4) =11.

3. Find a 5™ degree polynomial ps (), which interpolates the data (0,1), (1, 3), (2,5), (3,7), (
and (5,47).

18.2 The Technique of Newton Divided Differ-
ences

Galileo: Sir Isaac Newton (1642-1727) was an English mathematician, who made his-
toric contributions to mathematics, optics, and celestial mechanics. The Principia
is recognized as the greatest scientific book ever written. In this monumental work
he analyzed the motion of the bodies in resisting and non-resisting media under the

action of centripetal forces. The results were applied to orbiting bodies, projectiles,
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pendulums, and free-fall near earth. He further demonstrated that the planets were
attracted toward the sun by a force varying as the inverse square of the distance.
He also explained the eccentric orbits of comets, the tides, and the precession of the
earth’s axis. While the invention of the calculus may have been his greatest contri-
bution to mathematics, his method of divided differences provides a computationally
efficient technique for implementing polynomial interpolation.

Let us begin the discussion by solving the following simple problem. Given three
points (o, ¥o), (z1,%1), (T2, y2), find constants co, ci,co with the property that the
polynomial py(x) = ¢o+c¢i(x —x9) + co(x — 20) (x — 1) has the property that pe(zg) =

— Y=Y

Yo, p2(1) = y1, and po(2) = yo. A quick check shows that ¢y =y and ¢; = P

not so quick check shows that

Y2—Y1 _ Yi—Yo
To—T1 T1—To

Ty — T

Co =

We can begin to understand these formulas if we assume the data is generated by

a function y = f(x). In particular, if y, = f(xy) for all £ =0, 1, 2.
Definition 18.2.1. Let f(z) be a function defined on the interval [zg, x,].

zo  flzo] = f(20)

— [flza]=flzo]
f[x[]:xl] — a:llfa:oo

T fln]=flw) flzo, 1, 2] = %ﬁmm
f[:ElJ:EZ] = %

xy  flre] = f(x2)

Note that such a construction is called a “cascade.”

Proposition 18.2.2. If y = f(x) is a function and yo = f(xo),1n = f(x1), and
yo = f(x2), where the points xo,x1, and xs are distinct, then the polynomial po(z)
defined by py(z) = flzo] + flwo, x1](x — m0) + flwo, 21, 22](x — o) (& — 1) has the
property that py(xo) = Yo, P2(71) = Y1, and py(x2) = Yo

Proof. 1t is easy to check that po(zo) = yo and py(z1) = y1. A bit of algebra can be
used to show that ps(xs) = yo. O
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Thus, the previous proposition can be used to show that formulas exist for the
constants cg, ¢;, and c¢y; namely, the top entry of each column in the cascade.
We now indicate how this technique can be applied to any set of data points by

making the following definition.

Definition 18.2.3. The k' divided difference relative to x;, Tii1, Tiza, - - -, Tivk S given
by
o f[$i+1, K -$i+k] - f[xi, Tit1y--- 7xi+k71]
f[xz',le, ce ,$i+k] = .
Titk — Xy

While it is easy to check that formula py () = fxo]+ f[z0, 21](x—20)+ f[z0, 21, T2] (2 —

xp)(z — x1) interpolates the data, it is more tedious to check the general case.

Proposition 18.2.4 (Newton Divided Differences). If g, z1, s, ..., %, are dis-

tinct points and yx = f(xy) for all k =0,1,2,..., xy,, then the polynomial

pu(@) = flawo] + Y flwo, -, xl(@ — m0) ... (x — m41)
k=1
has the property that p,(x;) = f(x;) for alli =0,1,2,...,n.

Simplicio: So, why should I waste my time learning this second method?

Galileo: Let us inquire what our friendly expert, [saac Newton, has to say on this
matter.

Newton: Well, if you had bothered to work out the previous two exercises, you would
have noticed that computing the cubic polynomial ps(z) is only slightly more work
than computing the quadratic polynomial ps(z). If you want to really appreciate my
method, then use the method of Lagrange to compute these two polynomials.
Simplicio: But I did use the method of Lagrange to compute po(x) and ps(z). It
didn’t seem bad at all.

Newton: Did you simplify your answer for ps(z) so that it is in the form p3(x) =
ap + a1z + asx? + asz3?

Simplicio: No.

Newton: After you do this simple exercise, then you can complain about my method.

Not until.
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Exercise Set 18.2.

1. Use the method of Newton divided differences to find a quadratic polynomial
pa(z) such that py(1) = 3,pa(2) = 5, and po(3) = 7.

2. Use the method of Newton divided differences to find a cubic polynomial p3(x)
such that p3(1) = 3,p3(2) =5, p3(3) =7, and p3(4) = 11.

3. Show that the Newton divided difference formula works for cubic polynomials.

18.3 The Technique of Vandermonde

Galileo: Alexandre Theophile Vandermonde (1735-1796) was a French mathemati-
cian, whose first love was music. He only turned to mathematics when he was 35
years old. His mathematical interests were in the theory of equations and the theory
of determinants.

The technique of Vandermonde evolves in a natural way from the problem: Given
a set of data points (zg,vo), (x1,41), and (z9,ys), where the x;’s are distinct, find a
quadratic polynomial of the form
p2(x) = ag + a1& + axa® such that py(x0) = yo, p2(21) = y1, and py(x2) = 2. Thus, a
system of three equations and three unknowns must be solved. In matrix format this

system becomes:

2
1 =z xj ag Yo
1 2 =

Ty 9 ay Y1
1 2

T2 Ty ag Y2

More generally, given a set of data points (x,yx), K = 0,1,2,...,n, where the
zy’s are distinct, find an n—degree polynomial of the form p,(z) = Y ) _, axz® such
that p,(zg) =y, for all k = 0,1,2,...,n. The answer to this question is the solution

to the following system of equations:
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Thus, the constants ag, ay, . .

following proposition shows the system can be solved as long as the x’s are distinct.

Proposition 18.3.1. If

1z a2
1z a2
1z, 22
1z, 2

then det(V,) = H0§i<k§n(xk — ;).

Proof. If we let

then notice that det(V},(x)) is a polynomial of degree n with roots g, z1, za, . ..
Thus, det(V,(z)) = Cp(x—x)(x—21) ... (x—xy_1), where C), is some constant. While
a straightforward induction argument can be used to show that C,, = det(V,,_1(x, 1)),

the proof is best understood by simply computing the special cases when n = 1 and

n = 2.

2
1 zp1 oi_

1

Zo
o

o)

Zo
X1

X2

T

T

33

T

Qo
ai

a9 -

Qn

Yo
n
Y2

Yn

., a, can be found if the system can be solved. The

Lo

mn

Ty

n

)

mn

:ETL
2 n
0 )
2 n
1 Ty
2 n
2 )

n
1 - Z‘nil

2 xn
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A matrix of the form given in the previous proposition is called a Vandermonde
matrix.

The previous proposition shows that if the x;’s are pair-wise distinct, then the
determinant is different from zero and the system cannot only be solved, but the

solution is unique. The matrix V is called a Vandermonde matrix.

Proposition 18.3.2. If (g, yk), £ = 0,1,2,...,n are n + 1 distinct points, then
the polynomial defined by p,(x) = > p_, apx®, where the values of ag,ay,...,a, are

computed as the solution of the equation

2 n
1 z xj i agp Yo
2 n
1z ] i ay Y1
1 a x% Ty as | = | y2
1 2 n
Tp Ty .. Tp an Yn

has the property that py(xg) = yg for all k =0,1,2,... n.

Proof. Note that this proposition is a simple restatement in matrix form that p,,(xy) =

yp forall k =0,1,2,...,n. O

Galileo: The next proposition is a uniqueness theorem.

Simplicio: Why would I possibly care about uniqueness?

Galileo: Well, we have shown you three different techniques to compute the interpo-
lating polynomial. You might wonder if you might get three different answers. In

fact, the next proposition shows that all techniques will result in the same answer.

Proposition 18.3.3. Let (xg,yx), k = 0,1,2,...,n be a set of n+ 1 points. If the
z’s are distinct and p,(x) = Y p_y axx® and g, (v) = Y p_, bka® are polynomials such

that p,(zx) = qu(zx) for all k =0,1,...,n, then ar, = by for all k =0,1,...,n.

Proof. If p,(zx) = gn(zg) for all k = 0,1, ..., n, then we have a system of linear equa-

tions of the form Va = Vb, where V is a Vandermonde matrix, a = (ag, ay, ..., a,)’,
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and b = (bg,by,...,b,)". Since the x;’s are distinct, the determinant of the Van-
dermonde matrix is different from zero so that the matrix V has an inverse. Thus,

ap, = b for all k =0,1,...,n. O

Simplicio: But wait a minute! How am I going to solve a system of 3 equations and
3 unknowns or 4 equations and 4 unknowns? These computations will be required to
get the final answer?

Galileo: That is why Babbage invented the computer.

Simplicio: Who was Babbage?

Galileo: Charles Babbage (1791-1871) was the designer of the difference engine, which
implemented Newton’s method of divided differences. Together with a bit of help from
his lady friend, Augusta Ada King, countess of Lovelace (1815-1852), he also designed
(but never built) the forerunner of the modern electronic computer. If you want to
see a reconstruction of his difference engine, visit the Science Museum in London. [t

weighs a mere 3 tons.

Simplicio: Not a calculator you could strap to your belt.

Exercise Set 18.3.

1. Use the method of Vandermonde to find a quadratic polynomial py(x) such that
p2(1) = 3,p2(2) =5, and pa(3) = 7.

2. Use the method of Vandermonde to find a cubic polynomial ps(z) such that
p3(1) = 3,p3(2) = 5,ps3(3) = 7, and p3(4) = 11.

3. Use the method of Vandermonde to find a cubic polynomial ps(z) such that
p3(—1) = 2,p3(0) = 5,p3(2) = 7, and p3(-2) = 3.
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18.4 FError Estimation for Polynomial Interpola-
tion

Galileo: We now turn to the problem of computing the error between a function and
its polynomial interpolation. While we have three different techniques for polynomial
interpolation (Lagrange, Newton, and Vandermonde), we saw at the end of the last
section that they all produce the same answers. The focus of the next discussion is
to provide a formula for the error. Since the three techniques all produce the same
polynomial approximation p,(x), we only need one error formula.

Simplicio: While one error formula is good news, I can tell that more theory is on
the way. I would appreciate it if we could keep the discussion simple.

Galileo: Professor Lagrange could you help us?

Lagrange: If a function f(z) is differentiable at every point in an interval [zo,z],
then we know by the Mean Value Theorem that there is a point z € [z, x] so that
f(x) = f(zo) + f'(2)(z — ). Just as Rolle’s Theorem can be used to prove the
Mean Value Theorem, the generalized Rolle’s Theorem can be used to prove the error
formula for polynomial interpolation.

Simplicio: But I don’t remember Rolle’s Theorem.

Lagrange: The way to visualize Rolle’s Theorem is to imagine throwing a ball in the
air and catching it when it comes down. What can you say about the velocity of the
ball at its highest point?

Simplicio: Since the ball is changing direction from upward to downward motion,
obviously the velocity is zero.

Lagrange: Your observation is correct. Now take that observation one step further by
throwing a ball into the air and instead of catching it on the way down, let it hit the
ground and bounce back up into your hand. If this experiment is conducted carefully,
there will be three different moments in time, where the height of the ball is the same
(i.e. the height of your hand above the ground). What can you conclude?

Simplicio: The ball will now have two different moments in time, where the velocity



398 CHAPTER 18. POLYNOMIAL INTERPOLATION

is zero. I don’t get it.

Lagrange: Well, if the velocity is zero at two different points in time, then what can
you say about the acceleration?

Simplicio: It seems like the acceleration must be zero at some moment in time between
when the velocities are zero.

Lagrange: You are correct. Now you are ready to understand a general theorem,

which we now state. We indicate a proof for the cases when n =1 and n = 2.

Theorem 18.4.1 (The Generalized Rolle’s Theorem). If f(z) € C"[a,b], a <
rg < 1 < -+ <y < b, and f(xg) =0 for all k =0,1,2,...,n, then there exists a
point z € (a,b) such that f™(z) = 0.

Proof. If n = 1, then we have two distinct points zy and z; so that f(zp) = 0 and
f(z1) = 0. By the Rolle’s Theorem you endured in your first calculus course, there
is a point z between zy and z; so that f'(z) = 0. In particular, when n = 1, the
Generalized Rolle’s Theorem is exactly Rolle’s Theorem.

If n = 2, then we have three distinct points g, 1, and x5 so that f(zy) = f(z1) =
f(z2) = 0. Thus, a point z; can be found in the interval (zy,z;) such that f'(z;) =0
and a point 2z can be found in the interval (x,z2) such that f’(z2) = 0. Applying
the familiar form of Rolle’s Theorem a third time, we can find a point z € (z1, 29)
such that f"(z) = 0.

The general form of this theorem is proved by employing the familiar form of
Rolle’s Theorem multiple times. For example, if n = 3, then Rolle’s Theorem will

have to be cited 3+ 2 + 1 = 6 times. O

Lagrange: We now use this general theorem to prove the error formula for polynomial
interpolation. Note that the Mean Value Theorem is a special case of this theorem.
Note also, the error term is identical with the error term for Taylor’s Theorem if we
allow all the points xg, x1, 29, ..., z, to equal one another. Thus, in a very real sense,

this theorem generalizes Taylor’s Theorem. However, a different proof is required.
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Theorem 18.4.2 (The Lagrange Error Formula for Interpolating Polyno-
mials). If f(z) € C"™a,b], a < xp < 11 < @3 < -+ < 1y < b, pu(x) is the unique
polynomial of degree n such that p,(xy) = f(xy) for k =0,1,2,...,n, then for each
x € [a,b], there exists a z € [a,b] such that

Feeh (e
(n+1)!

Proof. Let x € [a,b]. Since the theorem is obviously true if © = z;, for some k, we

f(x) = pu(x) + (x —xo)(x — 1) ... (T — 2p).

assume v # xi for all k =0,1,...,n.

Let

G(t) = £(8) = pult) = (£() — pale) - 22
where wy,(t) = [] (t — z).
k=0

1. G(z) =0,

2. G(zg) =0for k=0,1,2,...,n, and

3. GUH(t) = FH () — 0 — (() — pu(a)) - L,

Thus, we have shown that we have n + 2 distinct points x, xg, x1, ..., z, with the

property that G(z) = 0.
By the Generalized Rolle’s Theorem, there exists a z € [a, b] such that GtV (z) =
0 so that

0= f"(2) = (f(z) — pulz))
]

Lagrange: Note the similarity between the error formula for interpolating polynomials
and Taylor’s Theorem. You might find the next proposition useful in working the

following exercises.

Proposition 18.4.3. I[fa =uy < 1 < x5 < -+ < x, = b are equally spaced points,
h =22 and w,(z) = (z — 2) (@ — 1) ... (¢ — x,), then |w,(z)| < A" for all

x € [a,b].
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Proof. The graph of the 10-degree polynomial wyg(z) = (z — 1)(z — 2)...(x — 10) is
displayed in 18.1. Note that the maximum (in absolute value) occurs between 1 and 2
and between 9 and 10. This fact is true in general. Thus, if h = ”_T“ and x € [zg, 1],

then |w,(z)| < hh(2h)(3h) ... (nh) = n!h"TL. O
Exercise Set 18.4.

1. Let f(z) = sin(nz) for x € [—1,1]. Let p,(z) be the Lagrange Interpolating
polynomial for f(x) using the evenly spaced points —1 =xy < 27 < T < -+ <
r, = 1. Find an integer n with the property that |p,(z) — sin(rz)| < 1073 for
all z € [-1,1].

2. If f(x) = €% o € [-1,1] and tol = 1077, then how many equally spaced points
—l=xy <2y <9 <+++- <, =1 must be computed to guarantee that the
interpolating polynomial p,,(x) will differ by less than tol from f(z) = e” for all
z e [-1,1].

3. If f(z) =In(1 — ),z € [—3, 5] and tol = 1077, then how many equally spaced

1

points —% =x) <21 < T <--- <@, = 5 must be computed to guarantee

that the interpolating polynomial p, () will differ by less than tol from f(z) =

11

In(1 — ) for all v € [—3, 5].

x10° The Graph of the Function F(x) = (x-x1)(x-x2)...(x-xn)
T T T T T T T

Figure 18.1: The Graph of the Function wyp(z) = (x — 1)(z — 2) ... (z — 10)



18.5. POLYNOMIAL INTERPOLATION: THE RUNGE EXAMPLE 401
18.5 Polynomial Interpolation: The Runge Exam-

ple

Simplicio: So we have completed our introduction to statistics. I am secure in my

knowledge of these methods.

Galileo: Not so fast. We now introduce the German Mathematician, Carle Runge
(1856-1927), who showed quite clearly why polynomials are a disaster. Professor

Runge could you explain your classic example illustrating this problem?

Runge: While polynomial interpolation is easy to understand and straightforward to

implement, it is dangerously unstable for uniformly spaced data sets containing as

1
1422

few as 20 points. If we define the function f(z) = on the interval [—m, 7], and
take the points —m = xy < 7, < --- < x, = 7 to be uniformly spaced points, then
you would think that the approximation by the interpolating polynomials would get

better and better as the degree of the polynomial n becomes larger.

Simplicio: That conclusion seems only reasonable since the error terms for the func-

tions f(z) = sin(x) and f(x) = e* decrease rapidly as n is increased.

Runge: The bad news is that many situations exist where this desirable property

fails to hold. For example, let us consider the function f(x) = 1+1z2 be defined on the

interval [—m, 7]. The graph of this function is displayed in Figure 18.2.

The Y Values

Figure 18.2: The Graph of the Function f(z) = 77 for « € [, 7]
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Runge: Now let x, = —7 + k%” be equally spaced points between —7 and 7 and
define points (xg, yi), where y, = f(xg) = ﬁ for k =0,1,...,n. The next step is to
approximate f(z) by polynomials interpolating the points (zy, yx). To illustrate what
happens, in Figures 18.3,

we graph the 6,20, and 22 degree polynomial interpolants along with the function
f(z). Even though the approximations are accurate in the middle of the interval, the
approximations at the endpoints become worse and worse. In fact, the difference

between the polynomials p,(x) and the function f(z) converges to infinity.

Simplicio: These graphs are disturbing. Even I can understand that if the data is

The Y Values

Figure 18.3: The 6" Degree Polynomial Approximation of f(z) = ﬁ

The Y Values

Figure 18.4: The 20" Degree Polynomial Approximation of f(x) = Tlﬁ
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as smooth as those supplied by the function f(x) = Tlgc% then the approximations
should improve. Why are the results so terrible?

Galileo: For insight into the cause, think about the Pythagorean Theorem and the
example we discussed many days ago, where the lines were almost parallel.
Simplicio: I am not sure what example you mean.

Galileo: Recall the system of two equations and two unknowns and its slight modifi-

cation:

System 1:

1.00lz +y = 2.001
rT+y = 2
Note that these equations are close to being parallel. Solving the system we find

r=1y=1
System 2:

1.00lz +y = 2
r+y = 2
The solution to this system of equations is ¢ = 0,y = 2.

Simplicio: Now I remember.

Galileo: When a mathematical method is unstable, it is often the case that a set of

The Y Values

Figure 18.5: The 22" Degree Polynomial Approximation of f(x) = mﬁ
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basis vectors are close to parallel. Note the computations in the following example

and you might attain a better understanding of the problem.
Example 18.5.1. If

1 11
V=11 2 4},
1 39

then let’s compute the angles between the column vectors vi,va, V3.
If 015 represents the angle between the first two column vectors, then

<vyve> 14243 6

Al lvell - VBVI+4+9 V3VI4

Thus, the angle 015 = 22.2 degrees.

cos(b12) = 0.93.

If 013 represents the angle between the first and third column vectors, then

<vi,vs> 14449 14

Al vl VBVI+T6+8T V398

Thus, the angle 613 = 35.3 degrees.

cos(6;3) = 0.82.

If 053 represents the angle between the second and third column vectors, then

() = V22 V3> 1+8+27 36 007
COS = = = =
B el vsll — VI+4+9vI+16+81  +/14/98

Thus, the angle 033 = 13.6 degrees.

Simplicio: While the angle between the first and second columns are over 22 degrees,
the angle between the 2" and 3% is about 13 degrees so they are almost parallel. I now
can see that this computation means that the solution of a polynomial interpolation
problem has the potential to have very poor results. It looks like the last two columns
are the most parallel. Is that true in general?

Galileo: Make some more computations and see for yourself.

Simplicio: Hmmm.

Galileo: I think you are beginning to understand why our friend Fourier searched for

a better method.
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Exercise Set 18.5.

1. Form the 5 x 5 Vandermonde matrix generated by the vector v = [1,2, 3,4, 5].
Compute the angles between the first and second, first and fourth, and fourth

and fifth columns. Which pair of vectors is closest to being parallel?

2. Compute the angle between the vectors v; = [1.001, 1] and vy = [1, 1].

18.6 Linear Least Squares Approximation

Galileo: We begin our discussion of linear least squares with the problem of finding
a straight line through three given data points (zo, o), (x1,¥1), (22, y2). If we try to
“solve” this problem, we are in the position of trying to solve a linear system of 3
equations and 2 unknowns. In particular, if the equation of the line is in the form
y = ap+ayz, then we have to find constants ag and a; such that y, = y(zx) = ap+a,xy,

for £ = 0,1, 2. Thus, we have to solve the matrix equation given by:

1 x Yo
Qo

1 = = | wn
ay

1 x Y2

Simplicio: But how can you solve a system of 3 equations and 2 unknowns?
Galileo: Yes, a problem does exist with having more equations (or constraints) than
unknowns. While a solution may exist, it is unlikely. In fact, the probability is zero.
Despite this problem, note that the system can be written Aa =y, where A = V*
and V is a Vandermonde matrix.
Since this task is usually impossible, we are in the position of identifying the line
of the form y = ag+ax with the property that the sum of the squares of the distances

from each point to the corresponding point on the line is minimized. In particular, if
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dp = ag + a1Tr — Yk, then we need to minimize the residual:

R: R(ao,al)
= dj+d; + dj

= (ag+ a1mo — yo)* + (ap + a1y — y1)* + (ap + a1z9 — y2)*.

Since the function R is minimized at a critical point, we compute the derivatives:

OR

67 = 2(@0 +a1xy — yo) + 2(0,0 +a1xry — yl) + 2(0,0 + a1z — y2) =0
0

OR

% = 2(@0 + a1xy — yo)l‘o + 2(@0 + a1 — yl)xl + 2(&0 + a1T9 — yg)l‘g = 0,
1

which leads to the 2 x 2 matrix equation:

3 To+ T+ 22| [ao Yo+ Y1 + Y2
To+a +ae ai+ai+as) \ay ToYo + T1Y1 + ToYo
Galileo: Note that this matrix can be easily solved to find the line that “best fits”
the data. Note that if the matrix equation V®a = y is multiplied on both sides by

the matrix

1 1 1
V = ,

Tog T1 X9

then the resulting 2 x 2 system is exactly the same as the 2 x 2 system discovered by
computing partial derivatives and searching for a critical point.

Simplicio: But what if we are presented an arbitrary numer of points? How does the
discussion change?

Galileo: Simply add up more terms. In other words, if we would like to fit a straight
line through the points (z¢,y0), (z1,¥1),--- (Tn-1,Yn-1), (Tn,Yn), where zy < z; <

- < X, 1 < T,, then the matrix equation becomes:

n+1 ZZ:O Lk Qo ZZ:O Yk
D e Tk DopoTh) \@m > r_o Thlk



18.6. LINEAR LEAST SQUARES APPROXIMATION 407

Simplicio: This formula looks like nothing but a fancy way of averaging numbers to
me.

Galileo: Why is that?

Simplicio: Well if the parameter a; happens to be zero, then ag is simply the average
of the y—values.

Galileo: That is correct. We now repeat this discussion to conduct a search for a
quadratic polynomial py(z) = ag + a1z + ax?, which “best fits” a given data set of 4
points

(%0, Y0), (1, Y1), (z2,92), (x3,y3). For an exact fit of the data we would have to be able

to solve the system of 4 equations and 3 unknowns given by:

2

1 xy xj Yo
2 do

1z 27 Y1
2 ar | =

1 xy x5 Y2
2 a2

1 x3 3 Y3

Again, since this system cannot be solved, we minimize the residual:

R = R(CLO, ai, ag)

= di + di + d5 + d3
3

2 2
= (ag + a1z + asxi — yi)”.
k=0

The critical point where the minimum value of R occurs can be found by comput-

ing the partial derivatives of R with respect to the variables ay, ay, as.

3

OR

P = 22(&0 + a1 + aﬂz — k) = 0,
o k=0

OR °

da, - 22(% + a Ty + a2$i — Yk) T =0,
a1 k=0

OR &

90, = 22 (00 + @1z + ot — o)} =0

k=0
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The resulting system of 3 equations and 3 unknowns is:

4 Zi:o Lk Zzzo x o Zz:o Yk
Zi:o Lk Zi:o T Zi:o T} ap | — Zi:o TkYk
Zi:o ffz Zi:o } Zi:o ) a2 Zizo TR Yk
Ifog <2y <9 < -+ <y, are m + 1 distinct points and yo, y1, ..., Yy, are any

m + 1 values, then the polynomial p,(z) = ap + a1z + - - - + a,2" with the property

that p(x;) = y; can be found when m = n by solving the equation V'x = b, where

1 1 1 ... 1
o 1 T2 ... Tp
- 2 .2 .2 2

V - :EO :E]. ZL‘Q PR :En )
Ty T} Ty Ty,
Qo Yo
ay hn

X = , and b =
Qnp, Yn

If m > n, then m + 1 > n + 1, which implies the “solution” of this equation will be

in the least squares sense. In particular, the equation

(VHIVix = (VYD or
VVix = Vb

must be solved. The matrix VV*is (n + 1) x (n + 1)—dimensional. Since detV =
[1(zj — ;), the rank of the matrix (V) = n + 1 whenever the points z; are distinct.
ZS<iilce VV! has rank n + 1, it can be shown that the matrix V'V is invertible, which
implies that the least squares problem always has a unique solution.

If A e R™™ and x,b € R", then the general linear least squares problem is to

“solve” the matrix equation Ax = b even if m > n. In this formulation we would

like to find the vector x which minimizes the function r(x) = |[Ax — b||s. In the case
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when the rank (A) = n, the solution to this problem can be obtained by computing
the gradient of r(x) with respect to the variables xy. It is an easy exercise to show

that the unique critical point of this function is the solution of the equation:

A'Ax = A'b.

If A has rank = n, then the matrix A’A is symmetric and positive definite. In
particular, it is invertible. If the Cholesky factorization is used to solve the linear
system of equations A’Ax = A'b, then this technique for solving this least squares

problem is referred to as the method of “normal equations”.

Exercise Set 18.6.

1. Find the equation of the line y = p;(x) = ay + a1z, which provides the least
squares best fit for the data (1,2), (2, 3), (3, 5).

2. Find the parabola y = py(x) = ag + a1z + asz?, which provides the least squares

best fit for the data (1,2),(2,3), (3,5), (4, —1).

18.7 Linear Classifiers

Galileo: One of the consequences of the recent proliferation of technology and com-
puters is the incredible amount of data that is generated daily. In fact, the data is
generated so rapidly that it is impossible to analyze and interpret without numerical
techniques. One of the most important areas of study in statistics is the development
of automated techniques that classify into two or more groups. For example, the
people in the military would like to be able to reliably differentiate between a school
bus and a tank, while a physician would like assistance in automated diagnosis. In
many approaches, you would like to train your technique with data, where you already
know the answers. The training process often involves the estimation of parameters

for some function or distribution, which can be used to classify a new data set. If
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your method provides reasonable answers over a wide range of data, then it can be

considered a success. If not, then it will be ignored.
Simplicio: How do we start?

Galileo: As usual, let’s start small. For example, if we would like to classify a set of
points (zx, yx), for k =0,1,2,...,n into two categories, then a linear classifier can be
formulated as a least squares fit to the data (z,yx, 1) for one group of the set and
(xk, Yk, —1) for the other group. In other words, find the parameters ag, a; and o,

which “solve” the system

oy + 1Ty + Q2Yg = 2
oy + apr; + QY = 21

(o)) + 1T + AlYos = 29

Qy + T, + oY, = Zn,

where 2z, = —1 or 1. Does this setting look familiar?

Simplicio: It certainly does. But, what if you have four or five categories? It seems

to me you have several different ways to make the computations.

Galileo: True, but let us just keep it simple and consider only two categories. Let
us now compute an example, where one set of points in the plane is defined by
S1 = {(0,0),(1,0),(0,1),(1,1)} and a second is defined by Sy = {(—1,—1)}. We
then find a linear function z = «y + ayxy + aswe with the property that the line
0 = ag + a1x1 + asxy separates S; and Sy. To this end simply create the linear

system:
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ap + a0 + a0 =1
ap + a1l + a0 =1
ag + a0 + apl =1
ag + a1l + apl =1

(&%) + al(—l) + 012(—1) = —1,

The matrix equation becomes:

1 0 0 1
1 1 0| (a 1
1 0 1 a | =11
1 1 1 Qs 1
1 -1 -1 ~1

The transpose of the coefficient matrix is:

1111 1
01 01 -1
0011 -1

Thus, multiplying both sides of the matrix equation by the transpose, we get

5 1 1\ [ap 3
132 |lal=1]3
1 2 3 \a 3

The linear function becomes z = 0.3913 + 0.5217x + 0.5217y. The line separating
the two sets is: 0.0 = 0.3913 + 0.5217x 4 0.5217y or y = —x — 0.75.
Simplicio: While I notice that this line is perpendicular to the line through the
midpoints of the two sets, I would have thought it would be the perpendicular bisector.

What is going on?
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Galileo: Since the set S; has a higher variance (or standard deviation) than the set
So, the line is shifted closer to the set Sy, which makes sense from a geometrical point
of view.

Simplicio: Even I can understand that idea. For if one set has a small variance and
the other has a low variance, place the line closer to the set with low variance.

Galileo: Exactly.

Exercise Set 18.7.

1. Given two data sets S = {(-1,1),(—-1,-1),(0,0)} and T = {(1,1),(1,-1)},
find a line L of the form ay + a2 + asy = 0 with the property that L separates
the set S from 7'

2. Given two data sets S = {(1,1),(0,0)} and 7" = {(1,0), (0,1)}, find a line L of
the form oy + ayx + asy = 0 with the property that L separates the set S from
T.



Chapter 19

Fourier Interpolation

Jean Baptiste Joseph Fourier: “The differential equations of the propaga-
tion of heat express the most general conditions, and reduce the physical
questions to problems of pure analysis, and this is the proper object of

theory.” Analytical Theory of Heat

Galileo: We now turn to the problem of interpolation by trigonometric series of the
n

form T, (z) = 9@ + kz_:l[ak cos(kx) + by sin(kx)]. While this type of series is typically

referred to as a Fourier series, after the French mathematician Jean Baptiste Joseph

Fourier (1768-1830), others had computed these series many years before. In partic-

ular, Euler had used one such series to show such identities as > | =& = %2. While

these identities are interesting and curious to mathematicians, it was Fourier who

413
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showed their usefulness in modeling heat flow through a medium.

Let us ask him how he formed his insights.
Fourier: I joined Napoleon’s army when he invaded Egypt in 1798. While we enjoyed
warm weather and great success for a while, Lord Nelson destroyed the French fleet
in the Battle of the Nile on August 1, 1798. Since this event brought an end to
the sun and fun, I returned to Grenoble, where I was forced to endure cold, dreary
winters with freezing temperatures. In an effort to deal with this state of affairs,
I began an investigation of the heat equation. In 1807, I completed the memoir
“On the Propagation of Heat in Solid Bodies,” where I presented these ideas in
manuscript form. This work was presented to the Paris Institute on 21 December
1807 and reviewed by a committee consisting of Lagrange, Laplace, Monge, and
Lacroix. The members of this committee were unhappy with the work because of
unresolved questions concerning the expansions of functions as trigonometric series.
My colleague, Biot, was also unhappy because he felt he should have been referenced
for the work he did on this topic in 1804. While I found this review unfair, I could
do nothing about it. In 1811, I submitted an extension of this work to a second
competition and actually won the prize.
Simplicio: That sounds great!
Fourier: Well, there was only one other entry. Worse yet, the report of the commit-
tee (whose members were Lagrange, Laplace, Malus, Hauy, and Legendre) was not
completely favorable since it objected to the lack of rigor in the treatment of the

Y

mathematics. My paper, “Theorie analytique de la chaleur,” was finally published in

1822. Even then Biot continued to claim priority.
Simplicio: Well, don’t take it so hard. Your ideas are appreciated.

Galileo: But it did take 100 years to get all the mathematical issues sorted out with

his series.
Simplicio: Which issues?
Galileo: Since Linear Algebra had not yet been invented, such ideas as linear inde-

pendence, basis, inner product, and orthogonality had not yet been formulated. Since
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the definition of limit had not yet been invented, the understanding of convergence
was also murky. Eventually, the mathematicians parsed convergence into a number
of different types including: uniform convergence, pointwise convergence, and conver-
gence in the mean. Trigonometric series live best in Hilbert Space, where Pythagoras
rules.

Simplicio: I am confused about this convergence concept.

Galileo: If you remember the error formulas for Taylor series and polynomial inter-
polation, they can be used to check for uniform and pointwise convergence.
Simplicio: How so?

Galileo: If you recall the error formula for Taylor is

fory (2) 1
E,(2) = —— (2 — xo)""
) =Gt
while the error formula for polynomial interpolation is
(n+1)
E,(z) = ]ETLTI()Z')(ZE —xo)(x —x1) ... (T — ).

In the problems you were assigned, you were given and € > 0 and then were expected
to find an integer n with the property that |E,(x)| < € for all = € [a,b]. When you
solve this kind of problem, you are showing that the sequence of polynomials are
converging uniformly to the given function f(z).

Simplicio: So what is pointwise convergence?

Virginia: Let me guess. Pointwise convergence is when you begin the problem by
restricting your attention to a particular point x.

Galileo: Correct.

1
14227

Virginia: So with the Runge example f(z) = x € [—m, 7|, we have pointwise
convergence for any particular choice of x, but we do not have uniform convergence
because the approximations fly off to infinity near the boundaries of the interval
[—7, 7]. In other words, For a given € > 0 (such as ¢ = 0.00001), we cannot find an
integer n which works for all « in the interval.

Galileo: For pointwise convergence, each point x requires its own individualized inte-

ger n.
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Simplicio: What is convergence in the mean?
Galileo: While we haven’t yet observed this type of convergence, it is a distance metric

based on the integral of the difference of two functions. In particular, d(f(z), g(x)) =

\/fab(f(x) — ¢g(z))? dz. While this metric is tuned to work well with Fourier series,
the bad news is that it is weaker than uniform convergence. Surprisingly, this distance
formula is closely connected with Pythagoras.

Simplicio: Life would be easier if we only had one type of convergence.

Galileo: Sorry, Mother Nature won’t allow it. In fact, She insists we consider them

all.

19.1 Fourier Interpolation: Introductory Exam-
ples

Simplicio: How about if you give me the short lecture on trigonometric series.
Fourier: Since you probably never appreciated partial differential equations, let us
begin by solving the following simple interpolation question:

Given three points vy, y1, and ys and three angles xy,x;, and w9, find a trigono-
metric polynomial of the form 7'(x) = % + ay cos(z) + by sin(x) with the property
that 71 (zo) = o, 11 (1) = 1, and T (x2) = yo.

Simplicio: The answer to that problem is easy. All you have to do is solve the system

of three equations and three unknowns.

1 cos(zg) sin(zg) @ Yo
1 cos(zy) sin(z;) a | = | wn
1 cos(zy) sin(zs) by Y2

But when do you ever have to consider data in the form (xg,yx), where xy is an
angle?
Fourier: If you are modeling the temperature of a metal rod of length L, then the

point x; can be used to represent the position along the rod. If the points g, 1, 9
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%, and o = L. In general, if we have n + 1

are equally spaced, then zg = 0,2, =
equally spaced points 0 = g < 1 < -+ < x, = L, then we can define the points by
xk:% forn=20,1,...,n.

Simplicio: But these points don’t represent angles!

Fourier: No problem, we will simply replace each z; by the angle WTI’“ Note that
these angles vary between 0 and 27. We will get to that aspect of the heat equation,
but let’s keep it simple for the moment and restrict our attention to the question
about interpolation.

Simplicio: How about the equally spaced angles zy = 0,2, = 7, and xy = 277
Fourier: Well, the idea is right, but cos(0) = cos(27) and sin(0) = sin(27) so the first
and third row of the coefficient matrix are the same.

Virginia: Thus, the determinant of the matrix is zero, which implies the solution may

not exist. We may not be able to solve for the constants ag, a;, and b;.

Fourier: A better choice is xy = 0,2, = 27/3, and 9 = 4?”, which leads to the matrix:

1 1 0
_ 1 V3
A=11 -3 ¥

1 V3

L =5 —%

Do you notice anything special about this matrix?

Simplicio: I can’t say that I do.

Fourier: If you take a careful look at the three columns of this matrix, you will notice
that they are pairwise perpendicular.

Simplicio: You mean check if the dot product of any two of these columns are zero?
Fourier: Precisely.

Simplicio: But, why should I care about this detail? Why would anyone care?

Fourier: If you multiply the matrix A by its transpose A, you get the following

product:
1 1 1 1 1 0 300
LA — 1 1 1 V3 — 3
AA=11 =5 —5 ||l -5 % |=|0350
V3 V3 1 V3 3
0% -5/ \! -2 —% 00 3
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Simplicio: I think I am beginning to understand. It seems like the product A’A is a
diagonal matrix. Is that always true?
Fourier: If you make a smart choice of angles, the columns of the matrix will be
perpendicular. However, before we consider that question, let us solve for the three
constants ag, ay, and by.
Simplicio: No problem, the answers are the solutions to the matrix equation A'Ax =
Ay, where
Qo
x=\|ag
by
and
Yo
Y= 1"
Y2
Dividing through by the constants on the diagonal, we uncover formulas for ag, a1,

and by :

% = 2o +y1 + 1),
ar = 3(yocos(xo) +y1 cos(w1) + ya cos(xa)),
b1 = Z2(yosin(w) + yi sin(xy) + yo sin(ws)).

Virginia: Thus, we can summarize this discussion by saying that while the matrix

equation can be solved for a multitude of choices of xg, x1, x>, a “smart” choice is

2
3

o =0,21 = .702:22?”.

Galileo: Correct! With a clever choice of xg, x1,x9, we can easily solve the matrix
equation.

Simplicio: And we don’t even need row operations!

Galileo: Correct again.

Simplicio: But wait a minute. Once we have the formulas for the coefficients ag, a1, by,
then can’t we simply throw away the matrices?

Galileo: You are thinking like an engineer. To implement the method all you need

are the formulas. However, let us consider the question: Why are these Fourier still



19.1. FOURIER INTERPOLATION: INTRODUCTORY EXAMPLES 419

used today?
Virginia: I bet it is because of Pythagoras.

Galileo: Correct again. The Fourier matrices avoid all the serious stability issues
exhibited by the Runge example. While polynomial interpolation has serious stability
issues, the Fourier methods are always stable. In fact, the columns of the Fourier
matrix have a Linear Algebra version of the Pythagorean Theorem that simply doesn’t

exist for a general Vandermonde matrix.

Fourier: How about if we step through the process again with the number of points
increased from three to five? If we choose the angles to be equally spaced, we again

see that a workable choice is:

Ty = 0,

ry = 1x2n/5,
Ty = 2x%27/5,
xy = 3x%27m/5,
xy = 4%271/5.

To keep the determinant of the coefficient matrix from being equal to zero, note that
the angle x4 has been chosen to be different from 27. Now, if we have been given five
points v, Y1, Y2, y3, and y4, we are then expected to find five constants ay, ay, as, by,

and by, with the property that the trigonometric polynomial
Ty(z) = % + ay cos(x) + ag cos(2x) + by sin(z) + by sin(2x)

has the property that T5(xy) =y, for all k =0, 1,2, 3, 4.

Simplicio: And the answer to this problem is going to be another one of those matrix

equations?

Fourier: Yes, and this time the matrix equation becomes
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Sin

s(xg) cos(2xg To) sin(2xg 2 Yo

s(zry) cos(2xy) sin(x;) sin(2x; ay Y1

SIN(T3

s(x3) cos(2x;3 sin(2x3 by Y3

S Sin

cos(xo) cos(2wp) sin(wo) sin(2)
cos(z1) cos(2zy) sin(zy) sin(2z,)
1 cos(xy) cos(2x9) sin(wg) sin(2z;) as | = | vo
cos(x3) cos(2ws) sin(ws) sin(2s)
cos(xq) cos(2zy) sin(zy) sin(2zy)

T4) cos(2xy sin(2x4

Ty by Y4

When we compute the matrix for the given angles, we get:

1 1 1 0 0

1 03090 —0.8090 0.9511  0.5878

A=11 -0.8090 0.3090 0.5878 —0.9511
1 —0.8090 0.3090 —0.5878 0.9511

0.3090 —0.8090 —0.9511 —0.5878

—_

What do you notice about the columns?

Simplicio: Once again, each entry in the first column equals 1.

Fourier: What else?

Simplicio: Since each entry in the first column equals 1, the dot product of the first
column and any other column will equal the sum of the entries in that particular
column. Since the sum of the entries in each of these 4 columns equals zero, the first
column will be perpendicular to each of the other four. In general, it appears that
any two columns are once again perpendicular.

Fourier: You have made an important and fundamental insight because we are again
in the position to easily solve the matrix equation Ax = y. In particular, what
happens when we multiply both sides of this equation by the transpose A!?
Simplicio: Of course we get the equation A‘Ax = Aly.

Virginia: Since the matrix product A'A is always a diagonal matrix, it will be easy
to solve as soon as we compute the diagonal entries.

Fourier: Simplicio, let’s compute the product A'A.
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Simplicio: No problem, the answer is the matrix:

5.0000  —0.0000 —0.0000 0 0

—0.0000 2.4999  0.0001 0 —0.0000

A'A = | —0.0000 0.0001  2.4999 0 —0.0000
0 0 0 2.5002 0

0 —0.0000 —0.0000 0 2.5002

It looks like a diagonal matrix except for two off-diagonal entries which equal 0.0001.
Fourier: If we had kept a few more digits of precision, those terms would have disap-
peared when we computed the matrix A..

Virginia: In fact, it looks like the off-diagonal entries should equal 0.0000 and all the
diagonal entries other than the first should equal 5/2.

Fourier: Those thoughts are correct. The next concern is to point out that these
ideas are completely general. For this benefit we need to expend a bit of effort to
organize the necessary mathematical facts that will make the ideas precise.
Virginia: [ am beginning to wonder about all that Gaussian elimination stuff we
learned in Linear Algebra. This Fourier approach is so much easier. No row operations

required.

Exercise Set 19.1.

1. Given data yo, y1, Y2, Y3, ¥4 compute the values for the coefficients ag, a1, as, by, bs.

2. Given data yo = 1,41 = 2,92 = 3,y3 = 4,y, = 5 compute the values for the
coefficients ay, a1, as, by, be. Check that the function Ty(z) actually interpolates

the data by showing that T)(zy) = yo = 3.

19.2 Fourier Interpolation: Coefficient Formulas

Fourier: The next goal is to show that the interpolation technique we have just
discussed for 3 data points and five data points can be generalized to any odd number

of points. In particular, we will discuss the general case when we are given 2n+1 data
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points (zg, yx) for k£ = 0,1,2...,2n. In this setting, our coefficient matrix will have
2n+ 1 rows and 2n+ 1 columns. The first proposition states that any two columns of
the coefficient matrix A will always be perpendicular. As before this will imply that

the matrix product A*A will be a diagonal matrix. The second proposition states

2n+1
-

that the diagonal entries of the matrix A'A are
Virginia: Except, of course, for the first entry which is 2n + 1. Right?
Fourier: Correct! Finally, the third proposition presents formulas for the coefficients
ag, A1, ..., 0, and by, by, ..., b,. The formulas follow easily from these key properties
of A and A’A.
Fourier: Since the first proposition is written in mathematically technical language
with five different summations (all equal to zero), we will begin by discussing the
implications of each part. In particular, we make the following observations:
2n
1. The summation ) cos(mzy) = 0 implies the inner product (i.e. dot product)
k=0

of the 1*¢ column and the mt® cos(x) column equals zero. Thus, the first column

will always be perpendicular to any cos(z) column.

2n

2. The summation »_ sin(may) = 0 implies the 1% column is perpendicular to the
k=0

m sin(z) column. Thus, the first column will always be perpendicular to any

sin(x) column.

2n
3. The summation Y cos(jzy) - sin(mzg) = 0 implies the j% cos(z) column is
k=0
perpendicular to the m sin(x) column.

2n
4. The summation Y sin(jzy) - sin(mxzg) = 0 implies the j%sin(z) column is
k=0

perpendicular to the m!"

sin(x) column.
2n
5. The summation Y cos(jxy) - cos(maxy) = 0 implies the j% cos(z) column is
k=0
perpendicular to the m" cos(z) column.

Simplicio: But if 5 = m in the last two remarks, then we are computing the dot

product of a column with itself. That doesn’t sound right to me.
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Galileo: Your observation is correct. In the proposition, we will assume that 7 # m
to insure that the columns are actually different.
Virginia: And these 5 pieces of information imply that any two columns of the coef-
ficient matrix are perpendicular. Isn’t that right?

Galileo: Correct.

Proposition 19.2.1 (Orthogonality for Discrete Fourier). If0 < m,j < 2n are

integers and xp = Tkﬂ%r for k=0,1,...,2n, then the following statements hold:

2n
1. If m < 2n, then Y cos(maxy) = 0.
k=0

2n
2. If m < 2n, then > sin(maxy) = 0.

k=0
2n
3. If j < m, and m < n, then > cos(jzy) - sin(maxy) = 0.
k=0

2n
4. If 1 <n,m <n, and j # m, then > sin(jzy) - sin(mxy) = 0.
k=0

2n
5. If j <m,m < n, and j # m, then Y cos(jzy) - cos(mzy) = 0.
k=0

Proof. The underlying idea behind this proof is that the formula for the geometric
series works just as well for complex numbers as it does for real numbers. In particular,

if z # 1, then

n
1— Zn+1
> o=t
1—=2
k=0
The proof is exactly the same as before. All you need to know is that all the usual
associative, commutative, and distributive rules apply.

However, we will also need Euler’s formula, which can be stated as follows.
Lemma 19.2.2. If i = /=1, then e = cos(x) + isin(z).

This formula can be proved by Taylor series, Calculus, or Differential Equations.
If we consider the special case when x = 7, then we have Euler’s famous identity

e’™ = —1. Note that this identity combines three remarkable constants e, 7,7 into
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the familiar number —1. However, we should not get distracted from the business at

hand.

If we let 2 = ezntT = cos(2n+1) +1 sm(2n+1) then note that whenever m < n, then
(zm)2n+1 — (z2n+1)m — (627”) = 1™ =1.
. . . 2n  _ 2mk _
By the geometric series formula we now observe that since ), = kg7 = 577, mag =
2rkm
2n+17

2n 2n
Z = Z cos(may) + i Z sin(may,)
k=0 k=0

2n 2n 2n
-Shom < Sttt <SSy
k=0 =0
_szk ZZ" m)k ( )2n+1 _ 1 — (Z2n+1)m _ 1—1m _
1—2zm 1—zm 1—zm
k=0
Thus, both the real and imaginary parts of Z equal zero. Since the real part
2n
of Z equals zero, > cos(mx) = 0. Since the imaginary part of Z equals zero,
k=0

2n
> sin(mxy,) = 0. Thus, the first two statements in the proposition are verified.

k=0

Virginia: But why did we assume that m < n?

Fourier: If m is an integer multiple of 2n + 1, then 2™ = 1, which mean that we are
dividing by zero and thus can’t apply the geometric series.

The other three statements follow from the identities:

cos(A) sin(B) = %[sin(A + B) +sin(B — A)],
cos(A) cos(B) = %[COS(A + B) + cos(A - B).
sin(A) sin(B) = %[COS(A _ B) —cos(A+ B)].
In particular, if A = jax and B = may, then
cos(je) sin(ma) = 3 fsin((j + m)zx) + sin((m — j)z,)],

cos(jir) cos(mae) = 5 cos((j + m)ax) + cos((j — m)i)],

sin(jz) sin(may) = %[COS((J' —m)xy) — cos((J + m)wz)].
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Thus, the third summation can be written as

2n 2n

Zcos(jxk) -sin(mayg) = %Z[sin((j + m)xg) + sin((m — j)xg)]
= 5 S sin(( + m)a)] + 5 D lsin((m — )]
—040=0.

Fourier: Note that this argument requires the fact that you have already proved
statement 2 in the proposition and that the sums j +m < 2n and j — m < 2n.

Statements 4 and 5 in the proposition follow from the same argument we just gave
for statement 3.

O

Fourier: In the next proposition, we compute the values of the entries along the diag-
onal of the matrix product A'A. This computation is equivalent to the computation of
the norms (i.e lengths) of the columns of A. The first statement in the Equal Length
Formulas can be used to show that the first diagonal entry of the matrix product will
equal 2n + 1; the second two items can be used to show that all the other diagonal

entries will equal 24H.

Proposition 19.2.3 (Equal Length Formulas for Discrete Fourier). If 0 <

m < n are integers and xp = %HQW fork=0,1,...,2n, then

2n
1. S 1=2n+1,
k=0

2n
2. Y cos?(may) = 25, and
k=0

2n
3. Y sin®(may) = 25,
k=0
Proof. The relations follow from the half angle formulas and the orthogonality propo-

sition. Recall that the half angle formulas are:

1. COSZ(Q) — 1+0025(20)
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2. sin?(f) = 7176025(20)

Note that these formulas have the virtue that they can be used to reduce expres-
sions of the form cos?(#) and sin?(#) to linear expressions.
In particular, the first half angle formula combined with statement 1 from the

previous proposition can be used to make the following reduction:

2n 2n
1 + cos(2mxy,)
2 —
E cos”(mxy) = E 5

2n

1

=3 Z{l + cos(2mxy) }
k=0

1 2n 1 2n
=3 Z 1+ 3 Zcos(2mxk)
k=0 k=0
1 2n
k=0

2n+1
5

Similarly, the second half angle formula can be used to prove the third equation

in the proposition:

2 ) B =i — cos(2muxy,)
Z sin”(mxy) = Z 5
k=0 k=0

:% S {1 — cos(2ma)}

2n

1 2n+1
P

O

Fourier: We now present the key formulas for the coefficients for the trigonometric
series. These formulas allow you to interpolate any given data set vyo, y1, %2, ..., Yon

with a function of the form

T,(z) = % + ) [ay cos kx + by, sin kx].
k=1
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Note that the argument is the same strategy, where we solve a matrix equation
Aa = y by multiplying both sides of the equation by A! resulting in the equation
Da = A'Aa = Ay, where D is a diagonal matrix.

Theorem 19.2.4 (Fourier Coefficients: Discrete Case). If z, = 3252, for
k=0,1,...,2n and yo, Y1, Yo, . .., Y2n are 2n+ 1 given data values, then constants ay

and by, can be found so that the trigonometric polynomaial
To(z) = % + ;[ak cos kx + by sin kx|

has the property that T, (xg) = y for all k =0,1,...,2n.

In particular, the formulas are:

2n
2
ap = 2n+1§yjcos(kxj) fork=0,1,2,...,n,
and
9 2n
by, = 2n+1;yjsin(kxj) fork=1,2,...,n.

Proof. Fourier: Since we require the property T, (xx) = y, for all £ = 0,1,...,2n,
we must solve a (2n + 1) x (2n + 1) dimensional linear system of the form Aa =

y, where A is the coefficient matrix consisting of various sines and cosines, a =

(a07 A1y -- -, Qn, bl; b27 Tt bn)7 and Yy = (?Jo; Yiye vy yZn)
For the special case n = 2 the requirement that T)(x;) = yx leads to a system of

5 equations and 5 unknowns:
% + a;y cos(xp) + ag cos(2xy) + by sin(zg) + by sin(2zy) = yp

% + ay cos(x1) + ag cos(2xy) + by sin(zy) + by sin(2z1) = y;

% + ay cos(x2) + ag cos(2xs) + by sin(zy) + by sin(2x2) = yo

% + ay cos(x3) + ag cos(2x3) + by sin(zs) + by sin(2x3) = ys3

% + ay cos(xy) + ag cos(2xy) + by sin(zy) + by sin(2xy4) = yy.
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Simplicio: So we can once again write a matrix equation Aa =y, where A, a, and y

are the usual suspects.

Virginia: If we multiply both sides of the equation by the transpose A’ the resulting
equation is A'Aa = Aly. Since any two columns of A are orthogonal, the matrix A*A

is diagonal.
Simplicio: Even I can see this is true by the Orthogonality Proposition.

Virginia: By the Equal Lengths Formulas, the first entry on the diagonal is 2n + 1,

2n+1

while the remaining diagonal entries equal =%5=.

Simplicio: Thus, the coefficient formulas are simply the result of multiplying the vec-

tor Aty by the inverse of the diagonal matrix D = A'A. In symbols, a = (A'A)~ ! Aly.
Fourier: You got it.

Simplicio: Actually, I rather liked that proof.

Fourier: Then how about a second proof?

Simplicio: Sorry, but one proof is plenty for me.

Fourier: Well, let’s call it an observation then.

Virginia: Let’s see it.

Fourier: What we are really doing here is searching for constants (given by the vector

a) which allow us to write the vector

Yo
Y1
Yy=1uv
Ys

Ya

as a linear combination of the sines and cosines. In particular, if we write the linear
system Aa = y as a linear combination of the columns of the coefficient matrix A,

we have
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1 cos(xg 2% Yo

cos(x sin(2xy

(o) (220) (o) (22)
(1) (221) (1) (2,) Y1
+ay | cos(xy) | +az | cos(2ay) | +01 | sin(zg) | +02 | sin(2z2) | = | v2
cos(x3) (2x3) (x3) sin(2zx3)

(1) (224) (1) (224)

Y3

Sin

—_ = = =

cos(xy 224

Ya
If we let

Ui = | cos

(ko)
(k1)
and vy, = | sin(kay) |
(ks)
(k4)

cos(kxy) sin(kxy
then we can write the vector y as a linear combination

Qo
Yy = EUO + a1u; + aguy + b1V1 + b2V2.

Virginia: I see what you are after. You have changed the basis for the vector space
R5 from the usual basis vectors e;, ey, €3, €4, €5, to a new basis ug, uy, us, vi, vo. The
constants %, ay, az, by, by are simply the result of the usual change of basis formulas.
Fourier: Very good.

Simplicio: So.

Fourier: If we want to compute the coefficient a,,, we simply compute the inner
product < u,,,y > . Since the orthogonality lemma for discrete Fourier shows that

the columns are pairwise orthogonal, we know < u,,,u; >= 0 for all £ # m. Since

also know < u,,, vy >= 0 for all k,

ag
< Up,y >= 5110 + ajug + aguy + byvy 4+ bove = a,, < u,, u, >= am§.

Virginia: Thus, we see immediately that

2
Um =7 < Up,y >

(yo cos(maxy) + y1 cos(may) + y2 cos(may) + ys cos(mas) + ya cos(may)).

Ut DN Ot
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The same argument can be used to show b,, = £ Z yjsin(ma;). In both cases the
Orthogonality and Equal Lengths properties are crilaal

Simplicio: But why would we want to go to this extra trouble?

Fourier: Because we will see this argument again in several other settings. First, we
will see this exact same argument in the proof of the Pythagoras/Parseval formula
for trigonometric series. Second, we will see it again when we discuss least squares for

trigonometric series. Third, we will use this exact same argument for the continuous

case, where we write a function f(x): [—m, 7] — R as an infinite series of the form

+ Z ay, cos(kx) + by sin(kx)).

k=1

%o
2

In this last case, the inner product relevant to the discussion becomes an integral
rather than a dot product.

Simplicio: But why would you want to do that?

Fourier: You know how to hurt a guy. This technique is exactly what I used to solve
the heat equation.

O

Fourier: These thoughts can be summarized in the following proposition. Note that
we have not even assumed that the matrix A is square. Note this proposition well.

We will revisit it soon.

Proposition 19.2.5. If A € R™*" is a matriz with m rows and n columns, which
has the property that every pair of column vectors are perpendicular, then the product
D = A'A is an n x n diagonal matriz. Moreover, the j* diagonal entry of D is the

square of the length of the ;™ column of A.

Proof. The proof is simply the observation that the (i,7)™ entry of D is the dot
product of the i and j** columns of A. O

Simplicio: Even I can understand this one.
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Example 19.2.1. Problem: Given the data yo = 3,11 = 2,y = 2, compute the
Fourier coefficients ag, ay, by.

By the coefficient formulas,

2( + Y1+ y2) . (3+2+2) H
an = — = — = —.
0= 73 YoT Y1 T Y2 3 3
2 1 1 2 2
i p— g — =) = 2(3-1-1 S
aw=lp—g5un-—51% = 3 ) 3
2 V3 3 2 V3., V3
=2 (=) = (L2 L) ~0.
3° 2 2 32 2
Since by = 0, T1(z) = £ + 2cos(z). In particular, the basis function sin(z) is
unnecessary.

Example 19.2.2. Problem: Given the data yo = 0,y1 = 2,y2 = —2, compute the
Fourier coefficients ay, aq, b;.

By the coefficient formulas,

9 9
“imt oty = 20-14) _0
al—gyﬂ 2y1 2y2 = 3 = U
2 V3 V3 2 V3. V3 V3
bh==(—uy1—— ) = =(—2+4+—2) =4—,
3\ 9 9 3\ 9 9 3

Since ag = 0 and a; = 0, T\ (x) = 4@ sin(z). In particular, the basis functions 1

and cos(x) are unnecessary.

Example 19.2.3. Problem: Given the data yo = 0,y; = 2,92 = 3,y3 = —3,ys = —2,

compute the Fourier coefficients ag, aq, as, by, bs.

if
Zo 0 0
T 2 1.2566
X= |z | =|2% | =|25133],
3 32r 3.7699

T4 421 5.0265
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then
cos(xp) 1.0000 cos(2xp) 1.0000
cos(xy) 0.3090 cos(2x1) —0.8090
cos(w) = | cos(zy) | = | —0.8090 | ,cos(2x) = | cos(2z,) | = | 0.3090
cos(xs) —0.8090 cos(2x3) 0.3090
cos(xy) 0.3090 cos(2xy) —0.8090
and
sin(xg) 0.0000 sin(2x) 0.0000
sin(z1) 0.9511 sin(2z1) 0.5878
sin(z) = | sin(zy) | = | 0.5878 | ,sin(2z) = | sin(2z,) | = | —0.9511
sin(xs) —0.5878 sin(2x3) 0.9511
sin(zy4) —0.9511 sin(2z4) —0.5878

Thus, by the coefficient formulas, we see that

ao=—(Yo+y1 +v2 +ys+ya)

[NCRGLR I ]

= Z(0+2+3-3-2)=0,

ap = g(yo cos(zg) + y1 cos(xq) + ya cos(z2) + y3 cos(xs) + ya cos(z4))
= %(0 + 2% 0.3090 — 3 % 0.8090 + 3 % 0.8090 — 2 % 0.3090) = 0,

a9 = %(yo cos(2x0) + y1 cos(2x1) + yo cos(2x2) + y3 cos(223) + y4 cos(2x4))
= %(0 —2%0.8090 + 3 % 0.3090 — 3 % 0.3090 + 2 % 0.8090) = 0,

2, . : : : :
by = g(yo sin(zg) + y1 sin(xy) + yo sin(z2) + ys sin(zs) + yasin(xy))

2
5(0 +2%0.9511 + 3% 0.5878 + 3% 0.5878 + 2 % 0.9511) = 2.9324,

2
by = S(yo sin(2x) + yp sin(2z1) + yo sin(2zy) + ys sin(2x3) + yy sin(2x4))

2
5(0 +2%0.5878 — 3% 0.9511 — 3 % 0.9511 + 2 % 0.5878) = —1.3422.

Thus, ay = a; = ay = 0, which implies that T\ (x) = 2.9324 sin(x) — 1.3422 sin(2z).

In particular, the basis functions 1, cos(x), and cos(2x) are unnecessary.
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Simplicio: I hate to be difficult, but I have just one quick question that has begun to
eat at me.

Fourier: Sure.

Simplicio: In all the discussions you have given so far, you have always assumed that
you are given 2n+1 points in your vector y. If y = (vo, ¥1, - - - , Y2n ), then it has an odd
number of coordinates. What do you do if you are given an even number of points?
Fourier: The short answer is that "It depends on the problem.” The longer answer is
that certain problems only require the cos(mx) functions and certain other problems
only require the sin(mz) functions. For example, the heat equation only requires
the sin(mx) functions and the JPEG compression techniques only require cos(maz)
functions. With a compression problem, we will “double” the data from n + 1 points
to 2n + 1 points in such a way that the coefficients b, = 0 for all k. Thus, we will
always have an odd number of points and we will never need the basis functions
sin(maz).

Simplicio: Interesting. In other words the basis functions of the form cos(mzx) will
suffice.

Fourier: Precisely. Here are a few exercises, which you should not find particularly

challenging.

Exercise Set 19.2.

1. Show that the quantity < always represents the average of the given data set

Yo, Y15+ -5 Yan-

2. Given the data yo = 1,4y, = 2,yo = 3, compute the Fourier coefficients ag, a1, b;.
Plot the data and the function 7% (z) = % + a; cos(x) + by sin(x) on the same

graph.

4

3. Given the data yo = sin(0),y1 = sin(3),y2 = sin(%F) compute the Fourier

coefficients ag, a1, b;. Plot the data and the function T\ (x) = % + a, cos(z) +

by sin(x) on the same graph.



434 CHAPTER 19. FOURIER INTERPOLATION

4. Given the data yy = cos(0),y1 = cos(%),y, = cos(F) compute the Fourier
coefficients ag, a1, by. Plot the data and the function T1(x) = % + a; cos(x) +

by sin(x) on the same graph.

5. Given the data yo = 0,91 = 2,y = —2, compute the Fourier coefficients

ap, a1, bi. Which coefficients equal zero?

6. Given the data yo = 3,y1 = 1,42 = 2,y3 = 2,y4 = 1, compute the Fourier

coefficients ag, ai, as, b1, bo. Which coefficients equal zero?

7. Given the data yo = 0,y1 = 1,yo = 2,y3 = —2,y4 = —1, compute the
Fourier coefficients ag, a1, as, by, by. Plot the data and the function Th(x) =
% 4 ay cos(x) + ag cos(2x) + by sin(x) + by sin(2x) on the same graph. Which

coefficients equal zero?

8. Given the data yy = 0,y; = A,y, = —A, where A is an arbitrary number,

compute the Fourier coefficients ag, ay, b;. Which coefficients equal zero?

9. Given the data yo = A,y = B,y» = B, where A and B are arbitrary numbers.

Compute the Fourier coefficients ag, a1, b;. Which coefficients equal zero?

10. Given the data yo = 0,y = A,y» = B,y3 = B,y, = A, where A and B are
arbitrary, compute the Fourier coefficients ag, a1, as, b1, bs. Which coefficients

equal zero?

19.3 Fourier Least Squares

Fourier: Let’s go back to the just completed discussion of interpolation and change
the rules to the setting, where we have more data points than coefficients. In other
words, let’s consider the problem:

Given data wg, y1,y2, Y3, ya and equally spaced points oy = 0,2, = 2%,@ =

237 w3 = 3%, x4 = 4%, find the function Ti(z) = % + a; cos(x) + by sin(z) “best

fits the data”.
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Virginia: Let me guess. We are once again confronted by the same the setting we

had for polynomial least squares. Namely, we simply “solve” the set of equations:

T (o) :% + ay cos(zg) + by sin(zy) = Yo
11 (z1) :% + ay cos(z1) + by sin(zy) = U1
T (22) :% + ay cos(xz) + by sin(xg) = o
11 (z3) :% + ay cos(z3) + by sin(z3) = U3
T1(24) :% + ay cos(xy) + by sin(xy) = Ya.

This set of equations morphs into equation Aa =y, where

1 cos(zp) sin(xp) Yo
1 cos(xy) sin(xq) 3 (7
A= 11 cos(xy) sin(zy)|,a=|a; |, andy = |y,
1 cos(z3) sin(xs) by Y3
1 cos(xy) sin(xy) Ya

Sadly, this equation is once again overdetermined. However, the good news is that we
can solve it by multiplying both sides of the equation by the transpose A’ to obtain
A'Aa = Aly. The beauty of this matrix equation is that

5 0 0
D=AA=10 2 0
00 3

Thus, the matrix equation Aa =y is easily “solved” for the coefficients ayg, a1, b;.
Better yet, the formulas for these coefficients are exactly the same as those we pre-
sented moments ago.

Simplicio: How did she know that?
Virginia: Math is easy.
Fourier: Actually, when I first began working on these series, I didn’t understand

this issue all that well either. However, let’s be sure to mention that this technique
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is equivalent to the problem of minimizing the residual R = >, (% + a; cos(zx) +
by sin(xy) — yg)? with respect to the parameters ag, ay, b;.

Simplicio: Even I can see that this quantity R can be found by computing the gradient

OR
dag

VR=| 2& |,

day

oR
by

setting each coordinate equal to zero, and solving three equations and three unknowns.
Fourier: The matrix equation is 2(A'Aa — A'y) = 0, which is obviously equivalent to
our friend A'Aa = Aly.

Fourier: We summarize our discussion with the following theorem.

Theorem 19.3.1 (Fourier Coefficients: Linear Least Squares). If z) = 2m,

k
2n+1
for k =0,1,...,2n and yo, Y1, Yo, - .-, Yon are 2n + 1 given data values, then for any

integer N < n, constants ay and by can be found so that the trigonometric polynomial
a N
Ty(z) = 50 + ;[ak cos kx + by, sin kx|

has the property that the function Tx(x) provides a best least squares fit to the data
yp for allk=0,1,...,2n.

Moreover, the coefficients can found by be computing the following formulas:

2n
2
ap = ot 1 ;yjcos(kxj) fork=0,1,2,..., N,
and
9 2n
b = 1 j;yjsin(kxj) fork=1,2,..., N.

Simplicio: That WAS easy.
Fourier: Now its time to work some problems. Since the formulas are the same as for

interpolation, these problems should provide no challenge.

Exercise Set 19.3.
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1. Given the data yo = 3,y1 = 1,y = 2,y3 = 2,y4 = 1, compute the function
T'(z) = % + ay cos(x) + by sin(z) which best fits the data in the sense of least

squares. Plot the data and the function.

2. Given the data yo = 0,y = 1,92 = 2,y3 = —2,y, = —1, compute the function

T\(v) = % + ay cos(w) + by sin(z) which best fits the data in the sense of least

squares. Plot the data and the function.

3. Given the data yo = 1,y = —1,yo = 1,y3 = —1,ys = L,ys = —1,y5 = 1,

compute the function Ty(z) = % + a1 cos(x) + ag cos(2z) + by sin(x) + by sin(2x)

which best fits the data in the sense of least squares. Plot the data and the

function.

19.4 Fourier Interpolation: The Runge Example
Revisited

Fourier: To illustrate the benefit of using trigonometric interpolation, let’s revisit

our friend Carl Runge. Recall that polynomial interpolation is a disaster when we

1

w2 for @ € [—, 7],

approximate the curve y = f(x) =
Simplicio: That’s right. We saw those rabbit ears pop up near the boundary points
of the interval x = —7 and 7. The graphs of the approximations fly off to infinity.

Fourier: Let’s apply our new interpolation method to this same curve. In particular,

1
241

let’s approximate the curve f(z) = by the trigonometric polynomials T}, (z)
on the interval [—m, 7|. The results of these experiments (for the integers n = 1,2,
and n = 20) are displayed in Figures 19.1, 19.2, and 19.3. Note that in Figure
19.3 it is impossible to distinguish between the original curve and the approximation

by Ty (x). Unlike polynomial interpolation, the approximations provide improved

approximations of the original curve when more points are added.

Simplicio: I am glad to see that we now have a reliable method we can count on to
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1

Figure 19.1: Fourier Interpolation of f(z) = by T\ (x),x € [—m, 7]

T2
/__\
Figure 19.2: Fourier Interpolation of f(x) = 575 by Ta(x),z € [—m, 7]

always give the results we want.

Fourier: In a moment, we will discuss the trigonometric approximation of the func-
tion y = f(x) = x, where we again encounter a slight “blip” at the endpoints of
the interval. However, this time the problem is not as violent as is the case with
polynomial interpolation.

Simplicio: I have an unimportant question, which has been nagging me. Namely,

while all the data (z,y) mention in the theorems we have proved is designed so

that x € [0, 27], you took the domain of the function f(x) = 1+1z2 to be the interval
=7, w]. Thus, the points z; must lie in the interval [—7, 7]. I know this is a small

difference, but since we are being picky, I thought . ...

Fourier: You should have been a mathematician. You spotted a bit of sloppiness on
my part. Actually, since the functions cos(x) and sin(x) are both 27 periodic, we could
go through the same analysis for any interval of length 2. While the Orthogonality
and Equal Lengths propositions will hold, the coefficients will be different.
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1

732z by Tao(x), 2 € [—m, 7]

Figure 19.3: Fourier Interpolation of f(x) =

Virginia: But the coefficients ay, by will be different only because the entries in the
coefficient matrix will have been permuted around. Right?

Fourier: For example, if g = —7 = —180 (deg), 21 = —7 + 3¢ = —60 (deg),

zy = — + 2% =60 (deg), then the coefficient matrix becomes
1 -1 0
— 1 V3
A=11 5 -%
1 3
s %

Simplicio: Looks like Orthogonality and Equal Lengths are OK to me.

Exercise Set 19.4.

1. Compute the Fourier coefficient matrix for five points on the interval [—m,7].

(i.e. Compute the matrix A when zy = —m, 2y = —7 + 2{, To = —T + 22?”,903 =
—7r+32?”,x4 =-7 —1—42?”.
2. Let y = f(z) = lezv for x € [—m,7]. Write a program to approximate

f(z) by the functions Ty(z) for various evenly evenly spaced points —m =
Zo,T1, ..., Ty, < w. Plot the functions y = f(x) and y = Ty(x) on the same

graph. How good are the approximations? What do you notice?

19.5 Fourier Interpolation: Gibbs’ Phenomenon

Fourier: We now provide a short discussion of the famous Gibbs’ phenomenon. Josiah

Willard Gibbs(1839-1903) was the first outstanding American mathematician. His
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contributions were in a wide range of areas including vector analysis, the orbits of
comets, the thermodynamics of fluids, electromagnetic radiation, and statistical me-
chanics. His investigations into thermodynamics involved the mathematics surround-
ing the words energy, entropy, and enthalpy.

Simplicio: Doesn’t entropy involve the ideas of order and disorder?

Virginia: If I remember correctly, entropy always increases. Isn’t that the idea behind
the Second Law of Thermodynamics?

Fourier: Very good. Gibbs was a dedicated natural scientist, who developed sophis-
ticated mathematical ideas to model real physical phenomena. He continued the
investigations into the study of the steam engine begun by Sadi Carnot (1796-1832).
Their research led to the modern theory of Thermodynamics. Gibbs brought more
mathematics to the table. In any case, we are not going to discuss this topic today.
Instead, we are going to mention Gibbs’ contribution to Trigonometric series.
Simplicio: And, ...

Fourier: While the phenomenon appears in many different disguises, we will demon-
strate it only for the function f(x) = x defined on the interval [—m, 7]. If we let
T, (z) =2 En: % -sin(kx) on [—m, ] for n = 4,8, and 20, then note the graphs of
the approﬁi?rllations in Figures 19.4, 19.5, and 19.6.

Simplicio: Since we are computing on the interval [—m, 7], won’t we once again
encounter a modified version of the Fourier matrix the way we just did with the

Runge example? In other words, when we compute the entries in the coefficient ma-

. . . _ _ 2 _ 2 _

trix A, we will use the points ©¢ = —m,z; = —7 + a2 = —T + 2505, 03 =
27 _ 27

—7r+32n+1,...x2n— 7r+2n2n+1.

Fourier: Correct. In any case, these examples lead to the well-known Gibbs phe-
nomenon, where a slight “blip” appears at the endpoints —7 and 7. Note that this
“blip” continues to appear even for a 20 degree polynomial. This blip is about 9% of
the difference between +m — (—7) = 27 and thus about 0.56.

Simplicio: And once again we have a setting, where an approximation of good data

leads to mediocre results.
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Virginia: But at least the blips don’t go off to infinity. I would say that is an
improvement.

Fourier: That’s why we call them Fourier series.

Figure 19.4: The Gibbs Effect When Approximating f(z) = x by Ty(x)

Figure 19.5: The Gibbs Effect When Approximating f(z) = x by T3(x)

Exercise Set 19.5.

1. Compute and plot the trigonometric series approximation of the function defined

by
-1 ifxe[-m0)

flz) = ,
1 if v €[0,7] .

Approximate the blip at x = 0 for the integers n = 4,6, and 10. Where do you
find the blips? How big are they?
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Figure 19.6: The Gibbs Effect When Approximating f(z) = x by Ty (2)

2. Compute and plot the trigonometric series approximation of the function defined
by
0 ifze|0,m)
flz) =

1 ifzenm2n].

Approximate the blip at x = 0 for the integers n = 4,6, and 10. Where do you
find the blips? How big are they?

19.6 Fourier Interpolation: Pythagoras/Parseval

Galileo: We are now in a position to prove the theorem of Pythagoras one more time.
How about an explanation Professor Fourier?

Fourier: The only difference between this theorem and the one Professor Hilbert gave
you previously is that the word vector will be replaced by the word function. In
particular, we will prove the theorem for functions of the form 7}, (z). If you under-
stood Professor Hilbert’s Linear Algebra proof, you will understand this one with no
problem. The data vector y = (yo, Y1, Y2, - - -, Y2,)" can be visualized at the diagonal
in an n-dimensional parallelepiped (i.e. rectangle). If x = (xg, 21, .., T2,)", then the
sides of the box can be visualized as represented by a set of orthogonal vectors of the
form

u, = (1,1,...,1)" u; = cos(x)’, uy = cos(2x)’,...,u, = cos(nx)’, vi = sin(x)!, vy =

sin(2x)’, ..., v, = sin(nx)’. We understand that the notation u; = cos(x)" simply
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means that u; = cos(x)" = (cos(xy, cos(x1), ..., cos(xy,)". The proof works because
the vectors u,, = cos(mx)" and v;, = sin(kx)" are mutually perpendicular.
Virginia: Interesting.

Simplicio: Groan.

Theorem 19.6.1 (Pythagoras/Parseval). If ), = 5—=2x, for k = 0,1,...,2n,

2n+1

and Yo, Y1, Y2, - - -, Yon, ar€ 2n + 1 given data values, and
n
To(z) = % + kz_;[ak cos kx + by sin kx|

has the property that T,,(xy) = yy for all k =0,1,...,2n, then

n

02
2n+1zyk 50 Z(a%bi)-
k=1

Proof. As in the previous theorem, we only give the proof for the case when n = 2.

If we sety = (Yo, Y1, Y2, U3, ¥a)'s up = (1,1, 1,1, 1)", uy = cos(x)?, uy = cos(2x), vy =
sin(x)’, and v, = sin(2x)", then T5(z) = ©ug + a1u; + aguy + byvy + byvo. Thus, by
the Orthogonality and Equal Lengths Properties, we see that

ap ag
<Yy, y >=< EUU + ajua; + asuy + byvy + bng, —Uug + ajuy + asuy + by vy + byve >

2
ap ap
=< EU.O, EU.O >+ < a1y, a1y > + < a2U9, GoUy > +
< b1V1, b1V1 >+ < b2V2, b2V2 >
ap .9

:(2) <u0,u0>+a1<u1,u1>+a2<u2,u2>+
b2 < vy, vy > 4b5 < vy, vy >
G 54 5, 5, 5

Thus,
2 & P R
IS = 3 )
k=0 k=1

The reason the argument works is because orthogonality implies that all the in-

ner products < u,,, vy >, < u,,u; >, and < v,,, vy > equal zero except for the

o

special cases when < ug,uy >=5,< uj,u; >= g,< Uz, Uy >= g,< v, vy >= 3, <

Vo, Vo >= % Orthogonality does the trick. O
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Fourier: As I think you can see, the proof of the general theorem is going to be the
same as the n = 2 case. The only difference is that we will need to sum more terms.
Simplicio: Even I can see that. In fact, this proof looks familiar.

Fourier: It should. When we proved the coefficient formula, we used almost the same
argument.

Simplicio: Ok, but what is all this theory good for? How about an example?
Fourier: It is a bit difficult to give an interesting example for this theorem because
if T give you a vector y = (Yo, Y1, Y2, - - -, Y2n)", note that all you are going to do is
compute the sum 52+ S2¢  y2 and the sum 112—(2’ +372% (a} +b?) and check if they are
equal. Do you want me to bore you?

Simplicio: Not today.

Virginia: But the theorem is a lovely extension of Pythagoras’s ideas. I really like

this theorem.

Simplicio: I am sure you do.

19.7 A Fourier Application: Signal Compression

Fourier: How about an application?

Simplicio: An application would be appreciated.

Fourier: How about signal and image compression?

Simplicio: I must admit that I find image compression interesting.

Fourier: The first piece of information to mention is that the discrete cosine transform
is an integral component of the JPEG and MPEG file formats that are used to display
images on the internet. At least that was true until the year 2000.

Simplicio: What happened then?

Fourier: The techniques were upgraded from trigonometric series to wavelets.
Simplicio: What is a wavelet?

Fourier: While there are a multitude of technicalities with wavelets, the basic idea is

to build a collection of basis functions that have the same orthogonality properties
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as sines and cosines, but which don’t oscillate up and down forever. In other words,
outside of some finite interval (e.g. [0,1]), they always equal zero. These functions
are preferred in a multitude of real applications because data collection and computer
memory are necessarily finite.

Galileo: Professor Fourier you digress.

Fourier: While there are a number of ways to compress a signal, the idea we will
explore uses the Theorem of Pythagoras/Parseval to measure how many coefficients
will be required to produce an accurate reconstruction of the signal.

Simplicio: What does it mean to reconstruct a signal?

Fourier: By the Coefficient Formula for Trigonometric Interpolation, we can always
solve the problem: If given x; = %H%r, for k = 0,1,...,2n and yo, Y1, Y2, -, Yon
are 2n + 1 given data values, then constants a; and by can be found so that the

trigonometric polynomial

To(z) = % + Y [ag cos kx + by sin kx]
=1

ol

has the property that T,,(xzx) =y, for all k =0, 1,..., 2n.

Since T,,(xg) = yx, for all £ = 0,1,...,2n, we have perfect reconstruction. If we
throw away some of the coefficients (i.e. set some a;’s or by’s = 0), then we can
no longer expect the equalities T),(x;) = yi to always hold. This issue leads to the

concept of imperfect reconstruction and provides a fundamental technique for lossy

compression.
Simplicio: In other words, the idea is to replace the given data values yg, y1, yo, - - -, Yon
by the coefficients ag, a1, as, ..., a,, b1, bs, ..., b,. If you retain all the coefficients, you

have perfect reconstruction because you can always compute y; = T;,(zx). The prob-
lem with perfect reconstruction is that you have no savings when you store your data
on your hard drive. For lossy compression, you can “reconstruct” the data by com-
puting §x = T, (x1), where the formula for T}, (z) is the same as for T},(z) except that
some of the coefficients have been set equal to zero.

Fourier: Very good. First of all, when we set certain coefficients a; = 0 and by = 0,
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for £ > N, then we are simply computing the best least squares approximation of the

data using the function

To(z) = Tn(z) = % + 3 la cos(kz) + by sin(ka)],

where N < n.
Second, as we remarked in our discussion of least squares, the coefficient formulas

are the same as before. In particular,

2n
2
W =5 jE_O yjcos(kx;) for k =0,1,2,..., N,
and )
b 2§n:'(k)fk12 N
= ssin(kx;) for k = ..., N.
k 2n+1j:0% J ) 4y )

Virginia: But wait a minute. I detect a potential problem here. What if g = T (x)
is not close to the original value y;?

Fourier: We should now call in our friend Pythagoras. He would be proud to know
his ideas are still being discussed after all these years. In his place, let us remark that

we know by Pythagoras/Parseval that

n

2 2n a2
> =D > @)
k=0 k=1

2n

If we form the fraction ,
Q — 70 + Zk:l(a’% + b%)

2 2n 2

then () most definitely equals 1.
Simplicio: No argument on this point.

Fourier: If N <n and we form the fraction

2 N
= 5 ,
2n2+1 Zkio yl%

then @ < 1.
Simplicio: We have simply discarded some positive terms in the numerator. No

argument on this point as well.
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Fourier: Let me now ask you an old question in Physics. What is the formulas for
kinetic energy?

Virginia: Of course, KE = 1muv?.

Fourier: Notice that kinetic energy has the velocity squared. If you think about it, the
fraction () can be thought of as providing a measure of the energy in the coefficients
used divided by the total energy of the data. If N = n, the two measures of energy
are in balance and @ = 1. In this case, we have lossless compression. We now ask
the following question: If we want 90% of the information in the data, then how do
we choose N7

Virginia: [ bet I can guess. How about if we simply choose /N to be an integer less
than n with the property that Qn > 0.90. We will achieve the greatest compression,
if we choose N to be the smallest such integer.

Fourier: You got it.

Simplicio: How about an example?

Fourier:

Example 19.7.1. Given seven data points —3,—2,—1,0, 1,2, 3, compute the smallest
integer N with the property that Qn > 0.85, where oefficients N are needed so that

the quotient

2 N

0, Sl e

= 5 )
2n2+1 Zklo yl%

If we make the computations, we find Q1 = 0.6640 and Q2 = 0.8685. Thus, we can
choose N = 2.

Simplicio: Seems OK to me.

Fourier: Now lets conduct a little experiment, where we “double the data” before we
compute the coefficients and the quotient (). What I mean by doubling the data
is to take the 7-dimensional vector y = (=3, —-2,—1,0,1,2,3) and extend it to the
13-dimensional vector

yo = (=3,-2,-1,0,1,2,3,3,2,1,0, —1,—2). When we do this, we find that all the
coefficients b, = 0, for all k =1,2,3,4,5,6
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Simplicio: Why didn’t you make y, into a 14-dimensional vector with last coordinate
equal to —37

Fourier: If we use that strategy, we don’t quite achieve the key symmetry relation
that makes the terms cancel out. Since the functions sin(kx) are “anti-symmetric”
about the vertical line x = (ie. f(r+x) = —f(r — ) for all z € R) and since

T — xj; = T13—; — T, we know that

sin(ka7) = — sin(kg),
sin(kxzg) = — sin(xs),
sin(kxg) = — sin(zy),
sin(kxy9) = — sin(x3),
sin(ka11) = — sin(wy),
sin(kw12) = — sin(z1).

Note that we may need the sum formulas for sin(x) to make this argument complete.

Thus,

ye sin(kx7) + ye sin(kxg) = 0,
ys sin(kxs) + ys sin(kxs) = 0,
yssin(kxg) + yasin(kzy) = 0,
yssin(kx19) + ys sin(kzs) = 0,
yo sin(kx11) + yo sin(kxs) = 0,
y1 sin(kx12) + yp sin(kxy) = 0

and thus

b = Yo sin(0) + y; sin(kxy) + yo sin(kx) + ys sin(kxs) +

yasin(kxy) + ys sin(kxs) + ye sin(kws) + y sin(kzr) +

ys sin(kag) + yasin(kay) + yz sin(kwig) + yo sin(kz11) +
(

yy sin(kz12) = 0.
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We have just proved a special case of the following proposition.

Proposition 19.7.1. If y = (Y0, Y1, -+ » Yns Yns1, - - -, Y2n) 08 a (2n + 1)—dimensional
vector with the property that Yni1 = Yn, Yni2 = Yn_1,---,Y2n = Y1, then by = 0, for

any integer k =1,2,... n.

2
2n+1

27

T & bit of arithmetic can be

Proof. Since z; = j and xop11-; = (2n+1 —j)

used to show that 7 — x; = w9p11-; — 7.

By the sum formula for sin(x), we know
sin(k(m — x;)) = sin(kn) cos(kz;) — sin(kx;) cos(km) = —sin(kx;) cos(km)
and
sin(k(zont1-j — 7)) =sin(kxgyq1-j) cos(km) — sin(km) cos(kzani1-5)
=sin(kxg,41-j) cos(km).
Thus,
—sin(kx;) cos(km) = sin(kxgn41-j) cos(km).
Dividing both sides of this equation by cos(kw), we see that
—sin(kz;) = sin(kzapi1-j).

Since Yon+1—5 = Yy, for all .ja_yj sin(kxj) = Yon+1—j sin(kx2n+1_]~) for all j Since the

coefficient

n

Z(y] sm(kx]) + Yon+1—j Sin(kaTH—l—j) = 07
7j=1

2

by = ——
K on 1

we are done.

Simplicio: That last proof was a bit technical. How about an example.
Fourier: No problem How about if we repeat the same problem we discussed a few
minutes ago?

Simplicio: I'm easy.
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Example 19.7.2. Given the same seven data points (son =6) —3,—2,—1,0,1,2, 3,
we double the data to the 13 point set —3,—-2,—1,0,1,2,3,3,2,1,0, -1, —2. We now
would like to interpolate this data with the function Ts(x). By the proposition, we
know that by = by = b3 = by = bs = bg = 0 so we only need to compute the coefficients
a’s. As before, we would like to find the smallest integer N < 6 with the property
that Qn > 0.85, where

(L2_g + Zgzl aj
(W +23 vk
If we make the computations, we find Q1 = 0.9839 > 0.85. Thus, we can choose
N =1.

Qn =

Simplicio: N = 1! Hey, that trick worked much better than when the by’s were
involved. With the previous computations, we saw that (); = 0.6640 and )2 = 0.8685,
where the value of ) requires the three coefficients ag, a1, b; and the value of @)y
requires the five coefficients ay, ay, as, by, by. By doubling the data and saving only the
coefficients a¢ and a;, we get far better reconstruction than before. I am getting a
bit more interested. What’s going on here?

Virginia: I bet there is a theorem lurking here somewhere.

Fourier: You got it. The problem with the data set is that the first value yy = —3
and the last data point yg = 3. In particular, the values yy does not equal ys.
Simplicio: In fact, the data is essentially a straight line between the two points (0, —3)
and (27, 3) so Gibbs is sure to haunt you.

Fourier: The Gibbs problem disappears if you approximate a continuous function
f(z) : [-m, 7] = R, which is blessed with the additional property that f(—m) = f(m).
An even function always has this desired property.

Virginia: So this theorem will show that the approximations of the Runge example
f(x) =11 + 2* by functions T},(x) will converge with no blips?

Fourier: Correct.

Simplicio: So, even is good, odd is evil.

Fourier: Not quite.
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with the property that f(—m) = f(n). Similarly, the Gibbs problem disappears if
you are approximating a continuous function f(z) : [0,27] — R with the property
that f(0) = f(2r). While we always manage to ge pointwise convergence for any
continuous function, we manage

Fourier: How about working a few problems to check your understanding?

Exercise Set 19.7.

1. Given seven data points 0, 2, 3,5, 7, 11, 13, compute the coefficients ag, a1, as, as, by, ba, bs.

How many coefficients N < 3 are needed so that the quotient

a2 N
Q _ 70 + Zk:l(az + bz)
- 2

koL > 0.90?
1 > k0 Yi

2. Redo the previous problem after the data has been doubled.

3. If the data yo, y1, ..., y2, has the property that it is anti-symmetric about the
middle value (i.e. ¥, = —Yni1,Yn-1 = —Ynio, etc.) and yo = 0, then show
that all the coefficients a; = 0. Thus, if a data set has this property, then the

coefficients a, do not have to be computed.

19.8 Complex Numbers: A Brief Review

Galileo: In preparation of our discussion of the complex Fourier transform, we now
are forced to consider (and understand!) complex numbers.

Virginia: Mother Nature insists!

Galileo: This transform arises from polynomial interpolation, where the points (zx, yx)
are chosen with the restriction that the points 2, lie uniformly spaced on the unit
circle in the complex plane.

Simplicio: Wait a minute. Our previous discussion of the discrete Fourier transform
seems just fine to me. Why would we complicate the discussion by introducing com-
plex numbers? I am only interested in real data. In any case, I am out of my comfort

zone here.
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Virginia: They have always seemed a bit imaginary to me as well.

Galileo: If our goal is to solve equations, Mother Nature won’t allow us to ignore
complex numbers. Recall that the equation 2?2 = —1 does not have a real solution.
In general, even though your problem can be stated in terms of complex numbers,
the solution may not.

Simplicio: Onward.

Galileo: While the ancient Greeks had the concepts of distance, numbers, addition,
subtraction, multiplication, and division, they had only a limited understanding of
Algebra. In fact, not only were negative numbers unknown to them, they didn’t even
have the concept of zero.

Simplicio: I understand zero dollars!

Galileo: No problem arose when the ancients wanted to solve an equation of the form

T

r+2 = 3 or a proportion of the form {

1;1,‘”. However, this truncated understanding
of Algebra led to trouble when they tried to solve equations like x + 3 = 2.

Virginia: Where the answer is negative and you are forced to consider negative num-
bers?

Galileo: Correct. Even much later the Father of Algebra, Muhammad ibn Musa
al-Khwarizmi (780-850) avoided negative numbers. For example, he would write the
expression ax? — bx = 0 as ax? = ba.

Simplicio: But negative numbers are easy. You just add, subtract, multiply, and
divide the same way you manipulate positive numbers. No problem.

Galileo: Very good. but for the ancients, negative numbers were just as virtual as
complex numbers are for you. What does it mean for you to have —$100.00 in your
pocket?

Virginia: Your last purchase was charged to your credit card!

Galileo: Exactly my point. Credit cards are virtual. How about a second question:
Why does (—1)(—1) = +17

Simplicio: I'm not sure. Actually, I never did like that rule.

Galileo: The underlying force behind that equation is the desire to solve different
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types of equations. These equations can be linear, quadratic, cubic, or worse. It

doesn’t matter.

Simplicio: I don’t see the connection between the rule (—1)(—1) = +1 and solving

equations.

Galileo: While the subject of Algebra has taken several millenia to unfold, we are
now clear that the essence of an algebraic structure is a set of points X together with
one or two operations such as addition and/or multiplication. The points in the set
X are usually represented by the letters a, b, c and x,y, z, etc., while the operations
are usually represented by the symbols +, —, %, /. It wasn’t until Nicole d’ Oresme
(1323-1382), Johannes Widmann (1460-1524), William Oughtred (1574-1660), and
Gottfried Wilhelm Leibniz (1646-1716) came along that people began to realize these
mathematical operations deserve their own symbology. By using different symbols
for points and operations, the implicit message is that they are indeed different. Did

you realize that the symbol for addition “+ 7 is derived from the Latin word “et.”
Virginia: Which, of course, means “and.”

Galileo: Not only were the ancient Greeks not quite clear about points and operations,
but even the Father of Algebra, the Medieval Indian mathematicians, and Leonardo
of Pisa (1188-1250) (otherwise known as Fibonacci) were also not quite clear. The
modern view is that the starting point should be the set of natural numbers N =
1,2,...,n,... together with the operations of addition (+) and multiplication (x).
These operations should satisfy both the associative and commutative laws for both
addition and multiplication. The distributive law is the force that binds addition
and multiplication. If you didn’t have the distributive law, then you could study
these two operations separately. The whole numbers are the slightly larger set W =

0,1,2,...,n,... with the same two operations.
Simplicio: So what about negative numbers?

Galileo: The discussion becomes clear when we consider the whole numbers as a
subset of the integers Z = ..., —n,...,—3,—-2,—-1,0,1,2,...,n,..., where the minus

sign (—) functions in two ways. First, this sign indicates a new symbol to be added
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to the set N. Second, it acts as a new operation, which is the inverse operation for
addition. Not only does the set Z contain both N and W, but the operations of
addition and multiplication can be extended so the associative, commutative, and
distributive laws continue to hold. The fact that the number zero continues as the
additive identity (along with the rules n +0 =n,n+ (—n) = 0, and n —n = 0) is
crucial.

Simplicio: So, why do I want all these laws?

Galileo: Because you can now solve equations by repeated applications of just a
few simple laws. In other words, once you know these laws, you can manipulate the
equations with no fear of getting an incorrect answer. This process actually make slife
easier. Colin Maclaurin (1698-1746) understood this strategy. He always considered
a negative quantity to be no less real than a positive one.

Virginia: Didn’t you forget the additive and multiplicative identities?

Galileo: Oops! You are correct. You need to know:
1. n+0=n,
2. nx1=n,
3. nx0=0, and
4. n+(—n)=0.

Simplicio: Ok, so why is (—=1) % (=1) = +17
Galileo: By rearranging, we can write (—1)x(—1) = +1 as (—1)*(—1) —1 = 0, which

is equivalent to
(D)« (=) + (=) x(+1)=(-1)*x(-1+1)=(-1)x0=0.

Thus, if we decide to extend the distributive law to the integers Z, then Mother
Nature gives us no choice other than to make the rule (—1) % (—1) = +1.

Simplicio: So how do these remarks apply to complex numbers?

Galileo: While the ancient Greeks were well aware of the quadratic formula and while

Cardano extended (with the help of others!) extended the formula to cubics, it wasn’t
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until Rafael Bombelli (1526-1572) that clarity emerged. In his text, Algebra, he
presented our now familiar rules for addition and multiplication of complex numbers.
Virginia: It is remarkable that such simple ideas took so long to unfold.

Simplicio: No wonder I have always hated Algebra and found it so difficult. They
took 1500 years to figure it out.

Galileo: We have seen that before. Think about the Contraction Mapping Theorem.
It is simple theorem to state and prove, but remarkably general.

Simplicio: I would say abstract.

Virginia: So Bombelli had the idea that the real numbers can be thought of as a
subset of a larger set of numbers with the property that the equation z? = 1 can be
solved. Better yet, the operations of addition and multiplication can be extended to
this larger set in such a way that the associative, commutative, and distributive laws
continue to hold.

Simplicio: I worry.

Galileo: If we assume that that the real numbers are well understood (and that is not
at all obvious), we can write a complex number in two different ways. The first is as
a sum z = a + bi, where i = v/—1. From this vantage point, we can add two numbers

by the following rule:

Definition 19.8.1 (Complex Addition). If a,b,¢c,d € R,i = /-1, 21 = a + bi,
and zy = ¢+ di, then z; + 2 = (a + b) + (¢ + d)1.

We can also multiply two complex numbers by the rule:

Definition 19.8.2 (Complex Multiplication). If a,b,c,d € R,i = /-1, 2, =
a+ bi, and z3 = ¢+ di, then z1 * 2z = (ac — bd) + (ad + be)i.

The advantage of complex numbers is that Euler’s formula e’ = cos(#) + i sin(#)
allows you to consolidate two trigonometric functions into one exponential. With only
slight modifications, all the ideas of interpolation, least squares, and orthogonality

continue as before.
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Simplicio: While I don’t mind the rule for addition, I don’t see the justification for
multiplication.
Virginia: Obviously, the rule for multiplication is motivated by the distributive law.
For if z; = a + bt and 2y = ¢+ di, then we can simply assume the distributive law
holds, multiply out the product and gather terms. In particular,
21 % 25 = (a + bi) x (¢ + di)

= ac + adi + bci + bdi*

= ac + adi + bei — bd

= (ac — bd) + (ad + be)i.

The real part of the number is ac — bd, while the imaginary part is ad + bc. The
negative sign appears because i2 = —1.

Galileo: Correct.

Simplicio: Are we done with all this Algebra?

Galileo: How about if we formulate the algebraic rules into a proposition?
Proposition 19.8.3. If 21, 20, 23 are complex numbers, then the following rules hold.

1. z1 + 0 =z (additive identity property)

2. z1 x 1 = z1 (multiplicative identity property)

3. 21+ (29 + 23) = (21 + 22) + 23, (associative law for addition)

4. 29+ 21 = 21 + 29, (commutative law for addition)

5. z1(2223) = (2122) 23, (associative law for multiplication)

6. z120 = 2221, (commutative law for multiplication)

7. 21(20 + 23) = 2120 + 2123. (distributive law)

Simplicio: How about an example?

Galileo: Sure.
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Example 19.8.1. If z; = 1+T‘/§i, and zo = 1_5@, then by the distributive law

14+ /3i 1—+/3i

21 % 29 = ( 5 ) * ( 5 )
3 1v3 13,
=—+—+(——£+—£)z
4 4 2 2 2 2
= =14+0=1

This example leads to the Geometry of the complex numbers.
Simplicio: Geometry?
Galileo: If we think of the quantity i = v/—1 as a place holder for a coordinate, then
the complex number z = 1+T‘/§l can be written as the vector z = (%, ?) Thus, the
proposition given above indicates that we can add, subtract, multiply, and divide two

2-dimensional vectors z; = (a,b) and 25 = (¢, d).

Simplicio: And the multiplication rule is
21 % 22 = (a,b) x (¢,d) = (ac — bd, ad + bc).

Galileo: Now that we have addition and multiplication out of the way, we can turn

to the idea of the modulus of a complex number. This concept is defined by the rule:

Definition 19.8.4. If z = a + bi = (a,b), then the modulus is defined by ||z|| =
Simplicio: But wait a minute. Haven’t you just computed the length of the vector
(a,b)? Is modulus another word for length?

Galileo: Correct. We could just easily have called it the 2—norm. For complex
numbers, the words modulus, length, absolute value, and 2—norm are different terms
to describe the same concept. They all have the same meaning. However, as soon as
we are talking about length, we are talking about Geometry.

Virginia: And it all began with Pythagoras.

Galileo: The next geometric concept is embedded in the computation of the conjugate
of a complex number. This computation can be used whenever we compute the
modulus. We can visualize the conjugate as a “flip” of a complex number across the

T —axis.
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Definition 19.8.5. If z = a + bi = (a,b), then the conjugate is defined by the rule
Z=ua—bi=(a,—b).

The first application of the conjugate is to give us a second definition of the

modulus of a complex number.

Proposition 19.8.6. If z = a + bi = (a,b), then ||z|| = V/Zz.

Proof. Simplicio: But this formula is obvious. All you have to do is make the com-

putation. 0

Virginia: It is also convenient.

Galileo: It is more than convenient. In Geometry we are also interested in whether
or not two lines or vectors are orthogonal. In general, we would like to compute the

angle between two vectors. Right?

Simplicio: Sure.

Galileo: How did we compute angles before?

Simplicio: We computed cos(f) using the dot product and norm.

Virginia: More generally, we encapsulated these computations in the idea of inner

product.

Galileo: Ok, so to decide whether or not two 2—dimensional vectors z; = (a,b) and
29 = (¢, d) are orthogonal we check whether or not < (a,b), (¢,d) >= ac + bd equals

Zero.
Virginia:
Simplicio:

where z € [0,27] and z = a+ bi is a point on the unit circle in the complex plane.

In particular, the length of z = v/a? + 0% = 1.

Exercise Set 19.8.
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19.9 The Discrete Fourier Transform: The Com-
plex Case

Galileo: To begin our discussion of the discrete complex Fourier transform, let us

! where 2 = a + bi is a point on

consider the “polynomial” py(2) = ¢y + 12+ ¢ 12~
the unit circle in the complex plane. (i.e. a®+b* = 1.) In our discussions, we will use
the letter ¢ to denote the square root of —1. In particular, i* = —1. As was the case
with previous discussions of interpolation, we have the setting:

Given the data (29, y0), (21, 1), (22, Y2),

Find the constants ¢y, ¢1,c_1 so that py(20) = vo, p1(21) = y1,p1(22) = Y.

This problem leads to the matrix equation:

1
pol S Co Yo
1 _

P I = 1 Y1
1

P L 2z €1 Y2

As it turns out, a “smart” choice of the points is

=172z = _1%‘/5, 29 = _1%‘/5, which leads to the matrix equation
1 1 1 Co Yo
1 71+2\/§i 7172\/371' el = |y
1 —1—2\/§i —145\/51' c_1 Yo

Does this equation look familiar?
Simplicio: Sure, but I still don’t like those imaginary numbers in there.
Galileo: To ease the pain, how about if think begin by thinking about the geometry
associated with Euler’s formula.
Virginia: You mean where the variable x denotes an angle between zero and 27 and
e = cos(z) + sin(z) represents the corresponding point on the unit circle.

To begin the discussion, let us consider the function Ti(z) = % + a, cos(z) +
by sin(z) and the “polynomial” p;(z) = ¢ 127" + ¢y + ¢12, where x € [0,27] and

2z = a+bi is a point on the unit circle in the complex plane. In particular, the length of
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2z = +/a? + b2 = 1. This setting is virtually identical to the one we gave for polynomial
interpolation, where we were given n+ 1 data points (zo, yo), (21,91), - - -, (Zn, y) and
were expected to find a polynomial p,(z) = ap + a;x + - - - + a,z™ with the property
that p,(zg) = yg for all k =0,1,2,... n.

Simplicio: Exactly the same? I am suspicious here.

Galileo: Well OK, if the setting were exactly the same, then I would be repeating
myself. T certainly wouldn’t want to bore you. The difference this time is that we

now allow the variable x to be a complex number z.
Virginia: Do we still get to make “smart choices” for the points xg, z1,..., 2,7

Galileo: Absolutely. However, since these numbers will be complex, we will denote
them by the letters z;. Also, the notation will be a bit easier if we assume we have n
points and are interpolating with a polynomial of the form p, _1(z) =co+c12+---+
Cp12" L.

Simplicio: Why did you change the coefficients from a; to c;?

Galileo: While it is part of our culture to use the coefficients a; and by in the definition
of the function Ty, (x) = @ +> ), [ax cos(kx) 4 by sin(kx)], there is a close connection

between these coefficients and the coefficients ¢, in the “polynomial” p,(z) = >, _ .

In particular, if z = €, where z € [0, 27], then by Euler’s formula p,(z) = T, (z)
as long as we choose ap = ¢, and by = ic;, for all k =0,1,...,n.

integer n, we will be given let zp = 20 =1, ;1 = 2y = w = e%, where i = /—1,
and xp = 2, =wh for k=1,2,...,n — 1.

An example of the type of problem we are solving is: Given data points y, and y;,

find a polynomial of the form ps(2) = ¢o + ¢12 such that po(1) = yp and pa(w) = yi.

In this simple setting, w = —1 and we need to solve the matrix equation
I 1 Co Yo
I -1 1 (7

The definition of the Fourier matrix F» becomes



19.9. THE DISCRETE FOURIER TRANSFORM: THE COMPLEX CASE 461

FQZ
1 -1

For three points, the problem we are solving becomes: Given data points g, y1,
and yo, find a polynomial of the form py(z) = ¢y + 12 + 2% such that py(1) =
Yo, P2(w) = y1, and po(w?) = yo, where w is the cube root of unity defined by w = 5.
In particular, w3 = 1.

The matrix equation that must be solved is

1 1 1 Co Yo
1 w w? al=1mn
1 w? w? Co Y2

The definition of the Fourier matrix Fj is given by

1 1 1
Fs=11 w w?
1 w? Wt

If n =4, then

w? = —1,
w3 = —w = —i, and
wt=1

1 1 1 1 1 1 1 1

1 w  w? w? 1 ¢+ -1 —
F4 - =

1 w? (w?)? (W?)? 1 -1 1 -1

1w (w3 (W3)? 1 —i -1 i
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Note that the F,, F3, and F; matrices all have the structure of a Vandermonde
matrix. Since each one arose as part of a solution to a problem in polynomial inter-
polation, this observation is not an accident.

We are now in a position to show that each Fourier matrix F,, has two important
properties. First, every pair of columns are orthogonal. Second, each column has
length \/n. Thus, once again we can efficiently compute the Fourier coefficients by
simply multiplying both sides of the equation by a matrix A*, which has the property
that A* A is diagonal. The purpose of the next discussion is to give a careful definition
of this new matrix.

We begin with a definition of the Fourier matrix.

Definition 19.9.1. If n is a positive integer and w = e%, then the Fourier matrix

F,, is defined by the rule:

1 1 1 1 1

1 w w? w3 Wit

1 W2 (w?)?2 (w?)?2 (w2
F, =

1 B (w?)? ()3 (W 1)?

1 wn—l (w2)n—1 (w?))n—l (wn—l)n—l

To make the discussion of orthogonality more precise, we need to extend the
definition from the domain of vectors in R" to the complex n—dimensional space C™.

First, recall the following definitions.
Definition 19.9.2. If 2 = a+bi € C, then the conjugate of z is denoted by Z = a—bu.
Example 19.9.1. If 2 = 3+ 44, then Z = 3 — 4.

Since an equivalent way to represent a complex number z = a + bi is as a point
z = (a,b), we can graph any complex number in the plane. Note that the graph of the
complex conjugate Z = (a, —b) is on the opposite side of the z—axis (or line y = 0.)

from =z.
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Example 19.9.2. [f

241
Z = 3
55— 21
Definition 19.9.3. If
app 12 a3z G4 ... Qip
Qg1 Q22 Q23 G24 ... Q2p
A=|an ap a3 az ... az |-
m1 Am2 Am3 Gm4a ... Omp
then the conjugate of A is the matrix
app 12 a3z G4 ... Qip
Q21 Q22 Q23 (24 ... (Q2p
A=|am an @3 @i ... @
m1 Am2 Am3 Gm4a ... Omp

Definition 19.9.4. If A € C™*™, then the adjoint of A is defined by A* = A,
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Definition 19.9.5. If z; and zy are complex column vectors in C™, then the inner

product is defined by < z1, 29 >= 2] 2.

Example 19.9.3. If

241 7T+
21 = 3 and zp = | 11 — 5i
5— 2 13— 8&

then

< 21,290 >=(2+4)(7T+14) + 3(11 — 54) + (5 — 24)(13 — 8i)

=(2—14)(7+14) 4+ 3(11 — 5i) + (5 + 24)(13 — 8i)

=129 — 341.
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Definition 19.9.6. If z1 and zo are complex column vectors in C", then they are

orthogonal if < z1,29 >= 0.

Definition 19.9.7. If z is a complex column vector in C™, then the 2-norm of z is
given by |z| = /< z,z >.

Note that the 2-norm of a complex vector simply represents its length.

2w
n

Proposition 19.9.8. If n is a positive integer and w = e*i, then 1 +w+w?+ ...+

wt =0.

Proof. Since w™ = 1, we know by the formula for the geometric series that 1 4+ w +

Wi 4wl =1t O

1—w

Proposition 19.9.9 (Complex Fourier: Orthogonality and Equal Lengths).
The columns of the Fourier matriz F,, are pairwise orthogonal and the matriz D =
E)F, is a diagonal matriz with each entry on the diagonal equal to the integer n. In

particular, the 2-norm of each column of F,, is \/n.

Proof. This proposition follows immediately from the assumption that w™ = 1, the

fact that ww = 1, and the previous proposition. O
Proposition 19.9.10. The inverse of the Fourier matriz F, is the matriz ~F.
Proof. This fact follows immediately from the previous proposition. O

Theorem 19.9.11 (Complex Fourier: Coefficient Formulas). If yo, y1,- .., Yn_1

27
n

s a given set of data and w = e i, then the coefficients of the polynomial p,, 1(2) =

cot+ciz+. ..+, 12" with the property that p, 1(w*) =y for allk =0,1,...,n—1
are ¢ = %Z;:Olijjk, fork=0,1,...,n—1.

Proof. The matrix equation that must be solved is F,¢ = y, where ¢ = (cg, ¢1,...,¢n1)"
and y = (Yo, Y1,---,Yn_1)" Since the columns of F,, are pairwise orthogonal and all

have 2-norm equal to v/n, ¢ = % < W,y >, where wy, is the £ column of F),. Since

< W,y >= Z;:Ol y;w’*, we are done. O
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Theorem 19.9.12 (Complex Parseval/Pythagoras). If yo, y1,...,Yn 1 s a given

set of data in C, w = e%, Pno1(2) = o+ 1z + ...+ 12" with ¢ € C for all
k = 0,1,...,n — 1 is a polynomial with the property that p,_i(w*) = yi for all

k=0,1,...,n—1, then

—_

n—

1
yf. = ﬁ(|c0|2 +leP + . fenst ).

<.
Il
o

Exercise Set 19.9.

1. If
2+1

Z = 3 ,
>—2

then compute the 2-norm of the vector z.

2. If w = e’ and Yo = 2,y1 = 3,y2 = D are given points, then find constants
Co, €1, C3 such that the polynomial py(2) = ¢ + ¢12 + ¢22% has the property that

p2(1) = yU;pZ(w) = Y, and pg(wZ) = 1s.

3. Ifw=c¢e and Yo, Y1, Yo are given points, then find constants cg, ¢1, ¢ such that
the polynomial py(2) = ¢o+c¢12 + 222 has the property that po(1) = yo, p2(w) =
y1, and po(w?) = ys.
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Chapter 20

Cubic Spline Interpolation

Isaac Schoenberg

Galileo: The idea behind this next discussion is to show that polynomials can be
of great use as long as you make an effort to control them. These ideas were first
developed by Romanian born Isaac Schoenberg (1903-1990), who is recognized as
the inventor of splines. While he was more interested in their use in theoretical

mathematics, they now play a fundamental role in numerous applications including

467
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data fitting, computer graphics, and computer-aided design. The primary reason
spline techniques are used in so many different real-world applications is that they
are stable.

Simplicio: I am not sure of the meaning of the word stable when used in this context.
Galileo: Hopefully you remember our discussion of the Runge example, where the
smooth function f(z) = mﬁ was approximated by interpolating polynomials on
the interval [—1,1]. As the degree of the polynomial was increased, the accuracy of
the approximation became worse.

Simplicio: Oh yes, the approximation was particularly poor at the endpoints.
Galileo: The good news is that with splines that type of problem will never occur.
Simplicio: Sounds good.

Galileo: While a multitude of different kinds of splines have been devised, we will
consider only four different types: B-splines, clamped, free, and periodic. Note that
some researchers refer to clamped splines as “complete splines” and some people call
free splines “natural.”

While each of the different types of splines have their uses, periodic splines are
particularly useful because they can be used to construct digital contours in the plane
passing through a given finite set of points. These contours will be smooth and thus
not contain any sharp corners.

Simplicio: Where do we begin?

Galileo: For several reasons the class of piecewise linear functions provide a natural
entry point into the discussion of splines. The first reason is a pedagogical issue.
Namely, the idea of a spline is most accessible if the construction of a piecewise
approximation is well understood. The second reason is that the error formula for
piecewise linear approximation is not only useful by itself, but also provides a key
piece of information used in the proof of the convergence formula for clamped splines.

The theory for clamped splines turns out to be special in a number of ways.
First, the clamped spline is characterized as the smooth interpolating function with

the “fewest number of oscillations.” This idea can be formulated mathematically as
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an integral of the second derivative squared. This integral can be thought of as a
measure of the “energy” of the function. The less energy in the function, the fewer
oscillations. The clamped cubic spline is the smooth interpolant, which minimizes
this energy function. Remarkably, integration by parts and a modern version of the

Pythagorean Theorem are used in the proof of this minimization theorem:.
Simplicio: Why should I care about the integral of the square of the second derivative?

Galileo: While the minimization theorem provides enjoyable reading for a mathemati-
cian, an engineer is more likely to be interested by the high convergence rates provided
by clamped cubic splines. For most situations, the convergence rate is 4*-order for
the interpolants and 2"¢-order for the second derivatives. As a demonstration of the
power of the method, we will apply splines to the function f(z) = mﬁ and show
that not only does the sequence of splines converge to the function, but the sequence

of second derivatives converge as well.
Simplicio: What are the differences between these splines?

Galileo: To avoid technical difficulties, we will limit our discussion to the setting
where the partition has equally spaced points. When we make this assumption, the
interpolant can be written as a linear combination of functions which are formed as
translated and scaled versions of a single standard spline function. In all four cases,
the constants can be found by solving a system of equations, where the coefficient
matrix has a special easy to understand form. The coefficient matrix for the B-spline
interpolant has 1's on the diagonal and i's on the super and sub-diagonals. Every
other entry in the matrix is zero. The matrices for the other three types of splines

are minor variations of this one.

The B-spline interpolation technique is the easiest to explain because no discussion
of the endpoints is required. The other three types of splines are the same as B-splines
except that additional restrictions are placed on the endpoints of the interval. For the
clamped spline, the first derivatives of the interpolant Sc(x) are forced to be equal
to preset values at the two endpoints. Thus, S.(a) = y; and Si(b) = y!,, where y|

and y!, are given values. For the free spline, the second derivatives of the interpolant
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Sr(x) are set equal to zero at the two endpoints. Thus, S7-(a) = 0 and S} (b) = 0. For
periodic splines, the interpolant Sp(x) is forced to have the property that derivatives
agree at the endpoints. Thus, Sp(a) = Sp(b), Sp(a) = Sp(b), and S}(a) = SH(D).
Simplicio: While this all sounds interesting, I am not sure I am a believer yet.
Galileo: It took Schoenberg 20 years to get people to pay attention to what he
was doing. However, with the advent of the computer in the early 1960’s interest

skyrocketed because engineers found them useful in a multitude of applications.

20.1 Piecewise Linear Interpolation

Galileo: Even though the focus of this section is on splines, we begin with a discussion
of linear interpolation. While we could have presented this material earlier, it provides
an excellent introduction into the ideas and convergence theorems we will encounter
for clamped splines.

We begin our discussion with a brief review of some notation and a brief intro-
duction to some new notation.

Let P={a=xy <z <...z, = b} denote a fixed partition of [a, b].

Definition 20.1.1. If P = {a = xy < 21 < ...z, = b} is a partition, then the mesh
of P is defined by ||P|| = max{z;41 —z; :i=0,1,...,n—1}.

If P is a partition of [a,b], then let C”[a,b] denote the set of all continuous
functions on [a,b] which are linear on each segment [x;,x;11]. This collection of

functions will be referred to as the piecewise linear functions.

Definition 20.1.2. A Piecewise Linear Bump or Chapeau function is defined by

;

;1:1:71;11 T € [CE’i_l,CE’i]
Bz(CE) = ﬁ Tr € [$i,$i+1]

0 otherwise.
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Note that the functions B;(z) are continuous on [a, b]. In fact, these functions are
zero from —oo to x;_1, a straight line with positive slope from x;_; to z;, a straight

line with negative slope from x; to x;,1, and zero from z;,; to oco.

Proposition 20.1.3. If a function f(z) is defined on an interval [a,b] and P =
{a =2y <z <...2p = b} is a partition of [a,b], then the piecewise linear function
If(x) = 22:1 f(xg) - Bi(x) has the property that Ir(zy) = f(xy) for all k=0,1,...,n.
=0
0 ifi+
Proof. Note that B;(z;) = d;; = O
1 ifi=j.

Note that the function [;(z) = nz_:lf(xk) - Bi(x) is called the piecewise linear
approximation of f(x). Since any pfe:coewise linear function ¢(x) in the collection
C*la,b] can be written in the form ¢(z) = nil o(zg) - Be(z), the set of functions
{Bp:k=0,1,...,n—1} form a basis for the :e:toof all functions in C*[a, b]. This set
of functions is comparable to the functions L (z), which were used in the Lagrange
method for polynomial interpolation. In particular, note that the Chapeau function

By () is equal to zero at all points x;, where j # k.

Definition 20.1.4. If a function f(x) is defined on an interval [a, b], then the co—norm
(or sup norm) of f(x) is defined by the rule || f|lo = maz{|f(x)|: x € [a,b]}.

More intuitively, || f||o is the maximum value of |f(z)| on the interval [a, b].
Proposition 20.1.5. If f(z) € C?[a,b] and f(a) = f(b) =0, then ||f]loo < L[ f"]loo-

Proof. By the Lagrange error formula there is a first degree polynomial p;(z) such

that for every = € [a,b] there is a z such that

1@ = @)+ 2@ e )
Since f(a) = f(b) =0, p1(xz) =0 for all = € [a, b]. Thus, there is a point z € [a, b]
such that
f@) = LD @ — )@ —b).

2
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But the extreme (i.e. minimum) value of parabola (z — a) - (x — b) occurs at the

point %2 so that for all z € [a, b]

f(z)] < 1" |]so (b _ a>2

2 2

Wl e

Therefore, || f|lo < Loke . (b — a)?. O

The next corollary is a precise statement that as the partition is refined to have a
smaller mesh size, the piecewise linear interpolants will converge to the given function.

Even more important is the fact that the convergence rate is quadratic.

Corollary 20.1.6. Let P = {a =xy < x1 < --- < x, = b} be a partition of [a,b]. If
[ € C*a,b], then the interpolating function I¢(x) = Y f(xx)- Bi(x) has the property
k=0

that
|P|?
8

1 = Iflloo < 1 loo-

Proof. The proof of this corollary follows immediately from the application of the

previous proposition applied to each interval [z, 2f1 1] O

While the next corollary is an immediate consequence of the previous one, it will
be used as one of the key steps in the proof of convergence for the clamped cubic

splines.

Theorem 20.1.7 (Error Theorem For Piecewise Linear Approximation). Let
P={a=xy <z <- <z, =0b} be a partition of [a,b]. If f € C*a,b], then the

interpolating function I (x) = > f"(xy) - Br(x) has the property that || f" — I || <

) k=0
P
L O

Proof. Simply replace the function f(z) by the function f(z)” — I/ (x) in the previous

proposition. ]

Exercise Set 20.1.
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. Given that the cos(23) = 0.92050485345244 and cos(24) = 0.91354545764260,

what is the piecewise linear approximation of cos(23.56)? Use your calculator
to check that cos(23.56) = 0.91664200257852. How does the difference between
these two numbers compare with the estimate provided by the Error Theorem

For Piecewise Linear Approximation?

1

I f(x) = cos(x) for & € [—m, 7] and tol = —=, then how many equally spaced

105°

points will be required to guarantee that the piecewise linear approximation

I;(x) will approximate cos(x) with error less than 5 for all z € [—m, 7|7

If f(z) = mﬁ for x € [—1,1] and tol = %, then how many equally spaced

points will be required to guarantee that the piecewise linear approximation

I;(z) will approximate f(z) with error less than 55 for all z € [—1,1]?

20.2 Cubic B-Spline Interpolation

Galileo: The most straight forward path to understanding splines is through the

study

of standard “bumps.” The first standard bump is the piecewise linear Chapeau

function from the previous section.

Definition 20.2.1. The standard piecewise linear bump is defined by the following

rules:

A

0 r<-—1

z+1 ze[-1,0]

l1—z z€]|0,1]

0 Tz >1.
\

graph of this function is displayed in Figure 20.1.

Galileo: Note that if the points in a partition P = {a = 2y < 21 < -+ < z,, = b}

are equally spaced, then the functions B;(z) defined in the previous section can be

defined by the formulas B;(z) = B(25%), where h = *-%. In other words, the function

h
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B;(z) is nothing more than a translation by x; and a stretch by h of the Standard
Chapeau function B(x). Thus, any continuous function f(z) can be approximated by
linear combinations of translations and stretches of B(x).

Since numerous applications (e.g. computer graphics) require the use of smooth
curves rather than curves with sharp corners, these functions are not always appro-
priate. However, the same concepts can be translated into the domain of smooth
approximations. The only technical difficulty is to create a smooth bump. The next
definition provides the formulas needed for the standard cubic spline bump. The

graph of this function is presented in Figure 20.2.

Definition 20.2.2. The standard spline bump is a piecewise cubic polynomial defined

by the following rules:

0 r < 2

HEe=—)P —4(1—2)® - 62+ 4(1 + 2)*] =z €[-2,-1]
Sy 4 L[(2 — 2)3 — 4(1 — 2)3 — 627 z € [-1,0]

12— )3 —4(1 — )] z €10,1]

22-a)? r € [1,2]

0 x> 2

Proposition 20.2.3. The standard spline bump S(x) has the property that it is in

Figure 20.1: The Graph of the Standard Chapeau PWL Bump B(x)
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C?*(—00,0). In particular, S(z),S'(z), and S"(x) are all continuous for all x €

(—00, 00). Moreover,
1. 5(0) =1,5(+1) = 1, and S(£2) =0,

2. §'(~1)=3,8(1) = —%,5'(~2) = S'(0) = §"(2) = 0, and

1 4
3. §"(~2) = §"(2) = 0,5"(~1) = §"(1) = &, and $"(0) = —3.

Proof. Since S(z) is a cubic polynomial at all points z € (—o0,00) except where
two polynomials join. Thus, we only need to check continuity at the five points
x =—-2,-1,0,1, and 2. However, since S(+2) = 0, S(+1) = I, and S(0) = 1 whether
computed by the formula on the left side or right side of the possible trouble spot,
the function is continuous.

The first derivative of S(x) is given by the rules:

0 < —2
=32 -2 +12(1 —2)> - 1822 +12(1 + 2)*] z € [-2,—1]
(o) = | 1[-3(2 - 2)? +12(1 — 2)* — 1847 x € [—1,0]
L-3(2 — )2+ 12(1 — )2 z€[0,1]
—3(2—2)? z € [L,2]
0 x> 2

Figure 20.2: The Graph of the Standard Spline Bump S(z)
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Again, we only need to check the five possible trouble spots, where the quadratic
polynomials are joined. However, S'(—1) = 2,5'(-2) = S'(0) = 5'(2) = 0, and
S'(1) = —2. Thus, the function S’(z) is continuous for each z € (—o0,00).

The second derivative of S(z) is given by the rules:

;

0 r < =2

16(2—2) —24(1 —z) — 36z +24(1 + )] =z € [-2,—1]
" (a) = 1[6(2 — ) — 24(1 — x) — 364] x € [—1,0]

L[6(2 — z) — 24(1 — 2))] z € 0,1]

82 —a) x € [1,2]

0 x> 2

\

For the second derivative S”(z), the calculations are S”(—2) = S"(2) =0, S"(—1) =
S"(1) = 3, and S"(0) = —3.

Thus, the function S”(z) is continuous for each z € (—o0, 00). O

Simplicio: How would anyone think up those weird formulas?

Galileo: In any research project, one of the key ingredients is to ask the right ques-
tions. The best questions are straightforward to understand, but whose answers
provide insight beyond the stated question. To answer your immediate question, the
function S(x) equals the convolution of B(z) with itself.

Simplicio: The word convolution means nothing to me.

Galileo: The convolution of two functions is a fancy word for the integration of their
product—in a very particular way. Not only does this idea provide solutions to a
number of questions in differential equations, but also occurs whenever filtering is
discussed in signal processing and image processing. I have placed the topic on the
agenda for a meeting in the not-to-distant future. In any case, we now give the formal

definition.

Definition 20.2.4. If f(z) and g(x) are continuous functions on (—oo,00) with the

property that [* f(x)? dz < oo and [*_g(x)? dz < oo, then the convolution of f(x)
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and g(x) is given by the formula

Feote)= [ - tgte) de

Galileo: As it turns out, the bump S(z) is the convolution of B(x) with itself. If
we also know that the operation of convolution tends to make a function smoother,
then we are closer to the fact that the function S(z) has continuous first and second
derivatives.

Simplicio: I bet the computation is messy.

Galileo: Maybe so, but the computation can be visualized as simply dragging one
copy of B(z) across another. When the bumps are disjoint, the integrals are zero.
As they begin to intersect, we are integrating the product of two straight lines so the
answer is a cubic polynomial.

Simplicio: And if we would like to construct a piecewise linear 5 degree polynomial
bump, then we simply convolve the functions B(z) and S(z) to create a function
which has continuous first, second, third, and fourth derivatives. Is that not correct?
Galileo: You have the picture.

Simplicio: But is there method a with easier formulas?

Galileo: Actually, some researchers use the piecewise 6" degree polynomial:

(x =12 +1)* ifzel[-1,1]
Clr) =
0 if |[x] > 1
Galileo: However, the more popular method is the one we described. Since the

first and second derivatives of S(x) play an important role in both the theory and

application of splines, we present their graphs in Figures 20.3 and 20.4.

Galileo: We now turn to the problem of constructing the B—spline from building
blocks provided by the spline bump S(x). Given a partition of equally spaced points
P={a=uxy <z <--+ <z, = b}, the second step is to translate and stretch the
standard bump n + 1 times so that the £ bump, Si(z), has center x;, and equals

zero outside the interval [zy_o, x12].
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Given data points (xg,yx) £ = 0,1,2,3,...,n, where x4y, —xp = h for all k =

0,1,2,...,n, the goal now is to find constants ¢, where £k = 0,1,2,...,n so that

Sp(x) = Y cxS(*5™) has the property that it interpolates the data. In particular,
k=0

we insist that Sp(zg) =y for all k =0,1,...,n.

n

If we let Si(x) = S(*5%), then we can write Sp(z) = ) ¢, Sk(2). As was the
k=0

case for both polynomial and Fourier interpolation the constants ¢, can be found by

solving the matrix equation Sgc =y, where

Co Yo
C1 Y

c=1| |,y= ‘1 , and
Cn Yn

Figure 20.3: The Graph of S'(x)

Figure 20.4: The Graph of S"(z)
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1 + 0 0 0 ...0

L1t 0 0 .00

0o f 1 1 0 ...0
Sp = - -

1 10

11

0 0 ; 1

The constants 1 and 1 in the (n + 1) X (n + 1) matrix Sg are forced by the
relationships Si(zx) = S(0) = 1 and Sk(wt1) = Sk(zk—1) = S(£1) = 1, respectively.
The zero entries in the matrix follow from the fact that Sy(z) = 0 for all = such that
|z — x| > 2h.

The beauty of the matrix Sg is that it is tridiagonal, diagonally dominant, sym-

metric, and well-conditioned [1].

Exercise Set 20.2.

1. Given the data (0,2),(1,2),(2,2), (3,2), (4,2), set up the matrix equation that
must be solved to compute the constants for the B-spline interpolation function
Sp(x). Use computer software to compute the constants co, ¢y, ¢, c3,¢4. Use

these constants to compute Sg(x) for z = 1,5,7.

2. Compute the LU factorization of the 5 x 5 spline matrix Sg. How would you use

this factorization to write efficient code to solve the matrix equation Sgc = y?

20.3 Clamped Cubic Spline Interpolation

Galileo: We now turn to the problem of clamped cubic spline interpolation. In this
application, we again have a partition of equally spaced points P = {a = 2y < 21 <
- <z, = b}, where xy1 —xp = h for all k =0,1,2,...,n — 1. As before, we are

also given data points (xy,yx) for £ =0,1,2,...,n. The difference this time consists
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of two new pieces of information, y and y/,, constraining the value of the derivative
at the two endpoints. In particular, we require that the interpolating function S¢(x)
has the property that S, (a) = S (xo) = yy and S (b) = St (z,) = yl,. Since we have
two new constraints, we must have two new free variables. The trick is to simply add
two new bumps.

Simplicio: But, where are you going to add them?

Galileo: Simply add one at each end of the interval [a,b]. Since the points in P are
assumed to be equally spaced, we simply add the points x_; and x,,,1 to the partition

so that xg —x_y = h and x,+; — x,, = h. We now have to solve n + 3 equations and

n+3 unknowns for c_q, ¢g, 1, . . ., €y, ¢pr1- The new interpolant is defined by the linear
n+l

combination S¢(z) = > cS(5™%).
k=—1

The two new constraints are forced by the equations Si.(z9) = y; and S (x,) = y,,.

But if © = x, then
-3

3
S’C(J'Io) = C_1SI_1(JI0) —+ C()S(,)(JI()) + 015{(:1:0) = C_IE + 0 + CIE = y6

If v = x,, then

3 -3
Se(n) = cno1Sh_1(2n) + Sy (w0) + g1y 11 (@) = T +0+ Crtl = Y.

Solving the first equation for ¢_; and the second for ¢, 1, we find that c_; = %y{) +c

and ¢, 11 = %y; + ¢, 1. Thus, the two new equations become:

+ b
C —CL =Yy — —
050 Yo 3?Jo
and
h,
écn—l +c, = Yn — gyn

Thus, the modified system of equations we need to solve becomes Scc = yy,

where

h
Co Yo — 3%

c=1| |,yy= _ , and

Cn yn - § yn
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1 ¢+ 0 0 0
1 1 0 0
o + 1 + 0 ... 0
Se = : :
1 1+ 0
11
0 0 % 1

Again, the constants 1 and § in the (n+1) x (n+ 1) matrix S¢ are forced by the
relationships Si(zx) = S(0) = 1 and Sk(wt1) = Sk(zk—1) = S(£1) = 1, respectively.
The zero entries in the matrix come from the fact that Si(x) = 0 for all z such that
|z — x| > 2h.

As before, the matrix S¢ is tridiagonal, diagonally dominant, almost symmetric,
and well-conditioned. Again, the LU-factorization can be used to solve the matrix
equation Scc =yy.

Exercise Set 20.3.

1. Given the data (0,2),(1,2),(2,2),(3,2),(4,2),y, = 3 and yj = 7, set up the
matrix equation that must be solved to compute the constants for the clamped
cubic spline interpolation function S¢(x). Use computer software to compute the

constants ¢y, ¢y, Cg, €3, ¢4. Use these constants to compute S¢(x) for z = 1,5, 7.

2. Compute the LU factorization of the 5 x5 clamped spline matrix S. How would
you use this factorization to write efficient code to solve the matrix equation
Scc = yy. How does this factorization compare with the factorization of the

5 x 5 matrix Sg?

20.4 Natural Cubic Spline Interpolation

Galileo: We now turn to the problem of natural cubic spline interpolation. Sometimes

this type of spline is referred to as a free spline. In this application, we will again
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assume we have been given data points (zy,yx) for & = 0,1,2,...,n, where the
partition P = {a = 2y < 21 < --- < z, = b} has equally spaced points and
Tpy1 —xp = h for all £ =0,1,2,...,n — 1. While the spirit is the same as clamped
splines, the strategy this time is to simply define the endpoint conditions by the rules:
yo =0 and y/] =0.
Simplicio: Why would you make this assumption?
Galileo: You may not have any information on the first derivatives and yet you may
want to temper the behavior at the endpoints.
Simplicio: May I guess that you simply add two new bumps, which provide two new
free variables?

n+1
Galileo: Exactly! If we let Sy(z) = Y. ¢S(%*), then we can create two new

3
k=1
constraints: Sh(z9) = yj = 0 and S} (z,) = y! = 0. These constraints provide us

with two new endpoint conditions.

First, if x = x¢, then

3 3 3,

Sk (xo) = 15" (x0) + ¢oSp (xo) + 157 (x0) = C-15;5 ~ €033 + Cigps = Yo = 0.
Second, it © = x,,, then
SI ( ) _ SII ( )+ SII( )_|_ SII ( ) _ i_ i_i_ i o n 0
N Tp) = Cp—1 n—1 Ty Cp n Ty Cn+1 n+1 Tp) = Cn—12h2 Cnh2 Cn+12h2 - yn — Y.
These equations simplify to the following:
C_1— 200 + =0
Cn-1— 2Cp, + Cpia = 0.

Solving for the variables ¢_; and ¢, ;, we immediately see that ¢_; = 2¢y — ¢; and
Cnt1 = 2¢, — Cp1-

Thus, the matrix equation becomes: Syc =y, where
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Co Yo
C1 Y1
C = 7y’: .
Cn Yn
3
5 0 0 0
rA S B
0o 1 1 1 0
SN: . .
1
1
4
O ... ... ... 0

, and

— e

0

e}

Njw
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Simplicio: Let me finish your thoughts by saying that the matrix Sy is tridiago-

nal, diagonally dominant, almost symmetric, and well-conditioned. Again, the LU-

factorization can be used to solve the matrix equation Syc =y.

Exercise Set 20.4.

1. Given the data (0,2),(1,2),(2,2), (3,2), (4,2), set up the matrix equation that

must be solved to compute the constants for the natural spline interpolation

function Sy (). Use computer software to compute the constants cq, ¢1, ¢a, 3, ¢4.

Use these constants to compute the value of Sy(x) for v =1,5,7.

2. Compute the LU factorization of the 5 x 5 natural spline matrix Sy. How does

this factorization compare with the factorizations for the 5 x 5 matrices Sz and

Sc? How would you use this factorization to write efficient code to solve the

matrix equation Syc = y?

20.5 Periodic Cubic Spline Interpolation

Galileo: We now turn to the problem of periodic cubic spline interpolation for equally

spaced points. If you understood what we did before, this discussion will only take a
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minute.
Simplicio: I think I have time in my schedule for this item.
Galileo: To continue, when we are given a data set (xy,yy) for £ = 0,1,2,...,n, we

assume the data is smoothly periodic. Thus, we not only assume y,, = y,, but also

"

" = yy. A moments reflection makes us realize that the data can

that y/, = y; and y
be thought of as continuing from —oo to oo so the interpolating function has the
form Sp(z) = i crS(*5). Better yet, the solution will have the property that
Ck = Cpyy for arﬁ;azteger k.

Simplicio: But won’t we be adding up an infinite number of numbers?

Galileo: Not really, because for any given x only a finite number of integers k exist with

the property that S(*5%) # 0. In fact, if S(*5%) # 0 for some k, then S(=*) = 0

forall 7 > k+4 and all j < k— 4. Since ¢_; = ¢,_1 and ¢y = ¢,, the matrix equation

becomes Spc =y, where

Co Yo
C
c= ' , Y = o , and
Cn—1 Yn-1
1 1
1 1 0 0 i
T 1 1 0 0
0o 1+ 1 1+ 0 0
SP — . .
1 1 0
1 1
i Log
1 1
1 0 7 1

Simplicio: In other words, you wrapped the data around from beginning to end and
threw away a bump because the data at xy equals the data at z,,.

Galileo: Exactly.

Exercise Set 20.5.
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1. Given the data (0,2),(1,2),(2,2), (3,2), (4,2), set up the matrix equation that
must be solved to compute the constants for the periodic spline interpolation
function Sy (). Use computer software to compute the constants cq, ¢1, ¢a, 3, ¢4.

Use these constants to compute the value of Sp(z) for v = 1,5, 7.

2. Compute the LU factorization of the 5 x 5 natural spline matrix Sp. How does
this factorization compare with the factorizations for the 5 x 5 matrices Sg, S¢,
and Sy? How would you use this factorization to write efficient code to solve

the matrix equation Spc =y?

20.6 Orthogonality Property for Clamped Cubic
Splines

Galileo:

The purpose of this section is to prove an orthogonality property for splines, which
is analogous to the Pythagorean Theorem. This property is also fundamental to the
stability and convergence properties that make splines useful.

Let a = g < 21 < 9 < -+ < x, = b be a partition of [a, b].

If g € C?[a,b], then let g, denote the clamped spline associated with g. In partic-
ular, gs(z;) = g(x;) for i =0,1,2,...,n and ¢.(a) = ¢'(a) and ¢.(b) = ¢'(b).

Let e,(z) = g(x) — g5(2).

Note that ey(z;) =0 for alli = 0,1,...,n and e (a) = e} (b) = 0.

Lemma 20.6.1. If ¢(x) is a piecewise linear continuous function on |a,b] which is

linear on each interval [x;, x;11], then

Proof. The idea behind the proof is to integrate the integral by parts. Since we are
using clamped splines, the endpoint information ¢.(a) = ¢'(a) and ¢.(b) = ¢'(b) will

ensure that the integral is zero.
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O

Theorem 20.6.2 (Orthogonality Property For Clamped Cubic Splines). If
g € C?[a,b] and e,(z) = g(z)—gs(z), then fab[g"(x)]2dx = f;[g;’(x)]de—{—fab[e;’(x)]de.

Proof. Since ¢7(z) is piecewise linear and continuous, we observe that
b b
[ @Pds = [ lgite) + s
‘ ab b
~ [a@Pds+2 [ gte) - ejarts
o .
+/ [e'g'(:r)]de
, b
— [lat@Pds+ [ e

20.7 Minimization Property for Splines

We now present a mathematical formulation of the intuitive concept that spline inter-
polation provides the fit with the fewest “wiggles.” This minimization property will
be one of the key facts needed to prove the convergence theorem for splines.

Let CZ[a,b] denote the set of all ¢ € C?[a,b] such that ¢(x;) = g(x;) for all
i=0,1,2,...,n and ¢'(a) = ¢'(a) and ¢'(b) = ¢'(b).

Note that the set C?[a, ] is a convex subset of C*[a, b)].

Proposition 20.7.1. If ¢ € CgZ[a, b, then ¢s(x) = gs(x) for all x € [a, b].
Theorem 20.7.2. (Minimization Property) If g € C*[a,b] and any ¢ € C3la,b], then
b b
[t < [0 @

Proof. By the orthogonality property

/ab[¢"(x)]2d:c = /ab[aﬁ's'(:v)]?dx + /ab[qb”(x) — ¢(@)]2da.
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Since ¢ € Cla,b], ¢, = g, on [a, b],

[ = [(opars [0 - depa

> [

20.8 Convergence for Splines

The first step in the proof of the convergence theorem for splines is to attack the
second derivative of a function by a linear combination of “hat” functions, which are

best as measured by a least squares fit, (i.e. in the Ly norm).

Definition 20.8.1. If P is a partition of [a,b] and g € C°a,b], then a function
grs € CPa, b is called the best piecewise linear approximation to g in the least squares

sense, if
/ (9(x) = grs(x))*dx < / (9(z) — ¢(2))*dw
for all ¢ € C*[a,b].

The next proposition provides the solution to the least squares problem for the
second derivative of a function. This proposition states that the second derivative of
the clamped cubic spline provides the best least squares approximation to the second
derivative of a given function. Note that the proof of this theorem uses the fact that

the spline of the sum is the sum of the splines.

Proposition 20.8.2 (Corollary). If g € C*[a,b] and g5 denotes the clamped cubic

"

spline approzimation of g, then g = (gs)" is the best piecewise linear approzimation

of g" in the least squares sense. In particular, (¢")rs = (gs)".
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Proof. To prove this proposition we must show that if ¢ is any member of C*la, b,

then
/ﬁfuwwm%xs/ﬁfmy—mmﬁm.

By the fundamental theorem of calculus, a function @ can be found in C?[a, b]
with the property that ®"(x) = ¢(z) for all x € [a,b]. (i.e. P®(z) is the double
antiderivative of ¢(z).)

Let G(z) = g(x) — ®(x).

If eq(z) = G(z) — G4(z), then by the orthogonality property
b b b
[ 16" @pds = [Gu@Pdn + [ i)
Since efs(xz) = G"(z) — G%(z) and @"(x) = ¥ (x) = ¢(x) for all x € [a, b],

eg(v) = g"(x) — ¢(r) — (g5 (v) — ()

"

= g"(x) — g(x).

Thus,

b b

[ @) - oto)de = [ 16"
a ab

> [ leglapas
ab

— [ 9" - gt
Since ¢ is an arbitrary member of C*[a, b] we are done. O

Corollary 20.8.3. Let P = {a=xy < 1 < --- < x, = b} be a partition of [a,b]. If

g € C?a,b], then the clamped cubic spline gs(x) has the property that

Ll
8

19— gsllso < 19" = 92l oo-

Proof. Simply let G(z) = g(z) — gs(x) and apply Corollary 4.4. O
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Note that if the points z; in the partition are equally spaced, then the matrix A

has the form

T 0 o0 0
L1 Lo 0
o ; 1 1 0
A =2h - -
0
1
4
0 0 1

Proposition 20.8.4. If g € C°a,b] and grs is the best piecewise linear approzimation

to g in the least squares sense, then

l9zsll00 < 3 - [|glloo-
Proof. The proof of this proposition is quite technical and thus omitted. O
Corollary 20.8.5. If g € C?[a,b], then ||g"]lco < 3 [|g"||co-

Proof. By the previous proposition ||¢]sllcc < 3-]|9”||oc- By the corollary to Pythago-

ras, grs = gv. Therefore ||¢7]l < 3+ [|¢"]|c- ]

The previous proposition shows that the most simple-minded interpolation is no

more than twice as bad as the best.
Proposition 20.8.6. If g € C?%[a,b], then ||¢" — ¢"]lc < 4-1¢" — Iy co-

Proof. [|9" = gillee < 19" = Lgnlloo + 1Ly = Glloc < 19" = Lgrlloo + 3[gr = §"[lc =
4-1lg" = Iy loo-
U

20.9 Convergence for Clamped Splines

The purpose of the next discussion is to prove the convergence theorem for the
clamped cubic spline. Better yet, this theorem guarantees a 4th-order convergence

rate. In addition, the convergence theorem for the second derivatives is also proved.
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The following list of 3 facts provides a summary of the key steps used to prove

convergence for the clamped cubic spline.

Lo llg = gsllee < 5 - l9" = 951l - 1217
2. 119" = gilloo < 4- 119" = Tyrlloc
3. [lg" = Igrlloo < gllg™llee - 1P

Theorem 20.9.1. Convergence for Clamped Splines
If g € C*[a,b], then

lg — 9 g Dlles - 1PII"

oo < 16

Proof. By fact 1,

19 — gslloo < gllg — ¢l - I|1P]%

By fact 2,
19" = e <4+ 1lg" = Il
Therefore,
lg = gullse < 318" = Il 121
By fact 3,
g~ gulle < 5 - glol - IPIP - 1P

1
= — lg®| . |P*

Note that the best result is by Hall in 1968 where he showed:

1P[1* - 119" loc.

19— gilloo < =
g gsoo_384

The next theorem guarantees a 2nd-order convergence rate for the second deriva-

tive of the claimed cubic splines to converge to the second derivative of the function.
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Theorem 20.9.2 (Convergence for the 2nd derivative of the clamped cubic

splines.). If g € CW[a,b], then

|w—wa_2HgHwHPW

Proof. By the previous proposition ||¢" — g%l <4 |g" — Ig]|o-
By fact 2, [|¢" — Ir|loo < 19|/ ||P||*>. Therefore,

- o] o] P2
19" — g _8H9H -|1P

Note that Hall and Meyer showed in 1976 [2] that

|w—mmw_gw|uwpw

Exercise Set 20.9.

L. If g(x) = cos(x) for x € [—m, 7| and tol = then how many equally spaced

]_05 )

points will be required to guarantee that the clamped cubic spline approximation

gs(z) will approximate cos(x) with error less than —= for all € [—m, 7]7 Repeat

105

this exercise for ¢”(x). Compare your answer with the answer you found for the

piecewise linear approximation.

2. If g(z) = %= for x € [—1,1] and tol =

12522 then how many equally spaced

]_05 )

points will be required to guarantee that the piecewise linear approximation

gs(z) will approximate g(x) with error less than — for all x € [—1,1]? Repeat

105

this exercise for ¢”(x). Compare your answer with the answer you found for the

piecewise linear approximation.
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