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Remarks by the Author
Topi
s and ClienteleKeep the interests of the students in mind and the rest will work itselfout.{Bill Harris, NSFThe goal of this set of notes is to present mathemati
al topi
s sele
ted from numer-i
al analysis, whi
h are suitable for a semester 
ourse at the upper level undergraduatelevel. The topi
s have been organized themati
ally under the headings of root �nd-ing and approximation theory. The dis
ussion of root �nding te
hniques in
ludesthe square root method of Ar
himedes/Heron, the method of Newton/Raphson, thebise
tion method, and the 
ontra
tion mapping theorem. The dis
ussion of approx-imation theory in
ludes the topi
s of Taylor's Theorem, polynomial approximation,least squares, Fourier Series, splines, and wavelets. The Pythagorean Theorem andthe 
on
ept of orthogonality provide a unifying overar
hing theme whi
h appearsthroughout. The topi
s have been sele
ted with the idea that they will be parti
u-larly relevant for students in 
omputer s
ien
e, ele
tri
al engineering, and 
omputerengineering.Sin
e engineering students are typi
ally inexperien
ed, untrained, and uninter-ested in formal mathemati
s, the subje
t of numeri
al methods has a sad reputationfor being a dull, diÆ
ult, and irrelevant requirement for graduation. In the numer-ous times I have taught this 
ourse, I have not infrequently en
ountered the atti-tude: \This is my last math 
ourse{hopefully." In parti
ular, I have found tea
hinga 
ourse on numeri
al methods a pedagogi
al 
hallenge be
ause students la
k theix



x REMARKS BY THE AUTHORrequired mathemati
al training to appre
iate the dis
ussions. In one 
lass, I noti
edthat one of my engineers was visibly resistant to the proof of a key theorem. Onfurther questioning it be
ame evident that he saw no justi�
ation for his time beingwasted in su
h an exer
ise. For some reason, I �nally asked "What is the di�eren
ebetween a de�nition and a theorem?" His response was \Aren't they the same?" I wasstartled to think that a student, who had passed three semesters of Cal
ulus as wellas semester 
ourses in Linear Algebra and Di�erential Equations 
ould make su
h astatement. Even the tea
hings of Eu
lid were beyond this fellow. Unfortunately, heis not alone. Sin
e that experien
e, I now regularly 
onfront su
h issues on the �rstday of 
lass by asking the following basket of questions:1. \Why do we have de�nitions and theorems?"2. \What is a 
onditional senten
e?"3. \What is the stru
ture of a theorem?"4. `What is the di�eren
e between the way a mathemati
ian and a statisti
ian usesthe word hypothesis?"5. \What is a mathemati
al system?"6. \Why should anyone 
are?" (This question is the most important!)I try to answer these questions by giving short expositions on basi
 propositional logi
and the rami�
ations of Eu
lid's famous 5th Postulate. After one su
h introdu
tion,a 
omputer s
ien
e student, a native of Southeast Asia, stated she was sho
ked bythe remedial level of the dis
ussion. She left and never returned.In 
ase you are thinking I am prejudi
ed against the engineering students, letme mention that my math majors also have de�
ien
ies when taking more applied
ourses. One extremely bright and talented student (also from Southeast Asia) earnedan almost perfe
t s
ore on every exam. However, when asked to write �ve lines of
omputer 
ode to approximate the square root of a number, she was helpless. In



xigeneral, the engineers 
omplain about the theory and 
lamor for more proje
ts, whilethe mathemati
s students thrive on the theory and wish the proje
ts were not a partof the 
ourse. Thus, I have found that the instru
tor of an applied mathemati
s
ourse should be alert to the di�ering needs of the students, while at the same timenot getting derailed repairing too many de�
its.In my experien
e, the single most important reason students �nd numeri
al anal-ysis dull, boring, and diÆ
ult is their la
k of skill and knowledge in Logi
, Geometry,and Linear Algebra. A se
ond reason is their inability to 
onne
t the theory withsome aspe
t of their expe
ted future employment. The \Interview" has been in
ludedin an e�ort to address these issues. For students who have been away from math-emati
s for a long time, I have in
luded many other brief reviews throughout thenotes.While the fo
us of the dis
ussion is on the mathemati
s, the goal is to present areadable a

ount of the thought behind the theory in a manner that will be appre-
iated by a large subset of the students. The approa
h is to present the material asa histori
al progression of ideas motivated by key examples and easy-to-understandspe
ial 
ases. Hopefully, this approa
h will help neutralize negative attitudes andbetter meet the needs of the students.A Brief History of the Dialogue FormatMathemati
s is written for mathemati
ians. { Ni
olaus Coperni
usWith a qui
k glan
e through the these notes, the reader will immediately noti
ethat they are written in a dialogue format. Surely the author must be joking. Whywould anyone waste his/her time writing a mathemati
s textbook in dialogue format?Why would anyone waste hard-earned money pur
hasing su
h a volume? Galileo asa 
entral 
hara
ter in the dis
ussion? However, that is exa
tly what is o�ered: anallegori
al presentation of real mathemati
al ideas.Let us begin our defense by noting that numerous books from antiquity were



xii REMARKS BY THE AUTHORwritten as dialogues. Plato (427-347 B.C.E.) wrote virtually all his works in thisdramati
 style. In his \Apology," he dramatizes the fatal 
on
i
t between So
ratesand his enemies Meletus, Anytus, and Ly
on, who had a

used him of \
orrupting theyouth." For this 
rime, So
rates re
eives the ultimate punishment. In his \Allegoryof the Cave," Plato tries to 
larify the 
on
epts of intelle
t, belief, and knowledge.In this dialogue, he 
hains prisoners in an underground 
ave, where they see onlyshadows 
ast on the wall in front of them and hear only e
hoes from behind. Thisallegory dramatizes the fundamental human 
on
i
t that we 
an never know reality.His 
ommentaries on ethi
s, politi
s, astronomy, and mathemati
s were also writtenas dialogues.In 1632, Galileo (1564-1642) published his \Dialogue Con
erning the Two ChiefWorld Systems: Ptolemai
 and Coperni
an," [3℄ where he dramatizes the s
ienti�

on
i
t between two di�erent mathemati
al models of the solar system. Simpli
io,his spokesman for the Aristotle/Ptolemai
 earth-
entri
 view of the universe, playsthe role of a foil to Salviati, who advo
ates the Coperni
an view that the sun is the
enter of the solar system. A third 
hara
ter, Sagredo, plays the role of the forwardlooking aristo
rat, who 
onsiders both sets of arguments, but 
onsistently ends upsiding with Salviati. In the narrative, Salviati presents observations of the o
eantides, the moons of Jupiter, and the phases of Venus as eviden
e that the Earthmoves. The main reason for his use of the dialogue format was to present the 
asefor the Coperni
an view while pretending to be impartial. Of 
ourse, this ruse failedto prote
t him from the wrath of the Inquisition of Pope Urban VIII (1568-1644).On 22 June 1633, he was found guilty of heresy and senten
ed to house arrest for theremainder of his life.In 1638, Galileo published a se
ond dialogue \Dialogues Con
erning Two NewS
ien
es," [5℄. In this work he again presents the same three 
hara
ters in a four daydis
ussion of fundamental 
on
epts in two key areas of modern Physi
s. The fo
usof the dis
ussion for the �rst two days is on the strength of materials. The fo
us forthe se
ond two days is on the behavior of a falling obje
t. While Galileo's style is



xiiiagain engaging, the style of this se
ond volume is more mathemati
ally 
hallengingthan the �rst. Mu
h of the writing is in an de�nition, theorem, proof format, wherethe reader is subje
ted to numerous diÆ
ult mathemati
al arguments. (Most of thesedis
ussions are geometri
 in nature.) On the �rst day, he even 
onsiders several of theparadoxes of in�nitesimals and in�nity, whi
h arise in his dis
ussion of strength ofsu
h materials as 
opper wire, glass, marble, and rope. At the beginning of the fourthday, his Proposition I 
on
ludes that the path of a falling obje
t des
ribes a parabola.Later in the same day, his Proposition VIII asserts the familiar physi
s/
al
ulus fa
tthat a proje
tile �red from a 
annon at a 45 degree angle will travel farther than when�red at any other angle. While mu
h of the 
omplexity of these arguments 
an beredu
ed if armed with a knowledge of modern 
al
ulus, the dis
ussions remain freshto this day. For example, on the se
ond day Salviati argues that a giant 
annot bearbitrarily sized in the same proportion as a smaller 
reature unless the bones aremade from a stronger material. Thus, real physi
al reasons exist that explain whythe largest mammals reside in the great o
eans of the world.A number of modern authors have also employed a dialogue format in their math-emati
al writings. In 1895, Lewis Carroll (1838-1898) published \What the TortoiseSaid to A
hilles," where the dis
ussion elu
idates the subtleties of the logi
al argumentof modus ponens. In parti
ular, he addresses the logi
al problem of self-referen
ing.(The easiest example of self-referen
ing is to 
onsider the truth or falsity of thestatement: \I am lying." Think about it.) In 1963-64, the Hungarian mathemati-
ian/e
onomist/historian Imre Lakatos (1922-1974) published four arti
les entitled\Proofs and Refutations." (The arti
les were published as a book in 1976 [8℄.) In thissmall set of dialogues, the author 
reates a 
lassroom setting through 
onversationsbetween a tea
her and a small group of students. The tea
her is named Tea
herand the students are named Alpha, Beta, Gamma, et
. Through their intera
tionsthe reader is drawn into the world of mathemati
al rigor. The 
on
epts of axioms,de�nitions, and theorems are dis
ussed through a question/answer format, where thefo
us of the mathemati
s is Euler's famous theorem that V � E + F = 2 for any



xiv REMARKS BY THE AUTHORpolyhedral 2�sphere, where V;E; F denote the number of verti
es, edges, and fa
es,respe
tively. While mathemati
al rigor, logi
, proof, examples and 
ounterexamples(i.e. refutations) are 
entral, Lakatos tea
hes the pro
ess of formulating 
arefullyworded de�nitions and theorems so that ambiguity or vagueness are removed. As thedis
ussion shows, if you are sloppy or 
areless with your wording, a 
ounterexampleto what you had expe
ted may be lurking nearby. Alfred Renyi (1921-1970) was oneof the outstanding Hungarian mathemati
ians and statisti
ians of the 20th Century.He even has an institute 
onstru
ted in his honor. In 1965, he published "Dialogueson Mathemati
s," [8℄ where So
rates, Ar
himedes, King Hieron II, and Galileo arefeatured dis
ussing su
h subje
ts as \pure versus applied mathemati
s." On o

asion,he even performed these works with his daughter. His best known quote is \A math-emati
ian is a ma
hine for 
onverting 
o�ee into theorems." (Another Hungarian,Paul Erd�os, has also re
eived 
redit for this quote.) In his 1974 dialogue \SurrealNumbers," [7℄ Donald Knuth strands two ex-students, Bill and Ali
e, on an isolatedbea
h. Bored and lonesome, they �nd happiness in mathemati
s (and a tou
h ofroman
e) through a highly rigorous dis
ussion of the properties of the real numbersystem. In 1979, Douglas Hofstadter expanded on Lewis Carroll's dis
ussion of ofself-referen
ing in his highly popular Pulitzer Prize winning book \G�odel, Es
her,Ba
h" [4℄, where he makes 
onne
tions between a myriad of subje
ts in
luding logi
,art, musi
, 
omputer programming, the nature of language, the nature of thought,the repli
ation of our geneti
 
ode, Turing ma
hines, arti�
ial intelligen
e, and freewill. Dialogues between A
hilles, the Tortoise, the Anteater, the Crab, and CharlesBabbage interla
e this book of ideas. Most re
ently, Keith Kendig has written thebook \Coni
s" [6℄, where a Tea
her, a Philosopher, and a Student un
over the prop-erties of the 
oni
s through an engaging and readable dialogue. The Philosopher islooking for unity and beauty, the student loves stories, and the tea
her provides thedetails. Along the way, questions are asked and mathemati
al dis
overies are made.The inspiration behind the dialogue format set forth in these notes is Dava Sobel'sbook \Galileo's Daughter," [10℄. While most books on Galileo (1564-1642) provide



xvan a

ount of his s
ienti�
 a
hievements and/or his politi
al problems, the fo
us ofSobel's book is his relationship with his eldest daughter, Virginia (1600-1633). WhileGalileo had two other 
hildren, Virginia was probably his favorite. She was bright,beautiful, serious, and passionately devoted to her father. Sin
e she was illegitimate(as were his other two 
hildren), marriage was problemati
. Thus, at the age of 16she followed the respe
table alternative of the times by dutifully taking vows as SuorMaria Celeste at the 
onvent of St. Mateo in Padova, Italy. (The name Celeste isderived from 
elestial and is probably an indire
t referen
e to Galileo's astronomi
aldis
overies.) Life at the 
onvent was dominated by prayer, never ending 
hores, andgrinding poverty. Despite their separation and diÆ
ult 
ir
umstan
es, the father anddaughter adored ea
h other. She provided him with aid and 
omfort when he wasill and wrote him 
ontinually during their extended separations. In return, Galileonever failed to respond to her requests for money. Sobel spe
ulates that this dutifuldaughter may have assisted in the preparation of his dialogue \Two Chief WorldSystems." One 
an only wonder what she might have a
hieved if she had been morefortunate in her birthright.A downside to the dialogue format is a la
k of e
onomy. Sin
e mathemati
s livesperfe
tly well in its own sparse setting, the experien
ed instru
tor or reader may �ndthe 
onversational style not only unne
essary, but also distra
ting and irritating. Ifthis is the 
ase, simply move on to a new topi
. The author has no intention thatsomeone would tea
h word-for-word what is written in these notes. What is writtenhere 
ontains too mu
h of one individual instru
tors own 
lassroom style.Cultural Impa
ts on PedagogyWe note that a huge body of eviden
e attests to the fa
t that a so
i-ety's values are passed from generation to generation through a pro
ess oftransmission whi
h may be verti
al (from parents) or oblique (from oth-ers in the prior generation) and involves a psy
hologi
al internalization of



xvi REMARKS BY THE AUTHORvalues. {Karl MarxHow does so
iety optimize the transfer of mathemati
al knowledge and skills fromone generation to the next? While the edu
ators, politi
ians, and media have spentinordinate quantities of time, thought, and 
ash trying to address this issue, my viewis that the answers lie in the 
ulture of the 
ommunity, the reward system for thoseinvolved, and the method of delivery. Needless to say these three for
es are notunrelated.If a 
ommunity values �nan
e, fashion, and football more than mathemati
s ands
ien
e, then guess what? The resour
es and talent of the 
ommunity will 
ow intothose more preferred areas. Sometimes politi
al events 
hange the behavior of a
ommunity. Before the rise of the Nazis, mathemati
s training in Ameri
a was al-most nonexistent at every level. With the immigration of prominent s
ientists to theUnited States in the 1930's, interest in mathemati
s began to rise. In 1957 the Rus-sians 
hanged s
ien
e forever by laun
hing Sputnik. This event provided the impetusfor edu
ators to laun
h advan
ed s
ien
e and mathemati
s 
ourses in high s
hoolsthroughout the United States. The \New Math" was part of this Cold War e�ortto 
at
h up. In 1962, John F. Kennedy's push to land a man on the moon 
reatedan ex
itement that boosted the produ
tion of PhD mathemati
ians to never beforeseen levels. The study of mathemati
s in Ameri
a was transformed from being worstto �rst. Students and young fa
ulty now 
ame from all over the world to study inAmeri
a. Unfortunately, only a short time later the ex
itement began ebbing ba
kto the histori
al mean. In the 1970's, the 
on
ern be
ame: How are we going to�nd employment for all these mathemati
ians? In the 1990's, the 
on
ern refo
usedto: Why does a kid in a far-o� land perform better on standardized math examsthan those in Ameri
a? Re
ently, I quizzed a number of (ex
ellent) Chinese graduatestudents on this issue. I asked whether or not their mothers pushed them to ex
el.Their response was that not only did their parents insist they study hard, but theexpe
tation was uniform among their friends so negotiation was not part of the equa-tion. When they performed well, they were rewarded. Their parents had also given



xviithem a 
hoi
e: They 
ould study or they 
ould work. In a 
ulture where edu
ationwas a privilege, not a right and where drudge labor was the norm, the 
onne
tion was
lear. Thus, parents, prestige, and pro�t 
ombined to 
reate an environment wherethey be
ame driven by internal for
es. My students from Eastern Europe, Russia,India, and South Ameri
a are driven by similar pressures. In all these 
ultures, mathis easy when 
ompared with the alternatives.So what in
entives are available for motivating students in today's world? Whilethe ex
itement of the spa
e ra
e and the new math have evaporated and the e
onomiesof the world are doing reasonably well, a plethora of new gadgets, te
hnologies, andissues have exploded in their pla
e. Cal
ulators are everywhere. Imaging S
ien
eis a �eld that permeates medi
ine and the military. Environmental (e.g. globalwarming), publi
 safety (e.g. hurri
ane tra
king), and publi
 health issues (e.g. thespread of AIDS) abound. These new areas all require appropriately 
hosen numeri
almethods and models. Sin
e engineers enjoy proje
ts that impa
t so
iety, a fo
us ofthis dialogue is to 
onne
t the abstra
t mathemati
al ideas to as many appli
ationsas possible.Pedagogy as a Pro
essKnowing something for oneself or for 
ommuni
ation to an expert 
ol-league is not the same as knowing it for explanation to a student. {HymanBassWhile mathemati
ians are expe
ted to write in a de�nition-theorem-proof stylethat is 
lear, rigorous, and lean, I have found few undergraduate (or even graduate)students, who 
an retain mu
h from this style of information transfer. Instead, I pre-fer to present modern mathemati
s as a naturally unfolding \So
rati
 pro
ess," wheresimple questions and observations lead to fundamental insights. The key is to formu-late and answer 
learly stated questions, whi
h get to the heart of the problem. Ifyou \Begin with the easiest problem you don't understand," then the solution to one



xviii REMARKS BY THE AUTHORproblem often leads to new questions and new answers whi
h lead to new solutions.Simple observations evolve into ever more general and abstra
t 
on
epts. These ab-stra
t general results be
ome more a

essible and easier to understand. The dialogueformat provides a me
hanism whi
h 
an be used to 
apture this spirit of dis
overy.The question \What does it mean for a te
hnique to work?" leads to a pre
ise de�ni-tion of the rules of the game. In my experien
e, students typi
ally �nd de�nitions anunne
essary and pedanti
 annoyan
e. A mathemati
ians attitude is that you 
an'tplay the game until you have a pre
ise statement of the rules. The question \Doesthe te
hnique always work?" frequently leads to examples demonstrating a negativeanswer. These examples lead to the question \When does the te
hnique work?" Theresponse of the mathemati
ian is to formulate a theorem or proposition, whi
h pro-vides exa
t 
onditions when a positive result 
an be guaranteed. The question \Canthe method be generalized?" may lead to a te
hnique that 
an be applied to a widerrange of problems. On
e a generalization has been formulated the pro
ess repeatsitself.The Contra
tion Mapping Theorem of Stephan Bana
h (1906-1960) is a notableexample of this evolution from simple to abstra
t. Without referen
e to the an
ientAr
himedes/Heron square root algorithm and the Newton/Raphson root �nding te
h-nique 1700 years later, this theorem la
ks seems to emerge from nowhere. Approx-imation theory provides a se
ond progression of ideas, where the topi
s presentedin
lude: polynomials, Fourier, splines, and wavelets. In ea
h 
ase, orthogonality (orla
k thereof) is fundamental to the su

ess (or failure) of the te
hnique. Sin
e orthog-onality is nothing but a fan
y way of saying perpendi
ular, the Pythagorean Theoremis at the heart of the dis
ussion. The fa
t that root �nding and approximation tookseveral thousand years to unfold indi
ates the ri
hness of the ideas underlying thete
hniques. Our approa
h is to use this ri
h history to drive the dis
ussion. Armedwith an understanding of this mathemati
al pro
ess, the hope is that the readershould be better able to evaluate, sele
t, and apply numeri
al methods in their ownendeavors.



xixWhile not as important as the development of mathemati
al ideas, I �nd that stu-dents also enjoy mathemati
al gossip. By introdu
ing 
artoon versions of some thegreat 
ontributors to mathemati
s, I am hoping the reader 
an begin to appre
iatesome of their quirky personalities. Probably my favorite story is Fourier's personalinterest in the heat equation. In short, after an enjoyable visit to sunny Egypt withNapoleon in 1798, Fourier returned to the miserable rain and snow of Grenoble'swinter, where he turned up the heat in his apartment to the highest setting. Thusstimulated, he developed stable methods for solving the heat equation. Su
h ane
-dotes lead to the questions: \Who 
ares?" and \Why would anyone be interested insolving these types of problems?" George Polya (1887-1985) also endorses this \jour-nalisti
" approa
h to pedagogy when he remarks that your �ve best friends are What,Why, Where, When, and How [9℄. I would also add Who. Thus, the mathemati
alideas are embedded in an intera
tive dis
ussion of the ba
kground, signi�
an
e, andhistori
al 
ontext of the subje
t. In my experien
e, I have found that my engineeringand medi
al students �nd this approa
h an agreeable alternative to the more tradi-tional one, where they are stu�ed with fa
ts, formulas, and te
hniques like the overfedgoose headed for the dinner table as \pat�e de foie gras."In addition to presenting the theoreti
al ideas as a pro
ess, we have followed thelead of G. Polya in our dis
ussion of examples and problems. In his book \How toSolve It," [9℄, he spells out a general four step pro
ess for solving a mathemati
'sproblem:1. understanding the problem,2. devise a plan,3. 
arry out the plan, and4. look ba
k and review what was done.This pro
ess provides a student with a stru
ture and framework for atta
king a prob-lem. Probably the best example of this approa
h is our treatment of limit problems,



xx REMARKS BY THE AUTHORwhere we insist students are able to know and apply the de�nition of a limit. Inthe problems we 
onsider, the plan is always the same. Ea
h solution requires threesimple steps. While students argue that they should not be expe
ted to know thisskill, they soon �nd that they are far easier than the problems 
onne
ted with realappli
ations. As you will read many times in these notes: \Math is easy. It is lifethat is diÆ
ult."Murphy's LawWhat 
an go wrong, will go wrong. {MurphyWhile logi
 and rigor are fundamental to the spirit of mathemati
s, 
omputers
ientists, engineers, and physi
ists turn to mathemati
s for te
hniques to mathe-mati
ally analyze and model real-world phenomena. Students from these �elds mayenjoy the study of mathemati
s, but are driven by the needs of their parti
ular appli-
ation. Unfortunately, the 
urri
ulum has be
ome so 
rowded that most instru
tionin these applied areas be
omes \te
hnique driven" rather than \pro
ess driven." Inother words, the instru
tor presents the formulas and te
hniques, but hurries on to thenext topi
 before dis
ussing history, insights, or 
aveats asso
iated with the method.However, in my experien
e, I have found Murphy's Law to be the one guiding prin-
iple that rules the study of numeri
al methods. In these notes, key examples havebeen provided to help the student identify the numerous tar pits that are for
ed onthe subje
t. Hopefully, the student will develop a wariness when employing these andother te
hniques in their own investigations.A Final CommentAnd yet it moves. {GalileoWhile Galileo's book, \Two Chief World Systems," 
ontained thinly veiled politi-
al statements not in a

ord with the dogma of his times, the dialogue strategy failed



xxito keep him out of harm's way. For on 22 June 1633 the wrath of Pope Urban VIIIdes
ended upon him when the Holy Inquisition 
onvi
ted him of heresy and subje
tedhim to life imprisonment (later 
ommuted to house arrest). If he had not been sofamous and had not abjured himself, he might have been burned at the stake as washis prede
essor, the hereti
 Giordano Bruno (1548-1600). It was not until 31 O
to-ber 1992, after almost 13 years of investigation (in
luding the testimony of Physi
istSteven Hawking), that a 
ommission appointed by Pope John Paul II admitted that\mistakes must be frankly re
ognized." And so it goes.
A
knowledgmentsI doubt I would have ever taught a single mathemati
s 
lass if it were not for theex
ellent edu
ation I re
eived at Itha
a High S
hool. My mathemati
s tea
hers forgrades 9-12 were Miss Stenson, Miss DePew, and Miss Neighbour. (I have not in
ludedtheir �rst names be
ause I have listed their names the way they appear in my oldyearbooks. In a day when everyone is on a �rst name basis with their superiors, I�nd this formality refreshing.) In the 9th grade, Miss Stenson taught us the quadrati
formula. In the 10th and 11th grades, Miss DePew taught us Eu
lidean Geometryand Solid Geometry. Miss Neighbour taught us Analyti
 Geometry and 6 weeks ofCal
ulus. While they were all ex
ellent tea
hers, I adored Miss DePew. She alwaystold us stories about Ar
himedes in the bathtub, the death of Ar
himedes, Napierand his bones, the history of Eu
lid's �fth postulate, and the young Gauss adding upthe numbers from 1 to 100. She even tried to get us to dis
over the formula for thearithmeti
 series ourselves. (My re
olle
tion is that this experiment didn't work outtoo well.) She loved Geometry, where mathemati
al rigor was front and 
enter. Nosloppy thoughts were allowed in her 
lass. She also had a fearsome intensity. When wedid poorly on an exam, she did not hesitate to let us know. Fortunately for me, I satnear the ba
k of the room and so 
ould hide from her wrath. Of 
ourse, when we didwell, her praise made you glow. In my 40 years of tea
hing several thousand students,



xxii REMARKS BY THE AUTHORI have found only a handful with the training in the fundamentals of mathemati
sthat equaled mine. She took her profession very seriously.I have also extra
ted a multitude of photographs, quotes, and 
omments from theMa
Tutor History of Mathemati
s ar
hive[2℄, whi
h is based at the S
hool of Mathe-mati
al and Computational S
ien
es at the University of St Andrews, Fife, S
otland.I found their database 
ontaining more than 1000 biographies of mathemati
ians to
ontain a gold mine of information.Finally, I must also a
knowledge my students, 
olleagues, friends, tea
hers, fam-ily, and assorted poets, who have unknowingly supplied mu
h of the language thatappears in these pages. I have stolen from them mer
ilessly.
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Part I
Day 1. The Interview
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Chapter 1
Introdu
tions

The universe 
annot be read until we have learned the language and be-
ome familiar with the 
hara
ters in whi
h it is written. It is writtenin mathemati
al language, and the letters are triangles, 
ir
les and othergeometri
al �gures, without whi
h means it is humanly impossible to 
om-prehend a single word. -Galileo Galilei (1564-1642)The Setting:The time is the present. Galileo sits at his desk absorbed in a manus
ript. Asmall glass of Chianti rests nearby. Enter Virginia and Simpli
io. Galileo looks up.3



4 CHAPTER 1. INTRODUCTIONSGalileo: And what brings you to my oÆ
e?Virginia: We are interested in learning more s
ien
e and mathemati
s.Galileo: I submit that the study of these subje
ts is a noble and worthy goal. Virginia,who is this young fellow with you?Virginia: I would like you to meet my new friend Simpli
io.Galileo: I am pleased to meet you Mr. Simpli
io. I am sure you have found Virginiato be a gra
ious lady with exquisite manners and 
harm. She is one of my favorites.Simpli
io: Indeed I do enjoy her 
ompany.Galileo: And if I may ask, what 
areer goals do you have?Virginia: I am interested in tea
hing mathemati
s.Simpli
io: I would like to be
ome more knowledgeable about important appli
ations.An understanding of numeri
al methods seems to be a requirement for my futureemployment.Galileo: Very interesting, but why?Simpli
io: I am not sure, but several prospe
tive employers have mentioned data. Itseems they are overloaded with data and having trouble making any sense of it. Theyre
ommended I dis
uss these issues with you. It seems you are the master of data.Galileo: I am 
attered. Others have not been so kind. It sounds like you have talkedto someone, who requires a knowledge and skill in data a
quisition, storage, andanalysis te
hniques. Is that 
orre
t?Simpli
io: One 
ompany builds devi
es, whi
h a
quire and analyze signals for themilitary. One builds medi
al imaging equipment. One is in 
ommuni
ations. One isin the business of 
ompressing images.Galileo: So, you are ready to journey through a mathemati
ally rigorous study ofthese topi
s?Simpli
io: Unlike yourself, I do not enjoy the rigor of mathemati
s.Galileo: I am sorry to hear that. I �nd the beauty, oder, and 
larity of mathemati
alideas a refreshing 
ontrast to the sloppy thinking that surround us.



Chapter 2
S
ien
e, Models, and Appli
ations

From the same prin
iples, I now demonstrate the frame of the System ofthe World.-Isaa
 NewtonA job is death without dignity. {Dylan ThomasSimpli
io: While I have no obje
tion to rigor for others, my reason for this visit is tolearn te
hniques useful in my employment.Galileo: Do I dete
t that \rigor" and \employment" are 
on
epts separated by avoid?Simpli
io: To be honest, I �nd mathemati
s to be diÆ
ult, boring, and irrelevant. Isear
h for a job, where the pay is good and the work not too stressful.Galileo: You are an honest man.Simpli
io: I always make an e�ort to be dire
t. What skills do we need?Galileo: Over the ages, the an
ient thinkers have developed numeri
al te
hniques to
ompute:1. solutions to systems of linear equations,2. solutions to systems of nonlinear equations,3. derivatives 5



6 CHAPTER 2. SCIENCE, MODELS, AND APPLICATIONS4. integrals,5. eigenvalues and eigenve
tors,6. solutions to di�erential equations, and7. solutions to partial di�erential equations.While these methods are all useful, we are not going to have time to dis
uss them all.Choi
es must be made.Simpli
io: Whi
h skills would an employer prefer?Galileo: The big pi
ture is that all these te
hniques are useful in setting up andsolving mathemati
al models of physi
al phenomena. In short, these te
hniques arejoined as the 
omputational 
omponent of the s
ienti�
 method. This simple, butsevere test 
an be summarized as repeated iterations of the following pro
edure:1. observational and/or experimental data is a
quired,2. a mathemati
al/statisti
al model is formulated, and3. the model and the data are tested for agreement.The reason for this pro
ess is to make predi
tions, whi
h help answer the questions\when," \where," or \how mu
h." Interestingly, sometimes the data 
omes �rst andstimulates the sear
h for a model. The data I 
olle
ted on the motion of a fallingbody showed that the motion 
an be modeled by a quadrati
 equation. JohannesKepler (1571-1630) demonstrated that Ty
ho Brahe's data for
ed the 
on
lusion thatthe orbit of Mars is an ellipse. Soon after, Isaa
 Newton proved that both thesemodels 
an be explained as 
onsequen
es of his laws of motion. This tour de for
e isunmat
hed in the history of s
ien
e. On the other hand, sometimes the theory 
omes�rst. Albert Einstein's spe
ial theory of relativity wasn't 
on�rmed by data until morethan a de
ade after the dis
overy. In both s
enarios, 
on�rmation of agreement iskey. Ea
h time new data is a
quired, the a

ura
y of the model is reevaluated. If onemodel provides better agreement and predi
tions than another, then it is preferred.



7This pro
ess is ongoing. While the pro
ess is imperfe
t, it is better than all its
ompetitors. Needless to say, some models have greater predi
tive value than others.Aristotle asserted that the earth is the 
enter of the universe. The epi
y
le model ofPtolemy (Claudius Ptolemaeus, 87-150) was based on this assumption. For 
enturies,the 
hur
h a

epted this view as dogma. Even though this model provided reasonablya

urate predi
tions for the motion of the planets, the Newton/Kepler model is easierto understand and provides a 
lear explanation for su
h anomalies as the apparentretrograde motion of Mars.Simpli
io: The method seems to be intelligently designed.Virginia: Only if you play by the rules.Galileo: We now have su

essful models for the motion of the planets, the motion of apendulum, the motion of a spring, 
uid 
ow, the nature of ele
tri
ity and magnetism,the nature of waves, and heat transfer. While many models are 
ompli
ated, thebest models are based on simple prin
iples that you sure are 
orre
t. Our 
on�den
ein many of these models is now so great we would be sho
ked if the unexpe
tedhappened. Every time you turn on one of your ele
troni
 gadgets, you are using thelaws of ele
tri
ity and magnetism.Simpli
io: What about hurri
anes, 
oods, and bea
h erosion?Galileo: The models for 
uids are not as reliable as those for ele
tri
ity. While you
an 
riti
ize those making predi
tions based on less perfe
t models, you might thinkof them as an opportunity for employment. If you 
an a

urately predi
t the future,you 
an make money. Better yet, you 
an begin to understand the world around you.Virginia: You 
an also get into trouble.Galileo: Sometimes my 
olleagues have been sloppy about their data. While my
olleague Aristotle 
laimed the distan
e traveled by a falling body has a linear rela-tionship with the time of 
ight, he never tested his ideas properly. My data showsthe relationship is quadrati
. In parti
ular, if you double the time of 
ight, then thedistan
e traveled will be quadrupled.Simpli
io: I guess data is important, but is an employer going to hire me to expound



8 CHAPTER 2. SCIENCE, MODELS, AND APPLICATIONSon these already well-understood insights? Why would he 
are?Galileo: The te
hniques of the an
ient masters are embedded in the te
hnology of thepresent. For example, Fourier series te
hniques used to solve partial di�erential equa-tions are now being used in a multitude of appli
ations in
luding spee
h re
ognition,image analysis, and signal 
ompression.Simpli
io: So where do numeri
al methods fa
tor into this s
enario?Galileo: If you 
an model a problem by an equation or system of equations, then thegoal of numeri
al analysis is to provide te
hniques to �nd the solution (or solutions).If your model is linear, then Linear Algebra is your tool of 
hoi
e. Whenever possible,you should linearize your problem.Simpli
io: What do you do if your problem is not linear?Galileo: If possible, you linearize your problem over a short period of time. Theunderlying 
on
ept in di�erential 
al
ulus is that the �rst derivative is the slope ofthe line that \best approximates" the 
urve. For us, the root �nding method of New-ton/Raphson is an example of a te
hnique that repeatedly uses a linear approximationto solve a nonlinear problem.Simpli
io: OK, so what skills do I need to work in this area?Galileo: If you �nd data fas
inating, then I re
ommend you be
ome versed in thefollowing areas:1. mathemati
s,2. 
omputer s
ien
e,3. statisti
s,4. physi
s, and possibly5. a biomedi
al area.Virginia: I am worried about that 
omputer s
ien
e requirement. I have limitedprogramming experien
e. My ba
kground in physi
s is a bit weak as well.



9Galileo: You need to have enough 
omputer skills to implement and test your ownideas. No one is going to do it for you. Otherwise, you will have no ability totest your ideas. You need to be 
omfortable with physi
s be
ause di�erent dataa
quisition devi
es employ di�erent physi
al prin
iples. A te
hnique that produ
esa

urate estimates for one modality may be useless when applied to signals or imagesa
quired on another system. Any numeri
al method for analyzing data should be insyn
 with the devi
e or method used to a
quired it.Simpli
io: What about statisti
s? The only word that 
omes to mind is: boring,boring, boring. My view is:I know not �;I know not square,Nor do I know,Why I should 
are.Galileo: Maybe you should re
onsider this attitude. Statisti
ians are the gatekeepersto a multitude of today's s
ienti�
 questions be
ause they provide us with tools formaking sense of data. While the last 
entury was the 
entury of the hard s
ien
es,the ex
iting new frontiers are now shifting to medi
al and biomedi
al appli
ations.Imaging s
ien
e will play a large role in these areas. Genomi
s with its terabytes ofdata may be a better example. In any 
ase, anyone who has the ability to make senseof the mountains of data that is generated daily will be employable. In a word: Data,Data, Data!Virginia: So that's why you mentioned biomedi
al appli
ations?Galileo: You got it.
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Chapter 3
Topi
s for the Tutorial

He who does not understand motion, 
annot understand Nature.-GalileoVirginia: Good Sir, 
ould you give us an overview of the topi
s you will be dis
ussingin this tutorial?Galileo: Certainly. The two main themes will be root �nding and approximationtheory. Sin
e root �nding has a long and distinguished history, we will begin withthis theme. The task of �nding a root is equivalent to that of solving a system ofnonlinear equations.Simpli
io: Could you remind me about roots?Galileo: A root of a fun
tion is a point x = r; where the graph of fun
tion 
rosses thex�axis. The oÆ
ial de�nition is:De�nition 3.0.1. If f(x) : [a; b℄ ! <; is a fun
tion and f(r) = 0; then x = r is aroot:Simpli
io: Why would I 
are?Galileo: If you re
all from your study of Cal
ulus, the problem of maximizing and/orminimizing a fun
tion f(x) : [a; b℄! < is at the heart of a multitude of appli
ations.The strategy is to 
ompute the �rst derivative f 0(x) at ea
h 
riti
al point x = r: Themaximum of the fun
tion y = f(x) on the interval [a; b℄ will equal the maximum ofthe values f(a); f(b); f(r1); f(r2); : : : ; f(rn); where r1; r2; : : : ; rn is the list of all the11



12 CHAPTER 3. TOPICS FOR THE TUTORIAL
riti
al points for f(x): A similar statement is true for 
omputing the minimum of thefun
tion. The beauty of this strategy is that an in�nite problem has been redu
ed toa �nite one.Simpli
io: Forgive me, but it has been a long time sin
e I have su�ered throughCal
ulus. What is a 
riti
al point?Virginia: A 
riti
al point of a fun
tion is a point x = r; where the graph of the �rstderivative 
rosses the x�axis. In other words, a lo
ation where the fun
tion has ahorizontal tangent line. The pre
ise de�nition is:De�nition 3.0.2. If f(x) : [a; b℄! <; is a di�erentiable fun
tion and f 0(r) = 0; thenx = r is a 
riti
al point for f(x):Galileo: Very good. Note that the 
riti
al point always lies in the domain of thefun
tion.Simpli
io: And why should I 
are about 
riti
al points?Galileo: If a 
ompany 
an represent their pro�ts by a fun
tion, then they 
an max-imize their pro�ts by simply 
omputing this fun
tion at all the 
riti
al points. Thelargest value will be the maximum of the fun
tion. A similar statement holds forminimizing their 
osts.Simpli
io: I must admit that I am having a bit of trouble visualizing this situation.Galileo: How about the example of the parabola? Cal
ulus is nothing more thanthe re
ognition that 
on
epts su
h as velo
ity and a

eleration asso
iated with themotion of a falling body 
an be generalized to arbitrary fun
tions. If you understandthe parabola, you are a long way home.Simpli
io: Sounds good.Galileo: If f(x) = ax2 + bx + 
; then the �rst derivative is f 0(x) = 2ax + b: The
riti
al point x = r is 
ommuted by solving the equation f 0(x) = ax + b = 0: As anexpert in Algebra, you immediately re
ognize that the 
riti
al point is r = x = � baand the 
riti
al value is f(r) = f(� ba) = a(� ba)2 + b(� ba) + 
 = �2 ba + 
: In thespe
ial 
ase of a falling body, I found that the height 
an be modeled by the formulas(t) = �12gt2+ v0t+ s0; where g = �32 ftse
2 = �9:8 mse
2 ; v0 denotes the initial velo
ity,



13and s0 denotes the initial height. Sin
e this 
urve is 
on
ave down, the highestpoint of the 
ight of the ball will o

ur when the velo
ity equals zero. Sin
e thevelo
ity is the �rst derivative of the height fun
tion, the 
riti
al point will o

urwhen v(t) = s0(t) = �gt+ v0 = 0 or t = v0g :Virginia: If you toss the ball in a downward dire
tion, then the initial velo
ity isnegative. In this 
ase, the maximum value of f(x) will o

ur at time t = 0:Galileo: Good point. I should have mentioned that we are assuming v0 > 0:While the
riti
al points are easy to �nd for this problem, real-world problems require mu
h moregeneral te
hniques. We will fo
us our dis
ussion on the Newton/Raphson, bise
tion,and Contra
tion Mapping Theorem te
hniques. The Newton/Raphson method isbased on �nding the root x = r for the linear fun
tion y = f(x) = mx + b: Sin
er = � bm ; the problem is not too diÆ
ult. Right?Simpli
io: These remarks help, but why are we dis
ussing several di�erent methodsfor �nding roots? Why not simplify the dis
ussion and just fo
us on one method?Galileo: Ea
h has its pla
e. Our dis
ussions will be driven by su
h questions as: Doesthe method always work? Whi
h 
onverges faster? Unfortunately, with numeri
alte
hniques, you don't always get 
lear winners. We will often �nd that the appli
ationdrives the 
hoi
e of te
hnique.Simpli
io: And why would I 
are about the Contra
tion Mapping Theorem?Galileo: This theorem is an elegant generalization of the method of Ar
himedes/Heronand Newton/Raphson. While these extensions are easy to understand in retrospe
t,they took 2000 years to unfold.Simpli
io: Do I need elegan
e?Galileo: This theorem 
an be used to solve linear systems of equations, non-linearequations, and di�erential equations. It is even used to generate fra
tal pi
tures and
ompress images. In other words, it 
an be used to solve a multitude of di�erenttypes of problems. In its most basi
 form, the te
hnique is easy to understand, 
anbe implemented in only a few lines of 
omputer 
ode, and always works. I 
all thatelegant and I appre
iate it when I �nd it.



14 CHAPTER 3. TOPICS FOR THE TUTORIALSimpli
io: I like the idea of 
ompressing images.Virginia: I too have enjoyed the beautiful snow
ake example.Galileo: While we won't have time to dis
uss fra
tals, we will lay the foundation soyou 
an study that subje
t on your own.Virginia: Are these all the topi
s we will 
over?Galileo: The se
ond theme of our tutorial is approximation theory, where we willdis
uss the topi
s of Taylor's Theorem, polynomial approximation, Fourier Series,
ubi
 splines, and wavelets. These methods are useful if you would like to approximatea fun
tion f(x) by a fun
tion with 
ertain desirable properties. For example, giventhe fun
tion f(x) = sin(x); we would like to approximate its value at a parti
ularpoint x = x0:We 
an do this with a Taylor polynomial of the form p1(x) = x; p3(x) =x� 16x3; p5(x) = x� 16x3+ 1120x5; et
. Sin
e polynomials are easy to 
ompute and themethod always 
onverges to the 
orre
t answer, Taylor's Theorem is a great pla
e tostart. Taylor's Theorem provides a fundamental tool for the numeri
al approximationof �rst and se
ond derivatives. Virtually any problem involved with rates of 
hangerequires the estimation of velo
ity or a

eleration. The formulas we will derive areused everywhere in di�erential equations, partial di�erential equations, and signaland image pro
essing.Simpli
io: What's next?Galileo: After Taylor's Theorem, we turn to a se
ond te
hnique for approximatingfun
tions by polynomials. The advantage of this method is we use a sampling of thevalues of the fun
tion at s
attered points rather than the values of the fun
tion andits derivatives at one parti
ular point.Simpli
io: So?Galileo: Typi
ally, when we are given a set of data points, we are not given anyinformation about the derivatives so Taylor's Theorem 
annot be applied. Thus, weneed a new te
hnique.Simpli
io: OK.Galileo: This topi
 also provides an ex
ellent entry point into the modeling of data.



15Sin
e we usually have more data than we know what to do with, we usually try toredu
e the data to a form that is easy to understand. Straight lines and parabolas areoften a good pla
e to begin. The te
hnique that gets us there is linear least squares.While least squares is usually asso
iated with straight line approximations, it 
an alsobe used to approximate data with a parabola of the form p2(x) = a0 + a1x + a2x2:Our falling body problem is a good example, where a paraboli
 �t works. In 1958,Charles Keeling (1928-2005) began the 
olle
tion of data measuring the 
on
entrationof 
arbon dioxide in the atmosphere. These measurements have been made monthlyever sin
e he began this e�ort. When least squares is used to �t a paraboli
 
urveto this data, the �t is ex
ellent. A 
urrent politi
al issue is whether or not the rising
on
entration of this gas 
auses global warming. Just be
ause the �t is good, doesn'tmean we 
an extrapolate out too many years. We shall see.Simpli
io: Interesting.Virginia: Why would we worry about Fourier series?Galileo: Fourier made his mark in mathemati
s by re
ognizing that trigonometri
 ap-proximations produ
e mu
h more a

urate results than polynomial ones when solvingthe heat equation. We will dis
uss that famous Runge example, whi
h shows thathigh degree polynomials are evil.Simpli
io: Good and evil in a mathemati
s 
lass?Galileo: If you are an engineer making a 
al
ulation and your 
al
ulator gives you astupid answer, then your attitude is that the devi
e is evil.Simpli
io: Even I understand that.Virginia: Why dis
uss polynomials at all?Galileo: As we mentioned, linear and quadrati
 �ts 
an often produ
e useful results.Least squares are used everywhere. However, probably the best reason is polyno-mial interpolation provides an ex
ellent entry point to Fourier series. In fa
t, if youlook at the subje
t properly, the dis
rete Fourier transform is exa
tly polynomialinterpolation. Thus, if you understand polynomials, you are a long ways towardsunderstanding Fourier. Better yet, waves and wavelike (i. e. periodi
) motion are ev-



16 CHAPTER 3. TOPICS FOR THE TUTORIALerywhere in nature. While the motion of the pendulum is the �rst one that 
omes tomind, light, radio, o
ean, and sound waves are also examples. A wave with frequen
y! 
an be written as a trigonometri
 fun
tion of the form 
os(!(t� t0)): Fourier seriesare nothing but linear 
ombinations of fun
tions of the form 
os(nx) and sin(nx): Notonly are they perfe
tly designed for modeling waves, but they also have remarkablemathemati
al properties.Simpli
io: But I am not interested in their math properties.Galileo: You should be. As it turns out, engineers love Fourier te
hniques be
ausethey are not only dire
tly 
onne
ted with wave phenomena, but be
ause they are
omputationally stable. Thus, they 
an trust the answers. The fundamental reasonfor this trust takes us ba
k to Pythagoras.Simpli
io: I 
an't wait.Virginia: What about 
ubi
 splines?Galileo: While they are not as useful in physi
s as Fourier series, they have the samestable 
hara
teristi
s as Fourier series but even better 
onvergen
e properties for the�rst and se
ond derivatives. This property is not ne
essarily true for Fourier series.Splines have another important property that Fourier series don't have. Namely,while fun
tions like sin(x) and 
os(x) os
illate up and down forever, splines equalzero outside some �nite interval.Simpli
io: Why is that property important?Galileo: When you 
ompute a linear 
ombination of a bun
h of spline fun
tions ata parti
ular point x; you 
an ignore all the intervals not 
ontaining x: Typi
ally,the point x will lie in no more than 5 intervals. Sin
e splines are pie
ewise 
ubi
polynomials, they are almost instantaneous to 
ompute on ea
h interval and lie in asmall number of intervals, they are blazingly fast. For these reasons, they are oftenused in 
omputer graphi
s and 
omputer animations.Simpli
io: I will have to pay attention when we dis
uss that topi
.Galileo: You will enjoy the elegant theorems asso
iated with splines as well.Virginia: And �nally, what are wavelets good for?



17Galileo: Wavelets represent the best of all possible worlds. If you think about thename a minute, you realize that the word wavelet implies \little wave," whi
h isexa
tly what they are. Wavelets os
illate like sin(x) and 
os(x) so they are usefulfor modeling real physi
al phenomena. Like the trigonometri
 fun
tions, they enjoythe bene�ts of Pythagoras and so are stable to 
ompute. In addition, they have thesame �niteness properties that splines have so they are fast to 
ompute. Needlessto say, wavelets are very popular and are used in a multitude of appli
ations. Inparti
ular, Jean Morlet used them to sear
h for intense, short term bursts in geologi
sonography data. They are also used in a multitude of imaging appli
ations in
luding
ompression and analysis.Simpli
io: If wavelets are so great, why don't we skip the other topi
s?Galileo: Be
ause you would be lost and 
onfused. We will try to let the story unfoldso the ideas be
ome more transparent.Simpli
io: So that's it?Galileo: Sin
e the heat equation and the wave equation gave rise to the popularity ofFourier series, we really are required to dis
uss partial di�erential equations. Sin
e weknow your limits, we will make the dis
ussions as brief as possible. Sin
e di�erentialequations are also everywhere in Nature, we will mention those topi
s as well.Simpli
io: I never had a 
ourse in di�erential equations.Galileo: He who does not understand motion, 
annot understand Nature.Simpli
io: Maybe I should be
ome a monk.Galileo: You 
an run, but you 
annot hide. Remember: Math is easy. Its life that isdiÆ
ult. And young lady, why are you here?Virginia: I �nd all this talk about data and appli
ations quite ex
iting. Hopefully,this experien
e will make me a better tea
her.Galileo: If your students 
an see how mathemati
s 
onne
ts with the real world, thenmaybe they will be more motivated.Simpli
io: Again, why would you want to tea
h?Virginia: I enjoy the logi
, 
larity, and simpli
ity of mathemati
s. It all makes sense.



18 CHAPTER 3. TOPICS FOR THE TUTORIALI enjoy intera
ting with young people. My material needs are few so I don't obje
tto the low pay.Galileo: (The phone rings. Galileo answers. After he mumbles \Yes." and \Hmmm."repeatedly, he gets up from his 
hair.) My benefa
tor feels I should return to myresear
h. So ends my 
ate
hism.Simpli
io: One last question?Galileo: Yes?Simpli
io: Every book on numeri
al methods I have looked at begins with a dis
ussionof round-o� errors. Why haven't you mentioned this topi
?Galileo: Round-o� errors are a detail. The big pi
ture 
omes �rst. (Galileo sips fromhis glass of wine and departs.)Simpli
io: What do you think? Should we enroll in this guy's tutorial or take someoneelse's 
lass? All he talks about is de�nitions, theorems, and proofs. Nothing but math,math, math. Worse yet, he seems to be a prea
her tea
her. I am not sure I 
an handleit.Virginia: You 
an always take the 
ourse with Professor Powertrip. You might preferto be with all those engineers. It is probably more your style.Simpli
io: Not a 
han
e. That guy is mean and will do whatever he 
an to make youfeel stupid.Virginia: How about Professor Poubelle's se
tion?Simpli
io: At least he wouldn't expe
t mu
h from us.Virginia: While I am a bit worried about the 
omputer proje
ts and the appli
ations,I have de
ided to enroll with the prea
hy guy.Simpli
io: Tonight is ladies night at the \Math and Musi
 Bar." Interested?Virginia: Are you serious? I have to study.Simpli
io: Tomorrow is another day, maybe.
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21Let no one ignorant of geometry enter here." -ins
ription above Plato'sA
ademyGalileo: You have returned?Simpli
io: While I am not yet 
ertain this 
ourse of study is worth my time, I havede
ided to give your tutorial a try.Galileo: My administrator will be pleased I have 
lients. This is good. In any 
ase,be 
ertain to pay your fees before you leave.Simpli
io: What?Galileo: Don't you expe
t 
ompensation for your labors?Simpli
io: I will have to dis
uss this problem with my father. What about her?Galileo: She has been awarded a s
holarship.Virginia: Enough of this talk. Let's move on.Galileo: I plan to begin our tutorial by presenting several proofs of the PythagoreanTheorem.Simpli
io: Why on Earth would you present a theorem we have seen in our youth?Galileo: Re
all from our �rst 
onversation that the 
omputation of the square root isof fundamental importan
e in math, statisti
s, and engineering. The Linear Algebraversion is at the heart of the su

ess of Fourier series.The only prerequisite for this 
ourse is plenty between the ears.-WalterRudinSimpli
io: What are the prerequisites for this tutorial?Galileo: Sin
e my funding requires that I sustain my resear
h program, let me bebrief. You only need to know one thing, but you have to �gure it out.Simpli
io: (To Virginia) Is this guy serious? He speaks in tongues.Galileo: OK, let me rephrase my response. To su

eed in mathemati
s or s
ien
e youneed to develop the ability to solve a problem on your own. Most never get it.Simpli
io: But 
an I ask questions?



22Galileo: The math gene is what separates you from the other primates so you have thetalent. Do you really think that an employer is going to reward you with a high salaryto implement well understood ideas? Unfortunately, mathemati
s is not a spe
tatorsport. Just like an athleti
 
ompetition, you have to put in the time and e�ort. Iam not interested in passive learners who just say \feed me." I expe
t you to run upand down the �eld like everyone else. Otherwise, we will both be wasting our time.Attitude is everything.Simpli
io: How about if you just tell me what I need to know to survive this tutorial?Galileo: Sin
e we will not be dis
ussing spe
i�
 issues in physi
s and biology, you
an learn those subje
ts on another o

asion. While statisti
s is important and wewill dis
uss the rudiments of least squares and 
lassi�
ation, you will not need anytraining in statisti
s to follow our dis
ussions. On the other hand, sin
e one of themain goals of this tutorial will be to develop algorithms, you will de�nitely need tohave basi
 skills in 
omputer programming. If you don't, you will be helpless whenasked to implement even the most rudimentary algorithm.Simpli
io: I 
an handle those requirements.Virginia: I am worried.



Chapter 4
Geometry

There is no royal road to Geometry.{Eu
lidEu
lid alone hath seen beauty.{Emma Talley ShawUn
le Dave, Geometry is easy.{Carter M
MillanSimpli
io: What mathemati
s prerequisites are required for this tutorial?Galileo: A solid foundation in Eu
lidean Geometry is essential. You will �nd Pythago-ras (569-475 B.C.E.) everywhere in our dis
ussions.Simpli
io: Surely, you are joking Mr. Galileo. I found Eu
lid (325-270 B.C.E) dull,diÆ
ult, and irrelevant.Virginia: Mr. Simpli
io, I �nd that statement surprising. I loved Eu
lid with hispoints, angles, similar triangles, 
ongruent triangles, the area formulas for a paral-23



24 CHAPTER 4. GEOMETRYlelogram and rhombus, and ruler and 
ompass 
onstru
tions. I parti
ularly enjoyedthe 
areful and rigorous logi
 he used when presenting his axioms, postulates, andtheorems. Side-angle-side was my favorite. He opened a whole new world for me.Galileo: As you will see, a multitude of ideas from Geometry have inspired 
omputa-tional algorithms. Our �rst algorithm will be introdu
ed by my 
olleague Ar
himedes(287-212 B.C.E.). He loved Geometry so mu
h he had his formula for the volume ofa sphere engraved on his tomb.Simpli
io: Whoever heard of using a ruler and 
ompass to implement a mathemati
alte
hnique on a 
omputer? Side-angle-side? Give me a break.Galileo: You will see.4.1 The Pythagorean Theorem

At its deepest level, reality is mathemati
al in nature.-PythagorasThere is geometry in the humming of the strings, there is musi
 in thespa
ing of the spheres.-PythagorasGalileo: In the spirit of the an
ients, we begin with the Pythagorean Theorem. Iknow you have seen it before.Simpli
io: It is a theorem I learned in geometry many years ago. Why would youbegin our dis
ussion with su
h an old theorem?



4.1. THE PYTHAGOREAN THEOREM 25Galileo: Be
ause the Pythagorean Theorem provides a unifying theme for this tuto-rial. In fa
t, it 
ontains four important 
on
epts that appear everywhere in modernmathemati
s. These 
on
epts in
lude:1. distan
e,2. roots,3. irrational numbers,4. orthogonality, and5. proje
tion.Can you state the theorem?Virginia: I remember it.Theorem 4.1.1 (Pythagorean Theorem). If the legs of a right triangle havelengths a and b and the hypotenuse has length 
; then 
2 = a2 + b2:Galileo: We begin by making some easy observations about the theorem that shouldhelp to make these themes more transparent. First, sin
e the length of the hypotenuseof a right triangle is the square root of the sum of the squares of the other two, itforms the basis for 
omputing the distan
e between two points. In fa
t, the formulafor the distan
e between two points P (x1; y1) and Q(x2; y2) in the plane is given bythe formula: dist(P;Q) =p(x2 � x1)2 + (y2 � y1)2:This rule is an immediate appli
ation of the Pythagorean Theorem. Note that wewill begin our tutorial with a dis
ussion of the Ar
himedes/Heron square root algo-rithm for approximating the square root of a number. As you will see, the ideas inthis algorithm are embedded in a number of important modern te
hniques in
ludingNewton/Raphson and the Contra
tion Mapping Theorem. Also, while lengths and



26 CHAPTER 4. GEOMETRYdistan
es may seem too easy, the 
on
ept of 
omputing distan
es between points reap-pears in Linear Algebra, Fourier series, orthogonal polynomials, splines, and wavelets.We will revisit this idea repeatedly during our quest. Are wavelets new enough?Simpli
io: OK, OK.Galileo: A key assumption in the Pythagorean Theorem is that one of the angles hasto be a right angle. Without that assumption, the theorem is false. As we will see inour investigations, many numeri
al te
hniques fail badly. Engineers do not like beingblind sided by a stupid result when they are in the middle of a proje
t. They likemethods that always produ
e a

urate answers. The 
on
ept of orthogonality helpsful�ll this wish.Simpli
io: I never heard of orthogonality before.Galileo: Orthogonality is just a fan
y way of saying right angle or perpendi
ular. Inthe Pythagorean Theorem, the two shorter sides of the triangle are assumed to beperpendi
ular (and thus orthogonal).Simpli
io: It looks easy from here.Galileo: The fourth idea is that we 
an proje
t the hypotenuse of the triangle ontoeither of the other two sides. Note that the length of the hypotenuse is greater thanthe length of either of the other two sides.Simpli
io: That's evident from the formula 
2 = a2 + b2:Galileo: This desirable property is a 
onsequen
e of our assumption that the angleopposite the hypotenuse is assumed to be a right angle. While not all proje
tionshave this wonderful property, Fourier does. Su
h proje
tions are 
alled orthogonal.Virginia: Sin
e I don't exa
tly understand Fourier series, I am not sure where youare going with this. In any 
ase I �nd these ideas interesting.Simpli
io: So far, I like this dis
ussion. Easy is good.Galileo: I like to begin with easy examples. Can you prove this theorem of Pythago-ras?Simpli
io: I fear it has evaporated from my 
ranium.Galileo: Pythagoras of Samos (
a:569� 
a:475 B.C.E.) is often des
ribed as the �rst



4.1. THE PYTHAGOREAN THEOREM 27pure mathemati
ian. While he is an extremely important �gure in the development ofmathemati
s, we know very little about his mathemati
al a
hievements. Unlike manylater Greek mathemati
ians, we have nothing of Pythagoras's writings. The so
ietywhi
h he led was half religious and half s
ienti�
. His theorem has been 
laimedby both the Chinese and Babylonians at least 1000 years before his birth so maybeothers deserve 
redit as well.Virginia: Isn't it time we prove it?Galileo: How about two proofs?Proof. The Pythagorean TheoremProof 1:After a 
ursory look at Figure 4.1, we see that the area of both squares equals(a + b)2: Sin
e the area of the square on the left is the sum of the square in themiddle and 4 triangles, A = 
2 + 4(12ab) = 
2 + 2ab: Sin
e the area of the square onthe right is the sum of two squares and two re
tangles, A = a2 + 2ab + b2: Thus,A = 
2 + 2ab = a2 + 2ab+ b2: By subtra
ting the quantity 2ab from both sides of theequation, we arrive at the relation 
2 = a2 + b2:Proof 2:A se
ond proof 
an be given using only the square on the left. Sin
e the area ofthe large square is (a+ b)2 = a2+2ab+ b2 and sin
e the whole is equal to the sum ofits parts, we see that a2 + 2ab + b2 = 
2 + 4(12ab) = 
2 + 2ab: Again, by subtra
ting2ab from both sides of the equation, we �nd 
2 = a2 + b2:Galileo: That wasn't so bad was it?
a b
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b

c

c

c

c

a b
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Figure 4.1: The Pythagorean Theorem



28 CHAPTER 4. GEOMETRYSimpli
io: Even I 
an understand these proofs. What else did he do?Galileo: Pythagoras led a remarkable life. In about 535 B.C.E Pythagoras visitedEgypt, where he learned about their refusal to eat beans, wear even 
loths made fromanimal skins, and their quest for purity. In 525 B.C.E. Cambyses II, the king of Persia,invaded Egypt. Pythagoras was 
aptured and removed to Babylon. Eventually, hewas allowed to leave and returned to Samos. In about 518 B.C.E. he left Samos andwent to Croton in southern Italy, where he formed a mathemati
al/religious so
iety.He and his followers believed that reality is mathemati
al in nature.Simpli
io: Really?Galileo: They even believed that things are numbers and ea
h number has its ownpersonality.Simpli
io: Bizaar.Galileo: They also believed that the Earth is a sphere at the 
enter of the Universeand that every number should be rational.Simpli
io: Those ideas seem more reasonable.Virginia: What happened when they dis
overed the quantity p2 is not a rationalnumber?Simpli
io: They probably started eating beans again.Galileo: And so it goes.Exer
ise Set 4.1.
1. Prove the Pythagorean Theorem for three dimensions. In parti
ular, if a; b; 
represent the lengths of the sides of a re
tangular box and d represents thelength of the diagonal, then show that d2 = a2 + b2 + 
2: (Hint: Apply thePythagorean Theorem twi
e.)



4.2. GARFIELD'S PROOF OF THE PYTHAGOREAN THEOREM 294.2 Gar�eld's Proof of the Pythagorean Theorem

Ideas 
ontrol the world.-James Gar�eld

a
b

a

b

c

cFigure 4.2: President Gar�eld's Proof of the Pythagorean TheoremGalileo: While the Pythagorean theorem is of great interest to mathemati
ians, iteven inspired President James Gar�eld to provide his own proof. Let's take a look.Gar�eld: Instead of using a square, my proof based on the area of a trapezoid, wherethe two bases have lengths a and b and the height is a + b: A pi
ture 
ontaining theidea of the proof is given in Figure 4.2.



30 CHAPTER 4. GEOMETRYProof. If we 
ompute the area of the trapezoid, we �nd:A = 12(a+ b)(a + b)= 12(a2 + 2ab+ b2)= 12a2 + ab+ 12b2Now 
omputing the same area as the sum of the areas of the three triangles that
omprise the trapezoid we �nd:A = 12ab + 12ab + 12
2= ab+ 12
2Setting these values for the area of the trapezoid equal to ea
h other we �nd:A = 12a2 + ab + 12b2 = ab + 12
2:Thus, by subtra
ting the quantity ab from both sides of the equation and multiplyingboth sides of the equation by 2 we have the desired result:a2 + b2 = 
2:
Simpli
io: I don't see that his proof is mu
h di�erent from the two we just dis
ussed.Dividing everything by two adds little to my understanding. He should have beenshot.Galileo: He was.Exer
ise Set 4.2.1. Investigate Alexander Graham Bell's role in trying to save President Gar�eld'slife. What te
hnology was used?



4.3. THE METHOD OF ARCHIMEDES/HERON 314.3 The Method of Ar
himedes/Heron

Ar
himedes (287-212 B.C.E.)Certain things �rst be
ame 
lear to me by a me
hani
al method, althoughthey had to be demonstrated by geometry afterwards be
ause their inves-tigation by the said method did not furnish an a
tual demonstration. Butit is of 
ourse easier, when we have previously a
quired by the method,some knowledge of the questions, to supply the proof than it is to �nd itwithout any previous knowledge.-Ar
himedes to EratosthenesNoli turbare 
ir
ulos meos. Do not disturb my 
ir
les! Last words. Some-times reported as: Soldier, stand away from my diagram.-Ar
himedesSimpli
io: What are the topi
s for today's lesson?Galileo: The �rst topi
 will be the Ar
himedes/Heron algorithm for 
omputing thesquare root of a positive number. This te
hnique is easy to understand, alwaysworks, and 
onverges qui
kly. For an engineer this is the best of all possible worlds.To illustrate how the algorithm works, we will 
ompute a number of examples su
has p2;p3; and p5: These 
omputations should in
rease your 
omfort zone.Simpli
io: Sounds like a plan.Galileo: We now introdu
e one of the great masters of antiquity, Ar
himedes ofSyra
use. He was one of the great mathemati
ians of all time, who wrote expositionssolid geometry, pumps (the Ar
himedes' helix-shaped s
rew), 
oating bodies, the
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enter of gravity, and the area under a parabola. His proof of the formula for thevolume of a sphere is a gem. If he had the ideas of modern algebra, he would haveinvented Integral Cal
ulus. Professor Ar
himedes wel
ome to our tutorial.Ar
himedes: I am glad to be here.Galileo: Good sir, 
ould you enlighten us on your method for 
omputing square roots?Ar
himedes: The underlying idea is quite simple: given a positive number K �nd twonumbers a and b that are 
lose together and have the property that ab = K: If theapproximations are not good enough, then repla
e a by the average a = a+b2 and b bythe produ
t b = Ka : Note that a � b = K:The square root method 
an now be implemented in the following steps:Let K > 0 be a given real number.Step 0. Begin the pro
ess by setting a0 = 1 and b0 = K:Step 1. Set a1 = a0+b02 and b1 = Ka1 :Step 2. Set a2 = a1+b12 and b2 = Ka2 :Step n. Set an = an�1+bn�12 and bn = Kan :Note that for ea
h iteration n; we have the property that an � bn = K:Galileo: What 
an be more reasonable and elegant than 
omputing the average oftwo numbers?Simpli
io: I like this method. It is easy to understand and easy to implement.Ar
himedes: The algorithm 
an be simpli�ed. In parti
ular, if an is repla
ed by xnand bn is repla
ed by Kxn ; then the method be
omes:Let K > 0 be a given real number.Step 0. Initialize the pro
ess by setting x0 = 1:Step 1. Set x1 = x0+ Kx02 :Step 2. Set x2 = x1+ Kx12 :Step n. Set xn = xn�1+ Kxn�12 :Simpli
io: I like this version even better.Example 4.3.1. Galileo: In Figure 4.3 we have displayed the lo
ations of the �rstthree estimates on the real line.
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Figure 4.3: The First Three Estimates of p2In Table 4.1 we have presented the �rst 6 estimates of the square root of 2 whenthe initial guess is x0 = 1: x0 1.000000000000000x1 1.500000000000000x2 1.416666666666667x3 1.414215686274510x4 1.414213562374690x5 1.414213562373095x6 1.414213562373095Table 4.1: Six Estimates of p2Simpli
io: Amazing!! After only 6 iterations we have 15 digits of agreement. I likethis algorithm.Galileo: What do you noti
e about the terms of the sequen
e? Do they in
rease orde
rease?Simpli
io: Looks to me like they de
rease after the initial guess.Galileo: Why not try a few exer
ises to see how the method works?Virginia: Where did this algorithm 
ome from? What inspired you?Ar
himedes: Geometry is the key. Consider Figure 4.4 where we suppose x2 � Kand we want to �nd a �x su
h that (x +�x)2 = K:Ar
himedes: Sin
e �x is small, �x2 is even smaller, so we 
an eliminate this shaded
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Figure 4.4: The Geometry Underneath the Square Root Algorithmpie
e of the diagram. Doing so we �ndK = (x +�x)2= x2 + 2x�x +�x2� x2 + 2x�x;whi
h implies �x � K � x22x :Thus, x +�x = x� x2 �K2x :Rewriting x+�x as xn+1 and x as xn, we arrive at the equationxn+1 = xn � x2n �K2xn= xn + Kxn2= 12xn + 12 Kxn ;whi
h is exa
tly the previously dis
ussed method. In parti
ular, the value of xn+1 isthe average of xn and Kxn :Simpli
io: But I have one qui
k question. Will the algorithm eventually terminate orwill we have to 
ompute forever to get the exa
t answer?



4.3. THE METHOD OF ARCHIMEDES/HERON 35Galileo: Note that if K is a rational number (i.e. the quotient of two integers), thenea
h x1; x2; : : : ; xn must also be rational numbers. Thus, if pK = xn; for some n;then pK must also be rational. The bad news is that even our 
olleague Pythagorasnoti
ed that the square root of 2 is irrational (i.e. not rational).Virginia: Thus, if we start the pro
ess of approximating p2 with x0 = 1; then everysu

eeding estimate xn will be a rational number. And we are for
ed to make anin�nite number of 
omputations to get the exa
t answer.Galileo: As we have already learned, the an
ients found this knowledge quite upsettingand mysti
al. Ar
himedes do you have any other thoughts on this te
hnique?Ar
himedes: Note also that division by 2 in a 
al
ulator (or 
omputer program) 
anbe implemented as a bit shift. Thus, the only serious 
omputation is the divisionbn = Kxn :Simpli
io: I like that observation.Galileo: You 
an see that Ar
himedes is keeping up with 
urrent advan
es in te
h-nology.Virginia: What is a bit shift?Simpli
io: Instead of representing a number base ten by a sequen
e of digits 
hosenfrom the set f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g; you represent a number base two by a sequen
eof digits from the set f0; 1g: For example, 6 = 22 + 1 � 2 + 0 = 110: If you divide 6by 2; you get 3 = 2 + 1 = 11: In other words, to divide by 2 you simply drop the 0:A 
omputer geek will say he has shifted the digits 110 one unit to 11:Example 4.3.2. Galileo: Let's use our algorithm to 
ompute the square root of zero.Simpli
io: Your kidding! Everyone in the room knows the answer. Why bother?Galileo: I have an agenda. Simpli
io: In any 
ase, it is easy. If K = 0; thenxn+1 = xn � x2n�K2xn = 12xn:Galileo: If x0 = 1; then what is x6?Simpli
io: Sin
e the value of the estimate at one step in the pro
ess is exa
tly halfthe estimate at the previous step, x6 = 126 :Galileo: How far is that from the �nal answer?



36 CHAPTER 4. GEOMETRYVirginia: Compared with the other examples we have just dis
ussed, we are miles, nolight years, from the �nal answer.Galileo: How many iterations will we need to get 12 digits of a

ura
y?Simpli
io: Sin
e 210 � 1000; we observe that 240 � 10004 = 1012: Thus, x40 � 11012 :Virginia: Forty iterations is a lot more than six.Simpli
io: What's going on here?Galileo: Think about it. We will return to this issue shortly. If you work the homeworkproblems, you will see we have problems with very large numbers as well.Simpli
io: We were doing so well. Now I am worried.Galileo: Before we leave the topi
 of 
omputing square roots, we should observe theidea underneath this method is to \linearize" the problem. More spe
i�
ally, when aproblem is too diÆ
ult to solve in general, simply dis
ard the higher order terms andsolve the remaining linear part of the problem. With lu
k, the solutions to a sequen
eof simple linear problems will 
onverge to the solution to the non-linear problem. Wewill see this strategy again with the method of Newton/Raphson.Exer
ise Set 4.3.1. Show that p2 is not a rational number.2. Let K = 5 and x0 = 1: Compute the �rst �ve iterations of the square root algo-rithm to estimate p5:What do you noti
e about the terms of the sequen
e? Dothey in
rease or de
rease? What is the di�eren
e between your estimate and theexa
t answer? How many iterations does it take before the di�eren
e betweenxn and the exa
t answer is less than 0:000001? (Make your 
omputations with10 digits of a

ura
y.)3. Let K = 10 and x0 = 1: Compute the �rst �ve iterations of the square rootalgorithm to estimatep10:What do you noti
e about the terms of the sequen
e?What is the di�eren
e between your estimate and the exa
t answer? How manyiterations does it take before the di�eren
e between xn and the exa
t answer isless than 0:000001? (Make your 
omputations with 10 digits of a

ura
y.)



4.3. THE METHOD OF ARCHIMEDES/HERON 374. Let K = 100 and x0 = 1: Compute the �rst �ve iterations of the square rootalgorithm to estimate p100: What is the di�eren
e between your estimate andthe exa
t answer? How many iterations does it take before the di�eren
e be-tween xn and the exa
t answer is less than 0:000001? (Make your 
omputationswith 10 digits of a

ura
y.)5. Let K = 10; 000 and x0 = 1: Compute the �rst �ve iterations of the squareroot algorithm to estimate p10; 000: What is the di�eren
e between your es-timate and the exa
t answer? How many iterations does it take before thedi�eren
e between xn and the exa
t answer is less than 0:000001? (Make your
omputations with 10 digits of a

ura
y.)6. Let K = 1; 000; 000 and x0 = 1: Compute the �rst �ve iterations of the squareroot algorithm to estimate p1; 000; 000: What is the di�eren
e between yourestimate and the exa
t answer? How many iterations does it take before thedi�eren
e between xn and the exa
t answer is less than 0:000001? Compare thenumber of iterations require for this problem and when you approximated p2:Whi
h is greater? (Make your 
omputations with 10 digits of a

ura
y.)7. Let K = 0 and x0 = 1: Compute the �rst �ve iterations of the square root al-gorithm to estimate p0: What is the di�eren
e between your estimate and theexa
t answer? How many iterations does it take before the di�eren
e betweenxn and the exa
t answer is less than 0:000001? Compare the number of itera-tions require for this problem and when you approximated p2 and p1; 000; 000:(Make your 
omputations with 10 digits of a

ura
y.)Simpli
io: These exer
ises would have been a drag without my trusty programmable
al
ulator.Galileo: While your 
al
ulator is �ne for these problems it will be woefully inadequatefor most real-life 
omputations. Get used to idea of implementing your methods in
omputer software.
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io: No problem.Galileo: Note that these exer
ises were designed to stress the algorithm. By 
omput-ing pK for large and small numbers we are 
he
king two important aspe
ts of thealgorithm. First, we are looking to see if we get the 
orre
t answers. Se
ond, we are
he
king the rate of 
onvergen
e. Both of these 
onsiderations will be addressed infuture dis
ussions.Simpli
io: I guess I had better redo these problems.4.4 Two Appli
ations of Square Roots

Figure 4.5: Heron of Alexandria (
a:10� 
a:75)Galileo: While the Pythagorean Theorem provides one situation where the 
omputa-tion of a square root is needed, a 
ouple of others should also be mentioned. You doremember the formula for 
omputing the area of a triangle?Simpli
io: Of 
ourse, the area is simply one half the base times the height.Galileo: OK, but would it not be more natural to have a formula, whi
h produ
esthe area in terms of the lengths of the three sides? This question is a natural onebe
ause the height may not be known.Simpli
io: I don't re
all any su
h formula.



4.4. TWO APPLICATIONS OF SQUARE ROOTS 39Galileo: Leave it to the an
ient Greeks to not only have asked this question, but tohave answered it as well. While Heron of Alexandria (10 � 75) is frequently given
redit for its dis
overy, the formula was already known to Ar
himedes of Syra
use(287-212 B.C.E.). For the area of a triangle whose sides have lengths: a; b; and 
; thearea is given by the formula:A =ps(s� a)(s� b)(s� 
);where s = a+b+
2 denotes the semi-perimeter. Note that the 
omputation of a squareroot is required.Note that as long as you know how to 
ompute the square root of a number, theformula is straightforward to 
ompute. Do either of you see why the formula mightbe useful?Virginia: In fa
t good sir, I prefer this formula to the usual one given in Geometrybe
ause you frequently don't know the height of the triangle. This formula worksgreat if you simply know the lengths of the three sides?Simpli
io: I like the formula, but how would anyone have ever thought of it?Galileo: While I 
an't answer that question, always remember that those an
ientfellows were smart and thought deeply.Virginia: How would su
h a formula be proved?Galileo: In modern notation, simply represent the verti
es of a triangle by ve
torsu = (a; b) and v = (
; d) in the plane and 
ompute. It helps to use the fa
t that thearea of the triangle is the absolute value of 12(ad� b
): However, it is still a bit of amess. We will leave this problem as an exer
ise.Simpli
io: (To Virginia) That problem belongs to you.Galileo: A se
ond example is the golden mean (or ratio) �; whi
h the an
ient Greeksfelt had spe
ial, even mysti
al, signi�
an
e. This quantity appeared in their art andar
hite
ture as well as their mathemati
s. The ratio of the height to the width of theParthenon equals this famous number. A pentagram is loaded with ratios equal to �:The golden ratio is de�ned as the ratio � = 1x ; where x is the point in a line segment
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h that x1 = 1�xx : In other words, the point x is 
hosen so that the ratio of thewhole segment to the longer subsegment equals the ratio of the longer segment to theshorter. When this proportion is solved for x, the answer is x = �1�p52 : Sin
e lengthsshould be positive quantities, we are only interested in the answer x = �1+p52 : Aneasy 
omputation shows that � = 1x = 1+p52 =� 1:61803 : : : : Thus, the Greeks had anatural interest in 
omputing the quantity p5:Virginia: If I remember 
orre
tly, this number 
an be approximated by 
omputingthe ratios of the terms in the Fibona

i sequen
e 1; 1; 2; 3; 5; 8; : : : :Galileo: Very good.Simpli
io: Is that why we have note 
ards of dimension 3� 5 and 5� 8?Virginia: You do the math.Exer
ise Set 4.4.1. Compute the golden mean to 8 de
imal pla
es.2. Compute the area of a triangle, whose sides have lengths 1; 1; and 1:3. Compute the area of a triangle, whose sides have lengths a; a; and a:4. Compute the area of a triangle, whose sides have lengths 1; 2; and 3:5. Compute the area of a triangle, whose sides have lengths 1; 2; and 4: Why doyou have an OOPS?6. Prove the Ar
himedes/Heron formula for the area of a triangle, whose sideshave lengths a; b; 
:
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Figure 4.6: Kurt G�odel (1906-1978)The development of mathemati
s towards greater pre
ision has led, as iswell known, to the formalization of large tra
ts of it, so that one 
an proveany theorem using nothing but a few me
hani
al rules.-Kurt G�odelSimpli
io: OK, what's next?Galileo: A solid understanding of Geometry is built on a foundation of mathemati
alrigor. I insist you are 
omfortable with logi
al arguments.Simpli
io: I knew this dis
ussion was going to deteriorate. Here it 
omes.Galileo: Before you 
an understand the strengths and weaknesses of a mathemati
alte
hnique, you need to have an understanding of when it works and when it fails. Abit of logi
 and mathemati
al formalism will aid in the understanding of when you
an trust a method. Key examples 
an be used to point out when you should besuspi
ious. The �rst requirement in formal mathemati
s is that you must understandthe di�eren
e between an axiom, a de�nition, and a theorem.Simpli
io: Groan.Galileo: Unfortunately, the beauty of numeri
al analysis is that the subje
t is ruled byMurphy's Law. Namely, \What 
an go wrong, will go wrong." A te
hnique that works
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ation may fail for another. Worse yet, for any given te
hnique, anexample 
an invariably be found, where it provides answers that make no sense. Itis important to understand why one method is preferred over another. De�nitionsand theorems 
an be used to make these thoughts pre
ise. I now introdu
e ProfessorG�odel, who has agreed to help 
larify these issues for us. Professor G�odel.Virginia: I am pleased to meet you sir.Simpli
io: Good day sir. (To Virginia) He looks mean. This meeting 
ould get ugly.G�odel: I am not sure I am wel
ome. Maybe I should retreat to my oÆ
e.Galileo: Please enlighten these young people about the nature of mathemati
s.G�odel: I will try. First, every theorem 
onsists of two parts. The �rst is the hypoth-esis, while the se
ond is the 
on
lusion. If the theorem is valid and the hypothesesare true, then we 
an 
on
lude that the 
on
lusion is also true. Symboli
ally, everytheorem is a 
onditional senten
e of the form: If p, then q. If the theorem is trueand we know that the statement p is also true for our parti
ular situation, then weimmediately know that q is true as well. This bit of logi
 is 
alled modus ponens:Galileo: Let me note that our friends in statisti
s are also quite fond of 
onditionalsenten
es. The theorem of the Presbyterian minister Thomas Bayes (1702-1761) is
entral to any dis
ussion of 
onditional probability. Thus, people other than my-self require you to understand the stru
ture of language. In any 
ase, what is thehypothesis of the Pythagorean Theorem?Virginia: A
tually, we have two hypotheses. The �rst hypothesis is that the geometri
obje
t we are dealing with is a triangle. The se
ond is that this triangle is of a spe
ialtype. Namely, one of its three angles is 90 degrees.Galileo: Corre
t. Now what is the 
on
lusion?Virginia: The relationship between the length of the hypotenuse and the lengths ofthe other two sides of the triangle. Namely, the equation 
2 = a2 + b2:Galileo: Corre
t again.Simpli
io: Why are you boring us with these dis
ussions? I know the formula
2 = a2 + b2 has been established. But if I know the formula, then isn't that good



4.5. RIGOR 43enough? What else matters?G�odel: How 
an this guy be so obtuse? Children are evil. (G�odel departs)Simpli
io: This wizened little guy is mean.Virginia: Maybe he was a pediatri
ian and had you as a patient.Galileo: How about a bit less disrespe
t and a bit more dis
ussion?G�odel: (G�odel returns) Has anyone seen a small bla
k valise? It 
ontained importantwork.Galileo: What if the triangle is not a right triangle? In parti
ular, what if the triangleis a
ute or obtuse? You need to know when it is appropriate to apply the formula.Virginia: Obviously, the formula does not apply for all triangles.Galileo: Corre
t again. If the hypothesis is not satis�ed, then the theorem does notapply and you 
annot pretend the 
on
lusion holds.Simpli
io: What do you do then?G�odel: This dis
ussion is outrageous. Plato understood these issues 2500 years ago.These young people should have mastered logi
 and rigor when they studied Eu
lid.We should not be having these dis
ussions.Galileo: Patien
e good sir. However, my experien
e has been that people in appli
a-tions tend to be sloppy in these matters. I �nd it is better to dis
uss them up front.Later, when the setting is more abstra
t, a dis
ussion of rigor might get lost in themud. We might as well address the issue now while we are in the familiar setting ofgeometry. You will be well served if you make the e�ort to 
larify these questions ofrigor and logi
 now. Don't worry, we will revisit these issues.G�odel: Let's just redu
e the dis
ussion to the essentials.1. A theorem is a statement of the form: \If p; then q:"2. The 
onverse of the theorem \If p; then q:" is the statement \If q; then p:"3. The 
ontrapositive (modus tollens) of the theorem \If p; then q:" is a statementof the form \If � q; then � p:"



44 CHAPTER 4. GEOMETRY4. If a statement \If p; then q" and its 
onverse \If q; then p" are both true, thenp and q are 
onsidered equivalent. In this setting, the statements p and q areeither both true or both false.While politi
ians and prea
hers would like you to believe that a theorem and its
onverse are equivalent, nothing 
ould be further from the truth.Simpli
io: What are those little squiggles \�" doing in this dis
ussion?Virginia: Obviously, the symbol � p denotes the negation of p: In other words, if p istrue, then � p is false and vi
e versa.Simpli
io: How about an example?G�odel: Consider the statement: "If you are Franklin Delano Roosevelt, then you arefamous."Simpli
io: I would rather 
onsider the statement: "If you are Emmitt Smith, thenyou are famous."Virginia: Who is Emmitt Smith? Is he famous?Galileo: I think we are o� topi
 here. In any 
ase, let us assume the statement istrue.G�odel: The 
onverse of MY version of the statement is: "If you are famous, then youare Franklin Delano Roosevelt." Do you think this 
onverse is also true?Simpli
io: No. Barbara Bush is famous and she is not even a male mu
h less apresident. In parti
ular, the two statements are not equivalent.Virginia: On the other hand, the 
ontrapositive of this statement is: \If you are notfamous, then you are not Franklin Delano Roosevelt." Note that this statement isindeed equivalent to the original statement.Galileo: Corre
t again.Simpli
io: So why should I 
are?G�odel: I am done.Galileo: Good sir. Before you depart, 
ould you give us a qui
k summary of whatthese young people need to know.G�odel: All these truths are en
apsulated in Table 4.2.



4.5. RIGOR 45p q p ^ q p _ q p! qT T T T TT F F T FF T F T TF F F F TTable 4.2: The Truth Table for \And," \Or," and \If."Simpli
io: I don't understand all those symbols.Virginia: Obviously, T = True and F = False.Simpli
io: I �gured that out. Also, while I assume the symbol p ! q represents the
onditional statement \If p; then q:" What do the symbols ^ and _ represent?G�odel: The symbol ^ means \And," while _ means \Or."Virginia: Ok, I understand that if p and q are both true, then we should de�ne p ^ qto be true. However, if you are ordering a meal at a restaurant and the 
hoi
e is \teaor 
o�ee," then you surely don't get both.G�odel: Don't 
onfuse the \ex
lusive or" with the \in
lusive or." In a restaurant, youwill get tea or 
o�ee, but not both. In Logi
 we are more generous and will give youboth.Simpli
io: I guess that's why all the math restaurants have gone out of business.G�odel: The 
on
ept of a theorem is the most important idea to take away from Table4.2. In parti
ular, if a theorem p ! q is true and the hypothesis p is true, then the
on
lusion q is also true. This logi
 is exa
tly what use when we apply a generaltheorem to a spe
i�
 instan
e.Virginia: And if we don't satisfy the hypothesis, then we may be disappointed whenq turns out to be false.Galileo: Corre
t.G�odel: In Table 4.3 we observe that the 3rd 
olumn represents a statement and the4th 
olumn represents its 
onverse. Note that these two 
olumns are not the same.



46 CHAPTER 4. GEOMETRYVirginia: However, the 3rd and 7th 
olumns are the same.Galileo: Corre
t again.G�odel: I must be gone. (G�odel pi
ks up his valise and departs.)p q p! q q ! p � p � q � q ! � pT T T T F F TT F F T F T FF T T F T F TF F T T T T TTable 4.3: The Truth Table for the Contrapositive.Galileo: Very good. Your observation is at the heart of a proof by 
ontradi
tion. Inother words, we will assume that the statement q is false and then will show thatthe statement p is also false. In summary, an understanding of de�nitions, theorems,
onverses, and 
ontrapositives is about all the logi
 you will need to know.Virginia: If I remember my Geometry 
orre
tly, we also 
onsidered lemmas, proposi-tions, and 
orollaries.Galileo: These three words all represent di�erent names for for small theorems. Alemma is interesting only be
ause it 
an be used to help prove a more importanttheorem. Sometimes they are 
alled helping theorems be
ause they help organizethe proof of an important theorem. A proposition is a small (but usually useful)theorem, whi
h is more of a stepping stone than a reservoir 
ontaining a big 
on
ept.A 
orollary will usually represent an easy 
onsequen
e of an important theorem. Forexample, the Mean Value Theorem has several important 
orollaries that we will usemore often than the theorem itself.Virginia: So when we are studying for an exam, we study the theorems �rst, the
orollaries se
ond, and the propositions last.Simpli
io: Do we get to forget the lemmas?



4.5. RIGOR 47Virginia: For you, the answer is probably yes. For the rest of us, a lemma helpsus organize and remember the proof. What do you have to say about axioms andde�nitions?Galileo: Axioms are something you assume true. For example, in algebra we assumethat equals added to equals are equal.Virginia: So, if a = b and 
 = d; then a + 
 = b + d:Galileo: While de�nitions are written in the same \If p, then q." format we use fortheorems, their purpose is to de�ne a new 
on
ept.Simpli
io: An example please!Galileo: How about the de�nition of a right triangle?De�nition 4.5.1. If a triangle has the property that one of its angles is a right angle,then it is a right triangle.Note that while this de�nition is written as a statement of the form \If p; thenq;" it is understood that the p and q are equivalent.Virginia: In other words, there are no 
onverses for de�nitions. If the triangle doesn'thave a 90 degree angle, it 
annot be a right triangle.Galileo: Looks like you understand the hierar
hy. I would only add that you payspe
ial attention to theorems with names su
h as the Pythagorean Theorem, Taylor'sTheorem, the Mean Value Theorem, and the Intermediate Value Theorem. We willthink of a theorem as an item in a bookkeeper's ledger. Whenever you need to knowif something is true, you simply 
he
k the list of theorems in the ledger. If you �ndone that you think might be relevant, all you have to do is 
he
k the hypotheses. Ifthey are satis�ed, you get the 
on
lusion for free. In other words, the hard work hasalready been done. Now, you have to admit that this logi
 and rigor is easy. All youhave to know is four logi
 rules and the di�eren
e between an axion, a de�nition, anda theorem.Simpli
io: I should have gone to 
hur
h this morning.Galileo: Remember, math is easy, it's life that's un
ertain.
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io: Let's move on before I be
ome rigor-morti�ed.Galileo: We end with the de�nition of the inverse of a statement. I will leave it foryou to show the inverse of a statement is equivalent to the 
onverse.De�nition 4.5.2. The inverse of the statement \If p; then q:" is the statement "If� p; then � q:"Exer
ise Set 4.5.1. Use a truth table to show the inverse is equivalent to the 
onverse.2. Use a truth table to show the statement \If p; then � q:" is equivalent to thestatement \(� p) _ (� q):"
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Isaa
 Newton (1642-1727)Truth is ever to be found in the simpli
ity, and not in the multipli
ity and
onfusion of things.-Isaa
 NewtonSimpli
io: What are the topi
s for today's lesson?Galileo: The �rst topi
 will be an algorithm for 
omputing the 
ube root of a number.This te
hnique is a natural an extension of the Ar
himedes/Heron algorithm for 
om-puting the square root of a number. As before, this te
hnique is easy to understand,always works, and 
onverges qui
kly. For an engineer this is the best of all possibleworlds. To illustrate how the algorithm works, we will 
ompute a number of examplessu
h as 3p2:Simpli
io: Wait a minute. I am a bit 
onfused here. The other day you talked aboutthe root of a fun
tion f(x): Today you are talking about the root of a positive numberK: Do I dete
t double talk here?Galileo: You have made a good observation. However, this 
onfusion 
an be qui
klyexplained away be
ause the quantity r = pK is a root of the fun
tion f(x) = x2�K:Simpli
io: Oh, I see all you have to do is substitute r = pK into the fun
tion f(x)and get f(r) = f(pK) = (pK)2 � K = K � K = 0: I now understand that point.What is next?Galileo: After the 
ube root algorithm, we introdu
e a similar algorithm for 
omput-



52ing nth roots.Simpli
io: While I 
an understand why someone might be interested in 
omputing a
ube root, why in heaven's name would I 
are about nth roots?Galileo: What about musi
? Re
all that a piano has 12 keys for ea
h o
tave. Ea
hkey is represents a di�erent frequen
y. The frequen
y represented by C in one o
taveis twi
e the frequen
y for C in the previous o
tave. The 12th root of 2 is the key.Also, the formula for the nth root algorithm motivates the formula for the method ofNewton/Raphson. As it turns out, the square root, 
ube root, and nth root methodsare all spe
ial 
ases of Newton/Raphson.Simpli
io: Why would we bother with the spe
ial 
ases then?Galileo: Now you are thinking like a mathemati
ian. If you have a general method,why not keep it simple and dis
ard the spe
ial 
ases? However, from a pedagogi
alpoint of view, we like to dis
uss the easy 
ases �rst. Building on the experien
e wehave gained from the easy 
ases, the general 
ases should be more a

essible. We
ould begin our dis
ussion with the method of Newton/Raphson. However, simpleexamples exist, whi
h demonstrate that this method doesn't always work. Our squareroot method doesn't have this problem.Simpli
io: Now you have me worried.Galileo: Mathemati
ians always worry. However, after showing you how to 
omputesquare roots, 
ube roots, and nth roots, we present Cardano's formula for 
omputingthe roots of a 
ubi
 polynomial. This nifty formula requires that you are able to
ompute square roots and 
ube roots.Simpli
io: That sounds �ne.Galileo: The next set of topi
s will be fo
used on di�erent root �nding te
hniques.In parti
ular, we will present the Newton/Raphson, se
ant, and bise
tion methods.Simpli
io: Te
hniques are good. I am sure I will enjoy it.Galileo: After we dis
uss these three algorithms, the story turns ugly. We �rstshow that Newton/Raphson fails in a fundamental way. Sometimes the algorithmprodu
es a sequen
e, whi
h diverges to in�nity. Sometimes the sequen
e 
onverges



53to an unexpe
ted answer. O

asionally, the sequen
e simply os
illates.Simpli
io: This is not the news I wanted to hear.Galileo: Unfortunately, the evil Mr. Murphy is lurking behind every 
lever algorithm.He will poun
e when you least expe
t it. In addition to we will mention a famousexample of James Wilkinson, whi
h shows that the roots of a 20 degree polynomial
an lead to dangerous instabilities. In other words, you are insane if you model areal-world problem with a high degree polynomial.Simpli
io: OK, OK.Galileo: The next dis
ussion will fo
us on the su

esses we 
an salvage from our
olle
tion of disasters. In an e�ort to understand and re
tify these issues, we turn tomathemati
s.Simpli
io: Does this mean theory?Galileo: When you hit the square root button on your 
al
ulator, you would like toget the 
orre
t answer, wouldn't you?Simpli
io: I have no argument with 
orre
t answers.Galileo: A
tually, you are making too mu
h of a big deal about mathemati
al rigor.We did all the heavy lifting yesterday when we de�ned and dis
ussed 
onvergen
e.We will show the method of Ar
himedes/Heron \always works." The words boundedand in
reasing will reappear.Virginia: I look forward to these insights.Virginia: What's next?Galileo: The next goal is to demonstrate mathemati
ally why one method might bepreferred over another.Simpli
io: What does the word \preferred" mean in this 
ontext?Galileo: If it takes 5 iterations to 
ompute the square root of a number with onemethod and 30 iterations with another, whi
h would you prefer?Simpli
io: Hmmm.Galileo: Surprisingly, the Mean Value Theorem and Taylor's Theorem will drive thisdis
ussion. We are interested in the problem of when one sequen
e 
onverges faster



54than another.Simpli
io: Wait a minute. What does it mean for one sequen
e to 
onverge fasterthan another?Galileo: Now you are thinking like a mathemati
ian. The �rst type of 
onvergen
eis 
alled first order or linear: The se
ond is 
alled se
ond order or quadrati
: TheMean Value Theorem is the tool for showing a sequen
e 
onverges linearly. Taylor'sTheorem is used to show Newton/Raphson (usually) 
onverges quadrati
ally. As youwill see, quadrati
 
onvergen
e is preferred.Virginia: So Newton/Raphson is preferred when it works!Galileo: Corre
t. If one is not 
areful, Murphy will get you.Virginia: What is next?Galileo: The pro
ess of understanding the method of Newton/Raphson leads to theamazingly general Contra
tion Mapping Theorem. On
e the terms 
ontra
tion andfixed point have been de�ned, this theorem is easy to state, easy to prove, and eveneasier to implement. The method always works. Better yet, a multitude of appli-
ations are 
onne
ted with this theorem in
luding the solution of linear equations,non-linear equations, the solution of di�erential equations, and the 
reation of fra
talpatterns. This te
hnique represents the best of all possible mathemati
al worlds.Virginia: Great.Galileo: We will �nish the day with a dis
ussion of Aitken's method. The goal of thiste
hnique is to speed up the rate of 
onvergen
e from linear to quadrati
. While itworks well in some 
ases, it is not as useful as one might hope.Simpli
io: What? You are going to waste our time by showing us methods that don'twork?Galileo: While Aitken has his pla
e in the world of numeri
al methods, his te
hniquedoes little to speed up the bise
tion method. This is just one example. The sad truthis that the highway of numeri
al te
hniques is littered with good ideas that failed toperform as hoped.Virginia: Let me summarize today's agenda:



551. the square root te
hnique of Ar
himedes/Heron,2. general root �nding te
hniques,3. failure of general methods,4. su

ess of general methods,5. analysis of 
onvergen
e rates,6. generalization of Newton/Raphson to the Contra
tion Mapping Theorem, and7. Aitken's Method to improve the 
onvergen
e rate.Galileo: You got it.Simpli
io: The program makes sense to me.
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Chapter 5
The Computation of nth Roots
5.1 Cube RootsGalileo: Sin
e we now understand how to 
ompute square roots, we now turn tothe problem of 
omputing 
ube roots. Our strategy will be to imitate the approa
hdes
ribed for square roots. This time we will again assume that the quantity x isa reasonably 
lose approximation of 3pK and now sear
h for the quantity �x su
hthat (x + �x)3 = K: While the pi
ture is more diÆ
ult to draw than for the 2-dimensional 
ase, it 
an be visualized by simply repla
ing the square by a 
ube as wehave attempted in Figure 5.1.Again, if �x is small, then �x2 and �x3 are even smaller, so we �ndK = (x+�x)3= x3 + 3x2�x + 3x�x2 +�x3� x3 + 3x2�x:Thus, if we let �x = K�x33x2 and repla
e x by xn and x+�x by xn+1; we have thefollowing 
ube root algorithm:x0 = 1;xn+1 = xn � x3n�K3x2n ; n � 0:57



58 CHAPTER 5. THE COMPUTATION OF NTH ROOTSSimpli
io: This dis
ussion is quite familiar.

Figure 5.1: The Geometry Underneath the Cube Root AlgorithmExample 5.1.1. Galileo: OK, it is time to work an example. In Table 5.1 we displaythe �rst six approximations of 3p2:x0 1.000000000000000x1 1.333333333333333x2 1.263888888888889x3 1.259933493449977x4 1.259921050017770x5 1.259921049894873x6 1.259921049894873Table 5.1: Six Estimates of 3p2Simpli
io: This set of 
omputations is amazing! On
e again, the 5th and 6th termsare identi
al out to 15 de
imal pla
es.Galileo: What else do you noti
e?Virginia: After the initial guess, the terms are de
reasing.Galileo: In Figure 5.2 we on
e again display the lo
ations of these estimates on thereal number line. As you have noti
ed, the third estimate is less than the se
ond.
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Figure 5.2: The First Three Estimates of 3p2Galileo: Very good. Now let's make a few remarks about the algorithm. Sin
e theformula for xn+1 
an also be written asxn+1 = 2xn + Kx2n3 = 23xn + 13 Kx2n ;it be
omes apparent that xn+1 is the weighted average of xn and Kx2n ; where the �rstweight is 23 and the se
ond weight is 13 :Ar
himedes: While I get annoyed when others try to take 
redit for my ideas, I ama bit embarrassed that you are assigning this method to me. We didn't even thinkabout 
ube roots in those days.Galileo: While you are 
orre
t, you must admit the 
on
ept is the same. While thisgeneralization to the 
omputation of 
ube roots may seem like an easy generalizationof the method of Ar
himedes/Heron, the time gap is in terms of millennia.Simpli
io: Probably nobody 
ared.Galileo: You may be right. Even today, square roots are used mu
h more oftenthan 
ube roots. In any 
ase, the 
on
ept that bridged the gap was an improvedunderstanding of algebra and the binomial theorem.Exer
ise Set 5.1.1. Let K = 5 and x0 = 1: Compute the �rst �ve iterations of the 
ube rootalgorithm to estimate 3p5:What is the di�eren
e between your estimate and theexa
t answer? How many iterations does it take before the di�eren
e betweenxn and the exa
t answer is less than 0:000001? (Make your 
omputations with10 digits of a

ura
y.)



60 CHAPTER 5. THE COMPUTATION OF NTH ROOTS2. Let K = 10 and x0 = 1: Compute the �rst �ve iterations of the 
ube root algo-rithm to estimate 3p10: What is the di�eren
e between your estimate and theexa
t answer? How many iterations does it take before the di�eren
e betweenxn and the exa
t answer is less than 0:000001? (Make your 
omputations with10 digits of a

ura
y.)3. Let K = 1000 and x0 = 1: Compute the �rst �ve iterations of the 
ube rootalgorithm to estimate 3p1000: How many iterations does it take before the dif-feren
e between xn and the exa
t answer is less than 0:000001? (Make your
omputations with 10 digits of a

ura
y.)4. Let K = 1; 000; 000 and x0 = 1: Compute the �rst �ve iterations of the 
uberoot algorithm to estimate 3p1; 000; 000: How many iterations does it take beforethe di�eren
e between xn and the exa
t answer is less than 0:000001? Comparethe number of iterations with your answer for 2p1; 000; 000: Whi
h algorithmtakes more iterations? (Make your 
omputations with 10 digits of a

ura
y.)5. Let K = 109 and x0 = 1: Compute the �rst �ve iterations of the 
ube root algo-rithm to estimate 3p109: What do you noti
e? How 
lose is the last estimate tothe 
orre
t answer? How many iterations does it take before the di�eren
e be-tween xn and the exa
t answer is less than 0:000001? (Make your 
omputationswith 10 digits of a

ura
y.)6. Let K = 0 and x0 = 1: Compute the �rst �ve iterations of the 
ube rootalgorithm to estimate 3p0: How 
lose is the last estimate to the 
orre
t answer?How many iterations does it take before the di�eren
e between xn and the exa
tanswer is less than 0:000001? Compare the number of iterations require for thisproblem and when you approximated p0: (Make your 
omputations with 10digits of a

ura
y.)



5.2. NTH ROOTS 615.2 nth RootsGalileo: We now show how to generalize the method of 
omputing 
ube roots to amethod that 
an be used to 
ompute the nth root of a number.Simpli
io: Why would we 
are about nth roots?Galileo: What about musi
? Let's ask Pythagoras.Pythagoras: Long ago I observed that two bla
ksmith's striking di�erent anvils atthe same time 
an produ
e resonating frequen
ies when one is twi
e the size of theother. With string instruments two strings produ
e resonating sounds when one istwi
e (or three times) the length of another and under the same tension.Simpli
io: How do you get the tensions to be the same?Pythagoras: If you pla
e the fret at the midpoint, the frequen
y is doubled.Galileo: While we are at it, let me 
omment that a major 
on
ern of Fourier seriesis the problem of approximating fun
tions f(x) : [��; �℄! < by linear 
ombinationsof fun
tions of the form 1; 
os(x); sin(x); 
os(2x); sin(2x); : : : ; 
os(nx); sin(nx): Notethat the frequen
y of 
os(2x) is twi
e that of 
os(x) and the frequen
y of 
os(3x) istriple that of 
os(x): We will return to this topi
.Simpli
io: Interesting.Galileo: Sin
e my father was a musi
ian, I �nd this subje
t of parti
ular interest andwould like to make a 
ouple of additional remarks. Every piano has 12 notes from oneo
tave to the next. As you progress up the s
ale, the frequen
y 
hanges by the fa
tor12p2: In the key of C, you begin with middle C as the �rst note, D is the se
ond note,E is the third, F is the fourth, and G is the �fth. Thus, if you strike the fourth whitekey to the right of middle C, you have the perfe
t �fth. The frequen
y of middle Cis 252 Hertz so the frequen
y of the perfe
t �fth is 252 � ( 12p2)7:Simpli
io: What a strange way to tune an instrument? Why not simply tune the pianoso the frequen
ies are equally spa
ed? That method would seem more reasonable tome.Pythagoras: As I just remarked, if we were to use your strategy, then the frequen
y



62 CHAPTER 5. THE COMPUTATION OF NTH ROOTSof C (or any other note) in one o
tave would not be twi
e the frequen
y of C inthe previous. Thus, our notes would not be harmonious. On the other hand, if thefrequen
ies are spa
ed multipli
atively, then harmony is preserved.Simpli
io: I have another question. If the note G is 
alled the perfe
t �fth, then whyisn't it 
omputed as 252 � ( 12p2)5?Galileo: The modern piano has bla
k keys as well as white keys. These bla
k keys aretuned as half notes (also known as semitones). The perfe
t �fth is seven half stepsabove middle C.Pythagoras: And note that the quantity ( 12p2)7 � 32 :Simpli
io: Interesting.Galileo: People frequently remark that musi
 and mathemati
s go together. Well,there it is.Now let's get ba
k to the mathemati
al issue of 
omputing the nth root of a numberK by following the strategy used for 
omputing 
ube roots. To that end, suppose wehave a number x whi
h is a reasonably 
lose approximation of npK: We now wouldlike want to approximate the quantity �x with the property that (x +�x)n = K:Again, if �x is small, then for any integer k > 1; the power �xk is even smaller.For example, if �x = 0:1; then �x2 = 0:01 and �x3 = 0:001: Thus, by the binomialtheorem we �nd thatK = (x +�x)n= xn + nxn�1�x + n(n� 1)2! xn�2�x2 + n(n� 1)(n� 2)3! xn�3�x3 + � � �+�xn� xn + nxn�1�x:Thus, a good 
hoi
e for the approximate �x is to set �x = K�xnnxn�1 : If we set xk = xand xk+1 = x+�x; then we have the following re
ursive algorithm for any K > 0 :x0 = 1;xk+1 = xk � xnk�Knxn�1k :



5.2. NTH ROOTS 63Simpli
io: Given the previous dis
ussions on square roots and 
ube roots, the te
h-nique is quite understandable.Galileo: Again, note that we have taken a diÆ
ult problem, non-linear in the variable�x; and made it linear in that variable.Virginia: Is that so the problem is easier?Galileo: Corre
t. Note also that we 
an again write xk+1 as the weighted sum of xkand Kxn�1k : In parti
ular, xk+1 = n� 1n xk + 1n Kxn�1k ;where the two weights are w0 = n�1n and w1 = 1n :Simpli
io: OK, this dis
ussion is getting all too familiar. How about an example?Example 5.2.1. Galileo:We have presented the �rst six approximations for 5p2 in Table 5.2.x0 1.000000000000000x1 1.200000000000000x2 1.152901234567901x3 1.148728886527325x4 1.148698356619959x5 1.148698354997035x6 1.148698354997035Table 5.2: Six Estimates of 5p2Simpli
io: These 
omputations are getting boring. I 
an see that the questions andanswers are the same as for square roots and 
ube roots.



64 CHAPTER 5. THE COMPUTATION OF NTH ROOTSExample 5.2.2. Galileo: We have presented the �rst six approximations for 12p2 inTable 5.3. x0 1.000000000000000x1 1.083333333333333x2 1.062153572038919x3 1.059500262653840x4 1.059463101529905x5 1.059463094359296x6 1.059463094359295Table 5.3: Six Estimates of 12p2Simpli
io: Finally something happened! At least we have a di�eren
e in the 15th digitfor the 5th and 6th estimates.Galileo: This algorithm is worthy.Exer
ise Set 5.2.1. Compute 5p2 using x0 = 1 to initialize the algorithm. How many iterationsdoes it take before the error is less than 0:000001? (Make your 
omputationswith 10 digits of a

ura
y.)2. Compute 7p2 using x0 = 1 to initialize the algorithm. How many iterationsdoes it take before the error is less than 0:000001? (Make your 
omputationswith 10 digits of a

ura
y.)3. Compute the �rst �ve iterations of the nth root algorithm to estimate 12p2 usingx0 = 1 to initialize the method. How many iterations does it take before theerror is less than 0:000001? (Make your 
omputations with 10 digits of a

ura
y.)4. Compute the �rst �ve iterations of the nth root algorithm to estimate 20p2 usingx0 = 1 to initialize the method. How many iterations does it take before the



5.2. NTH ROOTS 65error is less than 0:000001? Compare the number of iterations required with theprevious three problems. (Make your 
omputations with 10 digits of a

ura
y.)5. Compute the �rst �ve iterations of the nth root algorithm to estimate 12p0 usingx0 = 1 to initialize the method. How many iterations does it take before theerror is less than 0:0001? (Make your 
omputations with 10 digits of a

ura
y.)
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Chapter 6
Cardano's Method for Cubi
Polynomials

Girolamo Cardano (1501-1576)I wrote it out �ve times, may it last the same number of millennia.-Girolamo CardanoGalileo: Sin
e we now understand how to 
ompute square roots, 
ube roots, and nthroots, we now turn to the problem of 
omputing roots of 
ubi
 polynomials. First,let us remind you that the solutions of the quadrati
 equation Ax2+Bx+C = 0 aregiven by r = �B�pB2�4AC2A : 67



68 CHAPTER 6. CARDANO'S METHOD FOR CUBIC POLYNOMIALSSimpli
io: Sure, I remember that formula. I learned it many years ago.Galileo: Well then, 
an you solve the general 
ubi
 equation Ax3+Bx2+Cx+D = 0?Simpli
io: I must admit I have forgotten that formula.Galileo: A
tually, the development of these formulas has a long and sometimes bitterhistory.While it may be true that the Babylonians were the �rst to solve quadrati
 equa-tions sometime around 400 B.C.E., this statement is a bit of an oversimpli�
ationsin
e the Babylonians had no notion of \equation." What they did develop was analgorithmi
 approa
h to solving problems whi
h, in our terminology, would give riseto a quadrati
 equation. The method is essentially the te
hnique of \
ompletingthe square." Of 
ourse, the an
ient Greek mathemati
ians knew how to solve thequadrati
 formula by ruler and 
ompass.

Omar Khayyam (1048 - 1122)Algebras are geometri
 fa
ts whi
h are proved.-Omar KhayyamNearly 1500 years later, we �nd the �rst su

ess at solving a 
ubi
 equation. Whiletrying to solve the problem of �nding a right triangle with the property that thehypotenuse equals the sum of one leg plus the altitude of the hypotenuse, the Persianmathemati
ian and poet, Omar Khayyam (1048 - 1131), found a positive root to the
ubi
 equation x3 + 200x = 20x2 + 2000: The mathemati
s world would have to waitanother 400 years for a solution to the general 
ubi
 equation and the solution would



69not 
ome easily. The Italian mathemati
ian S
ipione del Ferro (1465-1526) designedalgebrai
 solutions to 
ubi
 equations of the form x3 +mx = n:Simpli
io: Did del Ferro publish his work?Virginia: He made the mistake of showing his ideas to his student Antonio Fior.Simpli
io: How so?Virginia: Didn't he 
ompete in a 
hallenge, where ea
h 
ontestant gave the otherthirty problems to solve?

Figure 6.1: Ni

olo Fontana (1499-1557), aka Tartaglia, the StuttererWhen the 
ube and the things togetherAre equal to some dis
rete number,Find two other numbers di�ering in this one.Then you will keep this as a habitThat their produ
t shall always be equalExa
tly to the 
ube of a third of the things.The remainder then as a general ruleOf their 
ube roots subtra
tedWill be equal to your prin
ipal thing.-Ni

olo Fontana



70 CHAPTER 6. CARDANO'S METHOD FOR CUBIC POLYNOMIALSGalileo: Corre
t. The other 
ontestant was another Italian mathemati
ian, Ni

oloFontana (1499-1557), known as Tartaglia, the stutterer.Simpli
io: Why was he 
alled the stutterer?Galileo: When he was a teenager, the Fren
h invaded his home town. In the pro
ess,a soldier bashed the young fellow in the head 
ausing su
h severe and permanentinjuries he found it diÆ
ult to speak.Simpli
io: So what 
ontribution did Tartaglia make to the problem of solving 
ubi
s?Galileo: Tartaglia's methods were more general and were able to solve 
ubi
s of theform x3 + mx2 = n: Fior's methods 
old not handle this 
ase and Tartaglia wonthe 
hallenge. This 
hallenge between Fior and Tartaglia sparked the interest of yetanother Italian mathemati
ian, Girolamo Cardano (1501-1576).Simpli
io: So who was Cardano?Galileo: Cardano was an unusually 
antankerous fellow, who was s
hooled in the�eld of medi
ine. However, be
ause of his reputation as a diÆ
ult man he was notadmitted to the College of Physi
ians in Milan. This reje
tion for
ed him to establisha small medi
al pra
ti
e of his own. Cardano's pra
ti
e, however, 
ould not pay hisgambling bills, so when a mathemati
s le
turing position be
ame available at thePiatti Foundation in Milan, he took it. After hearing of Tartaglia's su

ess with a so-lution to the 
ubi
 equation, Cardano attempted, without su

ess, to learn Tartaglia'smethods. Cardano �rst 
onta
ted Tartaglia through an intermediary to request thathis method be in
luded in Cardano's soon-to-be published book. Tartaglia de
linedCardano's request stating that he intended to publish the method himself. Cardanothen persuaded Tartaglia to explain his method.Tartaglia did not just simply tell Cardano his results. Instead, he wrote them in apoem, so that if it were to fall into the wrong hands, they would still be safe. Further-more, he insisted that Cardano would not publish the results. Cardano, with the helpof Tartaglia's method, was able to �nd proofs for all 
ases of the 
ubi
. He even solvedthe quarti
 equation. Some years later, Tartaglia still had not published his results.Cardano then learned that del Ferro, not Tartaglia, had been the �rst to solve the
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ubi
. Cardano used this new information to justify publishing Tartaglia's method.While Cardano gave Tartaglia full re
ognition, Tartaglia never forgave Cardano.Virginia: I 
an understand why. The formulas are known as Cardano's formulas.Poor old Tartaglia is never mentioned.Galileo: There are many bitter stories like this one in a
ademi
s. The professionseems to attra
t people who have a tenden
y to involve themselves in this type ofpoliti
s.Simpli
io: I think my de
ision to go into business may have been wise.Galileo: As we noted the general 
ubi
 equation 
an be redu
ed to an equation of theform, where the quadrati
 term equals zero. Thus, we 
an assume that the 
ubi
 hasthe form: p(x) = x3 + px + q = 0:For a 
ubi
 equation of this form, Cardano's Formula 6.2 shows that one root 
an bewritten in the form:r = 13p2 3r�q +qq2 + 427p3 + 13p2 3r�q �qq2 + 427p3:Figure 6.2: Cardano's FormulaVirginia: I like this formula be
ause it shows the roots of a 
ubi
 equation 
an bewritten in terms of square roots and 
ube roots.Simpli
io: I agree that Cardano and his friends have produ
ed an amazing formula.Galileo: Not so fast. Note that 
are must be exer
ised when we a
tually apply theformula. A problem arises be
ause the square root always generates two answers andthe 
ube root fun
tion always generates three answers. (Of 
ourse, the square rootand 
ube root of zero is zero, so that number is an ex
eption.) Thus, this expressionfor r 
ould generate as many as 12 di�erent \answers." However, this problem willbe avoided if we assume p and q are real numbers and the expression q2 + 427p3 ispositive. In this setting, we 
an make the 
onvention that we 
hoose the positive



72 CHAPTER 6. CARDANO'S METHOD FOR CUBIC POLYNOMIALSsquare rootqq2 + 427p3 in both parts of the formula for r: Sin
e �q+qq2 + 427p3 > 0and �q �qq2 + 427p3 < 0; we 
an always �nd a unique real 
ube root of ea
h. Ifwe follow this 
onvention and thus avoid 
hoosing 
omplex numbers, then r will be aroot.Virginia: What if q2 + 427p3 is negative?Galileo: We then have to get distra
ted by the subje
t of 
omplex numbers. Sin
ewe have many more topi
s to dis
uss, let us move on.Virginia: Are there similar formulas for polynomials of all degrees?Galileo: Unfortunately, the answer to that question is no. While the general quarti
equation 
an also be solved using only square roots and 
ube roots, the Norwegianmathemati
ian Niels Henrik Abel (1802-1829) and the Fren
h mathemati
ian EveristeGalois (1811-1832) showed that no su
h formula exists for the equation x5+x+1 = 0:Of 
ourse, we should not forget that Gauss proved the Fundamental Theorem ofAlgebra around 1800. In fa
t, he produ
ed �ve di�erent proofs. The beauty of thistheorem is that it states that every polynomialpn(x) = xn+an�1xn�1+an�2xn�2+ : : :+a1x+a0; where ea
h ak is a 
omplex number,has the property that it 
an be fa
tored as a produ
t of linear fa
tors in its roots. Inother words, roots r1; r2; : : : ; rn 
an be found so that pn(x) = (x�r1)(x�r2) : : : (x�rn):If we 
ount multipli
ities, we see that every polynomial of degree n � 1 has exa
tlyn real roots. Unfortunately, the bad news is that the work of Abel and Galois showsthat we will be unable to �nd a tidy little formula for these roots.Simpli
io: I noti
e that these two fellows Abel and Galois both died at an early age.Galileo: While Abel died of tuber
ulosis, Galois was shot and killed in a duel overpoliti
s or a woman. It seems that he had a pen
hant for getting into trouble. A yearbefore his death, he made threats against King Louis-Phillipe while at a dinner with200 Republi
ans. While making his spee
h, he may have been holding a dagger in hishand.Virginia: Is it not true that trouble seems to have followed you as well.Galileo: At least I left my daggers at home.



73Simpli
io: Again, I think my de
ision to avoid a 
areer in a
ademi
s may have beenwise.Exer
ise Set 6.1.1. Compute a root of the equation x3 + x + 1 = 0:2. Find a root for Omar Khayyam's equation x3 + 200x = 20x2 + 2000:3. Show that the quantity r given by the Cardano Formula 6.2 a
tually produ
esa root for the equation x3 + px + q = 0: (Hint: Substitute x = r into p(x):)4. Compute a root of the equation x3 + x2 + 1 = 0:5. Find a formula for a root of the equation x3 +Ax2 +Bx+C = 0: (Suggestion:Surf the internet to see what others have done.)6. Show the equation x3 + x+ 1 = 0 has exa
tly one real root.
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Chapter 7
Algorithms for Finding Roots

Isaa
 Newton (1642-1727)If I have been able to see further, it was only be
ause I stood on theshoulders of giants.-Isaa
 NewtonGalileo: We now introdu
e the English mathemati
ian Isaa
 Newton (1642-1727), whois one of the giants in physi
s and mathemati
s. His treatise, Prin
ipia; is probablythe most important s
ien
e book ever written be
ause it 
reated mathemati
al modelsthat explained the motion of the proje
tiles, planets, pendulums, 
uids, and the tides.These models are based on fundamental prin
iples 
on
erning the nature of for
e,in
luding gravitational and 
entripetal. His Se
ond Law of Motion, F = ma and his75



76 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSinverse square law for gravitation are probably his most famous. The mathemati
alfoundation for this work was geometry, geometry, geometry.Simpli
io: Wait a minute. What about Cal
ulus?Galileo: If you a
tually open this magni�
ent book, you will noti
e an abundan
e oftriangles, parallelograms, and ellipses. You will �nd no derivatives dydx : Old Is aa
 wastoo smart to justify his methods on mathemati
s that was not quite ready for primetime. Of 
ourse, the spirit of Cal
ulus was present everywhere.Simpli
io: Sounds like a lot of math theory to me. Did he in
lude any data to supporthis theory?Galileo: In fa
t, he did. Remember that the idea that the orbits of the planets mightbe ellipti
al 
omes from Kepler. The basis for his ideas was the data set a
quired byTy
ho Brahe (1546-1601). Newton a
tually in
luded other astronomi
al data in his\Prin
ipia."Tell us about yourself, Sir Isaa
.Newton: While I was interested in a variety of di�erent subje
ts in
luding 
hemistryand theology, my main interest was in physi
s and mathemati
s. In physi
s, I madefundamental 
ontributions to dynami
s, stati
s, opti
s, hydrodynami
s, hydrostati
s,and of 
ourse I dis
overed Cal
ulus.Virginia: I thought GottfriedWilhelm von Leibniz (1646-1716) also invented Cal
ulus.Newton: Yes, you might have heard about that 
ontroversy. However, as the presidentof the Royal So
iety, I appointed an \impartial" 
ommittee to de
ide whether Leibnizor myself was the sole inventor. The oÆ
ial report of this illustrious 
ommittee
on
luded that I deserve full 
redit for the Cal
ulus as we know it. Of 
ourse, I usedthe Cal
ulus to explain the motion of falling bodies, Kepler's three laws of planetarymotion, as well as the tides.Galileo: But who wrote the report?Newton: Well, I did.Galileo: Enough of that. Let us mention, however, that Joseph Raphson (1648-1715)was a 
ontemporary of yours, but used the same method to approximate roots of an



7.1. THE METHOD OF NEWTON/RAPHSON 77equation. Raphson, however, was one of the few people who you allowed to see yourmathemati
al papers.Newton: He took a 
lear position in favor of my 
laims over those of Leibniz. Iappre
iated his support.(Newton leaves.)Virginia: I am not 
ertain that I would like to 
onverse with that Mr. Newton again.He is a most unpleasant fellow.Galileo: A great mind may possess a small personality. How about if we forgot allthat politi
s and refo
us our energies on his method. Sin
e has been su
h a 
ad aboutthe e�orts of others, I think we should give Raphson equal 
redit?7.1 The Method of Newton/RaphsonGalileo: Professor Newton, 
ould you explain the ideas behind your method?Newton: Certainly. Let us begin this se
tion with the de�nition of the term root.De�nition 7.1.1. If X is an interval and f(x) : X ! < is a fun
tion, then a pointr 2 X is 
alled a root of f(x) if f(r) = 0:Newton: The fundamental prin
iple underlying the method is to \linearize the prob-lem" by approximating a non-linear fun
tion by a straight line. Thus, easiest startingpoint is to �nd the root of the fun
tion f(x) = m(x� x0) + b:Simpli
io: Even I 
an do that. All you have to do is solve the equation 0 = m(r �x0) + b: As long as m 6= 0; the root r = x0 � bm :Newton: My method is not mu
h more diÆ
ult. Sin
e the �rst derivative of a fun
tionis the slope of the line that \best approximates" the 
urve y = f(x) at a givenpoint (x0; f(x0)); we begin the pro
ess by drawing a tangent line to the 
urve atthis point. Sin
e the tangent line to the 
urve y = f(x) at a point x0 is given byy = f(x0) + f 0(x0)(x� x0); and the root of this linear equation is found when y = 0;the x-inter
ept is found by solving the equation 0 = f(x0) + f 0(x0)(x � x0); for x:



78 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSWhen we do this, we �nd that x = x1 = x0� f(x0)f 0(x0) : If xn represents the approximationat the nth iteration, then xn+1 = xn � f(xn)f 0(xn) :The Newton/Raphson Algorithm:x0 = an initial guess.xn+1 = xn � f(xn)f 0(xn) for all n � 0:The re
ursive part of the algorithm 
an be thought of as a generalization of the
ube root algorithm xn+1 = xn � x3n�K3x2n ; where the denominator of the fra
tionalexpression is also the derivative of the numerator.Simpli
io: A
tually, I am quite 
omfortable with this algorithm.Example 7.1.1. Galileo: We now in
lude a pra
ti
e problem. If we would like toapproximate the value of p2; then we 
an let x0 = 1 and begin 
omputing using there
ursive formula stated in the algorithm. Noti
e that the �rst step is to think up afun
tion f(x) whi
h has the property that r = p2 is a root.Virginia: How about the fun
tion f(x) = x2 �K?
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Figure 7.1: Five Steps Newton/Raphson Estimates for f(x) = x2 � 2



7.1. THE METHOD OF NEWTON/RAPHSON 79Galileo: The approximations provided by the �rst �ve steps of the method are displayedin Figure 7.1. Note that x2 is between the root r = pK and x1; x3 is between r = pKand x2; and x4 is between r = pK and x3: This pattern 
ontinues indi
ating thatthere is a strong probability that the sequen
e of x�inter
epts for the tangent lineswill 
onverge to the root.Virginia: Is the 
on
avity of the 
urve important?Galileo: In fa
t, it is. But we will dis
uss that thought in more detail at a later time.Example 7.1.2. Galileo: A se
ond example is the polynomial p(x) = x5+x+1: Thisexample is of parti
ular interest be
ause our friends Abel and Galois showed we haveno option ex
ept numeri
al 
omputation of the roots.Here is the algorithm. Step 0. x0 = 1:0Step 1. x1 = x0 � x50 + x0 + 15x40 + 1Step 2. x2 = x1 � x51 + x1 + 15x41 + 1Step n. xn+1 = xn � x5n + xn + 15x4n + 1The �rst seven estimates of the real root are listed in Table 7.1 when the algorithmis initialized with x0 = 1:Simpli
io: What a great algorithm! While not quite as good as the square root and
ube root methods, this te
hnique is still in my 
omfort zone.Galileo: The method of Newton/Raphson is popular.Virginia: I 
an see why.Simpli
io: I do have one qui
k question. If this method in
ludes the square rootand 
ube root te
hniques as spe
ial 
ases, why not skip them? It 
ertainly wouldhave been more eÆ
ient to simply dis
uss the Newton/Raphson Algorithm at thebeginning.



80 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSx0 1.000000000000000x1 0.500000000000000x2 -0.666666666666667x3 -0.768115942028985x4 -0.755162523060901x5 -0.754877799264274x6 -0.754877666246722x7 -0.754877666246693Table 7.1: Seven Estimates of a Root of p(x) = x5 + x+ 1Galileo: While we 
ould have, there is a di�eren
e between presenting mathemati
sin its most perfe
t �nal form and presenting 
on
epts to someone unfamiliar with thesubje
t. In my experien
e, the human brain works indu
tively from parti
ular 
asesto more general ones. Mathemati
s is a pro
ess, whi
h has been unfolding for severalthousand years. The pedagogi
 rule we will follow is to pro
eed from the parti
ularto the abstra
t.Simpli
io: I a
tually agree with this approa
h. Simple is good.Galileo: We will soon dis
uss examples, where the method of Newton/Raphson fails.These examples will en
ourage us to sear
h for algorithms, whi
h \always work." Thesquare root and 
ube root algorithms do in fa
t enjoy this 
omforting property.Exer
ise Set 7.1.1. Set up the Newton/Raphson algorithm to 
ompute 5p2: Test the method byusing x0 = 2 to initialize the method and 
ompute 6 iterations.2. Use the method of Newton/Raphson to 
ompute a root of the polynomialp3(x) = x3+x+1 with error less than 10�5: Initialize the method with x0 = 1:0:3. Use the method of Newton/Raphson to 
ompute a root of the the polynomialp3(x) = x3+x2+1 with error less than 10�5: Initialize the method with x0 = 1:0:



7.1. THE METHOD OF NEWTON/RAPHSON 814. Use the method of Newton/Raphson to 
ompute a root of the polynomialp5(x) = (x � 1)(x � 2)(x � 3)(x � 4)(x � 5) with error less than 10�5: Ini-tialize the method with x0 = 5:10:5. Use the method of Newton/Raphson to 
ompute a solution of Omar Khayyam'sequation x3+200x = 20x2+2000 with error less than 10�5: Initialize the methodwith x0 = 1:0: Compare your answer with the one produ
ed by Cardano'sFormula 6.2.6. Use the method of Newton/Raphson to 
ompute a root of the fun
tion f(x) =x 
os(x) with error less than 10�5: Initialize the method with x0 = 10: Be sureto make your 
omputations using radians rather than degrees.7. Use the method of Newton/Raphson to 
ompute a root of the fun
tion f(x) =x ex with error less than 10�5: Initialize the method with x0 = 1:00 and x0 =�2:00:8. Use the Newton/Raphson method to approximate a root of the polynomialp7(x) = x7+x+1 with error less than 10�5: Initialize the method with x0 = 1:0:9. Use the method of Newton/Raphson to approximate a solution of the equationsin(x) = ex with error less than 10�5: Initialize with x0 = 0 and x0 = 5: Whatdo you noti
e?10. Use the method of Newton/Raphson to approximate a solution of the equationex = 3x2 with error less than 10�5: Initialize with x0 = 0 and x0 = 5: What doyou noti
e?11. Use the method of Newton/Raphson to approximate a solution of the equationloge(x) = � 
os(x) with error less than 10�5: Initialize the method with x0 = 0:5:If the initialization is 
hanged to x0 = 2:0; then what happens?12. Let p2(x) = (x� 1000)2 and q2(x) = x2� 1000000: Note that x = 1000 is a rootfor both p2(x) and q2(x): Use the method of Newton/Raphson to approximate



82 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSthis root for both polynomials. Initialize the method with x0 = 1001: Comparethe number of iterations required to a
hieve an error of less than 10�5: Whatdo you noti
e? What is di�erent about the roots of the two polynomials?7.2 The Se
ant MethodGalileo: We now turn to a variant of Newton/Raphson known as the se
ant method,where the �rst derivative is approximated numeri
ally as the slope of the line throughthe two previous approximations produ
ed by the algorithm. This modi�
ation isimportant in appli
ations, where the �rst derivative is diÆ
ult to 
ompute usingthe usual rules of di�erential Cal
ulus. Instead of having the term f 0(x) in thedenominator of the se
ond term, the approximation f(xn)�f(xn�1)xn�xn�1 is used.Thus, the (n + 1)st term be
omes:xn+1 = xn � f(xn)f 0(xn)� xn � f(xn)f(xn)�f(xn�1)xn�xn�1= xn � f(xn)(xn � xn�1)f(xn)� f(xn�1) :Sin
e we require two values to initialize the algorithm, the se
ant method 
animplemented as:The Se
ant Algorithm:Step 0. x0; x1 = initial estimatesStep n. xn+1 = xn � f(xn)(xn � xn�1)f(xn)� f(xn�1) :Simpli
io: OK, I see that the se
ant method has the advantage that you don't haveto 
ompute the �rst derivative. How about an example?Example 7.2.1. Galileo: While this example is a bit embarrassing be
asue the �rstderivative is easy to 
ompute, why not begin by applying the se
ant method to re
om-pute our old friend p2? For this 
omputation, we 
hoose f(x) = x2�2: If we initialize



7.2. THE SECANT METHOD 83the method with the points x0 = 1 and x1 = 2; the �rst se
ant line approximation isgiven by the equation y = �1 + 2+12�1(x� 1) = 3x� 4:Simpli
io: I see that this se
ant line interse
ts the x�axis at x2 = 1:33333333333333:Galileo: Corre
t. A graph of the fun
tion y = f(x) = x2 � 2 and the �rst approxi-mating se
ant line are graphed in Figure 7.2.
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Figure 7.2: The First Se
ant Approximation for f(x) = x2 � 2Galileo: In addition, we display the �rst eight data points generated by the algorithmin Table 7.2. x0 1.00000000000000x1 2.00000000000000x2 1.33333333333333x3 1.40000000000000x4 1.41463414634146x5 1.41421143847487x6 1.41421356205732x7 1.41421356237310x8 1.41421356237310Table 7.2: Eight Se
ant Method Estimates of p2 Initialized by x0 = 1; x1 = 2Simpli
io: While the algorithm seems to 
onverge qui
kly, it does appear to be a shade



84 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSslower than the method of Ar
himedes/Heron.Galileo: Good observation. As it turns out, the 
onvergen
e rate for the se
ant methodis generally slower than the 
onvergen
e rate for Newton/Raphson. We will make thatstatement more pre
ise on another o

asion.Virginia: It doesn't look like the sequen
e of approximations is de
reasing.Galileo: Another good observation. However, if we 
hange the initialization to x0 = 1and x1 = 2; then the algorithm behaves the way you might expe
t. We have listed thisdata in Table 7.3. x0 3.00000000000000x1 2.00000000000000x2 1.60000000000000x3 1.44444444444444x4 1.41605839416058x5 1.41423305925716x6 1.41421357508149x7 1.41421356237318x8 1.41421356237309Table 7.3: Eight Se
ant Method Estimates of p2 Initialized by x0 = 3; x1 = 2Virginia: Now the sequen
e is de
reasing.Simpli
io: Does that always happen?Galileo: Sti
k around and you will see.Virginia: Are there any disadvantages to this te
hnique?Galileo: The �rst problem is that you need two starting points instead of one.Simpli
io: Why should that matter?Galileo: If they aren't 
hosen 
lose to the answer, the estimates may fail to 
onvergeto the desired answer. Later, we will give an example illustrating this issue.Simpli
io: Are there any other issues?



7.2. THE SECANT METHOD 85Galileo: You also have to be 
areful not to divide by zero. This problem is areal and dangerous possibility with the se
ant method whenever two su

essive ap-proximations, f(xn) and f(xn�1) are approximately equal be
ause their di�eren
ef(xn)�f(xn�1) is 
lose to zero and is in the denominator. In fa
t, if we had 
omputeda few more terms with our approximations of p2; we would have had an explosion
aused by a division by zero.Simpli
io: I think I 
an program around that issue.Exer
ise Set 7.2.1. If K = 2; f(x) = x2 �K; x0 = 1; and x1 = K = 2; then use the se
ant methodto 
ompute x11 and x12: What happens?2. If K = 5; f(x) = x2�K; x0 = 1; and x1 = K = 5; then use the se
ant method to
ompute the root with an a

ura
y of 110;000 : How many iterations are required?Compare the estimates generated by the se
ant method with those generated bythe Newton/Raphson method when x0 = 1: Whi
h is faster: the se
ant methodor Newton/Raphson?3. If K = 1; 000; 000; f(x) = x2 � K; x0 = 1; and x1 = K = 1; 000; 000; then usethe se
ant method to 
ompute the root with an a

ura
y of 110;000 : How manyiterations are required? Compare the estimates generated by the se
ant methodwith those generated by the Newton/Raphson method when x0 = 1:4. If K = 2; x0 = 1; x1 = K = 2; and f(x) = x3 � K; then how many iterationswill be required for the se
ant method to estimate a root of f(x) to an a

ura
yof 110;000 : Compare the number of iterations required for the se
ant method andthe number required by the Newton/Raphson method when x0 = 1:5. Use the se
ant method to 
ompute a root of the polynomial p(x) = x3+x+1 witherror less than 10�5: Initialize the method with x0 = 0:0 and x1 = 1:0: Comparethe number of iterations required for the se
ant method and the number requiredby the Newton/Raphson method when x0 = 1:



86 CHAPTER 7. ALGORITHMS FOR FINDING ROOTS6. Use the se
ant method to 
ompute a root of the polynomial p(x) = x5+x+1 witherror less than 10�5: Initialize the method with x0 = 0:0 and x1 = 1:0: Comparethe number of iterations required for the se
ant method and the number requiredby the Newton/Raphson method when x0 = 1:7. Use the se
ant method to 
ompute a root of the of the polynomial p(x) =(x � 1)(x � 2)(x � 3)(x � 4)(x � 5) with error less than 10�5: Initialize themethod with x0 = 0:5 and x1 = 1:5: Compare the number of iterations requiredfor the se
ant method and the number required by the Newton/Raphson methodwhen x0 = 0:58. Use the se
ant method to 
ompute a root of the Omar Khayyam's equationx3 + 200x = 20x2 + 2000 with error less than 10�5: Initialize the method withx0 = 0:0 and x1 = 1:0: Compare the number of iterations required for these
ant method and the number required by the Newton/Raphson method whenx0 = 1:9. M�uller's Method: Determine a re
ursive formula that uses three su

essivepoints to determine the next approximation to a root r for a fun
tion y = f(x):In other words, given three points x0; x1; x2; �nd a parabola p2(x) = A(x �x2)2 + B(x � x2) + C with the property that p2(x0) = f(x0); p2(x1) = f(x1);and p2(x2) = f(x2): After 
omputing the 
onstants A;B; and C; then use thequadrati
 formula to 
ompute an approximate root x3: Note further that sin
ethe quadrati
 formula provides two roots, the 
hoi
e with the largest denomi-nator is preferred.(Answer: A = (x1�x2)[f(x0)�f(x2)℄�(x0�x2)[f(x1)�f(x2)(x0�x2)(x1�x2)(x0�x1) ;B = (x0�x2)2[f(x1)�f(x2)℄�(x1�x2)2[f(x0)�f(x2)℄(x0�x2)(x1�x2)(x0�x1) ; and C = f(x2):)Simpli
io: But wait a minute. The fun
tions in these exer
ises all have �rst derivativesthat are easy to 
ompute. Wouldn't we simply use Newton/Raphson?Galileo: To illustrate a situation, where you might want to 
hoose the se
ant method
onsider the polynomial p20(x) = (x � 1)(x � 2) : : : (x � 20): Note that the roots of



7.3. THE BISECTION METHOD 87p20(x) are the integers r = 1; 2; : : : ; 20: While the value of p20(x) 
an be 
omputedfor any value of x; the �rst derivative requires you to either expand the fun
tion asa 20 degree polynomial or 
ompute 20 produ
t rules. Take your pi
k. Better yet,implement the se
ant method for �nding a root for p20(x) and then test the methodfor two initial input points x0 and x1; where x0 and x1; are 
hosen near the root r = 1and near the root r = 20: Compare your results for two di�erent sets of inputs.Simpli
io: I get the 
on
ept, but what about 
omputing p20(x) when x = 21? By my
al
ulation, I get 20!; whi
h is a very large number. In fa
t, it turns out to be equalto about 2:4329� 1018:Galileo: You are very per
eptive. We will see shortly that the 
omputation of the rootsof this polynomial lead to a fundamentally unstable problem. In fa
t, this problemo�ers a view into exa
tly the type of problem appli
ations people must either avoidor enter into at great risk.7.3 The Bise
tion MethodGalileo: The bise
tion method is probably the most basi
 method for �nding a root ofa 
ontinuous fun
tion. This method is a straightforward appli
ation of the Interme-diate Value Theorem 10.2 for the 
ase when y = 0: We now give the exa
t statementof the theorem.Theorem 7.3.1 (Intermediate Value Theorem). If f(x) : [a; b℄ ! < is 
ontin-uous at ea
h x 2 [a; b℄ and f(a) < y0 < f(b) (or f(a) > y0 > f(b) ); then there is apoint z0 2 [a; b℄ su
h that f(z0) = y0:Simpli
io: This theorem is mu
h too abstra
t. Bring it down to earth.Galileo: The Intermediate Value Theorem states something quite natural about theway we per
eive the world around us. For example, I 
ontend that at some point inyour life you were exa
tly 4 feet tall.Simpli
io: No problem. Sin
e I was less than 2 feet tall when I was born and am nowover 5 feet, at some moment in time I must have been exa
tly 4 feet tall.



88 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSGalileo: While our friends in philosophy and physi
s might have obje
tions, that isthe answer I was looking for. Your reasoning is en
apsulated by the IntermediateValue Theorem, where the fun
tion f(x) represents your height at time x:Simpli
io: How about another example?Galileo: If the temperature is less than 50 degrees in the morning and more than80 degrees in the afternoon, then at some moment during the day, the temperaturemust have been exa
tly 70 degrees. For this example the fun
tion f(x) represents thetemperature at time x:Virginia: But why is this theorem 
alled the Intermediate Value Theorem?Galileo: In the examples just mentioned, the temperature 70 degrees is intermediatebetween 50 and 80 and the height of 4 feet is intermediate between 2 feet and 5 feet.Assuming temperature and height vary 
ontinuously with time, the IntermediateValue Theorem will guarantee that there is some instant in time when these valuesare attained exa
tly.Simpli
io: But what if I was a midget and never got to be 4 feet tall?Virginia: If you don't satisfy the hypotheses, the theorem does not apply.Galileo: We will apply the theorem when f(x) is a 
ontinuous fun
tion on an interval[a; b℄ and f(a) and f(b) have opposite signs. (i.e. Either f(a) > 0 and f(b) < 0 orf(a) < 0 and f(b) > 0): In this setting the value y = 0 is intermediate between f(a)and f(b) so the fun
tion f(x) has a root between a and b: If we let a0 = a; b0 = b; andm0 = a0+b02 ; then we have two 
ases. If f(a0) and f(m0) have opposite signs, thende�ne a1 = a0 and b1 = m0: If not, then de�ne a1 = m0 and b1 = b0: Repeating thispro
ess, let m1 = a1+b12 : If f(a1) and f(m1) have opposite signs, then de�ne a2 = a1and b2 = m1: If not, then de�ne a2 = m1 and b2 = b1:Indu
tively, if ak�1 and bk�1 have been found, then de�ne mk�1 = ak�1+bk�12 : Iff(ak�1) and f(mk�1) have opposite signs, then de�ne ak = ak�1 and bk = mk�1: Ifnot, then de�ne ak = mk�1 and bk = bk�1:Note that a root will lie in the interval [ak; bk℄ and the length of the interval is b�a2k :Thus, the value mk = ak+bk2 will approximate the root with an error no more than



7.3. THE BISECTION METHOD 89b�a2k+1 : In fa
t, for any given fun
tion f(x) the 
onvergen
e rate only depends on thelength of the interval [a; b℄: Thus, this estimate of the 
onvergen
e rate is the samefor every fun
tion.

Figure 7.3: The Bise
tion Method for the fun
tion f(x) = x2 � 2Galileo: In general, the te
hnique 
an be stated as theBise
tion Algorithm:1. Let f(x) be a 
ontinuous real-valued fun
tion on a 
losed bounded interval [a; b℄;whi
h has the property that f(a) and f(b) have opposite signs.2. Let m = a+b2 :3. If f(a) and f(m) have opposite signs, then set b = m:4. If f(a) and f(m) do not have opposite signs, then set a = m:5. Continue this pro
ess (i.e. repeat steps 2-4) until the required a

ura
y hasbeen a
hieved.



90 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSSimpli
io: This method seems to be quite understandable.Galileo: If a fun
tion f(x) 
rosses the x�axis at some point in an interval [a; b℄ andf(a) and f(b) have opposite signs, then this method has the virtue that it \alwaysworks." While the method may always work, its downside is that the 
onvergen
erate is slower than the method of Newton/Raphson.Simpli
io: How about an example?Example 7.3.1. Galileo: Let's revisit our old friend f(x) = x2�2; where the methodis initialized with a = 1 and b = 2: The results of the bise
tion algorithm's �rst eightestimates are listed in Table 7.4.x0 1.000000000000000x1 1.500000000000000x2 1.250000000000000x3 1.375000000000000x4 1.437500000000000x5 1.406250000000000x6 1.421875000000000x7 1.414062500000000x8 1.417968750000000Table 7.4: Eight Estimates of a Root of the p2Simpli
io: You are right. The 
onvergen
e rate of this method is gla
ial in 
omparisonwith either the Newton/Raphson or se
ant method. With theses other methods we arealmost perfe
t after eight steps. Sin
e p2 = 1:414213562373095; we have a
hievedonly two digits of a

ura
y with the bise
tion method. Why would anyone use it?Galileo: The method is important be
ause it always works and be
ause it 
an be used in
ombination with other less stable methods su
h as Newton/Raphson. In parti
ular,the bise
tion method 
an sometimes be iterated enough times to guarantee 
onvergen
e.We will dis
uss this issue again in more detail. The 
ombination of two su
h methods
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h is sometimes better than ea
h used separately.Virginia: What 
an you say about the error?Galileo: Sin
e the midpoint m is half way between the points a and b; note that theerror is 
ut in half at ea
h iteration. Thus, the initial error is b � a and the �rsterror is b�a2 : The general formula for the error 
an be summarized in the followingproposition.Proposition 7.3.2 (Bise
tion Error Formula). If f(x) is a 
ontinuous real-valuedfun
tion de�ned on the interval [a; b℄ and f(a) and f(b) have opposite signs, then theerror En at the nth iteration satis�es the inequality jEnj < b�a2n :Proof. Sin
e a root of the fun
tion lies in the interval [a; b℄ whi
h has length b � a;the error E0 satis�es jE0j < b� a: Similarly, sin
e a root of the fun
tion lies in eitherthe interval [a; a+b2 ℄ or [a+b2 ; b℄ and both these 
losed intervals have length b�a2 ; theerror jE1j < b�a21 : Sin
e the length of the interval 
ontaining the root is halved at ea
hiteration of the pro
ess, jEnj < b�a2n :Example 7.3.2. Galileo: How many iterations are required for the bise
tion to guar-antee 14 digits of a

ura
y when 
omputing p2 on the interval [1; 2℄?Virginia: Simply �nd an integer n with the property that 12n < 51015 : When we takelogs of both side of this expression, we �nd that this inequality will be satis�ed ifn > 15log(10)=log(2) � log(5)=log(2) � 47:5: Thus, if we 
hoose n = 48; we willa
hieve the required a

ura
y.Simpli
io: That's worse than I thought it would be.Galileo: In summary, while the method of Newton/Raphson may 
onverge faster thanthe bise
tion method, the bise
tion method has the advantage that it \works" as longas the fun
tion f(x) is 
ontinuous and satis�es the initial 
ondition that f(a) and f(b)have opposite signs.Simpli
io: Something bothers me about the error formula jEnj � b�a2n : While it 
on-tains the initial endpoints a and b; it seems to be the same for every fun
tion.



92 CHAPTER 7. ALGORITHMS FOR FINDING ROOTSGalileo: Yes, your observation is 
orre
t. While it is reliable, its 
onvergen
e rate isthe same for all fun
tions.Virginia: I would like to ba
k up and ask a question about the Intermediate ValueTheorem. While I have an intuitive idea what the word 
ontinuous means, I am notsure I 
ould de�ne what it means for a fun
tion to be 
ontinuous. Could you give memore pre
ision here?Galileo: While we won't dis
uss that topi
 today, No worries. We will address allthese issues in detail when we dis
uss the theory underlying Cal
ulus. We will evenprovide a proof.Simpli
io: I 
an't wait.Exer
ise Set 7.3.1. If K = 2; 5; 20; 000; a = 1; b = K; and f(x) = x2 �K; x3 �K or x5 �K; thenhow many iterations will be required for the bise
tion method to estimate aroot of f(x) to an a

ura
y of 110;000? Compare the number of iterations withthat needed by the Newton/Raphson method. Whi
h do you prefer?2. Using the bise
tion method how many iterations will be needed to approximatethe real root of the fun
tion f(x) = x3 + x + 1 if a = �1; b = 0; and the erroris required to be less than 0.000001? Compare your answer with the answeryou get when the method of Newton/Raphson is used with x0 = 0 as the initialguess.3. If the bise
tion method is used to 
ompute a root of the fun
tion f(x) = x2+1;then what goes wrong? Why does the bise
tion method fail when we werepromised that it \always works."4. If the bise
tion method is used to 
ompute a root of the fun
tion f(x) = xe�x2initialized by the points a = �2 and b = 3; then does the method work? Howmany iterations will be required to estimate the root of f(x) to an a

ura
y of110;000 .



Chapter 8
Problems With Root Finding

If anything 
an go wrong, it will.-MurphyNothing is ever as simple as it seems.-MurphyNature always sides with the hidden 
aw.-MurphyGalileo: We now devote a few minutes to a dis
ussion of examples that require us tobe 
areful when 
omputing roots.Simpli
io: Why dis
uss failure? Everything seems to be going well at the moment.Galileo: Nothing is ever as simple as it seems.8.1 Failure of Newton/RaphsonGalileo: Let us begin by reviewing the Newton/Raphson problems I assigned?Simpli
io: Everything went well. I had no problems. I even seemed to get all theright answers.Galileo: How about if we take a more 
areful look at the method? What if we beginby 
omputing the square root of K, where we initialize the method with a value ofx0 = 0?Simpli
io: Sin
e the method of Ar
himedes/Heron is given by the re
ursive formulaxn+1 = xn+ Kxn2 = xn � x2n�K2xn ; a division by zero o

urs. Obviously, this event will not93
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eived in the mathemati
s 
ommunity.Galileo: Sin
e the general formulation of Newton/Raphson is given by the equationxn+1 = xn � f(xn)f 0(xn) ; the strategy will be to avoid roots of the �rst derivative f 0(x):Simpli
io: Sin
e the probability of making su
h a 
hoi
e is about zero, we should notworry too mu
h about that 
ase. Right?Galileo: While this avoidan
e task is easy for fun
tions like f(x) = x2 � K whenK > 0 and x0 = 1; it 
an a
tually happen in simple settings. For example, 
onsiderthe fun
tion f(x) = x2 + 1: While this polynomial has real 
oeÆ
ients, its two rootsare the 
omplex numbers r = �i; where i = p�1: If the method of Newton/Raphsonis initialized with x0 = 1; then note that x1 = 0; whi
h leads to a division by zeroin the 
omputation of x2: Thus, the value for x2 
an't even be 
omputed. However,even if we 
hoose another number, say x0 = 2; so that division by zero never o

urs,ea
h re
ursively 
omputed xn+1 will always be a real number. Thus, the method hasno 
han
e to 
onverge to either r1 = i = p�1 or r2 = �i = �p�1:Simpli
io: Suddenly 
omplex number have raised their ugly head, a worrisome situ-ation.Galileo: On the 
ontrary.Simpli
io: You mean the method of Newton/Raphson 
an be used if the numbers are
omplex? Your motivation and graphs only seemed to apply to real-valued fun
tions.Galileo: Not a problem. The key is that you 
an 
ompute the �rst derivative.The rules for derivatives are exa
tly the same as those you learned for real vari-able Cal
ulus. The only di�eren
e is that you 
hange the letter x to the letterz = a + bi: For the fun
tion we just 
onsidered, we let f(z) = z2 � K: The deriva-tive turns out to be f 0(z) = 2z and the re
ursive step in the algorithm be
omeszn+1 = zn� f(z)f 0(z) = zn� z2n�K2zn : An amazing feature of this example is that if the initialguess z0 is 
hosen to be any 
omplex number other than one of those on the real line,then the method in fa
t works. Work the �rst problem in the set of exer
ises listedbelow and you should begin to appre
iate these remarks.Simpli
io: Interesting. What is the next example you have in mind?



8.1. FAILURE OF NEWTON/RAPHSON 95Galileo: While dividing by zero is an obvious problem, we might also worry aboutfun
tions with large derivatives near a root. For example, 
onsider the fun
tionf(x) = x 13 : Note that f(0) = 0 so x = 0 is a root. If we apply Newton/Raphson tothis fun
tion, we �nd that the re
ursive relation be
omesxn+1 = xn � x 13n13x�23n = xn � 3xn = �2xn:Thus, unless your initial guess x0 = 0; you will have problems.Simpli
io: Is that it?Galileo: As you might guess, the situation gets worse.Let us now 
onsider the di�erentiable fun
tion f(x) = x � e�x2 ; whi
h is graphedin Figure 8.1. This fun
tion illustrates a fundamental problem with the method ofNewton/Raphson. While the fun
tion f(x) has a unique root at x = 0 and has agraph whi
h is almost a straight line near zero, a poor initial guess 
an lead to asequen
e of points that 
onverge to in�nity.
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Figure 8.1: Failure of Newton/Raphson for the fun
tion f(x) = x � e�x2.Simpli
io: How does that happen?Galileo: Sin
e the derivative is f 0(x) = (1 � 2x2)e�x2; f(x) has 
riti
al points atx = �p22 ; whi
h are the lo
ations of the minimum and maximum. Thus, if the initial



96 CHAPTER 8. PROBLEMS WITH ROOT FINDINGguess x0 for the Newton/Raphson method is 
hosen to the right of the lo
ation ofthe maximum, then it is 
lear that the subsequent terms in the sequen
e ea
h befurther to the right than the previous. In other words, x0 � x1 � x2; et
: We 
ana
tually show that the sequen
e 
onverges to in�nity. Similarly, if the initial guess x0is 
hosen to be to the left of the lo
ation of the minimum, then the resulting sequen
ewill 
onverge to negative in�nity. On the other hand, if the initial point is 
hosen
lose to zero, then Newton/Raphson 
onverges without a problem. Thus, the methodworks in some situations and not in others. One of our tasks will be to establish
onditions whi
h will guarantee 
onvergen
e.Virginia: Looks like we have a theorem to look forward to.Galileo: Corre
t.Simpli
io: Groan. These examples make me worry that the method of Newton/Raphsonis not as perfe
t as I had hoped.Galileo: Just another example, where Murphy's Law applies to numeri
al methods.However, our next dis
ussion will fo
us on the su

ess of the method. As you willsee, a number of very smart people have thought about these issues for a very longperiod of time.Simpli
io: Could you summarize the problems with Newtion/Raphson?Galileo: Sure, the previous examples indi
ate the types of trouble we 
an expe
t toen
ounter with Newton/Raphson. These potential problems 
an be summarized as:Example 8.1.1. (Division by Zero) The derivative f 0(xn) = 0 for some integer n:If f(x) = x2�2 and Newton/Raphson is initialized with x0 = 0; then f 0(x0) = f 0(0) =0 so x1 
annot be 
omputed.If Newton/Raphson is initialized with any other real number x0 < 0; then thesequen
e xn 
onverges to �p2: If Newton/Raphson is initialized with any other realnumber x0 > 0; then the sequen
e xn 
onverges to p2:Example 8.1.2. (Unexpe
ted Answer) The initial guess x0 was not 
hosen suÆ
iently
lose to the root x = r and the Newton/Raphson sequen
e 
onverges to an unexpe
tedanswer.



8.1. FAILURE OF NEWTON/RAPHSON 97If f(x) = sin(x) and Newton/Raphson is initialized with x0 = �2 + 0:001; then thesequen
e 
onverges to a root r: However, the root r is far to the right of the initialguess.Example 8.1.3. (No Answer) The fun
tion f(x) fails to have a real root.If f(x) = x2+1 and Newton/Raphson is initialized with any real number x0; then thesequen
e xn simply boun
es around and never has any hope of 
onverging.Example 8.1.4. (First Derivative Problem) The �rst derivative f 0(x) does not existat the root and the Newton/Raphson sequen
e diverges.If f(x) = x 13 and Newton/Raphson is initialized with any real number x0 6= 0; thenxn+1 = �2xn and the sequen
e diverges to 1:Example 8.1.5. (Poor Initialization) The initial guess x0 was not 
hosen suÆ
iently
lose to the root x = r and the Newton/Raphson sequen
e os
illates.If f(x) = xe�x2 and Newton/Raphson is initialized with x0 = 0:5; then the sequen
exn os
illates between �0:5:Example 8.1.6. (Poor Initialization) The initial guess x0 was not 
hosen suÆ
iently
lose to the root x = r and the Newton/Raphson sequen
e diverges to in�nity.If f(x) = xe�x2 and Newton/Raphson is initialized with x0 = 1; then the sequen
e xndiverges to +1:Simpli
io: So if I am 
omputing my Newton/Raphson Algorithm for a parti
ularfun
tion and it hasn't 
onverged in 200 iterations, then I need to take a se
ond lookat the problem to make sure the method has a 
han
e of working.Galileo: Corre
t. And remember, the type of problem most likely to o

ur is theone depi
ted in Figure 8.1. In higher dimensional ve
tor spa
es, this problem is so
ommon it is labeled \The Curse of Dimensionality."Exer
ise Set 8.1.1. Use the method of Newton/Raphson to 
ompute a root of the polynomial p(x) =x2 + 1: Begin by Initializing the method with x0 = 1 and 
ompute a thousand
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ide whether or not the resultingsequen
e diverges to in�nity or is bounded? Initialize the method a se
ondtime with the 
omplex point x0 = 1 + i; where i = p�1: What do you noti
eabout this sequen
e of iterates?2. Use the method of Newton/Raphson to 
ompute a root of the fun
tion f(x) =x 13 : Note that x = 0 is a root of f(x): Initialize Newton/Raphson with valuesof x0 = 0:1; 0:2; : : : ; 1: What do you noti
e? How about if we initialize withx0 = 0:01 or x0 = 0:001?3. If f(x) = x � e�x2 ; then implement Newton/Raphson with the values x0 =0:25; x0 = 0:50; and x0 = 0:75: What do you observe with these three ex-amples? Find the largest real number L su
h that if x0 2 (�L; L); then theNewton/Raphson sequen
e fxng1n=1 
onverges to the root 0.4. If the se
ant method is used to 
ompute a root of the fun
tion f(x) = xe�x2with x0 = 1=2 and x1 = 1; then does the method work? How many iterationswill be required to estimate a root of f(x) to an a

ura
y of 110;000 : Compare thenumber of iterations required by the Newton/Raphson method when x0 = 1=2or x0 = 1:5. Use the method of Newton/Raphson to 
ompute a root of the fun
tion f(x) =sin(x): Note that x = 0 is a root of f(x): Initialize the method with values ofx0 = �2 + 0:1 and x0 = �2 + 0:001: Does the method 
onverge to a root? If so,�nd it.8.2 Newton/Raphson and Double RootsCir
les to square and 
ubes to double would give a man ex
essive trouble.-Matthew Prior(1664-1721)Galileo: We would now like to mention some examples, whi
h re
e
t on the the rate
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onvergen
e for the method of Newton/Raphson. As it turns out, di�erent 
hoi
esof fun
tions f(x) may produ
e di�erent rates of 
onvergen
e. In some of the exer
iseswe assigned the 
onvergen
e took 6 iterations to a
hieve as mu
h 
onvergen
e as you
ould want, while others took more than 30.Simpli
io: Yes, I remember that 
omputing the square root of 5 worked great, whilethe square root of zero took mu
h longer. I wondered about that.Example 8.2.1. Galileo: Consider the example, where p2(x) = f(x) = x2 � 10002 =x2 � 1; 000; 000: Note that the roots are r1 = 1000 and r2 = �1000: The algorithmfor Newton/Raphson is given by the re
ursive expression xn+1 = xn � f(xn)f 0(xn) = xn �x2n�100022xn = 12xn+ 500;000xn : We have the output from this algorithm summarized in Table8.1, where the initialization was 
hosen to be x0 = 1001:x0 1001.00000000000x1 1000.00049950050x2 1000.00000000012x3 1000.00000000000Table 8.1: Three Estimates of p1; 000; 000Simpli
io: Sin
e the method 
onverges in three steps, there is no problem.Galileo: Corre
t.Example 8.2.2. Galileo: Now let's 
ompute a se
ond example that looks almost thesame. If q2(x) = f(x) = (x � 1000)2; then the roots are r1 = 1000 and r2 = 1000:(We have a double root!) The algorithm for Newton/Raphson is given by the re
ursiveexpression xn+1 = xn � f(xn)f 0(xn) = xn � (xn�1000)22(xn�1000) = xn � xn�10002 = 12xn + 500: The
omputations from this algorithm are displayed in Table 8.2, where we again haveinitialized with the value x0 = 1001:Simpli
io: Hey, this algorithm is as bad as the bise
tion method. The error simplydrops by 50% for ea
h iteration. Not good.
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x0 1001.00000000000x1 1000.50000000000x2 1000.25000000000x3 1000.12500000000x4 1000.06250000000x5 1000.03125000000x6 1000.01562500000x7 1000.00781250000x8 1000.00390625000x9 1000.00195312500x10 1000.00097656250x11 1000.00048828125x12 1000.00024414063x13 1000.00012207031x14 1000.00006103516Table 8.2: Three Estimates of p1; 000; 000



8.2. NEWTON/RAPHSON AND DOUBLE ROOTS 101Galileo: In both these examples, we see that the sequen
e of numbers fxng1n=1 is
onverging to the number 1000: In the �rst example we have a sequen
e that produ
es11 digits of a

ura
y after only three iterations. In the se
ond example, the algorithmhas produ
ed ly 4 digits of a

ura
y after 15 iterations. It is getting there, but evenafter 30 iterations, we have x30 = 1:00000000000093; whi
h still isn't quite there.Simpli
io: What seems to be the problem?Galileo: While the �rst example has distin
t roots that are far apart, the se
ond hasthe double root r1 = r2 = 1000: Double roots slow down the 
onvergen
e rate fromquadrati
 to linear.Simpli
io: What are these quadrati
 and linear 
onvergen
e rates?Galileo: The sequen
e xn = 12n 
onverges linearly to zero. The sequen
e xn = 122n
onverges quadrati
ally to zero. These examples typify the di�erent 
onvergen
erates. Make a few 
al
ulations and you will see the di�eren
e. You do the math.Virginia: Our initial guess x0 = 1001 is reasonably 
lose to the �nal answers. Whatif we had made a poor initial guess?Galileo: If we use x0 = 1 as our initial guess, then the method of Newton/Raphsonprodu
es x10 = 1296:191592707 for p2(x) and x10 = 999:024414063 for the root ofq2(x): However, after 14 iterations, the method produ
es x14 = 1000:000000000 forp2(x) and x14 = 999:939025879 for q2(x): Thus, our 
onvergen
e is 
omplete for theroot of p2(x); but still has an error of more than 0.939 for the root of q2(x): Thus,while the linearly 
onvergent sequen
e 
onverges better for the �rst ten terms, thequadrati
ally 
onvergent sequen
e qui
kly overtakes it on
e it gets 
lose. The MeanValue Theorem will provide our main tool for showing linear 
onvergen
e. Taylor'sTheorem will provide our main tool for showing quadrati
 
onvergen
e.Simpli
io: I am not quite sure what is going on here.Galileo: Don't worry. We will return to this topi
.Exer
ise Set 8.2.1. If p2(x) = f(x) = x2 � 108 and x0 = 10; 001; then how many iterations ofNewton/Raphson are required to a
hieve an a

ura
y of 10 de
imal pla
es?



102 CHAPTER 8. PROBLEMS WITH ROOT FINDING2. If q2(x) = f(x) = (x � 10000)2 and x0 = 10; 001; then how many iterationsof Newton/Raphson are required to a
hieve an a

ura
y of 10 de
imal pla
es?Compare your answer with your answer to problem 1.3. If f(x) = (x + 3)2 and x0 = 1; then 
ompute the �rst 30 iterations of theNewton/Raphson algorithm. Format your output in a 
olumn. How does the
onvergen
e rate of the last �ve 
omputations 
ompare with the �rst 25?4. Compute 15 iterations in the Ar
himedes/Heron/Newton/Raphson algorithmto approximate the square root of K = 1; 000; 000: Initialize the algorithm withx0 = 1: Format your output in a 
olumn. How does the 
onvergen
e rate of thelast �ve 
omputations 
ompare with the �rst 10?8.3 Instabilities With Root Finding

James Hardy Wilkinson (1919-1986)Mother Nature is a bit
h.-MurphyGalileo: Before moving on to the topi
 of the theory of 
onvergent sequen
es, let ustake a 
loser look at the problem of 
omputing the roots of the polynomials. First, togive you an idea of where the problems lie, let us look at the graph of the polynomialsp4(x) = (x� 1)(x� 2)(x� 3)(x� 4) and p5(x) = (x� 1)(x� 2)(x� 3)(x� 4)(x� 5):



8.3. INSTABILITIES WITH ROOT FINDING 103These polynomials are of parti
ular importan
e be
ause the roots are simple (i.e. notdouble roots) and equally spa
ed. However, also note that the graphs are almost 
atbetween the roots. Thus, a small 
hange of one of the 
oeÆ
ients 
an lead to a large
hange in the pla
ement of the roots.

Figure 8.2: The Graph of the polynomial y = p4(x)The British mathemati
ian, James Wilkinson (1919-1986), noti
ed that the rootsof the polynomial p20(x) = (x� 1)(x� 2) : : : (x� 20) have even more bazaar instabil-ities. First, he noti
ed that if this polynomial is multiplied out, then the 
oeÆ
ientof the 19th�degree term is �210:Simpli
io: That 
al
ulation is easy be
ause that 
oeÆ
ient is simply the sum of theintegers �1;�2; : : : ;�20: I know how to use the formula for the arithmeti
 sum to
ompute this quantity.Example 8.3.1. Galileo: Wilkinson also noti
ed that if this 
oeÆ
ient of x19 is
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Figure 8.3: The Graph of the polynomial y = p5(x)
hanged by 2�23 � 10�7; then the roots be
ome1:0;2:0;3:0;4:0;5:0;6:0;7:0;8:0;8:9;10:1� 0:6i;11:8� 1:7i;14:0� 2:5i;16:7� 2:8i;19:5� 1:9i;20:8:



8.3. INSTABILITIES WITH ROOT FINDING 105In parti
ular, a very small 
hange in one 
oeÆ
ient 
an lead to a large 
hange inthe values of the roots. Worse yet, half of the roots are 
omplex.Simpli
io: That example is amazing!! Not only did the last root 
hange by 0.8, butten of the roots suddenly be
ame imaginary. It makes one worry about �nding theroots of any fun
tion.Galileo: I 
ouldn't agree more. The rule is: Small 
hanges in the 
oeÆ
ients maylead to large 
hanges in the values of the roots. This type of problem o

urs when thefun
tion is very \
at" near the root. Try graphing the fun
tion lo
ally near r = 20:Simpli
io: Has anyone ever tried to build something using these high-degree polyno-mials?Galileo: Indeed, a group of my engineering 
olleagues tried to use 16 and 32 degreepolynomials in a mathemati
al model designed to 
ontrol the motion of an arm ofone of their robots. Their e�orts were a disaster. One of their students was almostkilled.Simpli
io: So avoiding an unstable mathemati
al method 
ould save lives.Galileo: If you model a phenomenon with an unstable method, you are asking fortrouble. As always, the mantra for numeri
al analysis remains the same: \The nameof the game is 
ontrol."Exer
ise Set 8.3.1. Note that the polynomial of degree 9 with roots 1; 2; 3; 4; 5; 6; 7; 8; 9 
an beexpanded into the form p9(x) = x9 � 45 � x8 + 870 � x7 � 9450 � x6 + 63273 �x5 � 269325 � x4 + 723680 � x3 � 1172700 � x2 + 1026576 � x � 362880: Usingavailable software, 
ompute the roots of the polynomials q9(x); r9(x); and s9(x)listed below.(a) q9(x) = x9 � (45 + 1105 ) � x8 + 870 � x7 � 9450 � x6 + 63273 � x5 � 269325 �x4 + 723680 � x3 � 1172700 � x2 + 1026576 � x� 362880;(b) r9(x) = x9 � (45 + 1104 ) � x8 + 870 � x7 � 9450 � x6 + 63273 � x5 � 269325 �x4 + 723680 � x3 � 1172700 � x2 + 1026576 � x� 362880; and
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) s9(x) = x9 � (45 + 1103 ) � x8 + 870 � x7 � 9450 � x6 + 63273 � x5 � 269325 �x4 + 723680 � x3 � 1172700 � x2 + 1026576 � x� 362880:How many real and how many imaginary roots do ea
h of these polynomialshave? What is the distan
e between 
orresponding roots of p9(x) and q9(x);p9(x) and r9(x); and p9(x) and s9(x)?
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Chapter 9
Limits

Augustin Louis Cau
hy (1789-1857)Men pass away, but their deeds abide.-Augustin Louis Cau
hy [His lastwords?℄9.1 Sequen
esCal
ulus has its limits.-unknownGalileo: We now introdu
e Augustin Louis Cau
hy (1789-1857) for an explanationof the theory underlying limits. His text \Cours d'analyse" (written in 1821) was animportant step towards bringing rigor to Cal
ulus. Professor Cau
hy grew up during109



110 CHAPTER 9. LIMITSthe Fren
h Revolution so he knows how to bring order out of 
haos.Virginia: If I 
ount 
orre
tly, Newton's Prin
ipia was written in 1689 so it took morethan 100 years to bring rigor to Cal
ulus.Galileo: A
tually, this issue has been around sin
e Plato re
orded the paradoxes ofZeno of Elea (490-450 B.C.E.) in his dialogue Parmenides.Simpli
io: As far as I am 
on
erned, in�nity has nothing to do with the real world.Why don't we just fo
us on algorithms. Something useful an employer would appre-
iate.Virginia: Your goal is to earn a blue 
ollar wage?Galileo: Before we begin, we let us take a minute and have a brief quiz to make sureyou will follow ea
h nuan
e of the dis
ussion.Quiz:1. What is a 
onditional senten
e?2. What is the purpose of a de�nition?3. What is the di�eren
e between a de�nition and a theorem?If you 
an't answer these question, then there is no point 
ontinuing.Simpli
io: But we just 
overed these issues?Galileo: I am never quite sure what you retain. Professor Cau
hy, where should webegin?Cau
hy: Let us begin by admitting we have a problem. Namely. some sequen
es
onverge and some do not. The issue is simple. We must get the language straight.Namely, we must make some 
arefully worded de�nitions that set the ground rulesfor what we want. Let us begin with two examples, whi
h en
apsulate the issues.Example 9.1.1. First, the alternating sequen
e of points de�ned by fxng1n=1 =f(�1)ng1n=1 = �1; 1;�1; 1;�1; : : : ; 
auses trouble be
ause it seems to 
onverge totwo points at the same time, namely +1 and �1: However, if you are going to allowa sequen
e to 
onverge to two numbers, then why not three? Why not four? Now the



9.1. SEQUENCES 111situation is out of 
ontrol so we de
ided that we wanted a sequen
e to 
onverge to onlyone number.Example 9.1.2. Se
ond, while some people might want the �rst sequen
e o 
on-verge to both +1 and �1; I don't think anyone would allow a sequen
e to 
onvergeto in�nity. Thus, the sequen
es fxng1n=1 = fng1n=1 = 1; 2; 3; 4; 5; : : : ; n; : : : andfyng1n=1 = fn2g1n=1 = 12; 22; 32; 42; 52; : : : ; n2; : : : mar
h o� to in�nity. The theoryand appli
ations work mu
h better if we simply rule them out. For example, lookingahead, we would like to have a theorem whi
h states that the limit of the sum equalsthe sum of the limits. However, if we had that theorem, we might try to 
ompute thelimit of the sequen
elimn!1fzng1n=1 = limn!1fn� n2g1n=1 = limn!1fng1n=1 � limn!1fn2g1n=1 =1�1 =???Thus, we don't want to deal with unbounded limits-at least not at this time.Simpli
io: How about something more positive?Cau
hy: No matter what your attitude, the following three sequen
es should 
onverge.Example 9.1.3. The sequen
e f 1ng1n=1 = 1; 12 ; 13 ; 14 ; 15 ; : : : ; should 
onverge to zero.Example 9.1.4. The sequen
e f (�1)nn g1n=1 = �1; 12 ;�13 ; 14 ;�15 ; : : : ; should also 
on-verge to zero.Example 9.1.5. The sequen
e fn�1n g1n=1 = 0; 12 ; 23 ; 34 ; 45 ; : : : ; should 
onverge to one.Cau
hy: To re
tify the situation with the �rst two examples, we �rst need to de
idewhat the word 
onvergen
e means.Simpli
io: You mean you we get to make up the rules?Cau
hy: You are in 
ontrol. But remember, on
e you have made a 
hoi
e, you haveto sti
k with it. You don't get to 
hange the rules.Virginia: But how do you make up a rule to test for something that goes on forever?Cau
hy: First, we are given a sequen
e of numbers fxng1n=1:



112 CHAPTER 9. LIMITSSe
ond, we have an idea of what number the sequen
e is supposed to 
onverge to.Sin
e that number is going to be the LIMIT of a sequen
e, we will denote it by theletter L:Third, we need to devise a test (or 
riterion) to de
ide whether or not the sequen
e
onverges to the number L:Simpli
io: What's wrong with the rule that the sequen
e simply stabilizes. Namely,a sequen
e 
onverges when ak = ak+1 = ak+2 = ak+3 = : : : : That idea worked �newhen we 
omputed square roots.Cau
hy: Unfortunately, that idea only worked be
ause of the �nite pre
ision of your
al
ulator or 
omputer. The su

essive terms just look equal. There are even exam-ples of sequen
es that have the property that su

essive terms are equal, while thesequen
e 
onverges to 1:Simpli
io: Like what?Cau
hy: Consider the sequen
e xn =Pnk=1 1k : Compute xn whenn = 100; 000; 000; 000; 000 and when n = 100; 000; 000; 000; 001 and then 
he
k to seeif they are the same.Simpli
io: But who would be dumb enough to ever 
ompute that many terms of thesequen
e.Virginia: We are not talking about 
omputing yet. We are simply trying to get thelanguage straight.Galileo: I 
an think of a number of situations, where you might want to 
omputeeven more terms.Cau
hy: In any 
ase, there are valid mathemati
al and engineering reasons to pro
eedwith a bit of 
aution right at the beginning.Galileo: Pro
eed.Cau
hy: The tri
ky part about the de�nition of a limit is the test (or 
riterion). Thistest is given in terms of a 
onditional senten
e.Galileo: Remember: \If p, then q."?Virginia: I do.
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hy: This 
onditional senten
e 
an be thought of as a 
hallenge, where I beginby giving you a distan
e and then you are expe
ted to show that almost all of theterms of the sequen
e are within this given distan
e of the limit L: Histori
ally, thisdistan
e has been denoted by the Greek letter �: Sin
e distan
es are always positive,we insist that � > 0: In other words, eventually all the terms of the sequen
e arewithin a distan
e of � from L:Galileo: Mr. Simpli
io, let me ask you one last time: Are you 
lear about thedi�eren
e between a de�nition and a theorem?Simpli
io: I know, I know. I was listening.Cau
hy: We have two di�erent ways of measuring distan
e at our disposal. The �rstis the open interval. The se
ond is the absolute value fun
tion. These two di�erentte
hniques are equivalent. In other words, it doesn't matter whi
h you 
hoose, theresults will be the same.Simpli
io: Why not just give us the easiest one?Cau
hy: The open interval de�nition is easier to visualize, while the absolute value isusually easier to 
ompute. The advantage of the absolute value fun
tion is that youare often able to 
ondense multiple 
ases in a mathemati
al argument into a single
ase. Thus, the arguments are shorter.Galileo: And sometimes it provides a more 
on
eptual framework be
ause you 
anthink in terms of distan
es from the limit L:Cau
hy: We begin by de�ning the terms interval, open interval, and 
losed interval.We also let the symbol < denote the set of real numbers.De�nition 9.1.1. A subset X of < is 
alled an interval if there are points a and bin < su
h that one of the following four 
ases is true:1. X = (a; b) = fx 2 < : a < x < bg;2. X = (a; b℄ = fx 2 < : a < x � bg;3. X = [a; b) = fx 2 < : a � x < bg;



114 CHAPTER 9. LIMITS4. X = [a; b℄ = fx 2 < : a � x � bg:If a; b 2 <; then an open interval has the form (a; b); (a;1); (�1; b) or (�1;1)and a 
losed interval has the form [a; b℄; [a;1); (�1; b℄; or (�1;1): In parti
ular,the set < is 
onsidered both an open and 
losed interval. While the empty set is
onsidered an interval, it will seldom be of interest. In fa
t, in the de�nition of limit,we will want to rule it out by assuming our open intervals U are non-empty.Simpli
io: These ideas are easy so far. If someone gives you two points a and b; thenan interval de�ned by a and b will be all the points between a and b and possibly oneor both endpoints.Cau
hy: Maybe now is a good time to give a formal de�nition of the absolute valuefun
tion.De�nition 9.1.2 (The Absolute Value Fun
tion). If x 2 <; then the absolutevalue of x is de�ned by the rulejxj = 8<: x if x � 0�x if x < 0 :Cau
hy: This fun
tion is intimately 
onne
ted with �nding the distan
e betweentwo points. The properties of the absolute fun
tion are summarized in the followingproposition.Proposition 9.1.3. If x; y 2 <; then1. jxj � 0;2. jxj = 0 if and only if x = 0;3. jx+ yj � jxj+ jyj; and4. jjxj � jyjj � jx� yj:Proof. The proofs of these items are straightforward.
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hy: While we are at it, why don't we de�ne the distan
e between two realnumbers?De�nition 9.1.4 (Distan
e). If x; y 2 <; then the distan
e between x and y isde�ned to be dist(x; y) = jx� yj:Cau
hy: The properties of the distan
e fun
tion are summarized in the followingproposition.Proposition 9.1.5. If x; y; z 2 <; then1. dist(x; y) � 0; and dist(x; y) = 0 if and only if x = y (positive de�nite),2. dist(x; y) = dist(y; x) (symmetry), and3. dist(x; y) � dist(x; z) + dist(z; y) (triangle inequality).Virginia: So, am I to understand that whenever I see the absolute value fun
tion, Ishould think length. Also, whenever I see the absolute value of the di�eren
e of twonumbers, I should think distan
e.Cau
hy: Absolutely. Note also that while these propositions are important, we havenot labeled them as theorems. We will save that designation for the big boys like theMean Value Theorem and Fundamental Theorem of Cal
ulus. We now o�er threeequivalent de�nitions for a sequen
e to 
onverge to a number L: The �rst de�nitionis 
on
eptual. If you don't like it, ignore it. We won't use it often.De�nition 9.1.6 (Convergen
e of Sequen
e 1). A sequen
e of real numbersfxng1n=1 is said to 
onverge to a number L if for any non-empty open interval Uof the form U = (L� �; L + �); then all but a �nite number of terms of the sequen
elie in U:Simpli
io: I am not sure I understand that de�nition at all.Cau
hy: In other words, for any open interval U 
ontaining L; there is an integer Nwith the property that if n � N; then xn 2 U: If you draw a pi
ture with the �rst �ve



116 CHAPTER 9. LIMITSterms of the sequen
e x1; x2; x3; x4; x5 outside the interval, but x6; x7; x8; : : : all insidethe interval U; then you have the idea. Let's go ba
k to one our su

essful examples.Simpli
io: I �nd the use of that symbol � annoying.Cau
hy: The use of the letter � has been around for a long time and probably won't
hange any time soon. While any other letter or symbol 
ould be used, this letteris indelibly et
hed in mathemati
al 
ulture. If it helps, think of it as a toleran
e orpre
ision for
ed on you by your employer. For example, if you are expe
ted to buildsome stru
ture within a 
ertain pre
ision, then the amount of error you are allowedis �: If you prefer, you 
an use any symbol you want. However, we will follow our
ultural traditions. Sorry.Example 9.1.6. We would now like to show the sequen
e f 1ng1n=1 = 1; 12 ; 13 ; 14 ; 15 ; : : : ;
onverges to the limit L = 0: The pro
edure is as follows. If I give you an openinterval U = (� 110 ; 110); your job is to �nd an integer N; whi
h has the property thatwhenever n � N; then xn = 1n 2 U:Virginia: Obviously, if N = 11; then x11 = 111 ; x12 = 112 ; x13 = 113 ; x14 = 114 ; : : : all liein U: Sin
e all but 10 terms in the sequen
e lie in U; we are done.Cau
hy: Very good. Now, how about a smaller interval? Say, U = (� 1100 ; 1100):Virginia: Obviously, if N = 101; then x101 = 1101 ; x102 = 1102 ; x103 = 1103 ; x104 = 1104 ; : : :all lie in U: Sin
e all but 100 terms in the sequen
e lie in U; we are done.Cau
hy: Very good again. Now let's try the 
ase when � = 0:Simpli
io: Even I 
an see that if � = 0; then the interval U = [0; 0℄ is simply a singlepoint and we will never have any terms of the sequen
e in U:Virginia: Now I see why made this annoying distin
tion between open and 
losedintervals. Obviously, we only want open intervals for these types of problems. Whilethe interval U = [0; 0℄ is 
losed, it is not open. Thus, we don't have to worry this
ase.Cau
hy: Ex
ellent. Now let's try the 
ase when � = �1:Simpli
io: But, if � = �1; then the interval U = (+1;�1) is the empty set and wewill never have any terms of any sequen
e in U:



9.1. SEQUENCES 117Virginia: And we now see why the de�nition only expe
ts us to 
onsider NONEMPTYopen intervals.Galileo: I think we are getting somewhere.Cau
hy: Of 
ourse, you realize that you haven't satis�ed the de�nition at all. These�rst few 
hoi
es of U were just for pra
ti
e. The real test 
omes when we 
hooseU = (��; �); where � > 0:Galileo: However, before we do that, let's follow the example of George Polya andthink in terms of his four steps to solving a problem. Do you know what they are?Virginia: I know:1. understanding the problem,2. devise a plan,3. 
arry out the plan, and4. look ba
k and review what was done.Cau
hy: She is good. How do you re
ruit su
h good students Professor Galileo? OK,so do you understand the problem?Simpli
io: I am not sure.Galileo: So, now may be a good time to devise a general plan of atta
k.Cau
hy: When using the de�nition to prove a sequen
e 
onverges to a parti
ularnumber L; the plan of atta
k is always the same and 
an be broken down into threesteps:1. The Challenge;2. The Choi
e; and3. The Che
k:In the �rst example, we were 
onsidering the sequen
e xn = 1n and I Challengedyou with the interval U = (� 110 ; 110):



118 CHAPTER 9. LIMITSVirginia: We then noti
ed that if we Choose the integer N = 11; then it might be agood 
andidate to separate the terms that are members of U and those that are not.We then had to Che
k that if n � N = 11; then the term xn = 1n is a member of U:Simpli
io: Even I 
an see that when you gave us the interval U = (� 1100 ; 1100); thepro
ess was exa
tly the same. The same three steps work.Cau
hy: OK, now I want you to 
onsider the fourth step in Professor Polya's plan.Namely, let's review what we have done and generalize the pro
ess. As you will see,the �rst step is ALWAYS the same:Step 1. The Challenge: Let � > 0 be given.If you miss that step on an exam problem, your professor will 
lassify you as a slowlearner. As you 
an see in our pra
ti
e problems, the positive quantity � de�nes theendpoints of our open interval U = (��; �): This quantity has to be positive be
ause ifit equals zero, the interval is not open and if it equals a negative number, the intervalU is empty. We are only interested in nonempty open intervals. OK, what do you donext?Virginia: Now it is time to 
hoose the integer N: Obviously, for this problem,Step 2. The Choi
e: Choose N > 1� :Simpli
io: How did you know to do that?Cau
hy: In general, making an intelligent 
hoi
e for N is almost always the hardestof the three steps.Virginia: But, for this problem, we simply work ba
kwards from what we want.Namely, sin
e we would like 1n < �; then we assume what we want and solve forn: In this 
ase, this step is easy be
ause if we multiply the above expression by n anddivide by �; then we get n > 1� :Cau
hy: To 
omplete the pro
ess, we must now Che
k that your Choi
e works.Virginia: For this problem, this last step is easy be
ause all we have to do is reversethe pro
ess from Step 2.Step 3. The Che
k: If n � N; then we must show xn = 1n 2 U = (��; �):



9.1. SEQUENCES 119For if n � N > 1� ; then 0 < 1n � 1N < �: Thus, xn = 1n lies in U = (��; �) and we aredone.Cau
hy: Ex
ellent. Professor Galileo, you should be proud.Galileo: I am.Simpli
io: How did you �gure that out?Cau
hy: Did you noti
e that we used a 
onditional senten
e in step three? Namely,we only needed to 
he
k that xn = 1n is in U for \large" n: Namely, those larger thanN: In fa
t, in the de�nition of 
onvergen
e, that's what we meant by the phrase \allbut a �nite number of terms of the sequen
e lie in U:."Example 9.1.7. Cau
hy: In this next example we will show the sequen
e f (�1)nn g1n=1 =�1; 12 ;�13 ; 14 ;�15 ; : : : ; 
onverges to the limit L = 0: The pro
edure is the same as be-fore. If � = 110 ; then 
ould you outline the pro
ess?Virginia: Step 1. The Challenge:We begin with the 
hallenge: Let 110 be given. Again, this quantity de�nes the openinterval U = (� 110 ; 110):Step 2. The Choi
e:We also 
hoose N as before. Namely, we 
hoose N = 11:Step 3. The Che
k:We must now 
he
k that whenever n � N; then xn = (�1)nn 2 U: However, x11 =� 111 ; x12 = 112 ; x13 = � 113 ; x14 = 114 ; : : : all lie in U = (� 110 ; 110): In general, if n �N = 11; then � 110 < (�1)nn < 110 :Cau
hy: Very good. Now, how about a smaller interval? Say, U = (� 1100 ; 1100):Virginia: Obviously, if N = 101; then the dis
ussion we just gave guides you throughthe three steps.Simpli
io: Even I am beginning to get it.Cau
hy: Very good again. As before, these �rst two 
hoi
es of U were just for pra
ti
e.Now let's atta
k the general 
ase, where I give you the followingStep 1. The Challenge: Let � > 0 be given.



120 CHAPTER 9. LIMITSHow do you show all but a �nite number of the terms of the sequen
e xn = (�1)nn liein U = (��; �): Note that I just did 33% of the problem for you!Virginia: Obviously, we 
an make the same 
hoi
e as before.Step 2. The Choi
e: Choose N > 1� :We now have to show that this 
hoi
e works by giving the following short proof.Step 3. The Che
k: If n � N; then we must show xn = (�1)nn 2 U = (��; �):Proof. For if n � N > 1� ; then �� < � 1N � � 1n � (�1)nn and (�1)nn � 1n � 1N < �:Thus, xn = (�1)nn lies in U = (��; �) and we are done.Cau
hy: Professor Galileo, where do you �nd su
h ex
ellent students?Galileo: I am a lu
ky man.Simpli
io: I think I am beginning to �gure it out. The open interval U needs tosurround the limit L so it traps terms of the sequen
e 
oming from both sides.Virginia: That's why the interval is nonempty and open.Cau
hy: In the spirit of Polya's looking ba
k, I would like to 
omment on the phrase\all but a �nite number of terms of the sequen
e lie in U:," whi
h appears in thede�nition of a 
onvergent sequen
e. While this phrase makes sense, it is a bit of amouthful and it is not expressed mathemati
ally.Virginia: But isn't that why we went to the trouble to �nd the integer N with theproperty that if n � N; then xn 2 U:Cau
hy: Exa
tly. Note also that the phrase \if n � N; then xn 2 U" is a 
onditionalstatement. Thus, when we 
he
k a sequen
e 
onverges, the Che
k will always be atest phrased as a 
onditional senten
e.Virginia: Now we understand why we dis
ussed 
onditional senten
es when we re-viewed logi
 and rigor.Simpli
io: I didn't say anything. Why are you looking at me?Cau
hy: For pra
ti
al problems we have two standard 
hoi
es for �: To ensure thatour sequen
e is within single pre
ision a

ura
y of the limit, we would 
hoose � = 1107 :



9.1. SEQUENCES 121To ensure that our sequen
e is within double pre
ision a

ura
y of the limit, we would
hoose � = 11014 : Thus, for single pre
ision a

ura
y, we let U = (L� 1107 ; L+ 1107 ): Fordouble pre
ision a

ura
y, we let U = (L� 11014 ; L+ 11014 ): Of 
ourse, � 
an representany positive number. Con
eptually, � measures the distan
e from the 
enter of theinterval to the two endpoints of U: I think you 
an now see why we insist � MUSTalways be positive. If it were negative, the set U would represent the empty set. Also,sin
e it represents a distan
e, it must be positive.From an engineering point of view this de�nition 
an be thought of as an em-ployer/employee 
hallenge, where the employer gives the employee the spe
s (or tol-eran
e for error) on the proje
t and the employee is expe
ted to sear
h until he/she
an guarantee that all the remaining terms of the sequen
e are within that spe
i�
a-tion. The number � represents the toleran
e for
ed by the employer on the employee.For example, if I wanted to build a house with 2500 square feet and I gave you atoleran
e of 10 square feet, I would be upset if I ended up with only 2450 square feet.We would now like to give a se
ond de�nition of 
onvergen
e.Simpli
io: You have got to be kidding. One de�nition was bad enough, but now Ihave to deal with another one?Cau
hy: The idea behind the �rst de�nition is to get the language as simple andnatural as possible. The only di�eren
e between the �rst and se
ond is the observationthat an open interval U = (L� �; L+ �) is equal to the set of all numbers x 2 < su
hthat jx � Lj < �: For the sake of 
ompleteness, we formalize this bit of informationin the next proposition.Proposition 9.1.7. If L; �; x 2 Re; then x is a member of the set U = (L� �; L+ �)if and only if jx� Lj < �:Simpli
io: Am I 
orre
t in noting in this proposition that if � � 0; then the set U isthe empty.Cau
hy: True, but we aren't interested in negative values for �: The se
ond de�nitionof 
onvergen
e 
an be given as:



122 CHAPTER 9. LIMITSDe�nition 9.1.8 (Convergen
e of Sequen
e 2). A sequen
e of real numbersfxng1n=1 is said to 
onverge to a number L 2 < if for every � > 0 there is aninteger N with the property that if n � N; then jxn � Lj < �:Proposition 9.1.9. De�nition 1 for 
onvergen
e is equivalent to De�nition 2.Proof. By the previous proposition, we know x is a member of the set U = (L��; L+�)if and only if jx� Lj < �: Thus, we are done.Cau
hy: While this last de�nition may be a bit less transparent, the test for 
onver-gen
e has 
hanged from open interval to distan
e. In other words, the test requiresthe distan
e between xn and the limit L is less than � for all but a �nite number ofthe terms of the sequen
e. Sin
e we now have the idea of distan
e, we see that thesequen
e fxng1n=1 
onverges to L if for any positive distan
e �; we 
an �nd an integerN with the property that if n � N; then the distan
e between xn and L is less than�: If the limit of a sequen
e fxng1n=1 equals L; then we will write limn!1fxng = L:Simpli
io: So, let's see if I 
an phrase the de�nition in engineering terms. First, theinputs are:1. a sequen
e fxng1n=1;2. a number L; and3. a toleran
e � > 0:Se
ond, if the test for 
onvergen
e is su

essful, the output is an integer N; whi
h hasthe property that if n � N; then jxn�Lj < �: Moreover, if your employer has insistedyour pre
ision is within � = 11014 ; then you might as well have used my de�nitionthat a sequen
e 
onverges when you 
an �nd an integer N with the property that ifn � N; then xn = xn+1 = xn+2 = xn+3 = : : : :Galileo: I think he's got it!Cau
hy: As with the �rst de�nition, ea
h argument 
an be broken down into threesteps.



9.1. SEQUENCES 123Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e of N :The se
ond step in the limit de�nition is to 
hoose an integer N that \work's" If youhave no idea how to 
hoose this integer, you might leave this step blank until afteryou have made a few preliminary mathemati
al 
al
ulations. These 
al
ulations areusually begin by assuming what you want to be true and working ba
kwards untilyou un
over an expression for n in terms of �:Step 3. The Che
k that N \works":The third step in the pro
ess is to 
he
k that your Choi
e of N has the property: Ifn � N; then jxn � Lj < �:Another tip: When �rst learning about a new type of mathemati
al argument, itis often a good idea to write down what you are expe
ted to do. For limits, a helpfulstarting point is to write the senten
e: We MUST show: If whenever n � N; thenjxn � Lj < �:Galileo: OK, let's go through this pro
ess to prove that limf 1ng = 0: I think you willagree that the limit should equal zero.Example 9.1.8. Cau
hy: Using the de�nition of limit, show that limn!1f 1ng = 0:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e of N :Sin
e we want jxn� 0j = j 1n j < �; we 
an multiply both side of the inequality by n andobserve that we require n > 1� : Thus, our Choi
e for N is any integer larger than 1� :Step 3. The Che
k that N works:Let us begin this step by writing down what we are expe
ted to do. Namely, we MUSTshow: If n � N; then jxn � Lj = j 1n � 0j = 1n < �:Sin
e we only have to test integers n � N; we know that n � N > 1� ; we known > 1� : By dividing both sides of the inequality by n and multiplying both sides by �;we see that 1n < �: Thus, jxn � 0j = 1n < � and we are done.
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io: That argument was the same as for the �rst De�nition.Galileo: I think you have got it. Let's move on to the next example.Example 9.1.9. Cau
hy: Using the de�nition of limit, prove that limn!1f 1n2 g = 0:Galileo: How about if you present the argument this time?Simpli
io: To begin the dis
ussion I simply write:Step 1. The Challenge:Let � > 0 be given.Is that 
orre
t?Galileo: Corre
t, you are 33% of the way to the goal. Moreover, you have absolutelyno ex
use for getting this step wrong. It is the same for every problem of this type.Simpli
io: But I have no idea how to 
hoose N:Galileo: No worries. Simply make the same 
hoi
e we made for the �rst problem andsee what happens.Simpli
io: OK, I will simply repeat your 
hoi
e. Not having to think is good.Step 2. The Choi
e of N :Choose N > 1� :Step 3. The Che
k:We MUST show: If n � N; then jxn � Lj = j 1n2 � 0j = 1n2 < �: If n � N > 1� ; thenn > 1� : When we divide by n and multiply by �; we �nd that 1n < � as before. Sin
e1 � n; n � n2: Thus, jxn � Lj = 1n2 < 1n < �:Cau
hy: Note that this last sequen
e 
onverges to zero mu
h more qui
kly than thesequen
e limn!1f 1ng: The di�eren
e in the rate of 
onvergen
e will be dis
ussed againwhen we 
ompare the bise
tion and Newton/Raphson methods.Simpli
io: I don't see any reason for this new de�nition. How about an example thatillustrates the bene�ts of this se
ond de�nition?Example 9.1.10. Cau
hy: OK, how about if we prove the limn!1f2n�35n+1g exists.Virginia: Sin
e we aren't told what the limit should equal, we have a problem evengetting started. Maybe we should add an extra \Step" to the pro
ess, where we make



9.1. SEQUENCES 125an edu
ated guess for L:. In this example, it isn't too diÆ
ult to �gure out that L = 25 :Simpli
io: How so?Virginia: If we divide both numerator and denominator by the integer n; then wesee that 2n�35n+1 = 2� 3n5+ 1n : Thus, if n is large, then the numerator is 
lose to 2 and thedenominator is 
lose to 5. Thus, the limit L should equal 25 :Step 0. The Candidate for L:Let L = 25 :Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e for N :Sin
e I have no idea how to 
hoose N; I will simply assume what I am trying to proveand set j2n�35n+1 � 25 j < �:Simpli
io: Wait a minute. Even I know that that 
an't assume what you are tryingto prove.Virginia: The idea is that we will be able to make an \edu
ated guess" for a value ofN that might work. In other words, if we are 
lever, we will be able to reverse thesteps. All we are going to do is solve this inequality for n in the following steps:1. j2n�35n+1 � 25 j < �:2. j5(2n�3)�2(5n+1)5(5n+1) j < �:3. j �15�25(5n+1) j < �:4. j �175(5n+1) j < �:5. 175(5n+1) < �:6. 17� < 25n+ 5:7. 17� � 5 < 25n:8. 17� �525 < n:
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hoose N to be any integer so that N > 17� �525 > 1725� :Note that if N > 1725� ; then 1725N < �:Thus, to �nd the integer N all you need to do is:1. Write down the absolute value of the di�eren
e between the limit L (in this 
aseL = 25) and the formula for xn (= 2n�35n+1);2. Determine a 
ommon denominator (= 5(5n+ 1));3. Simplify the numerator (= 17); and4. Solve for n:Step 3. Che
k N works:If n > N; then j 2n� 35n+ 1 � 25 j = j5(2n� 3)� 2(5n+ 1)j5(5n+ 1)= j � 15� 2j5(5n+ 1)= j � 17j5(5n+ 1)= 175(5n+ 1) < 1725N < �:Galileo: For this example, De�nition 2 has a te
hni
al advantage over De�nition 1be
ause the absolute value fun
tion takes 
are of di�erent 
ases that you would havehad to separate. Thus, the argument is 
leaner. OK, Mr. Simpli
io. How about ifyou try the next example. It is going to reappear many times before these gatheringare �nished.Example 9.1.11. Using the de�nition of limit, prove that limn!1f 12ng = 0:Simpli
io:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Working ba
kwards again, how about if we 
hoose N so that 12N < �? If we solve this



9.1. SEQUENCES 127inequality, we see that 1� < 2N : Taking logarithms of both side of the inequality, we seethat � log(�) = log(1� ) < log(2N) = N log(2): Thus, we should 
hoose N > � log(�)log(2) :Step 3. The Che
k:To 
omplete the problem, simply reverse the steps. In other words, if n � N; thenn � N > � log(�)log(2) so that n log(2) > � log(�): Thus, log(2n) > log(1� ); 2n > 1� ; and� > 12n :Cau
hy: I think he has got it!Galileo: While not all limit problems 
an be solved in su
h a straightforward fashion,at least we have a method for these. In the spirit of Professor Polya, we should lookba
k at what we have done and generalize the method. The next proposition doesexa
tly that.Proposition 9.1.10. If x 2 < and jxj < 1; then limn!1 xn = 0:Proof. Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Working ba
kwards again, how about if we 
hoose N so that jxjN < �? If we takelogarithms of both side of this inequality, we see that Nlog(jxj) < log(�): Sin
ejxj < 1; log(jxj) < 0: Thus, when we divide both sides of the inequality by log(jxj);the sign of the inequality reverses and we �nd that N > log(�)log(jxj) :Step 3. The Che
k:To 
omplete the problem, simply reverse the steps. In other words, show that ifn � N; then jxjn < �:Simpli
io: I really like that proof,Virginia: Really?Simpli
io: But, why is it important?Galileo: As you will soon see, we 
an use this fa
t to show that the square rootmethod of Ar
himedes/Heron always 
onverges. For this appli
ation, x = 12 ; whi
htells you that the error drops by 50% for ea
h iteration of the algorithm. For the 
ube



128 CHAPTER 9. LIMITSroot algorithm, x = 23 ; whi
h means that the error drops by 33% for ea
h iteration.This fa
t will also appear in the error formula for the Contra
tion Mapping Theorem.Cau
hy: On
e again following the di
tums of Professor Polya, we should reviewwhat we have done and think bigger. At the beginning of our 
onversation about
onvergen
e, we began by de�ning the absolute value fun
tion and a distan
e metri
.Distan
e is a very general 
on
ept and works in all dimensions.Virginia: Pythagoras provides us with distan
e formulas for ve
tors in the plane andthree spa
e.Cau
hy: Better yet, Pythagoras provides us with distan
e formulas in in�nite dimen-sional spa
es.Simpli
io: I bet those formulas are really 
ompli
ated.Galileo: A
tually, no. The formula for <n generalizes in a 
ompletely natural way.De�nition 9.1.11. If f(x); g(x) : [a; b℄ ! < are 
ontinuous fun
tions, the distan
ebetween f(x) and g(x) is de�ned byd(f(x); g(x)) =sZ ba (f(x)� g(x))2 dx:If you think of the points x 2 [a; b℄ as 
oordinates, then this formula is exa
tlythe Pythagorean Theorem. Moreover, it satis�es the same symmetry and triangleinequality properties that the absolute value fun
tion does. Thus, we 
an now talkabout limits of fun
tions.Simpli
io: OK, but why would we want to? How 
ould that formula be useful?Galileo: Sin
e a multitude of appli
ations are based on frequen
y and sin
e frequen
ies
an be modeled by the trigonometri
 fun
tions 
os(nx) and sin(nx) de�ned on theinterval [��; �℄; we 
onfront these problems everywhere. The heat equation and thewave equation are just the beginning.Cau
hy: True, but we are going to need to be more general than that. As it turnsout,Exer
ise Set 9.1.



9.2. THE GEOMETRIC SERIES 1291. Using either de�nition of limit, prove that limn!1f 1n3g = 0:2. Using the de�nition of limit, prove that limn!1f 1n4g = 0:3. Assume you have a sequen
e de�ned by the following rules:x0 = 2:xn+1 = xn� 1xn2 :After the �rst �fty terms are 
omputed, are you 
lose to 
onvergen
e yet? What
an you 
on
lude after the �rst million terms are 
omputed? Do they seem tobe bounded? Is the sequen
e in
reasing?4. Using the de�nition of limit, prove the following limit exists: limn!1f3n�72n+5g:5. Using the de�nition of limit, prove the following limit exists: limn!1f2n+53n�7g:6. Prove: If limn!1 xn = L; then limn!1 jxnj = jLj: (Hint: This fa
t is easierto prove if you sele
t the right fa
t from the right proposition. Otherwise, youhave to 
onsider a number of spe
ial 
ases.)7. Find a sequen
e fxng1n=1 with the property that the statementlimn!1 jxnj = jLj is true, but the statement limn!1 xn = L is false. (Remark:In other words, the 
onverse to the previous problem may not be true.)8. Using the de�nition of limit, prove that limn!1f 14ng = 0:9.2 The Geometri
 SeriesGalileo: Before we move on to more theoreti
al issues, we should dis
uss the Geo-metri
 series. This spe
ial 
ase has played an important role in mathemati
s sin
eAr
himedes used it to 
ompute the area under a parabola.Virginia: But isn't that a Cal
ulus issue?Galileo: If that Roman soldier hadn't run the old man through with a spear, wewould have had integration several thousand years ago. Ar
himedes was an amazingly
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tive individual. When you read his proof of the volume of a sphere, all you
an do is wonder at his imagination and energy. In any 
ase, we now turn from theproblem of 
omputing the limit of a sequen
e to 
omputing the sum of an in�niteseries.Simpli
io: What is di�eren
e between a sequen
e and a series?Galileo: The sum of an in�nite series is a spe
ial 
ase of a limit of sequen
e. Thus,any fa
t we prove about the limit of a sequen
e immediately translates into a fa
tabout series. However, before we do that, let's 
ompute the sum of a �nite series.This formula should be familiar.Proposition 9.2.1 (Sum Formula for the Finite Geometri
 Series). If x 2 <and x 6= 1 and Sn =Pnk=0 xk; then Sn = 1�xn+11�x :Proof. If Sn =Pnk=0 xk; then xSn = Pnk=0 xk+1: If we subtra
t these two equations,then only two terms remain on the right hand side. Thus, (1� x)Sn = 1� xn+1 andthe result follows by dividing both sides of the equation by 1� x:Simpli
io: That proof was too easy.Example 9.2.1. Galileo: How about the spe
ial 
ase when x = 14? Ar
himedes neededthis 
ase when he 
omputed the area under a parabola.Virginia: But that is easy. By the formula, we 
an see thatSn = 1 + 141 + 142 + 143 + � � �+ 14n = 1� 14n+11� 14 = 4� 14n3 :Galileo: So what number is this sum 
lose to?Virginia: If n is large, then 14n is small, whi
h implies Sn � 43 :Galileo: So, 
an you �nd a parabola with area 43 under the 
urve?Galileo: This example leads to the question: How do you sum an in�nite series?When we 
omputed in the proposition, note that we added up the �rst n terms ofthe sequen
e, whi
h we denoted by Sn:Virginia: We then observed the limit of this sequen
e of sums 
onverges to 43 :Galileo: We not make two de�nitions to formalize the ideas in this example.



9.2. THE GEOMETRIC SERIES 131De�nition 9.2.2. If P1k=0 xk is an in�nite series, then the sum Sn = Pnk=0 xk is
alled the nth partial sum.De�nition 9.2.3. An in�nite series P1k=0 xk is said to 
onverge to a number S; ifthe limit of the nth partial sums 
onverges to S: More pre
isely, S =P1k=0 xk if andonly if limn!1 Sn = S; where Sn =Pnk=0 xk:Galileo: In other words, the in�nite sum S equals the limit of the sequen
e of partialsums. We are now in a position to 
ompute the in�nite version of the Finite Geometri
series.Proposition 9.2.4 (Sum Formula for the In�nite Geometri
 Series). If x 2 <and jxj < 1 and Sn =Pnk=0 xk; then P1k=0 xk = limn!1 Sn = 11�x :Proof. Step 1. The Challenge:Let � > 0 be given. Step 2. The Choi
e:Sin
e Sn = Pnk=0 xk = 1�xn+11�x ; we only need to �nd an integer n with the propertythat j 11� x � 1� xn+11� x j < �:Sin
e j 11�x � 1�xn+11�x j = jxn+11�x j; we only need to show that jxn+11�x j < �:Working ba
kwards, we see thatjxjn+1 < (1� x)�(n+ 1)log(jxj) < logf(1� x)�gn+ 1 > logf(1� x)�glog(jxj)n > logf(1� x)�glog(jxj) � 1Thus, we 
hoose N to be any integer with the property that N > logf(1�x)�glog(jxj) � 1:Step 3. The Che
k:To 
he
k that N works, simply assume n � N and reverse the above inequalities.
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io: I noti
ed you reversed inequalities in the middle of the argument, whereyou 
hose N:Galileo: Good observation. Sin
e we assumed that jxj < 1; the quantity log(jxj) isnegative. Thus, we must reverse the inequality.Simpli
io: Does the argument work better if x > 1?Galileo: Unfortunately, the proposition is false if x > 1.Virginia: Whi
h log fun
tion did you use? Natural or base 10?Galileo: Choose your weapons. Either, in fa
t, any logarithm will work just �ne.Exer
ise Set 9.2.1. Sum the �nite series Sn = 1 + 2 + 22 + � � �+ 2n:2. Sum the terms in the �nite sequen
e Sn = 1 + 3 + 32 + � � �+ 3n:3. Sum the terms in the in�nite sequen
e S = 1 + 12 + 122 + � � �+ 12n : : : :4. Sum the terms in the in�nite sequen
e S = 1 + 13 + 132 + � � �+ 13n : : : :5. Sum the terms in the in�nite sequen
e S = 1� 12 + 122 � � � �+ (�1)n 12n + : : : :6. Sum the terms in the in�nite sequen
e S = 1� 13 + 132 � � � �+ (�1)n 13n + : : : :9.3 Limit Theorems For Sequen
esCau
hy: We next turn to the idea of making limits a bit easier so we don't alwayshave to grind our way through this three step pro
ess of proving limits. For example,if you try to show that limn!1 2n2+3n+57n2+1 = 27 ; you will �nd that annoying te
hni
aldiÆ
ulties arise. Thus, while we still want to have the 
apability of using the de�nitionto prove a limit, we would also like to have more weapons at our disposal. The pointof our dis
ussion will be to make limits and 
onvergen
e easier.Simpli
io: I like easy.Cau
hy: However, before we start, I would like remark that we are going to be provingtheorems and propositions. These proofs require that you understand the logi
 and



9.3. LIMIT THEOREMS FOR SEQUENCES 133rigor of a mathemati
al argument. Before we pro
eed, it is ne
essary that you 
ananswer the following questions.1. What is the triangle inequality for the absolute value fun
tion?2. What is the 
ontrapositive of the statement \If p, then q."?3. What is a proof by 
ontradi
tion?4. What is the 
onne
tion between a proof by 
ontradi
tion and the 
ontrapositiveof a statement?Do you remember the 
ontrapositive and modus tollens?Virginia: Yes, I do.Simpli
io: I'm not sure.Cau
hy: Well, there is no point in pro
eeding until you know. Go ba
k and reviewthese 
on
epts.Simpli
io: I think we should move on before my brain melts.Virginia: I am ready.Cau
hy: Good. Let us begin. While you should have already seen these ideas inyour previous study of Cal
ulus, you may not have seen the proofs. The fa
ts we willestablish are:1. The limit of the sum is the sum of the limit.2. The limit of the produ
t is the produ
t of the limit.3. The limit of the quotient is the quotient of the limit.4. The uniqueness of limits.5. Several squeezing propositions.The proofs of the �rst three fa
ts will all have the same 3 step stru
ture that wejust employed for our examples. For the sum, produ
t, and quotient proofs, we will
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tion extensively. For the uniqueness and squeezing fa
tswe will use a proof by 
ontradi
tion strategy. Let's now state and prove the �rstproposition.Proposition 9.3.1 (Limit Fa
ts for Sequen
es). Let fxng1n=1 and fyng1n=1 besequen
es in <: If limn!1fxng = L and limn!1fyng =M; then1. limn!1fxn + yng = limn!1fxng+ limn!1fyng = L+M;(i.e. The limit of the sum equals the sum of the limits or LS = SL.)2. limn!1fxn � yng = limn!1fxng � limn!1fyng = L �M;(i.e. The limit of the produ
t equals the produ
t of the limits or LP = PL.)3. If M 6= 0; then limn!1fxnyn g = limn!1fxnglimn!1fyng = LM :(i.e. The limit of the quotient equals the quotient of the limits or LQ = QL.)Proof. 1. Let us begin by proving limn!1fxn + yng = L +M:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Sin
e we are assuming that limn!1fxng = L; we 
an �nd an integer N1 with theproperty that if n � N1; then jxn � Lj < �2 :Sin
e we are assuming that limn!1fyng =M; we 
an �nd an integer N2 with theproperty that if n � N2; then jyn � Lj < �2 :Sin
e we want both of these statements to be true, we 
hoose N to be any integerlarger than both N1 and N2: The best 
hoi
e is N = maxfN1; N2g:Step 3. The Che
k:If n � N; then by the triangle inequalityjxn + yn � (L+M)j = j(xn � L) + (yn �M)j� jxn � Lj+ jyn �M j< �2 + �2= �:



9.3. LIMIT THEOREMS FOR SEQUENCES 1352. Next let us prove limn!1fxn � yng = L �M:While the proof of this proposition is often 
onsidered more diÆ
ult than LS =SL, the approa
h is the same. The main di�eren
e is that we are 
onfronted by thedistributive law.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Sin
e we are assuming that limn!1fxng = L; we 
an �nd an integer N1 with theproperty that if n � N1; then jxn � Lj < �1:Sin
e we assume that limn!1fyng = M; we 
an �nd an integer N2 with theproperty that if n � N2; then jyn � Lj < �2:We again 
hoose N = maxfN1; N2g:After we make a 
ouple of 
omputations, we will �gure out reasonable 
hoi
es for�1 and �2: For LS = SL, it was easy to see that �1 and �2 should both be 
hosen equalto �2 :Step 3. The Che
k:If n � N and we have been smart enough to 
hoose �2 so small that jxnj�2 < �2 and�1jM j < �3 ; then by the distributive law and the triangle inequality we see thatjxn � yn � (L �M)j = jxn � yn � xnM + xnM � LM j= jxn(yn �M) + (xn � L)M j� jxnjj(yn �M)j+ j(xn � L)jjM j� jxnj�2 + �1jM j< jxnj�2 + �1jM j< �2 + �3< �:Virginia: While I am not sure about �2; I 
an see that we should 
hoose �1 = 13jM j ;then �1jM j < �3 :
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hy: But if M = 0; then you are dividing by zero. Bad idea.Virginia: You are 
orre
t. I guess I had better 
hoose �1 = �3jM j+1 so the denominator
an never equal zero AND the 
hoi
e of �1 will still have the property that �1jM j < �3 :Cau
hy: Yes, you have now 
overed all the 
ases.Simpli
io: But what about 
hoosing �2 so that jxnj�2 < �2? I don't see that 
hoi
e atall.Cau
hy: We 
an begin addressing that question by observing that if we 
hoose �1 < 12 ;then we will know that jxnj < jLj+ 12 for all n � N1:Virginia: In other words, if we had 
hosen �2 = �3jLj+1 ; then we 
an guarantee thatjxnj�2 < (jLj + 12) � �3jLj+1 < �2 : Thus, to 
omplete the argument, we only need to
hoose �1 =Minf12 ; �3jM j+1g:Cau
hy: Corre
t.3. Next let us prove the quotient rule: If M 6= 0; then limn!1fxnyn g = LM :Sin
e the strategy for proof of LQ = QL is similar to LP = PL, we will leavethe proof as an exer
ise. However, sin
e we have just proved that the limit of theprodu
t equals the produ
t of the limit, note that we only need to prove the spe
ial
ase: limn!1f 1yng = 1M :Simpli
io: Thanks. I have had enough anyway. How about an example?Example 9.3.1. Cau
hy: Suppose you are asked to show limn!1f2n2+3n+57n2+1 g = 27 : Ifyou try to use the de�nition, you will �nd the pro
ess annoying. However, with theBasi
 Limit Fa
ts, we simply make the following 
omputations:limn!1f2n2 + 3n+ 57n2 + 1 g = limn!1f2 + 3n + 5n2glimn!1f7 + 1n2g (LQ = QL)= 2 + 0 + 07 + 0 (LS = SL)= 27 :Cau
hy: The next 
orollary shows that we 
an \pull" a 
onstant a
ross the limit sign.Corollary 9.3.2. If K is a real number and fxng1n=1 is a sequen
e of numbers su
hthat limn!1 xn = L; then limn!1Kxn = K limn!1 xn = KL:



9.3. LIMIT THEOREMS FOR SEQUENCES 137Proof. This result follows immediately from the limit of the produ
t equals the prod-u
t of the limits be
ause we 
an de�ne yn = K for all n: Sin
e the limit of the 
onstantsequen
e K;K; : : : ; K; : : : is K, we are done.Cau
hy: We now give a se
ond proof of the sum formula for the Geometri
 series.Simpli
io: A se
ond proof?Galileo: The result is useful and Repetition is a great tea
her. You will see thisformula again.Proposition 9.3.3 (Sum Formula for the In�nite Geometri
 Series). If x 2 <;jxj < 1; and Sn =Pnk=0 xk; then P1k=0 xk = limn!1 Sn = 11�x :Proof. Sin
e we are assuming that jxj < 1; we know limn!1 xn = 0: By the limit ofthe sum equals the sum of the limits and the previous 
orollary we 
an see thatlimn!1Sn = limn!1 1� xn+11� x = 11� x limn!1(1� xn+1) = 11� x � 11� x limn!1xn+1 = 11� x:Cau
hy: We now prove uniqueness for limits.Simpli
io: Uniqueness? I have been patient until now, but this theory stu� is killingme.Cau
hy: While you may not think uniqueness is important, engineers really do wantto know when there is only one answer. In some sense, the sequen
e xn = (�1)n hasboth �1 and +1 as it limits. Rather than deal with this ambiguity, the mathemati
s
ommunity has voted to say the sequen
e does not 
onverge. While these fa
ts mayseem obvious, they require proof.Simpli
io: But every test problem I ever did only had one answer. (To Virginia) Didyou ever bubble in more than one answer?Virginia: No, but few of my tests were multiple guess.Cau
hy: OK, but quadrati
 polynomials usually have two roots. A multitude of
omputational problems have more than one answer. Life is easier when we haveuniqueness.
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io: One wife, one mother-in-law?Proposition 9.3.4 (Uniqueness Theorem for Limits of Sequen
es). Let fxng1n=1be a sequen
e of numbers in <: If limn!1fxng = L1 and limn!1fxng = L2; thenL1 = L2:Proof. Cau
hy: By way of 
ontradi
tion, we will assume the proposition is false.In other words, we will assume L1 6= L2: If you make a smart 
hoi
e of �{namely� = 12dist(L1; L2) = 12 jL1 � L2j; then you will �nd that all but a �nite number of theterms of the sequen
e must lie in both of the intervals (L1��; L1+�) and (L2��; L2+�):However, by the 
hoi
e of �; there are no points in both of these intervals. Thus, wehave a 
ontradi
tion. Now, that wasn't so bad was it?Simpli
io: Short is good. It was OK.Cau
hy: Now it is time to squeeze.Simpli
io: And I must ask again. What are these fa
ts good for?Cau
hy: A basi
 rule for appli
ations is that inequalities are more important thanequalities. As physi
ist Werner Heisenberg (1901-1976) pointed out, measurementsare not exa
t and we are thus for
ed to settle for approximate answers. Under these
ir
umstan
es, we are 
omfortable if we 
an 
ontrol a sequen
e by squeezing it betweentwo 
onstants. Many of the algorithms we will be using 
an be 
ontrolled this way.Simpli
io: How about an example.Cau
hy: While root �nding method of Newton/Raphson and the Contra
tion Map-ping Theorem are the �rst settings where we will need these ideas, we will also needtools of estimation everywhere in Fourier series. Squeezing helps.
Figure 9.1: The Uniqueness of Limits



9.3. LIMIT THEOREMS FOR SEQUENCES 139Proposition 9.3.5 (The Squeezing Theorem for Sequen
es). Let fxng1n=1;fyng1n=1; and fzng1n=1 be sequen
es in <; where xn � yn � zn:1. Fa
t 1. If limn!1fxng = L and limn!1fzng =M; then L �M:2. Fa
t 2. If the sequen
e fyng1n=1 
onverges and yn �M for all n; then limn!1fyng �M:3. Fa
t 3. If limn!1fxng = L = limn!1fzng; then the sequen
e fyng1n=1 
onvergesand limn!1fyng = L:Proof. Proof of Fa
t 1.The proof of the �rst squeezing fa
t, is again by 
ontradi
tion. Thus, we beginby assuming that L > M: The next step is to let � = 12dist(L;M) = 12 jL�M j: Sin
eL > M; we have the situation that all but a �nite number of the terms of the sequen
efxng1n=1 lie in the interval (L � �; L + �) and all but a �nite number of the terms ofthe sequen
e fyng1n=1 are in the interval (M � �;M + �): Sin
e these two intervals aredisjoint and L > M; we have now 
reated the problem that all yn < xn for all buta �nite number of the integers n: Thus, we have a 
ontradi
tion to our assumptionthat xn � yn for ALL n:Proof of Fa
t 2.This fa
t follows immediately from Fa
t 1 be
ause the 
onstant M 
an be thoughtof as a sequen
e where zn =M; for all n:Proof of Fa
t 3.Sin
e we are not assuming that the sequen
e fyng1n=1 
onverges to any number,this fa
t doesn't immediately follow from Fa
ts 1 or 2. However, we 
an go ba
k tobasi
s.Step 0. The Candidate:The only possibility is that the sequen
e fyng1n=1 should 
onverge to M:Step 1. The Challenge:Let � > 0 be given.
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e:The integer N will be the maximum of the integers N1 and N2; where1. If n � N1; then xn 2 (M � �;M + �):2. If n � N2; then zn 2 (M � �;M + �):Step 3. The Che
k:Thus, if n � N; then both xn and zn lie in the interval (M � �;M + �): Sin
e we areassuming xn � yn � zn; yn 2 (M � �;M + �):Exer
ise Set 9.3.1. Using limit fa
ts, prove that limn!1f 1n3g = 0:2. Using limit fa
ts, prove that limn!1f 1n4g = 0:3. Using limit fa
ts, prove that limn!1f3n�72n+5g = 32 :4. Using limit fa
ts, prove that limn!1f2n+53n�7g = 23 :5. Using limit fa
ts, prove that limn!1f2n2+73n2�5g = 23 :6. Using limit fa
ts, prove that limn!1f2n3+53n3�7g = 23 :9.4 Every Bounded In
reasing Sequen
e ConvergesNumbers are the free 
reation of the human mind.-Julius Wilhelm Ri
hardDedekind (1831-1916)Galileo: We now turn to the problem of showing that every bounded in
reasingsequen
e 
onverges.Simpli
io: I hate to be predi
table, but why should I 
are?



9.4. EVERY BOUNDED INCREASING SEQUENCE CONVERGES 141Galileo: The short answer is that if we 
an show an algorithm produ
es a sequen
eof numbers whi
h is both bounded and in
reasing, then the method will \work." Foran engineer, it is important that the method produ
e a

urate answers reliably.Virginia: The long answer?Galileo: The long answer is that it took well over 2000 years to �gure out how to �llin the holes in the real numbers. Sin
e 
he
king all the details of this 
onstru
tionis really really boring, we are only going to present the 
avor of the ideas. Thistopi
 is probably the most theoreti
al we will en
ounter in this tutorial. If you donot remember our dis
ussion of rigor and logi
, it might be a good time to reviewde�nitions, 
ontrapositives, and proof by 
ontradi
tion,Simpli
io: I believe in the real numbers. Maybe I will take a short nap.Galileo: The following two examples should set the stage for the main theorem.Example 9.4.1. The sequen
e xk = k2 is in
reasing, but not bounded.Example 9.4.2. The sequen
e xk = (�1)k is bounded, but not in
reasing.Simpli
io: And?Galileo: As we have already remarked, an engineer wants to have 
on�den
e in hisanswers. In other words, if he hits the square root button on his 
al
ulator, he wouldlike to know the answer is 
orre
t. The beauty of the Ar
himedes/Heron square rootmethod is that it always produ
es a bounded de
reasing sequen
e. The beauty ofthe bise
tion method is that it produ
es a sequen
e of 
losed intervals, where the leftendpoints are in
reasing and the right endpoints are de
reasing. Thus, the answeris always \trapped." Thus, if we 
an show that every bounded in
reasing sequen
e
onverges, then we will have shown that these two methods \always work."Galileo: We now turn to a fas
inating little problem that has 
aused 2000 years of
onsternation. Namely, how do we \�ll in" the \holes" in the real line so we 
an besure the irrational numbers su
h as p2; e; �; and e� are well-de�ned.Simpli
io: Wait a minute. What does the word \well-de�ned" mean?
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hard Dedekind (1831-1916) went to great lengths toget arithmeti
 right. With his idea of a \
ut" he showed that the asso
iative,
ommutative, and distributive laws for addition and multipli
ation 
an not onlybe extended from the positive and negative integers Z to the rational numbersQ = fpq : p; q 2 Z and q > 0g; but 
an also be extended to the real numbers <:A large part of this problem is the exa
t de�nition of a real number.De�nition 9.4.1. A non-empty subset S of Q is a 
alled a 
ut if the following
onditions hold:1. The set S is not equal to Q:2. If whenever p 2 S and q < p; then q 2 S:3. The set S 
ontains no largest rational number.Virginia: Thus, the number p2 
an be represented by the setS = fpq : (pq )2 < 2 or pq < 0g: In general, a real number 
an be represented bya \
onne
ted" open interval of rational numbers! And the real numbers < is the
olle
tion of all su
h 
onne
ted open intervals.Galileo: Corre
t.Simpli
io: But I thought a real number was a point? Now you tell me it is a set.Galileo: No worries. You 
an go ba
k to thinking a real number is a point. While this
onstru
tion represents an important milestone in establishing the rigor of arithmeti
,I agree that it 
an only be des
ribed as tedious. The details are guaranteed to puteven the sleep deprived into a sound slumber.Simpli
io: I am a man of faith. Let's move on.
Figure 9.2: A Dedekind Cut Representing p2
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iple is a 
onsequen
e of Dedekind's 
onstru
-tion. The importan
e of this prin
iple is that it \�lls in" all the \holes" in the realnumber line.Virginia: When you use the word 
onsequen
e, I suspe
t you mean that this Prin
ipleis really a theorem whi
h must be proved from other more basi
 assumptionsGalileo: Corre
t again. While the Least Upper Bound Prin
iple is a theorem, whi
h
an be proved from the properties of Dedekind's 
onstru
tion, we will not go there.In the interests of time, we will assume it is true.Virginia: Like an axiom, a postulate, or a de�nition?Galileo: Yes.Simpli
io: As I said, let's move on.Galileo: Before we 
an state this important prin
iple, we must de�ne what it meansfor a set to have an upper bound.De�nition 9.4.2 (Bounded Above). A non-empty set S � < is bounded above ifthere is a number M 2 < with the property that x � M for all x 2 S: The number Mis 
alled an upper bound for the set S:Galileo: We now de�ne the least upper bound (lub) of a set of real numbers.De�nition 9.4.3 (Least Upper Bound). If a real number L is an upper bound fora non-empty set S � <; then L is 
alled the least upper bound (lub) of S if for anyupper bound M of the set S; it is always true that L � M:We now state the Least Upper Bound Prin
iple.Prin
iple 9.4.4 (The Least Upper Bound Prin
iple). If a non empty set S 2 <is bounded above, then it has a least upper bound.Simpli
io: I failed to get that prin
iple at all. I need an example.Galileo: If we 
onsider the sequen
e xn = (�1)n; we noti
e that the terms os
illatebetween +1 and �1: While the sequen
e has a multitude of upper bounds su
h as2; 47; and 1001; the number +1 is not only an upper bound but, in fa
t, the least



144 CHAPTER 9. LIMITSupper bound. On the other hand, if we 
onsider the sequen
e xn = nn+1 ; we againnoti
e that the sequen
e has a multitude of upper bounds in
luding 2; 47; and 1001:Again, the least upper bound of the sequen
e is +1:Simpli
io: Why did you give us two examples with the same answer?Galileo: To point out that in the �rst example the least upper bound is equal to oneof the terms of the sequen
e, while the least upper bound in the se
ond 
ase neverequals any term in the sequen
e. If the least upper bound was always one of theterms in the sequen
e, it never would have been invented. In fa
t, if the least upperbound was always a rational number, it never would have been invented. In otherwords, the Least Upper Bound Prin
iple �lls in the \holes" in the real number systemva
ated by numbers su
h as p2; 3p2; e; �:Simpli
io: Let's move on.Galileo: Certainly. We begin with two important 
on
epts asso
iated with sequen
es:in
reasing and bounded. These two ideas will provide a test for when a sequen
e
onverges. The de�nitions of these terms are now presented. We begin with thede�nition of an upper bound for a sequen
e.De�nition 9.4.5. A sequen
e fxkg1k=1 is bounded above if there is a number M 2 <su
h that xk � M for all integers k � 1:De�nition 9.4.6. A sequen
e fxkg1k=1 is in
reasing if xk � xk+1 for all k � 1:Theorem 9.4.7 (Every Bounded In
reasing Sequen
e Converges). If a se-quen
e fxng1n=1 is both bounded above and in
reasing, then there is a number L su
hthat limn!1fxng = L: In parti
ular, if M is any upper bound, then xn � L � M forall n:Proof. The reason we mention the least upper bound prin
iple is to identify the limitL: Step 0. The Candidate:Set L equal to the least upper bound of the set of points 
onsisting of all the termsof the sequen
e fxng1n=1: In parti
ular, L = lubfxn : n = 1; 2; 3; : : : ; n; : : : g: We must



9.4. EVERY BOUNDED INCREASING SEQUENCE CONVERGES 145now show that limn!1fxng = L:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Choose N so that xN > L� �:Simpli
io: How do we know we 
an �nd su
h an N?Galileo: Good question. On
e again, the only viable proof for the existen
e of su
han integer N is by 
ontradi
tion. To this end, we assume that no su
h integer Nexists. But, if we make this assumption, then xN � L� � for ALL integers N: Thus,L � � is also an upper bound for the sequen
e. Sin
e L < L � �; we would have a
ontradi
tion of the assumption that L is the least (or smallest) upper bound.Step 3. The Che
k:We must now show that if n � N; then xn 2 (L� �; L+ �): Sin
e n � N; and weare assuming the sequen
e is in
reasing, we know that XN � xN+1 � xN+2 � : : : ; xn:Thus, L� � < xN � xn:Sin
e we are assuming that L is an upper bound for the sequen
e, xn � L < L+�:Thus, xn 2 (L� �; L+ �) and the sequen
e 
onverges to L:Galileo: Now that proof wasn't so bad, was it?Simpli
io: This proof seems to have the same four steps as the others.Galileo: An equivalent formulation of this theorem (and the one that we will need)
an be stated in terms of bounded de
reasing sequen
es.
Figure 9.3: Every Bounded In
reasing Sequen
e Converges



146 CHAPTER 9. LIMITSDe�nition 9.4.8. A sequen
e fxkg1k=1 is said to be bounded below if there is a numberM su
h that xk �M for all integers k � 1:De�nition 9.4.9. A sequen
e fxkg1k=1 is said to be de
reasing if xk � xk+1 for allintegers k � 1:Theorem 9.4.10. If a sequen
e fxng1n=1 is both bounded below and de
reasing, thenthere is a number L su
h that limn!1fxng = L:Galileo: For bounded de
reasing sequen
es, we will see that the sequen
e will a
tually
onverge to the greatest lower bound.Simpli
io: I have a question. In a real-world problem, you don't know the answer soyou 
an't begin to test if some number L is a limit. If you did, you wouldn't do allthis 
he
king. Why waste your time when a 
lient wants the results yesterday.Galileo: You have a good point. All we have done so far is set the 
ontext. We willreturn to your question when we dis
uss Cau
hy sequen
es. His sequen
es are theones engineers 
are about.Simpli
io: Cau
hy again?Exer
ise Set 9.4.1. Compute the least upper bound of the sequen
e f (�1)nn g1n=1: Compute the great-est lower bound. Does the sequen
e 
onverge to the least upper bound?2. Compute the least upper bound of the sequen
e f(�1)n n�1n g1n=1: Compute thegreatest lower bound. Does the sequen
e 
onverge to the least upper bound?3. Prove: If a sequen
e fxng1n=1 is both bounded below and de
reasing, then thereis a number L su
h that limn!1fxng = L:9.5 Cau
hy Sequen
esGalileo: We now re
all our friend Cau
hy to provide a brief introdu
tion to a 
riterionthat guarantees a sequen
e 
onverges.
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io: I dread the thought of more theory.Cau
hy: The reason for de�ning this new 
on
ept is that we would like to be 
ertaina sequen
e 
onverges even when we have no idea what the limit will be. If we knowthe answer, then why waste time 
omputing limits!! Sin
e the limit is missing, thesetting is more like the situations engineers fa
e with real-world problems. Namely,they don't know the answer before they start. However, it will turn out that whilewe don't know the limit exa
tly, it 
an be 
ontained somewhere in a small interval.Galileo: A
tually, Mr. Simpli
io has already en
ountered these ideas in Cal
uluswhen he was introdu
ed to the ratio and nth root tests.Simpli
io: I liked the ratio test. It was easy be
ause all you had to do was 
omputer = limn!1 jan+1jjanj : If r < 1; then the series P1n=0 an 
onverges. If r > 1; then theseries diverges.Galileo: Very good.Simpli
io: A
tually, that is the only te
hnique I remember on that subje
t.Galileo: The only problem is that several 
ards were dealt from the bottom of thede
k.Simpli
io: How so?Galileo: The te
hnique didn't a
tually give you the answer.Simpli
io: You are 
orre
t. The answer to those problems was simply \
onvergent"or \divergent."Virginia: But wait a minute. If you think about the proofs of the ratio test, you aredominating the given series by a Geometri
 series. That information ought to help.Simpli
io: I do my best to avoid proofs and here she 
omes.Virginia: If we assume the series P1n=0 an has the property janjjan�1j � r for all integers



148 CHAPTER 9. LIMITSn = 0; 1; 2; : : : ; n; : : : ; then janj � jan�1jr for all n: Thus,ja0j �ja0jr0:ja1j �ja0jr1:ja2j �ja1jr � ja0jr2:ja3j �ja2jr � ja0jr3:ja4j �ja3jr � ja0jr4:...janj �jan�1jr � ja0jrn:Adding these quantities, we see by the sum formula for the Geometri
 series thatj 1Xn=0 anj � 1Xn=0 janj � ja0j 1Xn=0 rn = ja0j 11� r :We 
an always estimate the error by 
omparing the tails of seriesjEnj = j 1Xk=0 ak � nXk=0 akj = j 1Xk=n+1akj � 1Xk=n+1 jakj � ja0j 1Xk=n+1 rk = ja0j rn+11� r ;Sin
e limn!1 ja0j rn+11�r = 0; we have 
onvergen
e.Galileo: Very good! However, it isn't immediately 
lear that the symbol P1k=0 aka
tually represents a real number.Simpli
io: But isn't that obvious?Galileo: Show me the sum.Virginia: If you think about it, the only general 
ondition we have that guarantees asequen
e 
onverges is that it is bounded and in
reasing.Galileo: Corre
t. The reason for Cau
hy sequen
es is to guarantee 
onvergen
e. On
ewe have 
ompleted this task, the ratio test will guarantee that the symbol P1k=0 akmakes sense. By the way, Cau
hy is involved whenever we are apply any 
omparisontest. In parti
ular, the root test and the integral test are involved.Simpli
io: OK, enough of these old tests, how about this Contra
tion Mapping The-orem?



9.5. CAUCHY SEQUENCES 149Galileo: The strategy is the same with the Contra
tion Mapping Theorem, Namely,you use an iterated fun
tion 
omputation xn+1 = T (xn) to 
reate an in�nite sequen
efxng1n=0 of points. Sin
e T (x) is a 
ontra
tion with 
ontra
tion fa
tor M < 1; we
an use the same Geometri
 series argument Virginia just mentioned to show thatjxn � xN j � Mn1�M jx0 � x1j for all n � N: This inequality will be suÆ
ient to showthat the sequen
e is Cau
hy. Later we will see we have the same issues with Fourierseries. While it is easy to show the series P1n=0 1n3 
os(nx) 
onverges for all x 2 <; itis not so easy to �gure out a tidy little formula for the fun
tion it represents.Simpli
io: So where do we begin?Galileo: We begin with the de�nition, whi
h poses the following 
hallenge: If givena sequen
e fxng1n=1 and a toleran
e � > 0; then �nd an integer N so that whenevern � N; the point xn will lie in the interval (XN � �;XN + �): In parti
ular, all but a�nite number of the terms in the sequen
e will lie in the interval (XN � �;XN + �):As we did with the se
ond de�nition for 
onvergen
e, we will use the absolute valuefun
tion and distan
e in the de�nition of Cau
hy Sequen
e.De�nition 9.5.1 (Cau
hy Sequen
e). A sequen
e fxng1n=1 is 
alled Cau
hy; if forevery � > 0; there is an integer N with the property that if n � N; then jxn�xN j < �:Cau
hy: Note that this de�nition is exa
tly the same as the de�nition of limit ex
eptthere is no mention of the limit L: Consider the following examples.Example 9.5.1. The sequen
e xn = (�1)nn is Cau
hy.The argument this statement is true is the same as we en
ountered for 
onvergentsequen
es.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Choose N > 2� :Step 3. The Che
k:If n � N; then j (�1)nn � (�1)NN j � j (�1)nn j+ j � (�1)NN j � 1N + 1N � 2N < �:
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io: That argument is 
ertainly within my 
omfort zone.Example 9.5.2. The sequen
e xn = (�1)nn2 is Cau
hy.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Choose N >q2� : Thus, N2 > 2� :Step 3. The Che
k:If n � N; then j (�1)nn2 � (�1)NN2 j � 1N2 + 1N2 � 2N2 < �:Simpli
io: So it looks like we need to 
hoose the integer N a bit larger than before.Cau
hy: I knew you would like this topi
.Galileo: The beauty of the situation is that 
onvergent sequen
es are Cau
hy andvi
e versa. Our �rst theorem is the observation that if a sequen
e is 
onvergent, thenit must also be Cau
hy. Note that the format of the proof exa
tly parallels the proofsof the previous limit theorems. Note also, that the triangle inequality is evident.Theorem 9.5.2 (Convergent Sequen
es are Cau
hy). If a sequen
e of real num-bers fxkg1k=1 is 
onvergent, then it is a Cau
hy sequen
e. In parti
ular, if there is anumber L so that limn!1xn = L; then fxkg1k=1 is Cau
hy.Proof. Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Choose N so that if n � N; then jxn � Lj < �2 :Step 3. The Che
k:We must show that if � > 0 is given, then we 
an always �nd an integer N su
h thatwhenever n � N; then jxn � xN j < �:However, sin
e the sequen
e 
onverges to some limit L; we know by the de�nitionof limit that there is an integer N su
h that if n � N; then jxn � Lj < �=2:Thus, jxn � xN j = jxn � L+ L� xN j � jxn � Lj+ jL� xN j < �2 + �2 = �:Thus, the sequen
e is Cau
hy.



9.5. CAUCHY SEQUENCES 151Cau
hy: We now prove the 
onverse of the previous theorem, whi
h shows that everyCau
hy sequen
e 
onverges to some number.Simpli
io: But I thought you said we 
ouldn't �nd the number.Cau
hy: As you might have guessed, the answer 
omes to us as a least upper boundor a greatest lower bound of a set of numbers. While it is a bit theoreti
al, we dohave it trapped in an arbitrarily small 
losed bounded interval.Theorem 9.5.3 (Cau
hy Sequen
es Converge). If a sequen
e of real numbersfxng1n=1 is Cau
hy, then there is a unique L su
h that limn!1fxng = L:Proof. We will �nd two sequen
es fang1n=1 and fbng1n=1 su
h that:1. an�1 � an � bn � bn�1 for all integers n;2. bn � an � 2n for all integers n; and3. for ea
h integer n there is an integer Nn with the property that if k � Nn; thenxk 2 [an; bn℄:The essen
e of the argument is to simply set � equal to smaller and smaller numbersand then apply the de�nition of Cau
hy sequen
e. While any sequen
e of numberswhi
h 
onverges to zero will do, we simply let � = 1n for larger and larger values of n:Case n = 1: Let � = 1:Find an integer N1 su
h that if k � N1; then jxk � xN1 j < 1: Let a1 = xN1 � 1 andb1 = xN1 + 1: Note that b1 � a1 = 21 a1 � xk � b1 for all k � N1:Case n = 2: Let � = 12 :Find an integer N2 > N1 su
h that if k � N2; then jxk � xN2 j < 12 : Let a2 =maxfa1; xN2 � 12g and b2 = minfb1; xN2 + 12g: Note that b2 � a2 � 22 and a1 � a2 �xk � b2 � b1 for all k � N2:Case n = 3: Let � = 13 :Find an integer N3 > N2 su
h that if k � N3; then jxk � xN3 j < 13 :Let a3 = maxfa2; xN3 � 13g and b3 = minfb2; xN3 + 13g: Note that b3� a3 � 23 anda1 � a2 � a3 � xk � b3jleb2 � b1 for all k � N3:



152 CHAPTER 9. LIMITSCase n = n: Let � = 1n :Continuing indu
tively, �nd an integer Nn > Nn�1 su
h that if k � Nn; then jxk �xNn j < 1n :Let an = maxfan�1; xNn� 1ng and bn = minfbn�1; xNn+ 1ng: Note that bn�an � 2nand a1 � a2 � a3 � � � � � an � xk � bn � � � � � b3 � b2 � b1 for all k � Nn:Sin
e the sequen
e fang1n=1 is bounded and in
reasing, it 
onverges to some num-ber L: Sin
e the sequen
e fbng1n=1 is bounded and de
reasing, it also 
onverges. Sin
ebn � an � 2n for all integers n; the sequen
es must 
onverge to the same number L:Note that an � L � bn for all n:We now have to prove that the sequen
e fxng1n=1 
onverges to L:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Choose N large enough that 2N < � and N large enough so that whenever n � N; thenaN � xn � bN in the above 
onstru
tion. In parti
ular, we know bN � aN � 2N < �:Step 3. The Che
k:If n � N; then xn 2 [aN ; bN ℄: Sin
e L 2 [aN ; bN ℄; jxn � Lj � bN � aN � 2N < �:Thus, fxng1n=1 must 
onverge to L:Galileo: In the spirit of Professor Polya, let's think about the key 
omponents 
on-tained in this proof.1. Constru
t a nested sequen
e of 
losed bounded intervals f[an; bn℄g1n=1:2. Note that sin
e an � an+1 � bn+1 � bn for all n; both fang1n=1 and fbng1n=1
onverge.3. If limn!1(bn � an) = 0; then both sequen
es 
onverge to the same number. Inother words, there is a number L so that limn!1 an = limn!1 bn = L:4. Any sequen
e whi
h is frequently in ea
h of these intervals has a subsequen
ewhi
h 
onverges to L: In other words, if fxng1n=1 is a sequen
e with the property



9.6. SERIES 153that there are integers n1 < n2 < � � � < nk < nk+1 < : : : su
h that xn1 2[a1; b1℄; xn2 2 [a2; b2℄; xn3 2 [a3; b3℄; et
: then limk!1 xnk = L:5. Any sequen
e squeezed by these intervals also 
onverges to L: In other words,if fxng1n=1 is a sequen
e with the property that for every integer n there is aninteger Nn su
h that whenever k � Nn; then xk 2 [an; bn℄; then limk!1 xk = L:The �rst three items in this 
onstru
tion 
an be en
apsulated in a proposition.Proposition 9.5.4. If f[an; bn℄g1n=1 is a nested sequen
e of 
losed bounded intervalswith the property that limn!1(bn � an) = 0; then there is a unique point L whi
h is
ontained in every interval [an; bn℄: Moreover, limn!1 an = limn!1 bn = L:We will see this 
onstru
tion again when we dis
uss 
ompa
tness. We will needthis property when was show integrals of reasonable fun
tions exist.Exer
ise Set 9.5.1. Show the sequen
e xn = (�1)nn3 is Cau
hy.2. If jxj < 1 and Sn =Pnk=0 xk; then show the sequen
e Sn is Cau
hy.3. If jxj < 1 and Sn =Pnk=0(�x)k; then show the sequen
e Sn is Cau
hy.4. If Sn =Pnk=0(�1)k 1k! ; then show the sequen
e Sn is Cau
hy. (Hint: Think ratiotest.)5. If Sn =Pnk=0(�1)k 1kk ; then show the sequen
e Sn is Cau
hy. (Hint: Think nthroot test.)9.6 SeriesGalileo: Let us return to the topi
 of series by reminding you of what it means for aseries to 
onverge. The idea is to bring pre
ision to the addition of an in�nite numberof terms.
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io: Where are we going to use these ideas?Galileo: Approximation theory is all about in�nite sums. Taylor series and Fourierseries are probably the most notable. We just want to make sure they make sense.9.6.1 Series Fa
tsVirginia: As you mentioned earlier, we divide this de�nition into two pie
es. The�rst part is the de�nition of partial sum.De�nition 9.6.1. If P1k=0 xk is an in�nite series, then the sum Sn = Pnk=0 xk is
alled the nth partial sum.Virginia: We now 
an de�ne the sum of an in�nite series to be the limit of thesequen
e of partial sums. Thus, the study of series simply redu
es to the study of aspe
ial type of sequen
e.De�nition 9.6.2. An in�nite series P1k=0 xk is said to 
onverge to a number S; ifthe limit of the nth partial sums 
onverges to S: More pre
isely, S =P1k=0 xk if andonly if limn!1 Sn = S; where Sn =Pnk=0 xk:Galileo: Corre
t.Virginia: A
tually, if series are a subset of sequen
es, life should be a bit easierbe
ause you don't have to prove theorems twi
e. For example, we immediately havethe Sum Theorem for In�nite Series.Theorem 9.6.3 (The Sum Theorem for In�nite Series). If S = P1k=0 xk andT =P1k=0 yk; then P1k=0(xk + yk) =P1k=0 xk +P1k=0 yk = S + T:Proof. Sin
e the limit of the sum equals the sum of the limits for sequen
es 9.3.1,S + T = limn!1Sn + limn!1Tn = limn!1(Sn + Tn) = 1Xk=0(xk + yk):
Simpli
io: We also 
an pull 
onstants a
ross the summation.



9.6. SERIES 155Theorem 9.6.4 (The Distributive Law for Series). If S =P1k=0 xk and C is areal numer, then P1k=0Cxk = CP1k=0 xk = CS:Proof. This theorem follows immediately from the fa
t that we 
an pull 
onstantsa
ross limits of sequen
es. 9.3.1. Namely,1Xk=0 Cxk = limn!1( nXk=0 Cxk) = limn!1(C nXk=0 xk) = C limn!1( nXk=0 xk) = C 1Xk=0 xk = CS:
Galileo: Very good observation.Virginia: Don't forget uniqueness and squeezing.Theorem 9.6.5 (Uniqueness for In�nite Series). If S1 = P1k=0 xk and S2 =P1k=0 xk; then S1 = S2:Proof. This theorem follows immediately from the Uniqueness Theorem for Sequen
es9.3.4.Theorem 9.6.6 (The Squeezing Theorem for Series). If S =P1k=0 xk;T =P1k=0 yk; and xk � yk for all k = 0; 1; 2; : : : ;1; then S =P1k=0 xk �P1k=0 yk =T:Proof. If Sn =Pnk=0 xk and Tn =Pnk=0 yk; then the assumption xk � yk implies thatSn � Tn for all n:Thus, by the Squeezing Theorem for Sequen
es 9.3.5S = limn!1Sn � limn!1Tn = T:
Simpli
io: How about an example?Example 9.6.1. Galileo: How about if we 
ompute P1k=0(2 13k + 7 15k )?



156 CHAPTER 9. LIMITSVirginia: How about if we de
ompose the sum into:1Xk=0(2 13k + 7 15k ) = 1Xk=0 2 13k + 1Xk=0 7 15k= 2 1Xk=0 13k + 7 1Xk=0 15k= 2 11� 13 + 7 11� 15 = 232 + 754 = 3 + 354 = 474 :Simpli
io: That was easy. How about an example to illustrate the Squeezing Theoremfor series?Example 9.6.2. Galileo: How about if we show the series P1k=0 kk+1 13k 
onverges?Virginia: Easy. All we have to do is noti
e that kk+1 13k � 13k for all k = 0; 1; 2; : : : :Sin
e Sn =Pnk=0 kk+1 13k �Pnk=0 13k � 11� 13 = 32 ; the sequen
e of partial sums fSng1n=0is bounded.Sin
e ea
h term kk+1 13k is positive, the sequen
e fSng1n=0 is also in
reasing.Thus, the sequen
e fSng1n=0 
onverges.9.6.2 Euler's ConstantGalileo: We now turn to the important 
onstant e dis
overed by the Swiss mathemati-
ian and astronomer Leonhard Euler (1707-1783). Professor Euler was probably themost proli�
 mathemati
ian of all time. He was amazingly produ
tive. Any 
omplete
olle
tion of his books is an in
redible nuisan
e to the librarian in 
harge of �ndingshelf spa
e.Example 9.6.3. We begin with a de�nition of the 
onstant that bears his name.De�nition 9.6.7 (Euler's Constant). e =P1k=0 1k! :Simpli
io: Even I remember that e = 2:71828182845905:Virginia: How do you remember all those numbers?Simpli
io: Andrew Ja
kson (1767-1845) was ele
ted president of the United States in1828.Galileo: But, does the in�nite sum make any sense?



9.6. SERIES 157Theorem 9.6.8. There is a 
onstant e su
h that e =P1k=0 1k! :Proof. Virginia: Sin
e e = P1k=0 1k! : = limn!1 Sn; where Sn = Pnk=0 1k! ; all we haveto do is show the sequen
e of partial sums fSng1n=1 is bounded and in
reasing.Simpli
io: But Sn+1 = Sn + 1(n+1)! so the sequen
e is in
reasing.Virginia: Sin
e 1k! � 12k for all k = 0; 1; 2; : : : ;Pnk=0 1k! � 1+Pnk=0 12k � 1+ 2 = 3; forall n = 0; 1; 2; : : : ; Sin
e the sequen
e of partial sums Sn = Pnk=0 1k! is bounded andin
reasing, there is a real number e with the property that e = limn!1 Sn:9.6.3 Convergen
e Tests for SeriesGalileo: In the spirit of Professor Polya, let's take a se
ond look at the argument thatthe number e is well de�ned. What do you observe about the series?Virginia: Sin
e the terms of the series are positive, the sequen
e of partial sums isin
reasing.Simpli
io: But that is obvious. The only hard part of the argument is to show thesepartial sums are bounded.Galileo: You have just generalized our example into a theorem.Theorem 9.6.9. If P1k=0 ak is a series with the property that ak � 0 for all k =0; 1; : : : ; and the partial sums Sn = Pnk=0 ak are bounded, then the series 
onverges.In parti
ular, if Sn �M for all n; then S =P1k=0 ak �M:Proof. Simpli
io: Even I 
an see that this theorem is an obvious 
onsequen
e of thefa
t the sequen
e of partial sums Sn is bounded and in
reasing. Thus, the seriesP1k=0 ak 
onverges.Galileo: Very good. Note that whenever we have identi�ed a series P1k=0 ak as
onvergent, we have observed that limk!1 ak = 0: Let's en
apsulate this observationinto a theorem.Theorem 9.6.10. If the series P1k=0 ak is 
onvergent, then limn!1 an = 0:



158 CHAPTER 9. LIMITSProof. Virginia: But this fa
t is easy to prove. All we have to noti
e is thatlimn!1 an = limn!1( nXk=0 ak � n�1Xk=0 ak)= limn!1(Sn � Sn�1) = limn!1Sn � limn!1Sn�1 = S � S = 0:Example 9.6.4. Galileo: Before we move on, let's 
onsider an example, whi
h showshow this theorem 
an be applied. Consider the series P1k=0(�1)k = 1 + (�1) + 1 +(�1) + � � �+ What do you think this series should be?Simpli
io: Sin
e we 
an group the sum as1 + (�1 + 1) + (�1 + 1) + (�1 + 1) + � � � = 1 + (0) + (0) + (0) + � � � = 1;it looks to me like the series should equal 1:Virginia: Sin
e we 
an group the sum as(1 +�1) + (1 +�1) + (1 +�1) + (1 +�1) + � � � = 0 + (0) + (0) + (0) + � � � = 0;it looks to me like the series should equal 0:Galileo: Mathemati
ians de
ided a while ba
k that 
ertain expressions of symbolsshould be 
lassi�ed as nonsense. Sin
e the 
ontrapositive of Theorem 9.6.10 statesthat if the sequen
e fakg1k=0 does anything other than 
onverge to zero, then the seriesP1k=0 ak diverges.Virginia: In other words, the series is nonsense.Galileo: Corre
t.Simpli
io: Wait a minute! I have a better theorem:If limn!1 an = 0; then the series P1k=0 ak 
onverges.I am sure it is true.Galileo: Whenever a mathemati
ian proves a theorem, he/she immediately asks thequestion: Is the 
onverse? Are you making a 
onje
ture that the 
onverse of Theorem9.6.10 is true?Simpli
io: I guess so.



9.6. SERIES 159Example 9.6.5. Galileo: How about if we sum the famous Harmoni
 Series givenby the formula P1k=1 1k? If we sum the �rst few billion terms, the series seems to
onverge. In parti
ular, 
onsider the data in Table 9.1.N Harmoni
 Sum10 2.92896825396825100 5.18737751763961,000 7.4854708605503410,000 9.78760603604435100,000 12.090146129863341,000,000 14.3927267228649910,000,000 16.69531136585727100,000,000 18.997896413852551,000,000,000 21.3004815023485510,000,000,000 22.06477826202586100,000,000,000 22.06477826202586Table 9.1: The Sum of the Harmoni
 Series PNk=1 1kSimpli
io: Looks to me like we have 
onvergen
e. The last two 
omputations areidenti
al.Galileo: Sadly, while it looks like the series 
onverges to a number a bit larger than22.064778, our optimism is unjusti�ed. Consider the following proposition.Proposition 9.6.11 (The Harmoni
 Series Diverges). If N = 2n; thenPNk=1 1k > n2 : Thus, the series P1k=1 1k diverges.Proof. If n = 1; then N = 21 and PNk=1 1k = 1 + 12 > 12 :If n = 2; then N = 22 and PNk=1 1k = (1 + 12) + (13 + 14) > 12 + 12 = 212 :If n = 3; then N = 23 andPNk=1 1k = (1+ 12+ 13+ 14)+(15+ 16+ 17+ 18) > 212+ 12 = 312 :And so it goes.
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io: OOPS! I was wrong.Galileo: No worries. Not all of our �rst thoughts are 
orre
t.Simpli
io: So if n = 40; then N = 240 � 1:0995 � 1012: Thus, the sum of the �niteharmoni
 series is PNk=1 1k > n2 = 402 = 20: Hey, that's about right! Looks like my
onje
ture is out the window.Virginia: I don't quite understand this example yet. What will happen if you justkeep adding more numbers of the form 1k?Galileo: If you are above the pre
ision of the 
omputer, you will simply be addingreal numbers of the form 1k : Sin
e k is \large," 1k = 0: In other words, the a
tivitywon't be very produ
tive.
Example 9.6.6. Now let's modify the de�nition of Euler's 
onstant and ask thequestion: Does the series P1k=0 (�1)kk! 
onverge?Simpli
io: Can we 
ompare this series to the geometri
 series P1k=0 (�1)k2k ?Galileo: There are good ideas and bad ideas. Your idea does not work so well. Vir-ginia?Virginia: While the sequen
e of partial sums fail to be in
reasing for these series, theyare still Cau
hy. In parti
ular, we 
an 
he
k this fa
t by following the steps in theusual program.Step 1. The ChallengeLet � > 0 be given.Step 2. The Choi
eChoose N so that 12N < �:Step 3. The Che
k



9.6. SERIES 161If n � N; then the di�eren
ejSn � SN j = j nXk=0 (�1)kk! � NXk=0 (�1)kk! j= j nXk=N+1 (�1)kk! j� nXk=N+1 j(�1)kk! j= nXk=N+1 1k!� nXk=N+1 12k < 12N+1 11� 12 = 12N+12 = 12N < �Thus, we have shown the sequen
e of partial sums is Cau
hy.Galileo: Very good.Galileo: In the spirit of Professor Polya, let's take a se
ond look at this example andmake a number of observations about this example.1. The positive and negative signs don't make a di�eren
e.2. The 
omparison with a known series, the geometri
 series, does make a di�er-en
e.We now generalize these examples and observations into a theorem.Simpli
io: Why didn't you 
ompare the series P1k=0 (�1)kk! with the series for Euler's
onstant e =P1k=0 1k!?Galileo: Good observation. While we 
ould have done that, I thought you would bemore 
omfortable with the familiar geometri
 series. However, your observation isuseful be
ause it leads to a general theorem.Theorem 9.6.12 (Absolute Convergen
e). If the seriesP1k=0 jakj 
onverges, thenthe series P1k=0 ak 
onverges. In parti
ular, if P1k=0 jakj < 1; then P1k=0 ak 
on-verges.



162 CHAPTER 9. LIMITSProof. Virginia: Using the previous example as a guide, we need only show the se-quen
e of partial sums fSn =Pnk=0 akg1n=0 is Cau
hy.Step 1. The ChallengeLet � > 0 be given.Step 2. The Choi
eSin
e we are assuming the seriesP1k=0 jakj 
onverges, the partial sums Tn =Pnk=0 jakjare Cau
hy 9.5.2. Thus, we 
an �nd an integer N with the property that if n � N;then jTn � TN j < �:Step 3. The Che
kIf n � N; then the di�eren
ejSn � SN j = j nXk=0 ak � NXk=0 akj= j nXk=N+1 akj� nXk=N+1 jakj= jTn � TN j < �:Sin
e the sequen
e of partial sums fSng1k=0 is Cau
hy, we know by Theorem 9.5.3that it 
onverges.Simpli
io: How about an example?Example 9.6.7. Galileo: How about the series P1k=1 k�1k (�1)kk! ?Simpli
io: Now that we have the Absolute Convergen
e Theorem 9.6.12 all we haveto do is show the series P1k=1 jk�1k (�1)kk! j is bounded.However, by the Squeezing Theorem for Series 9.6.6 we simply note that1Xk=1 jk � 1k (�1)kk! j = 1Xk=1 k � 1k 1k! � 1Xk=1 1k! = e� 1 <1:Thus, the series P1k=1 k�1k (�1)kk! 
onverges.Simpli
io: A
tually, we showed more. Namely, we showed the series P1k=1 k�1k 1k! also
onverges.



9.6. SERIES 163Galileo: On
e again, we 
an en
apsulate this spe
ial 
ase as a new theorem 
alled theComparison Test 9.6.13.Theorem 9.6.13 (Comparison Test). . If ak and bk are real numbers for k =0; 1; 2; : : : ; su
h that1. bk � 0 for k = 0; 1; 2; : : : ;2. jakj � bk for k = 0; 1; : : : ; and3. P1k=0 bk �M < +1;then the series P1k=0 ak 
onverges.Proof. Simpli
io: But even an engineer 
an now prove this theorem. By the theSqueezing Theorem 9.6.6 P1k=0 jakj � P1k=0 bk � M < +1: By the Absolute Con-vergen
e Theorem 9.6.12, the series P1k=0 ak 
onverges.Galileo: Very good. Note that the Absolute Convergen
e Theorem 9.6.12 and Com-parison Test 9.6.13 inspire the following de�nition.De�nition 9.6.14 (Absolute Convergen
e). If a series of real numbers P1k=0 akhas the property that P1k=0 jakj 
onverges, then the series 
onverges Absolutely:As it turns out, whenever you su

essfully apply a 
omparison test, you will beable to de
lare your series 
onverges absolutely. Most of your favorite tests will be
omparison tests. What I have found through the ages is that students have a greatpreferen
e for the Ratio Test 9.6.15. It is easy to understand and easy to apply. Infa
t, it is easy to prove be
ause all you have to do is 
ompare a given series with theappropriately 
hosen Geometri
 Series.Corollary 9.6.15 (Ratio Test). If 0 � r < 1 and jak+1j � rjakj for k = 0; 1; 2; : : : ;then the series P1k=0 ak 
onverges. In parti
ular, jP1k=0 akj �P1k=0 jakj � ja0j1�r <1:If r > 1; a0 6= 0; and jak+1j � rjakj for k = 0; 1; 2; : : : ; then the series P1k=0 akdiverges.
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e1. ja0j = ja0j = r0ja0j2. ja1j � rja0j = r1ja0j3. ja2j � rja1j � r2ja0j4. ja3j � rja2j � r3ja0j5. ja4j � rja3j � r4ja0j6. ...7. jakj � rjak�1j � rkja0jand P1k=0 ja0jrk = ja0j1�r < 1; the series P1k=0 ak 
onverges by the Comparison Test9.6.13.If r > 1 and jak+1j � rjakj for k = 0; 1; 2; : : : ; then1. ja0j = ja0j = r0ja0j2. ja1j � rja0j = r1ja0j3. ja2j � rja1j � r2ja0j4. ja3j � rja2j � r3ja0j5. ja4j � rja3j � r4ja0j6. ...7. jakj � rjak�1j � rkja0j .Thus, limk!1 jakj = +1: By Theorem 9.6.10, the series P1k=0 ak diverges.Virginia: So the Ratio Test begins and ends with the Geometri
 Series?Galileo: Corre
t.Simpli
io: How about an example?



9.6. SERIES 165Example 9.6.8. Galileo: How about if we show the seriesP1k=0 k�1k 12k is 
onvergent?Simpli
io: No problem. All we have to do is observe that k�1k 12k < 12k for all k > 0 sothat P1k=0 k�1k 12k �P1k=0 12k = 2 <1:Galileo: Very good.Example 9.6.9. Virginia: What if we modify the previous problem so it reads: Showthe series P1k=0 k 12k is 
onvergent?Galileo: I like this question be
ause it for
es us to rethink our 
hoi
e for r: We alsohave a problem making the 
omparison work for the �rst few terms.Virginia: How about if we 
hoose the ratio r somewhere between 0 and 1? Say, r = 23?Simpli
io: I see that we have a problem with the �rst few terms. ak = k 12k < 23(k �1) 12k�1 = ak�1: For example, if we 
ompute the fra
tion akak�1 = k 12k(k�1) 12k�1 ; then we �ndthat1. If k = 1; then akak�1 = a1a0 = 1 1210 120 = +1:2. If k = 2; then akak�1 = a2a1 = 2 1221 121 = 1:3. If k = 3; then akak�1 = a3a2 = 3 1232 122 = 34 :4. If k = 4; then akak�1 = a4a3 = 4 1243 123 = 23 :Virginia: But obviously, if k � 4; then 0 � akak�1 � 23 : Thus, after the �rst four termsof the series, our sum is dominated by the series1Xk=4(23)k = (23)4 1Xk=0(23)k = (23)4 11� 23 = 1681 � 32 = 2481 :Thus, the series 
onverges. Note that we shifted the indi
es in the summation by 4.Galileo: On
e again, in the spirit of Professor Polya let's 
onvert this example into atheorem.Theorem 9.6.16 (Ratio Test 2). If a series P1k=0 ak has the property thatlimk!1 jak+1jjak j = L < 1; then the series 
onverges. Moreover, if r is any real number
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tly between L and 1 (i.e. 0 � L < r < 1); then there is a 
onstant K > 0 so theseries is dominated by the series KP1k=0 rk = K1�r : If limk!1 jak+1jjak j = L > 1; then theseries P1k=0 ak diverges.Proof. Virginia: Sin
e the open interval (�r; r) 
ontains the limit L; all we have todo is �nd an integer N > 0 with the property that if n � N;then jan+1jjanj 2 (�r; r):The argument now repeats the exa
t same pattern dis
ussed in the �rst RatioTest 9.6.15. The only di�eren
e is that we begin our 
omparisons farther out in theseries.1. jaN+0j = jaN j = r0jaN j2. jaN+1j � rjaN j = r1jaN j3. jaN+2j � rjaN+1j � r2jaN j4. jaN+3j � rjaN+2j � r3jaN j5. jaN+4j � rjaN+3j � r4jaN j6. ...7. jaN+kj � rjaN+k�1j � rkjaN j or (substituting n = N + k)janj � rjan�1j � rn�N jaN j:Thus, 1Xk=0 jaN+kj � 1Xk=0 rkjaN j = jaN j 1Xk=0 rk = jaN j 11� r :Simpli
io: So the se
ret 
onstant K is equal to jaN j?Galileo: Almost, but don't forget the terms ak before aN : If they are larger thanaN ; then K wil have to be in
reased so that the inequality jakj � rkK holds for allk = 0; 1; 2; : : : While the 
onstant K might have to be adjusted, it is the \tail" of theseries (i.e. the terms out "near" 1) that determine 
onvergen
e.Simpli
io: How about if we 
ompute one easy example to show how to apply thisse
ond Ratio Test?



9.6. SERIES 167Example 9.6.10. Galileo: Moments ago we showed the series P1k=0 k2k 
onverges.Using Ratio Test 2, all we have to do is 
ompute the limitL = limk!1 ak+1ak = limk!1 (k+1)2k+1k2k = limk!1 12 (k + 1)k = 12 limk!1 (k + 1)k = 12 < 1:Sin
e L < 1; the series 
onverges.Example 9.6.11. Galileo: How about if we 
ompute one more example illustratinghow the Geometri
 Series 
an be used to show 
onvergen
e? Namely, let's show thatthe series P1k=1 1kk 
onverges.Virginia: This problem is easy be
ause 1kk � 12k for all k � 2:Galileo: True, but I don't want to do it that way. Instead, I want to 
ompute thekth root of 1kk and noti
e that kq 1kk = 1k � 12 for all k � 2: Thus, 
omputing thekth power of both sides of this inequality we see that 1kk � 12k for k � 2: Thus,P1k=2 1kk �P1k=2 12k = 122 P1k=0 12k = 122 11� 12 = 12 :Galileo: Now let's take a se
ond look at this pro
ess and generalize it into a theorem.Virginia: Professor Polya again?Theorem 9.6.17 (nth Root Test). If a series P1k=0 ak has the property thatkpjakj � r < 1 for all k = 0; 1; 2; : : : ; then the series S = P1k=0 ak 
onverges.Moreover, jSj � 11�r <1:Proof. Sin
e kpjakj � r < 1 for all k = 0; 1; 2; : : : ; jakj � rk for all k = 0; 1; 2; : : : :Thus,1. ja0j � r0;2. ja1j � r1;3. ja2j � r2;4. ja3j � r3;5. ...



168 CHAPTER 9. LIMITS6. jakj � rk:Thus, P1k=0 jakj �P1k=0 rk = 11�r < +1:Simpli
io: So, the se
ret to life is to 
ompare with the Geometri
 Series!Galileo: Not so fast.Virginia: A
tually, I am a bit worried. It seems to me that we have negle
ted aspe
ial 
ase in Theorem 9.6.16 when the limit L = limk!1 jak+1jjakj = 1: I noti
ed thatthe series P1k=1 1k has the property that L = limk!1 kk+1 = 1: Yet, it diverges. Canwe 
on
lude that a series always diverges when this limit L = 1?Example 9.6.12. Galileo: The standard student mistake is to apply the Ratio Testto every series problem. For example, let's 
onsider the seriesP1k=1 1k2 : Using FourierSeries we 
an show that P1k=1 1k2 = �26 :Virginia: I will interested to learn why that is true.Galileo: However, if we apply the Ratio Test, we see thatL = limk!1 1(k+1)21k2 = limk!1 k2(k + 1)2 = ( limk!1 kk + 1)2 = 1:Simpli
io: What does that tell us?Virginia: Sin
e we have observed there are both divergent and 
onvergent series withthe property that the limit L = 1; the Ratio Test provides no useful information inthis setting.Galileo: To be blunt, the Ratio Test 
annot be applied.Simpli
io: So we need more te
hniques?Galileo: Unfortunately, the answer to your question is yes.Simpli
io: So, math is not so easy after all.Example 9.6.13. Galileo: Let's now turn to a slightly more deli
ate series1Xk=1 (�1)k+1k = 1� 12 + 13 � 14 + � � �+ (�1)k+1 1k + : : :
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onverges. From a geometri
 point of view, this series must 
onverge be
ause for nequal to an even integer we see thatSn = nXk=1 (�1)k+1k = (1� 12) + (13 � 14) + � � �+ ( 1n� 1 � 1n):1. the di�eren
e 1� 12 equals the length of the interval [12 ; 1℄;2. the di�eren
e 13 � 14 equals the length of the interval [14 ; 13 ℄;3. the di�eren
e 15 � 16 equals the length of the interval [16 ; 15 ℄;4. the di�eren
e 1n�1 � 1n equals the length of the interval [ 1n�1 ; 1n ℄;Sin
e these intervals are pairwise disjoint, the partial sum is (at least for n even)Sn = nXk=1 (�1)k+1k = (1� 12) + (13 � 14) + � � �+ ( 1n� 1 � 1n) � 1:Thus, the sequen
e of partial sum fS2ng1n=1 is bounded and in
reasing and thus 
on-verges to some number S:While the di�eren
e between Sn and Sn+1 is Sn+1�Sn = 1n+1and thus small, you have to be 
areful about about the di�eren
e Sn � SN be
ause itis possible that the sum of many small di�eren
es 
ould a

umulate into a large one.The argument is a bit 
leaner if we simply show the sequen
e is Cau
hy.Virginia: I 
an �nish the argument.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Choose N to be an even number with the property that N > 2� :Step 3. The Che
k:



170 CHAPTER 9. LIMITSIf n � N; then (again sin
e the intervals [ 1k+2 ; 1k+1 ℄ are disjoint)jSn � SN j = j nXk=1 (�1)k+1k � NXk=1 (�1)k+1k j= j nXk=N+1 (�1)k+1k j= ( 1N + 1 � 1N + 2) + ( 1N + 3 � 1N + 4) + ( 1N + 5 � 1N + 6) : : :+ ( 1n� 1 � 1n)= ( 1N + 1 � 1N + 2) + ( 1N + 2 � 1N + 4) + ( 1N + 4 � 1N + 6) : : :+ ( 1n� 2 � 1n)= 1N + 1 � 1n < 1N < �:Simpli
io: What if the integer n is odd?Virginia: No worries. You simply get an extra 
opy of the fra
tion 1n hanging out onthe end. That is why we 
hose N > 2� :Simpli
io: Is there any way to add up the terms of this series?Galileo: A
tually, we will see that ideas from Taylor Series 
an be used to show thatln(2) = loge(2) =P1k=1 (�1)k+1k :Galileo: In the spirit of Professor Polya, we would now like to generalize this exampleinto a theorem.Theorem 9.6.18 (Alternating Series Test). If fakg1k=0 is a sequen
e of real num-bers with the property that ak � ak+1 � 0 and limk!1 ak = 0; then P1k=0 ak(�1)k
onverges to a number less than a0:Proof. Virginia: I would like to work this problem. Following the outline providedby the example we just dis
ussed, all we have to do is show the sequen
e of partialsums is Cau
hy.Step 1. The Challenge:Let � > 0 be given.
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e:Choose N to be an even number with the property that aN < �2 :Step 3. The Che
k:If n is an even integer and n � N; thenjSn � SN�1j = j nXk=0 ak � N�1Xk=0 akj= j nXk=N akj= (aN � aN+1) + (aN+2 � aN+3) + (aN+4 � aN+5) + � � �+ (an � an�1)< (aN � aN+1) + (aN+1 � aN+3) + (aN+3 � aN+5) + � � �+ (an � an�1)= aN � an�1 < aN < �:Simpli
io: In other words, if you in
rease aN+2 to aN+1; aN+4 to aN+3; aN+6 to aN+5;et
., then the sum Pnk=N ak 
ollapses to aN � an�1:
Figure 9.4: The Proof of the Alternating Series TestVirginia: Just like the pi
ture in Figure 9.4.Simpli
io: What if n is an odd integer?Virginia: If n is an odd, then we have one more term to deal with. Namely, the sumjPnk=N akj � aN � an�1 + an+1 � �2 + �2 = �:

Simpli
io: So, are we done yet?Galileo: The fa
t that the series P1k=1 (�1)k+1k 
onverges, while the series P1k=1 1kdiverges leads to the 
on
ept of 
onditional 
onvergen
e, whi
h we now de�ne.



172 CHAPTER 9. LIMITSDe�nition 9.6.19. If the seriesP1k=0 ak 
onverges, while the seriesP1k=0 ak diverges,then the series is 
alled 
onditionally 
onvergent:Example 9.6.14. Galileo: Obviously the series P1k=0(�1)k+1 1k is 
onditionally 
on-vergent.Simpli
io: What about our Geometri
 Series and our 
omparison tests?Galileo: Think about it. Whenever you apply a 
omparison test to show a series
onverges, you ALWAYS prove absolute 
onvergen
e. If a series 
onverges absolutely,it NEVER 
onverges 
onditionally.9.6.4 Power SeriesGalileo: We now turn to the topi
 of Power Series. While Isaa
 Newton 
onsideredevery fun
tion to be a polynomial (�nite or in�nite) and while Power Series have alife of their own, we are not going to spend an ex
essive amount of time on this topi
,Instead, our goal is to use this topi
 as a bridge between 
onvergen
e tests for seriesand Taylor Series.Simpli
io: So, what is a Power Series?De�nition 9.6.20. A Power Series is a series of the form P1k=0 akxk:Simpli
io: So a Power Series is a �nite or in�nite polynomial.Galileo: The next theorem is an immediate 
onsequen
e of the Ratio Test 29.6.16.Theorem 9.6.21. If a series P1k=0 ak has the property thatL = limk!1 jak+1jjakj ; then the Power Series P1k=0 akxk 
onverges for all jxj < 1L :Proof. If jxj < 1L ; thenlimk!1 jak+1xk+1jjakxkj = limk!1 jxj jak+1jjakj = jxj limk!1 jak+1jjakj = jxjL < 1LL < 1:Thus, the series 
onverges by the Ratio Test 2 9.6.16.Simpli
io: How about some examples?



9.6. SERIES 173Example 9.6.15. Galileo: You have �ve friends:1. 11�x =P1k=0 xk = 1 + x+ x2 + x3 + : : : ; for jxj < 1;2. ex =P1k=0 xkk! = 1 + x+ x22! + x33! + : : : ; for x 2 <3. 
os(x) =P1k=0(�1)k x2k(2k)! = 1� x22! + x44! � x55! + : : : ; for x 2 <4. sin(x) =P1k=0(�1)k x2k+1(2k+1)! = x� x33! + x55! � x77! + : : : ; for x 2 < and5. ln(1� x) = loge(1� x) = �P1k=0 xk+1k+1 = �x� x22 � x33 � : : : ; for x 2 [�1; 1):Simpli
io: Where did these formulas 
ome from? How am I going to be able toremember them?Galileo: While we will wait until our dis
ussion of Taylor Series to justify these series,they should be in your 
omfort zone.1. The �rst equation is our old friend the Geometri
 Series.2. The se
ond is the exponential fun
tion, where you need only remember the k!in the denominator of the fra
tion xkk! :3. The third is the 
osine fun
tion, whi
h is almost the same as the exponentialex
ept for the alternating sign. If you remember that the fun
tion 
os(x) is aneven fun
tion (i.e. f(x) = f(�x); for all x 2 <); then only the terms xk witheven exponents will appear.4. The fourth is the sine fun
tion, whi
h is almost the same as the 
osine. If youremember that the fun
tion sin(x) is an odd fun
tion (i.e. f(x) = �f(�x); forall x 2 <); then only the terms xk with odd exponents will appear.5. The fun
tion loge(x) is the integral of the Geometri
 Series.Simpli
io: I see the �rst example is our old friend the Geometri
 Series. The othersexamples look familiar from my study of Cal
ulus. Where did those formulas 
omefrom?



174 CHAPTER 9. LIMITSVirginia: These formulas are all spe
ial 
ases of the Taylor Series formula:f(x) = 1Xk=0 f (k)(x0)k! (x� x0)k;where x0 is some point in <: Of 
ourse, we are assuming that the fun
tion f(x) hasin�nitely many derivatives f (k)(x):Galileo: Very good.Simpli
io: Could we work out the 
oeÆ
ients for one of these friends?Example 9.6.16. Galileo: If f(x) = ex; then re
all that f 0(x) = ex for all x 2 <:Thus, all the higher derivatives f (k)(x) = ex for all x 2 <: If we let x0 = 0; thenf (k)(0) = e0 = 1 for all k = 0; 1; 2; : : : : Thus, the Taylor series isex = 1Xk=0 xkk! = 1 + x + x22! + x33! + : : :Simpli
io: That 
omputation wasn't so bad.Galileo: The justi�
ation for the equal sign takes more work, but we are going tododge that issue for the moment. Let's drive the remainder of our dis
ussion byasking three key questions.1. Where and why does the series 
onverge?2. Can the series be di�erentiated term by term?3. Can the series be integrated term by term?For Power Series, the key to 
onvergen
e is a 
omparison with a Geometri
 Seriesand the asso
iated radius of 
onvergen
e. In Examples 1 and 5, ea
h series has aradius of 
onvergen
e of R = 1: Examples 2, 3, and 4 ea
h series has a radius of
onvergen
e of R = +1: These radii 
an be 
omputed using Theorem 9.6.21.We now present the formal (and slightly more general) de�nition of radius of
onvergen
e.



9.6. SERIES 175De�nition 9.6.22. If x0 2 <; then radius of 
onvergen
e of the seriesP1k=0 ak(x� x0)k isR = lubfr 2 < : if jx� x0j < r; then 1Xk=0 jak(x� x0)kj <1g:Galileo: For all the examples we will 
onsider, R = 1L ; where L = limk!1 jak+1jjakj : Theinterval of 
onvergen
e is the set of all points x< with the property that the seriesP1k=0 ak(x� x0)k 
onverges.Simpli
io: But is this set ne
essarily an interval? Couldn't it be dis
onne
ted?Galileo: No, by the Ratio Test/Geometri
 Series we know that if the seriesP1k=0 akrk
onverges and jx� x0j < r; then the seriesP1k=0 ak(x� x0)k 
onverges. Thus, the setof 
onvergen
e points is always an interval of the form (x0 � R; x0 + R) plus eitherone or both endpoints x0�R or x0�R: Note that the interval of 
onvergen
e for thefun
tion ln(x) is [�1; 1):Simpli
io: Why did you make the de�nition more general to in
lude powers of x�x0?Galileo: When we dis
uss the rate of 
onvergen
e of the Newton/Raphson algorithm,we will let x0 = r; where x = r is a root of the given fun
tion f(x): As you will see,this slight 
hange will appear in other appli
ations as well.Example 9.6.17. Galileo: By substituting y = 1 � x in ln(1 � x) we generate ase
ond representation for ln(x) 
entered at x0 = 1: In parti
ular,ln(x) = loge(x) = � 1Xk=0 (1� x)k+1k + 1 = 1Xk=0 (x� 1)k+1k + 1 for x 2 [0; 2):Note that the interval of 
onvergen
e has shifted to the interval [0; 2):Virginia: If we substitute x = 0 in the formula for ln(x) we getln(2) = 1Xk=0 (0� 1)k+1k + 1 = 1� 12 + 13 � 14 + : : : :Simpli
io: Very interesting.Galileo: But, we do need theorems and proofs to justify these formulas.



176 CHAPTER 9. LIMITSVirginia: Speaking of formulas, I noti
ed that if we 
ompute the derivative of theseries for ex we simply get ba
k ex: Similarly, if we 
ompute the derivatives of theterms of series for 
os(x) and sin(x) we get the appropriate series for the derivatives.Is that always true?Galileo: In fa
t, yes. As long as you stay inside the interval of 
onvergen
e, everythingis �ne.Simpli
io: I noti
ed that if we integrate the Geometri
 Series, we produ
e the seriesfor the log fun
tion.ln(1� x) = � Z x0 11� t dt = � 1Xk=0 Z x0 tk dt = � 1Xk=0 xk+1k + 1 ; :What about integration?Galileo: Again, as long as you stay inside the interval of 
onvergen
e, you 
an integratea series term by term. The next theorem summarizes these remarks.Theorem 9.6.23 (Di�erentiation of Power Series). If f(x) =P1k=0 akxk for allx 2 (�R;R); then f 0(x) =P1k=1 kakxk�1 for all x 2 (�R;R):Galileo: We have a similar result for integration.Theorem 9.6.24 (Integration of Power Series). If f(t) = P1k=0 aktk for allt 2 (�R;R) and x 2 (�R;R); then F (x) = R x0 f(t) dt =P1k=0 ak xk+1k+1 :Galileo: In every in�nite sum of the form f(x) = P1k=0 akxk the equal sign al-ways means that for a �xed value of x; the sequen
e of partial sums Sn = Sn(x) =Pnk=0 akxk forms a Cau
hy sequen
e. (The Comparison Test 9.6.13 guarantees oursequen
e of partial sums fSn = Sn(x)g1n=0 will always be Cau
hy.) Sin
e a Cau
hysequen
e always 
onverges to some quantity, there is no problem denoting the limit bythe fun
tion f(x) = limn!1 Sn(x): A 
onsequen
e of these last two theorems 9.6.239.6.24 is that a fun
tion of the form f(x) = P1k=0 akxk 
an be di�erentiated andintegrated with impunity.Virginia: It all �ts together.
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/Fourier SeriesGalileo: We now turn our dis
ussion to Trigonometri
 Series of the forma02 + 1Xk=1fak 
os(kx) + bk sin(kx)g; for x 2 [��; �℄:Simpli
io: Groan. More math?Galileo: Maybe so, but a multitude of engineering and real-world appli
ations are
onne
ted with fun
tions of this type. In parti
ular, any appli
ation asso
iated withwaves, vibrations, or periodi
 behavior 
an (and probably should) be modeled byfun
tions of this form. Sound, light, radio waves, o
ean waves, and planetary motionare only the beginning. Physi
ists love these fun
tions. For the moment, however,let's limit our dis
ussion to a few key questions.1. Where and why does the series 
onverge?2. Can the series be di�erentiated term by term?3. Can the series be integrated term by term?4. How do we 
ompute the 
oeÆ
ients ak and bk?5. How 
an we use these series to 
ompute 
ertain in�nite sums?Simpli
io: Sounds familiar.Galileo: Before we get started though, let's make a 
ouple of remarks about thebig pi
ture. First, we are now in the position of looking at the 
olle
tion of allintegrable fun
tions on the interval [��; �℄: Sin
e the sum of two integrable fun
tionsis integrable and the produ
t of a s
alar (i.e a real number) and an integrable fun
tionis integrable, it is easy to show that the 
olle
tion of all integrable fun
tions on [��; �℄forms a ve
tor spa
e.Simpli
io: I am not sure I remember the de�nition of a ve
tor spa
e.Virginia: A ve
tor spa
e is simply a 
olle
tion of points with two operations: additionand s
ale multipli
ation. These two operations obey the usual asso
iative, 
ommu-



178 CHAPTER 9. LIMITStative, and distributive laws of Algebra. The additive operation also has an identityand inverses.Simpli
io: But when I took Linear Algebra, our points were in the plane or threespa
e. I never thought of 
os(x) and sin(x) as ve
tors.Galileo: Hermann Grassmann (1809-1877), Giuseppe Peano (1858-1932), and DavidHilbert (1862-1943) 
hanged the equation, In parti
ular, they made the axioms of ave
tor spa
e general enough to in
lude fun
tions as ve
tors?Simpli
io: So, what do I need to know?Galileo: While we will give a more 
omplete dis
ussion of Linear Algebra in a dayor so, the key idea hear is the notion of writing a ve
tor as a linear 
ombination ofve
tors residing in a given basis.Simpli
io: An example please.Galileo: Sin
e you like the plane let's start with the ve
torse1 = 0�101A and e2 = 0�011A :Given a ve
tor v = 0�231A ; we 
an write v = 2e1 + 3e2: Thus, we have written theve
tor v as a linear 
ombination of the ve
tors in the basis B = fe1; e2g:Simpli
io: No issue here.Galileo: The polynomial p2(x) = 3x2 + 5x + 7 is a linear 
ombination of ve
tors inthe basis B = f1; x; x2g:Simpli
io: So, you are thinking of the fun
tions 1; x; x2 and p2(x) as ve
tors?Galileo: You 
an add them; you 
an multiply them by a 
onstant; the asso
iative,
ommutative, and distributive laws apply. Now 
onsider the fun
tion T1(x) = 2 +3 
os(x) + 5 sin(x):Virginia: This time we have the fun
tion T1(x) written as a linear 
ombination ofve
tors in the basis B = f1; 
os(x); sin(x)g:Simpli
io: I am not sure I like this dis
ussion.



9.6. SERIES 179Galileo: As a software engineer, you do write your subroutines to be as general aspossible. Don't you?Simpli
io: Sure. It is expe
ted.Galileo: Then you should appre
iate the e
onomy of having one 
on
ept 
over su
ha broad 
olle
tion of examples. Now let's think about the in�nite. If a parti
ularfun
tion f(x) happens to have derivatives of all orders, the Taylor Series expansionshows that the fun
tion 
an be written as a linear 
ombination of members from thebasis BP = f1; x; x2; x3; : : : ; xn; : : : g:Simpli
io: Ex
ept that we now have the small problem that the sum is in�nite.Virginia: Fortunately, through our understanding of the 
onvergen
e of series, weknow what the sum of an in�nite numer of numbers means.Galileo: The goal now is to 
hange our representation form the basis BP to a newbasis BT = f1; 
os(x); 
os(2x); 
os(3x); : : : ; sin(x); sin(2x); sin(3x); : : : g:Simpli
io: How about a 
ouple of examples to get started?Example 9.6.18. Galileo: Here are a 
ouple of series, where we have represented thepolynomial fun
tions x2 and x2 in terms of sines and 
osines. Note that this strategyis the opposite of the strategy invoked for Taylor Series.1. x2 =P1k=1(�1)k+1 1k sin(kx); for x 2 (��; �);2. x2 = �23 � 4P1k=1(�1)k+1 1k2 
os(kx); for x 2 [��; �℄;3. jxj = �2 � 4�P1k=1 1(2k�1)2 
os((2k � 1)x); for x 2 [��; �℄;Simpli
io: I hope there is a formula for 
omputing the 
oeÆ
ients for these series.Galileo: No worries. While we will eventually give you a tidy little formula, let's fo
uson the 
onvergen
e, di�erentiation, and integration issues �rst. What do you noti
e?Virginia: I noti
e with these examples that you gave an interval of 
onvergen
e.
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e the fun
tions 
os(x) and sin(x) are 2� periodi
 and x represents anangle (in radians of 
ourse), the interval of 
onvergen
e will almost invariably be
hosen to as [��; �℄ or [0; 2�℄:Simpli
io: I noti
e that the fun
tion x2 is odd and is written as a linear 
ombinationof the odd fun
tions sin(kx); for k = 1; 2; 3; : : : A also that the fun
tions x2 and jxjare even and 
an be written as a linear 
ombination of the even fun
tions 
os(kx);for k = 1; 2; 3; : : :Galileo: In fa
t, you have noted a 
ompletely general property about Trigonometri
fun
tions.Simpli
io: I also noti
ed that we won't have to 
ompute the radius of 
onvergen
e forthis type of series.Galileo: Corre
t.Virginia: What about 
onvergen
e?Galileo: With Trigonometri
 Series, 
onvergen
e is a deli
ate issue. There is goodnews and bad news.Simpli
io: I vote to hear the good news �rst.Galileo: OK, let's begin by looking at examples 2 and 3 above. What do you noti
eabout the series1Xk=1 ak = 1Xk=1(�1)k+1 1k2 and 1Xk=1 a2k�1 = 1Xk=1 1(2k � 1)2 ?Virginia: They both 
onverge absolutely.Galileo: Corre
t. So what does that tell you about the series1Xk=1(�1)k+1 1k2 
os(kx) and �23 � 4 1Xk=1(�1)k+1 1k2 
os(kx)?Simpli
io: Sin
e j
os(kx)j � 1 for any k and all x; they both 
onverge absolutely bythe Comparison Test 9.6.13. In parti
ular,1Xk=1 j(�1)k+1 1k2 
os(kx)j � 1Xk=1 1k2 = �26 <1:Galileo: Corre
t. So, 
ould someone please state the next theorem?Virginia: I 
an.



9.6. SERIES 181Theorem 9.6.25. If 1Xk=1(jakj+ jbkj) < +1;then the series 1Xk=1fak 
os(kx) + bk sin(kx)g
onverges absolutely for all x 2 [��; �℄:Proof. Galileo: So, how about a proof?Virginia: Easy.If x 2 [��; �℄; then1Xk=1fjak 
os(kx) + bk sin(kx)jg � 1Xk=1fjakj+ jbkjg < +1:
Galileo: Wat
hing the human mind extrapolate general theorems from a few spe
ial
ases is a wonderful thing. How about some more good news?Simpli
io: Good news is good.Galileo: If we let x = � in the equationx2 = �23 � 4 1Xk=1(�1)k+1 1k2 
os(kx);then we see that�2 = �23 � 4 1Xk=1(�1)k+1 1k2 
os(k�) = �23 � 4 1Xk=1(�1)2k+1 1k2 :Thus, 1Xk=1 1k2 = �26 :Simpli
io: Magi
!!Virginia: Its even a good way to 
ompute �:Galileo: Better than Ar
himedes' method for 
omputing �:.Simpli
io: With all this good news, what's the problem with these Trig Series?



182 CHAPTER 9. LIMITSGalileo: How about if we go ba
k to equation 1? If x = �; then�2 = 1Xk=1(�1)k+1 1k sin(k�) = 0 + 0 + 0 + � � � = 0:Simpli
io: OOPS!Virginia: Now I understand why you didn't in
lude �� in the interval of 
onvergen
e.Galileo: The news gets worse. What 
an you say about the 
onvergen
e of the series1Xk=1(�1)k+1 1k sin(kx)?Simpli
io: Nothing.Galileo: That's right.Virginia: None of the Convergen
e Tests work. The Ratio, Root, and ComparisonTests 
an't be applied be
ause the series P1k=1 1k diverges.Simpli
io: What about the Alternating Series Test?Virginia: Unfortunately, the sign of kth term ak = (�1)k+1 1k sin(kx) of the sequen
ealternates so irregularly (almost randomly) that no pattern emerges. Thus, there isno hope for the Alternating Series Test.Galileo: In fa
t, the argument that this series 
onverges for x 2 (��; �) is quite tri
ky.Simpli
io: I don't know if I 
an stand any more of this good news.Galileo: The prrof will be left for another day.Simpli
io: Sounds like good news to me.Galileo: Qui
kly now. I am running out of time. Lets �nish with an observationabout di�erentiation and integration. Note that if we di�erentiate Equation 2, wearrive at Equation 1.Simpli
io: And if we integrate Equation 1, we get Equation 2. What's the big deal?This te
hnique worked �ne for Taylor.Galileo: Equation 2 has ex
ellent 
onvergen
e properties. Equation 1 has poor 
on-vergen
e properties. Every time you di�erentiate a fun
tion of the formtk(x) = ak 
os(kx) + bk sin(kx);



9.6. SERIES 183you �nd that t0k(x) = �kak sin(kx) + kbk 
os(kx):Every time you integrate a fun
tion of the formtk(x) = ak 
os(kx) + bk sin(kx);you �nd that Z tk(x) dx = 1kak sin(kx)� 1kbk 
os(kx) + C:The fa
tor k produ
ed by di�erentiation retards 
onvergen
e. The fa
tor 1k produ
edby integration improves 
onvergen
e. The bottom line is that integration is goodwhile di�erentiation is dangerous.Virginia: Wait a minute! I see a problem if the 
onstant C 6= 0: For example, ifC = 12 ; then if we integrate a se
ond time then we will have that unhappy series for x2appearing. I anti
ipate the formulas be
oming more 
ompli
ated and the 
onvergen
egetting worse.Example 9.6.19. Galileo: In fa
t, you are 
orre
t. While Mathemati
ians lust fortidy little formulas, Mother Nature does not always 
ooperate. Here are a 
ouple moreexamples:1. �2x�x312 =P1k=1(�1)k+1 1k3 sin(kx); x 2 [��; �℄2. x3�3�x2+2�2x12 =P1k=1 1k3 sin(kx); x 2 [0; 2�℄Simpli
io: How about a qui
k hint at an appli
ation before we leave?Galileo: The First Harmoni
 (or Fundamental Overtone) of the series is the terma1 
os(x) + b1 sin(x): The Se
ond Harmoni
 is given by a2 
os(2x) + b2 sin(2x): Thesetwo harmoni
s are important in spee
h re
ognition, �ltering, and a host of otherappli
ations. In signal 
ompression (e.g. JPEG), radio, and television the key idea isto �lter out the frequen
y terms ak 
os(kx) + bk sin(kx); where k is large.Simpli
io: How do you do that?
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ompute the Fourier Transform (i.e. 
ompute the ak and bk terms),delete the high frequen
y 
omponents, and then 
ompute the inverse Fourier Trans-form, then this new signal is the �ltered version of the old.Simpli
io: By the way, you promised to give us the formulas for the Fourier Transform.Galileo: OK, here are the formulas for the 
oeÆ
ients.Theorem 9.6.26 (Fourier CoeÆ
ients). If f(x) : [��; �℄! < is 
ontinuous, thenak = 1� Z ��� f(x) 
os(kx) dx for k = 0; 1; 2; 3; : : :bk = 1� Z ��� f(x) sin(kx) dx for k = 1; 2; 3; : : :Simpli
io: But where did these formulas 
ome from?Galileo: Pythagoras.Simpli
io: Pythagoras? Surely, you are joking, Professor Galileo. What did Pythago-ras know about Trigonometri
 Series?Galileo: We will explain. First, 
onsider the following proposition, whi
h e�e
tivelystates that that the fun
tions 
os(kx) and sin(kx) are orthogonal. This propositionwill get us half way to Pythagoras.Proposition 9.6.27 (Orthogonality of Cos(x) and Sin(x)). If m and n arepositive integers, then1. R ��� 
os(mx) dx = 0:2. R ��� sin(nx) dx = 0:3. R ��� 
os(mx) sin(nx) dx = 0:4. If m 6= n; then R ��� 
os(mx) 
os(nx) dx = 0:5. If m 6= n; then R ��� sin(mx) sin(nx) dx = 0:Proof. Galileo: What about proofs?1. R ��� 
os(mx) dx = 0:
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io: This integral is zero be
ause when we draw the graph of the fun
tiony = 
os(x); it is obvious that the area under the 
urve is zero on both of the intervals[��; 0℄ and [0; �℄: If m is a positive integer, then the fun
tion 
os(mx) is the same as
os(x) ex
ept that it goes up and down m times.Virginia: You 
an also apply the Fundamental Theorem of Cal
ulus 11.7.3 to observethat R ��� 
os(mx) dx = sin(mx)m j�x=�� = 0� 0 = 0:Simpli
io: The Fundamental Theorem of Cal
ulus works too.2. R ��� sin(nx) dx = 0:Simpli
io: This integral is zero be
ause when we draw the graph of the fun
tiony = sin(nx) is an odd fun
tion on [��; �℄:Virginia: The Fundamental Theorem of Cal
ulus also works.3. R ��� 
os(mx) sin(nx) dx = 0:Simpli
io: Sin
e the fun
tion y = 
os(mx) is even and the fun
tion y = sin(nx) isodd, the produ
t is odd. Thus, integral is zero.4. If m 6= n; then R ��� 
os(mx) 
os(nx) dx = 0:Simpli
io: I don't see how to prove this fa
t.Virginia: Neither do I.Galileo: A little trigonometry goes a long way here. Re
all your sum formulas for
os(x) and observe.1: 
os(A� B) = 
os(A) 
os(B) + sin(A) sin(B)2: 
os(A+B) = 
os(A) 
os(B)� sin(A) sin(B)3: 
os(A� B) + 
os(A+B) = 2 
os(A) 
os(B)Note that the third equation is the sum of the �rst two. Thus,
os(A) 
os(B) = 12f
os(A� B) + 
os(A+B)g:Virginia: I see how to �nish the argument. All we have to do is let A = mx and



186 CHAPTER 9. LIMITSb = nx and substitute into the integral. Thus,Z ��� 
os(mx) 
os(nx) dx = Z ��� 12f
os(mx� nx) + 
os(mx + nx)g dx= Z ��� 12f
os((m� n)x) + 
os((m+ n)x)g dx= 12 Z ��� 
os((m� n)x) dx+ 12 Z ��� 
os((m + n)x) dx= 0 + 0 = 0:Simpli
io: Looks like we used Fa
t 1 twi
e to get the last two zeros.5. If m 6= n; then R ��� sin(mx) sin(nx) dx = 0:Simpli
io: On
e again, I don't see how to prove this fa
t.Virginia: I think I do. All we have to do is subtra
t the equations we had before. Inparti
ular,1: 
os(A�B) = 
os(A) 
os(B) + sin(A) sin(B)2: 
os(A +B) = 
os(A) 
os(B)� sin(A) sin(B)3: 
os(A�B)� 
os(A+B) = 2 sin(A) sin(B):Note that the third equation is equation 2 subtra
ted from eqation 1. Thus,sin(A) sin(B) = 12f
os(A� B)� 
os(A+B)g:The rest of the argument is the same as before be
auseZ ��� sin(mx) sin(nx) dx = Z ��� 12f
os((m� n)x)� 
os((m+ n)x)g dx= 12 Z ��� 
os((m� n)x) dx� 12 Z ��� 
os((m + n)x) dx= 0 + 0 = 0:
Simpli
io: While that proposition was a bit long, it really was quite understandablebe
ause it only require you know basi
 fa
ts from Trigonometry and Cal
ulus.



9.6. SERIES 187Galileo: The next proposition provides us with the lengths of the basis ve
tors1; 
os(nx); sin(nx):Proposition 9.6.28 (Fourier Equal Lengths Formulas for Cos(x) and Sin(x)).If n is a positive integer, then1. R ��� 1 dx = 2�;2. R ��� 
os2(nx) dx = �;3. R ��� sin2(nx) dx = �:Proof. Simpli
io: What Trig fa
t do we need this time?Galileo: While the �rst integral is easy, the other two rely on the half angle formulasrelating the square of the fun
tions 
os(x) and sin(x) and 
os(2x): In parti
ular,1. 
os2(x) = 1+ 
os(2x)2 and2. sin2(x) = 1� 
os(2x)2 :Virginia: Thus,Z ��� 
os2(nx) dx = Z ��� 1 + 
os(2x)2 dx = Z ��� 12 dx+ Z ��� 
os(2x)2 dx = � + 0 = �:Simpli
io: And,Z ��� sin2(nx) dx = Z ��� 1� 
os(2x)2 dx = Z ��� 12 dx� Z ��� 
os(2x)2 dx = � + 0 = �:
Galileo: Now that we have dis
ussed the Orthogonality and Equal Lengths Proposi-tions 9.6.27, 9.6.28, we are ready to prove the Fourier CoeÆ
ients Formula 9.6.26.Proof. Galileo: While the general proof of the Fourier CoeÆ
ients Theorem 9.6.26 isdiÆ
ult and requires a deep understanding of integration theory, we are now readyto prove it for the �nite dimensinal 
ase. To keep the subs
ripts and notation out ofthe dis
ussion, let's 
onsider the spe
ial 
ase when f(x) = a02 +a10�s(x)+a2 
os(2x)+



188 CHAPTER 9. LIMITSb1 sin(x) + b2 sin(2x): How about if we show you how to 
ompute the formula for the
oeÆ
ient a2?Simpli
io: Simple is good.Galileo: Step 1. Multiply both sides of the equation by the fun
tion 
os(2x):When we do this, we �nd thatf(x) 
os(2x) =(a02 + a1 
os(x) + a2 
os(2x) + b1 sin(x) + b2 sin(2x) ) 
os(2x)=a02 
os(2x) + a1 
os(x) 
os(2x) + a2 
os(2x) 
os(2x)+ b1 sin(x) 
os(2x) + b2 sin(2x) 
os(2x):Step 2. Integrate both sides of the equation.When we do this, we �nd by the Orthogonality Property (Proposition 9.6.27) andthe Equal Lengths Property (Proposition 9.6.28)Z ��� f(x) 
os(2x) dx =Z ��� a02 
os(2x) dx+ Z ��� a1 
os(x) 
os(2x) dx+ Z ��� a2 
os(2x) 
os(2x) dx + Z ��� b1 sin(x) 
os(2x) dx+ Z ��� b2 sin(2x) 
os(2x) dx= 0 + 0 + Z ��� a2 
os(2x) 
os(2x) dx+ 0 + 0= a2 Z ��� 
os(2x) 
os(2x) dx = a2�:Thus, a2 = 1� Z ��� f(x) 
os(2x) dx:Simpli
io: How about an example?Example 9.6.20. Galileo: If f(x) = 1 for x 2 [��; �℄; then a0 = 2 and ak = bk = 0for all k = 1; 2; : : : :Simpli
io: That example was too easy. How about a more 
hallenging one?



9.6. SERIES 189Example 9.6.21. Galileo: Iff(x) = 8<: 1; x 2 [��; 0℄�1; x 2 [0; �℄Virginia: Sin
e the fun
tion f(x) is odd, we know that ak = 0 for all k = 0; 1; 2; 3; : : :Simpli
io: On the other hand, sin
e f(x) is odd, the fun
tion f(x) sin(kx) is even.Thus, bk = 1� Z ��� f(x) sin(kx) dx = 2� Z �0 sin(kx) dx= 2� � 
os(kx)k ���x=0= � 2� (
os(k�)� 1)= � 2� (�1)k � 1k :In parti
ular, bk = 8<: 4k� if k = 1; 3; 5; : : :0 if k = 2; 4; 6; : : :and f(x) = 4� (sin(x) + sin(3x)3 + sin(5x)5 + : : : )Example 9.6.22. Galileo: If f(x) = x for x 2 [��; �℄; then f(x) is an odd fun
tion.Thus, the fun
tion f(x) 
os(kx) = x 
os(kx) is an odd fun
tion for all k; whi
h impliesak = 0; for all k = 0; 1; 2; : : : : Sin
e the fun
tion x sin(kx) is the produ
t of twofun
tions so you have to integrate by parts. While not a bad exer
ise for you, theantiderivative is Z x sin(kx) dx = �x
os(kx)k + sin(kx)k2 :Sin
e the fun
tion f(x) sin(kx) = x sin(kx) is the produ
t of two odd fun
tions, it



190 CHAPTER 9. LIMITSis even. Thus,bk = 1� Z ��� f(x) sin(kx) dx = 2� Z �0 xsin(kx) dx= 2� (�x
os(kx)k + sin(kx)k2 )j�x=0= 2� � � 
os(k�)k ��0
os(0)k= (�1)k+1 2k :Simpli
io: A
tually, your answer agrees with the formula you posted at the beginningof the dis
ussion.Exer
ise Set 9.6.Exer
ises on Convergen
e of Series1. Compute: P1k=0(3 15k + 2 17k ):2. Show the series P1k=1 k+1k 15k 
onverges.3. Show the series P1k=1 (�1)kkk 
onverges.4. Show the series P1k=0 (�1)k2k+1 
onverges.5. Show: If the series P1k=1 ak diverges and ak � 0; then P1k=1 ak1+ak diverges.Exer
ises on Power/Taylor Series1. Determine the interval of 
onvergen
e of the series P1k=0 xkk! :2. Determine the interval of 
onvergen
e of the series P1k=0 k2xk:3. Determine the interval of 
onvergen
e of the series P1k=0 2kk! (x� 3)k:4. Determine the interval of 
onvergen
e of the series P1k=0 k35k (x� 7)k:5. Determine the interval of 
onvergen
e of the series P1k=0 k35k (x� 7)k:Exer
ises on Trigonometri
/Fourier Series



9.7. LIMITS OF FUNCTIONS 1911. Use the Fourier CoeÆ
ient Theorem to show:x2 = 1Xk=1(�1)k+1 1k sin(kx); for x 2 (��; �);2. Use the Fourier CoeÆ
ient Theorem to show:x2 = �23 � 4 1Xk=1(�1)k+1 1k2 
os(kx); for x 2 [��; �℄:3. Use the Fourier CoeÆ
ient Theorem to show:jxj = �2 � 4� 1Xk=1 1(2k � 1)2 
os((2k � 1)x); for x 2 [��; �℄:4. Show: 1Xk=1(�1)k+1 1k2 = �212 :5. Show: 1Xk=1 1(2k � 1)2 = �28 :9.7 Limits of Fun
tionsGalileo: We turn now to the topi
 of the limit of a fun
tion. I am sure you studiedthis topi
 in your Cal
ulus 
ourses.Simpli
io: It has been a long time sin
e I took Cal
ulus. Mu
h knowledge has sin
eevaporated. So where are we headed?Galileo: The �rst theorem we will dis
uss is the Mean Value Theorem, whi
h 
ontainsthe idea that a fun
tion 
annot grow faster than the maximum of its �rst derivative.The se
ond key theorem is Taylor's Theorem, whi
h basi
ally states that a smoothfun
tion 
an be approximated by a polynomial.Simpli
io: If we are interested in sequen
es and data, why should we have to dis
ussfun
tions?Galileo: For the Ar
himedes/Heron algorithm, an understanding of the fun
tionT (x) = x� x2�K2x be
omes 
entral. Sin
e an easy 
al
ulation shows that jT 0(x)j � 12 for



192 CHAPTER 9. LIMITSall x � pK; we will be able to 
on
lude that the di�eren
e between the nth approxi-mation xn and the answer pK drops by 50% for ea
h iteration. Su
h a 
onvergen
erate is known as linear (or �rst order) 
onvergen
e. These ideas are 
ompletely generaland apply to a wide range of problems in
luding 
ube roots and beyond.Simpli
io: A 50% improvement at ea
h iterations sounds good.Galileo: As you will see, we are a
tually doing better than 50%: Taylor's Theoremwill be the key to understanding why this algorithm 
onverges so rapidly. In fa
t,of all the theorems you visited in Cal
ulus, Taylor's Theorem is probably the mostimportant for numeri
al 
omputations. This theorem allows us to 
ompute �rst andse
ond derivatives numeri
ally. Thus, many di�erential equations and partial di�er-ential equations 
an be solved numeri
ally in
luding heat transfer, 
uid 
ow, airfoildesign, ele
tromagnetism, and weather modeling. The basi
 te
hniques of signal andimage pro
essing also involve these methods. In other words, the appli
ations areeverywhere.Simpli
io: I like these appli
ations.Galileo: Unfortunately, before we 
an even think about modeling a real-world prob-lem, we have to develop the requisite language. Sin
e the Intermediate Value Theo-rem, the Mean Value Theorem, and Taylor's Theorem have hypotheses where fun
-tions are assumed 
ontinuous or di�erentiable, we begin our dis
ussion with the def-inition of the limit of a fun
tion. We begin our dis
ussion with the de�nition of alimit of a fun
tion.De�nition 9.7.1 (Limit of a Fun
tion). If X is an interval and f(x) : X ! <;then limx!af(x) = L; if for every � > 0; there is a Æ > 0 with the property that ifx 2 X; jx� aj < Æ; and x 6= a; then jf(x)� Lj < �:Simpli
io: Brutal. For sequen
es we had one Greek letter, now we are doubly blessed.I am 
onfused.Galileo: True, but the real problem is that the de�nition is ba
kwards. While thefun
tion f(x) assigns a point x in the domain to a point f(x) in the range, the
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e � > 0 is asso
iated with a distan
e in the range of f(x); while the Æ > 0measures a distan
e in the domain of f(x): The � appears �rst, while the Æ is se
ond.Virginia: Hey, this de�nition is not so bad. In fa
t, it is almost the same as thede�nition for the limit of a sequen
e. The � fun
tions exa
tly as it did before, whilethe integer N is repla
ed by the quantity Æ:Galileo: In other words, a given an a

ura
y between f(x) and L 
an be assured if agiven pre
ision between x and a is required.Simpli
io: OK, but why do you have that little 
ondition that x 6= a?Galileo: Be
ause Cal
ulus is the study of being 
lose. For example, if we 
ompute thederivative of the fun
tion f(x) = x2 at the point x = 2; then we must investigate thevalues of the di�eren
e quotient DQ(x) = x2�4x�2 
lose to (but not at) the number 2.If we are 
areless and substitute x = 2 into this fun
tion, we get DQ(x) = x2�4x�2 = 00 :Sin
e division by zero is always evil, we must avoid that \bad" point x = 2: Howabout if we use the de�nition to show that limx!2DQ(x) = 4?Virginia: We simply follow the same \Challenge, Choi
e, and Che
k" pro
ess we didfor sequen
es.Example 9.7.1. Using the DEFINITION of limit show: limx!2 x2�4x�2 = 4:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e of Æ :While I am not exa
tly sure how to 
hoose Æ; I will make the guess that Æ = �: If weare wrong, we will make adjustments and do it again.
Figure 9.5: The De�nition of a Limit
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k that Æ works:If we 
an show the absolute value of the di�eren
e between DQ(x) = x2�4x�2 and 4 isless than �; then we are done. However, if we assume that x 6= 2 and jx� 2j < Æ = �;then we see thatjx2 � 4x� 2 � 4j = j(x� 2)(x+ 2)x� 2 � 4j = j(x+ 2)� 4j = jx� 2j < Æ = �:Thus, we are done.Galileo: Very good.Simpli
io: How about another example?Example 9.7.2. Using the DEFINITION of limit show: limx!2(3x+ 5) = 11:Virginia: I bet you 
an do it.Simpli
io: OK, I'll give it a try.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e of Æ :Sin
e I have no 
lue how to 
hoose Æ; I will simply follow your lead and let Æ = �:Step 3. (The Che
k that Æ works)Again, following your lead, I will 
ompute the absolute value of the di�eren
e between3x+ 5 and 11: We �nd that j3x+ 5� 11j = j3x� 6j = 3jx� 2j < 3Æ < 3�:Simpli
io: OOPS. Now I am stu
k.Virginia: But think about it. If you had simply been a bit smarter and had 
hosenÆ = �3 ; you would have been �ne. With this 
hoi
e we now see that if jx� 2j < Æ; thenj3x+ 5� 11j = j3x� 6j = 3jx� 2j < 3Æ = 3 �3 = �: Now you are done.Simpli
io: A
tually, that wasn't so bad.Galileo: Note that there is a general strategy here. Namely, 
hooseÆ = �slope :Simpli
io: Sounds good, but what if the slope equals zero?Virginia: And what if the slope is negative?
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hoose Æ = �jslopej+1:Virginia: Mu
h better. Now we know that Æ 
an never be negative or zero.Simpli
io: However, I do have just one more question. When I took Cal
ulus, wealways des
ribed limits by saying that if a sequen
e of points x1; x2; : : : ; xn; : : : gets
lose to a point a; then the sequen
e of points f(x1); f(x2); : : : ; f(xn); : : : gets 
loseto the limit L:Galileo: Good question. In fa
t, your idea turns out to be equivalent to the de�nitionI just gave you. A more 
areful statement of the de�nition of limits in terms ofsequen
es is given in the following theorem.Theorem 9.7.2 (The Sequen
e De�nition for Limit of a Fun
tion). If X is aninterval, f(x) : X ! <; and limx!a f(x) = L; then for any sequen
e fxng1n=1 with theproperty that xn 2 X; limn!1 xn = a; and xn 6= a for all n; then limn!1f(xn) = L:Proof. The proof follows the same format as our other proofs that sequen
es 
onverge..Begin by assuming we have a sequen
e fxng1n=1 with the property that limn!a xn = aand xn 6= a for all n:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e of N :Sin
e we don't have a formula for the fun
tion f(x); we are for
ed to use our hy-potheses to �nd N: However, sin
e we are assuming that limx!a f(x) = L; we knowthere is a Æ > 0 with the property that if jx� aj < Æ and x 6= a; then jf(x)� Lj < �:Sin
e Æ > 0 and sin
e limn!a xn = a; we 
an �nd an integer N with the property thatjxn � aj < Æ: This integer N is our 
hoi
e.Step 3. The Che
k that N works:Sin
e jxn � aj < Æ and xn 6= a; we know immediately that jf(xn)� Lj < �:Galileo: Now that wasn't so bad was it?Simpli
io: I guess the proof was similar to the others. But why would you bring upthis tangential topi
?



196 CHAPTER 9. LIMITSGalileo: It may be tangential, but from a pedagogi
al point of view, sequen
es areprobably a bit easier to visualize than fun
tions.Virginia: But, are sequen
es good enough?Galileo: A
tually, the 
onverse of the above theorem is also true so we have a
tuallyformulated an equivalent de�nition of limits that only involves sequen
es.Virginia: Should we prove it?Galileo: While similar to the proof that every Cau
hy sequen
e 
onverges, the proofis by 
ontradi
tion and we have other topi
s to 
over. I will leave it as an exer
ise.Exer
ise Set 9.7.1. Using the de�nition of limit show: limx!3 x2�9x�3 = 6:2. Using the de�nition of limit show: limx!a(mx + b) = ma + b:3. Prove that the two De�nitions of Limit are equivalent.9.8 Limit Fa
ts for Fun
tionsGalileo: Just as we assembled basi
 fa
ts for limits of sequen
es, we now mentionsimilar fa
ts for limits of fun
tions. The same sum, produ
t, and quotient rules holdfor fun
tions as hold for sequen
es. Note that the spirit of the proofs is the same.Theorem 9.8.1 (Basi
 Limit Fa
ts for Fun
tions). If X is an interval, a 2 X;and f(x); g(x) : X ! < are fun
tions with the property that limx!a f(x) = L andlimx!a g(x) =M; then:1. Fa
t 1. limx!a(f(x) + g(x)) = L +M;(The limit of the sum equals the sum of the limits or LS = SL.)2. Fa
t 2. limx!a(f(x) � g(x)) = L �M; and(The limit of the produ
t equals the produ
t of the limits or LP = PL.)3. Fa
t 3. If M 6= 0; then limx!a(f(x)g(x) ) = LM :(The limit of the quotient equals the quotient of the limits or LQ = QL.)
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t 1. The limit of the sum equals the sum of the limits.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:A
tually, we need to make two 
hoi
es.Choi
e 1: Sin
e limx!a f(x) = L; we know that there is a quantity Æ1 > 0 withthe property that if x 6= a and jx� aj < Æ1; then jf(x)� Lj < �2 :Choi
e 2: Sin
e limx!a g(x) = M; we know that there is a quantity Æ2 > 0 withthe property that if x 6= a and jx� aj < Æ2; then jg(x)�M j < �2 :Sin
e we want both of the statements jf(x) � Lj < �2 and jg(x) �M j < �2 to betrue, we 
hoose Æ to be the smaller of the two numbers Æ1 and Æ2:Step 3. The Che
k:Thus, if x 6= a and jx� aj < Æ; thenjf(x) + g(x)� (L+M)j � j(f(x)� L) + (g(x)�M)j� jf(x)� Lj+ jg(x)�M j� �2 + �2 = �:

Figure 9.6: The Limit of the Sum Equals the Sum of the Limits
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t 2. The limit of the produ
t equals the produ
t of the limits.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:A
tually, we need to make three 
hoi
es.Choi
e 1: Sin
e limx!a f(x) = L; we know that there is a quantity Æ1 > 0 withthe property that if x 6= a and jx� aj < Æ1; then jf(x)� Lj < �3jM j+1 :Choi
e 2: Sin
e limx!a f(x) = L; we know that there is a quantity Æ2 > 0 withthe property that if x 6= a and jx� aj < Æ2; then jf(x)� Lj < 12 :Choi
e 3: Sin
e limx!a g(x) = M; we know that there is a quantity Æ3 > 0 withthe property that if x 6= a and jx� aj < Æ3; then jg(x)�M j < �3jLj+1 :Sin
e we want all three of the statements jf(x)�Lj < �3jM j+1 ; jf(x)�Lj < 12 ; andjg(x)�M j < �3jLj+1 to be true, we 
hoose Æ to be the minimum of the three numbersÆ1; Æ2 and Æ3:Step 3. The Che
k:Thus, if x 6= a and jx� aj < Æ; then we know by the 
hoi
es for Æ1 and Æ2 thatjf(x) � g(x)� L �M j = jf(x) � g(x)� f(x) �M + f(x) �M � L �M j� jf(x) � g(x)� f(x) �M j+ jf(x) �M � L �M j� jf(x)j jg(x)�M j+ jf(x)� Lj jM j� jf(x)j �3jLj+ 1 + �3jM j+ 1M <� jf(x)j �3jLj+ 1 + �3 :Sin
e x 6= a and jx� aj < Æ2; we know by the se
ond 
hoi
e thatj jf(x)j � jLj j � j f(x)� L j < 12 ;whi
h implies j f(x) j � jLj+ 12 :



9.8. LIMIT FACTS FOR FUNCTIONS 199Thus, (jLj+ 12) �3jLj+ 1 < 23�andjf(x) � g(x)� L �M j < jf(x)j �3jLj+ 1 + �3 < (jLj+ 12) �3jLj+ 1 + �3 < 23� + �3 < �:Thus, the proof is 
omplete.Fa
t 3. The limit of the quotient equals the quotient of the limits.This proof is left as an exer
ise.Simpli
io: But wait a minute, I don't quite see why we know(jLj+ 12) �3jLj+ 1 < 23�:Galileo: Whenever you are expe
ted to show one fra
tion is less than another, simplyassume the relation holds, 
ross multiply, and simplify. More than likely, you 
an�gure it out.We now turn to a spe
ial 
ase of the theorem that the limit of the produ
t is theprodu
t of the limits when one of the fun
tions is a 
onstant. We single out this 
asebe
ause it is one of the details that needs to be 
he
ked when we show the 
olle
tionof 
ontinuous fun
tions forms a ve
tor spa
e. In parti
ular, if f(x) : X ! < is afun
tion whi
h is 
ontinuous at ea
h x 2 X and K 2 <; then the fun
tion Kf(x) isalso 
ontinuous.Corollary 9.8.2 (Pulling Constants A
ross Limit Signs). If X is an interval,a 2 X; K is a real number, and f(x) : X ! < is a fun
tion with the property thatlimx!a f(x) = L; then limx!a(K � f(x)) = K � limx!a f(x) = K � L:Proof. This fa
t follows immediately from the limit of the produ
t equals the produ
tof the limit. (i.e. Fa
t 2, above.) You only have to set g(x) = K; for all x 2 X:Exer
ise Set 9.8.1. Using your limit fa
ts, show: limx!a(mx + b) = ma+ b:
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ts, show: limx!a x2 = a2:3. Using your limit fa
ts, show: limx!a x3 = a3:4. Using your limit fa
ts, show: limx!2 xx2�4x�2 = 8:5. Using your limit fa
ts, show: limx!3 xx2�9x�3 = 18:6. To 
omplete the proof that the limit of the produ
t equals the produ
t of thelimit, show: If L > 0; then L+ 123L+1 < 23 :7. Prove: The limit of the quotient equals the quotient of the limits.



Chapter 10
Conne
tedness and Compa
tness
Galileo: A solid understanding of Cal
ulus is a must. While we will review the bignamed theorems, we do expe
t you to be able to 
ompute derivatives and sket
hgraphs. In parti
ular, you should know the produ
t rule, the quotient rule, and the
hain rule.Simpli
io: I have forgotten the 
hain rule. Remind me.Galileo: Go look it up.Simpli
io: I sold my book.Galileo: Sorry, I don't have time to retea
h all of Cal
ulus.Virginia: What about those word problems? I found them diÆ
ult.Galileo: Any skills you learned solving extrema (e. g. max/min) problems shouldhelp. Root �nding and data �tting are te
hniques 
onne
ted to real appli
ations.Real appli
ations invariably involve transforming words into symbols.Simpli
io: A
tually, while I also found some of those problems to be hard, I enjoyed
onne
ting the te
hniques to something in the real world.Galileo: For Isaa
 Newton, Cal
ulus was always 
onne
ted to velo
ity, a

eleration,for
e, mass, and volume. Unfortunately, while these appli
ations are the real reason tostudy Cal
ulus, we are now going to take a major detour and dis
uss the theory. Youshould re
all that the grandfather of all the theorems in Cal
ulus is the FundamentalTheorem of Cal
ulus, whi
h not only states that the two big ideas of Cal
ulus are201
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tually inverse operations of one another. While we willprove this theorem along the way, our main goals are to prove the Intermediate ValueTheorem, the Mean Value Theorem, and Taylor's Theorem.Simpli
io: And why do we 
are about these wondrous theorems?Galileo: The Intermediate Value Theorem is exa
tly the type of information we needto guarantee the existen
e of a root for a 
ontinuous fun
tion. This theorem assuresus that the bise
tion algorithm always works.Simpli
io: And the Mean Value Theorem?Galileo: The Mean Value Theorem provides a tool for showing 
ertain methods 
on-verge linearly.Simpli
io: Linearly 
onvergen
e?Galileo: While the sequen
e f 1ng1n=1 
onverges to zero, the rate is gla
ial. If you want6 digits of a

ura
y, you have to 
ompute more than a million terms. On the otherhand, the sequen
e f 12ng1n=1 
onverges mu
h faster.Simpli
io: Looks to me like you only need 20 terms this time.Galileo: Very good. In fa
t, the error drops by 50% for ea
h new term. The MeanValue Theorem helps us to un
over when this preferred 
onvergen
e rate will o

ur.In parti
ular, under reasonable 
onditions, the method of Newton/Raphson 
onvergeslinearly. This theorem also sets the stage for the algorithm asso
iated with the Con-tra
tion Mapping TheoremSimpli
io: And Taylor's Theorem?Galileo: Consider the sequen
e f 122n g1n=1: How many terms do you have to 
omputebefore you have 6 digits of a

ura
y this time?Simpli
io: Looks like you only need to 
ompute 5 terms this time.Galileo: Ex
ellent! You should have been a 
omputer s
ientist. OK, now think aboutit. If you only have a paper and pen
il, whi
h sequen
e would you rather 
ompute.I think the answer is obvious. In any 
ase, as long as the fun
tion f(x) doesn't havemultiple roots, the Newton/Raphson algorithm usually provides quadrati
 
onver-gen
e. Later, we will show how Taylor's Theorem provides a te
hnique for 
omputing
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ally. Thus, they 
an be used to solve di�erential equations andpartial di�erential equations. These derivatives are also used extensively in signalpro
essing and image pro
essing appli
ations. You 
an �nd employment in theseareas.10.1 Continuous Fun
tionsGalileo: When we dis
ussed the bise
tion method, we mentioned that the Interme-diate Value Theorem 
an be used to show that the method always works. Sin
e
ontinuity of the fun
tion f(x) is not only a key hypothesis for this theorem, but alsofor the Fundamental Theorem of Cal
ulus, the Mean Value Theorem, and Taylor'sTheorem, it is now time to nail the Jello to the wall. Before we 
an give 
areful proofsof these theorems, we need to prove a number of other theorems along the way in
lud-ing the Extremum Theorem and the Intermediate Value Theorem for Integrals. Everyone of these theorems requires the assumption that the fun
tion f(x) is 
ontinuous.In fa
t, whenever we integrate a fun
tion, we will assume it is 
ontinuous to makesure the integral exists. The bottom line: 
ontinuity is an omnipresent assumptionthat insures good things will happen.Simpli
io: I guess theory awaits us.Galileo: We now turn to the task of giving a 
areful de�nition of what it means fora fun
tion f(x) : X ! < to be 
ontinuous at a point a in an interval X: As we havealready mentioned, this idea is quite natural. Time is probably the best example of a
ontinuous phenomenon. At least, we would like to think time 
hanges 
ontinuously.A multitude of physi
al quantities are measured as fun
tions of time in a 
ontinuousway. Examples in
lude: the distan
e a proje
tile has traveled, the distan
e from theearth to the sun, your age, your height, and your weight.Virginia: How does nature 
onne
t with mathemati
s?Galileo: Sin
e we think of time as a linear progression, we 
an think of time as a
opy of the real numbers. Sin
e we are giving ourselves the Least Upper Bound
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iple, we have no holes or jumps in the real numbers. The Intermediate ValueTheorem states that a fun
tion whi
h is 
ontinuous at every point in an intervala
tually preserves this property.Virginia: In other words, the analogy is that time 
orresponds to the real numbersand measurements dependent on time 
orrespond to 
ontinuous fun
tions.Galileo: Deep in our hearts we believe atoms move through spa
e in a 
ontinuousfashion.Simpli
io: I bet your 
olleagues in Quantum Me
hani
s would have something to sayabout this.Galileo: No doubt. But we don't have time for su
h a diversion.Virginia: Let's get ba
k to the mathemati
s.Galileo: As you will soon noti
e, a 
ontinuous fun
tion will be one whose limits areEASY to 
ompute. Namely, limits are 
omputed by simple substituting. We nowgive the pre
ise formulation of the de�nitionDe�nition 10.1.1. If a 2 X; where X � < is an interval, f(x) : X ! < is afun
tion, and limx!a f(x) = f(a); then f(x) is 
ontinuous at x = a:Simpli
io: How about a few examples?Galileo: Moments ago, we showed that limx!amx+ b = ma+ b: This exer
ise showedthat the fun
tion f(x) = mx + b is 
ontinuous at the point x = a: Thus, straightlines are always 
ontinuous. In fa
t, all your old friends in
luding polynomials pn(x);trigonometri
 fun
tions (e.g. 
os(x) and sin(x)); and exponential fun
tions (su
h asex) are 
ontinuous at every point x 2 <:. Any sum, produ
t, or quotient of thesefun
tions will also be 
ontinuous. While fun
tions like f(x) = 1x and tan(x) = sin(x)
os(x)are 
ontinuous at most points, they both shoot o� to 1 at points where the denom-inator equals zero. For example, the fun
tion f(x) = 1x heads o� to in�nity at x = 0and thus is not 
ontinuous at this point. However, they have the enjoyable propertythat they are 
ontinuous at every point where the denominator is di�erent from zero.During our dis
ussions, we will frequently need to assume that the fun
tions under
onsideration are 
ontinuous



10.1. CONTINUOUS FUNCTIONS 205Virginia: How about an example of a fun
tion, whi
h is not 
ontinuous?Example 10.1.1. Galileo: Consider the Heaviside fun
tionH(x) = 8<: 1 if x � 00 if x < 0 :Note that while it is 
ontinuous at every point ex
ept x = 0; there is no point x withthe property that H(x) = 12 : Thus, the fun
tion H(x) tears apart the real numbersinto two sets. The �rst set is all the negative numbers, whi
h gets mapped to zero.The se
ond is the set of all the non-negative numbers, whi
h gets sent to 1. Thus,nothing gets mapped to 12 : This example will be
ome important when we dis
uss theIntermediate Value Theorem 10.2.The purpose of the next theorem is to formalize the fa
t that the sum, produ
t,and quotient of two 
ontinuous fun
tions is 
ontinuous.Theorem 10.1.2 (Sum, Produ
t, and Quotient of Continuous Fun
tions).If a 2 X; where X is an interval, and f(x); g(x) : X ! < are both 
ontinuous at thepoint x = a; then1. the fun
tion (f + g)(x) = f(x) + g(x) is 
ontinuous at x = a:2. the fun
tion (f � g)(x) = f(x) � g(x) is 
ontinuous at x = a:3. if g(a) 6= 0; then the fun
tion (fg )(x) = f(x)g(x) is 
ontinuous at x = a:Proof. If f(x) and g(x) are both 
ontinuous at x = a; then limx!a f(x) = f(a) andlimx!a g(x) = g(a):From the Basi
 Limit Fa
ts for Fun
tion 9.8.1, we now make three observations:1. limx!a f(x) + g(x) = limx!a f(x) + limx!a g(x) = f(a) + g(a):2. limx!a f(x) � g(x) = limx!a f(x) � limx!a g(x) = f(a) � g(a):3. If g(a) 6= 0; then limx!a f(x)g(x) = limx!a f(x)limx!a g(x) = f(a)g(a) :
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io: OK, those three proofs are easy, but what 
an I do with them?Galileo: Sin
e f(x) = x is 
ontinuous, we now know that f(x) � f(x) = x2 and f(x) �f(x) � f(x) = x3 are also 
ontinuous. In general, we now know that any polynomialpn(x) = xn+ an�1xn�1+ an�2xn�2+ � � �+ a1x+ a0 is 
ontinuous at every point. Evenmore generally, we know that if pn(x) and qm(x) are two polynomials, then the rationalfun
tion r(x) = pn(x)qm(x) is 
ontinuous at any point x = a; where qm(a) 6= 0: While wewon't take the time to show it now, the trigonometri
 fun
tions 
os(x) and sin(x)also turn out to be 
ontinuous. Thus, fun
tions like f(x) = 2x + 3 
os(x) + x2 sin(x)will be 
ontinuous.Virginia: Wait a minute! I just noti
ed that the fun
tions
os(�x); sin(�x); 
os(2�x); sin(2�x) are not 
overed by our Sums, Produ
ts and Quo-tients Theorem. In other words, how do I know these fun
tions are 
ontinuous?Galileo: You 
aught me. I forgot to mention that the 
omposition of two 
ontinuousfun
tions is 
ontinuous. Sin
e g(y) = 
os(y) and f(x) = 2�x are 
ontinuous at everypoint, then the next proposition justi�es the 
laim that the fun
tion h(x) = g(f(x)) =
os(2�x) is 
ontinuous at every point x:Proposition 10.1.3 (The Composition of Continuous Fun
tions is Continu-ous). Let X; Y be intervals in <: Let f(x) : X ! Y and g(y) : Y ! < be fun
tions.If f(x) is 
ontinuous at a point a 2 X and g(y) is 
ontinuous at the point f(a) in Y;then the 
omposition g(f(x)) is 
ontinuous at x = a:Proof. Galileo: We 
an prove this proposition right from the de�nition. As usual,the proof is ba
kwards. Namely, we begin with the fun
tion g(y) and then with thefun
tion f(x): The only idea is that we have to 
hoose two \Æ0s:" We �rst 
hoose Æ1for the fun
tion g(y) and then (depending on the size of Æ1) we 
hoose Æ:Step 1. The Challenge:Let � > 0 be given.Our job is to �nd a Æ > 0 with the property that if x 2 (a � Æ; a + Æ); theng(f(x) 2 (g(fa))� �; g(fa)) + �):
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e:Sin
e g(y) is 
ontinuous at y = f(a) and � > 0; 
hoose Æ1 > 0 with the property thatif y 2 (f(a)� Æ1; f(a) + Æ1); then g(y) 2 (g(f(a))� �; g(f(a)) + �):Sin
e f(x) is 
ontinuous at x = a and Æ1 > 0; 
hoose Æ > 0 with the property thatif x 2 (a� Æ; a+ Æ); then f(x) 2 (f(a)� Æ1; f(a) + Æ1):Step 3. The Che
k:If x 2 (a� Æ; a+ Æ); then f(x) 2 (f(a)� Æ1; f(a) + Æ1):Sin
e f(x) 2 (f(a)� Æ1; f(a) + Æ1); g(f(x) 2 (g(f(a))� �; g(f(a)) + �):Simpli
io: Not so bad.Exer
ise Set 10.1.1. Dis
uss why the fun
tion f(x) = sin(x2 + 1) is 
ontinuous.2. Dis
uss where the fun
tion f(x) = x2+1x�9 is 
ontinuous. Justify your answer.3. Show the fun
tion f(x) = jxj is 
ontinuous.4. Explain why the fun
tion f(x) = 2x+57x+11 is 
ontinuous at x = 3:5. Evaluate the limit limx!3 2x+57x+11 :6. Show the fun
tion f(x) = 11�x is 
ontinuous. Where does it fail to be 
ontinu-ous?7. Explain why the fun
tion tan(x) = sin(x)
os(x) is 
ontinuous at most points. Wheredoes it fail to be 
ontinuous?
Figure 10.1: The Composition of Continuous Fun
tions Is Continuous
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tion f(x) = sin(x2 + 3) is 
ontinuous. (You may assumethe fun
tion sin(x) is 
ontinuous.9. Prove: If T (x) : [a; b℄! < is a fun
tion with the property thatjT (x1) � T (x2)j � M jx1 � x2j for all x1; x2 2 [a; b℄; then show that T (x) is
ontinuous at ea
h x 2 [a; b℄:10.2 Intermediate Values and Conne
tednessGalileo: We now return to the Intermediate Value Theorem, whi
h we already men-tioned when we presented the bise
tion method.Simpli
io: Remind my why I should 
are about this theorem?Galileo: The Intermediate Value Theorem is exa
tly what is needed to guaranteethe bise
tion method always works. The �rst mathemati
ian/philosopher to attemptpla
ing these ideas on a �rm mathemati
al foundation was Bernard Bolzano (1781-1848). His goal was to make the idea of an in�nitesimal pre
ise. While he publisheda proof in 1817, he a
hieved little re
ognition for his e�orts until after his death.In fa
t, he had a rough time sin
e he lost his tea
hing position at the University ofPrague for his pa
i�st views. He was even put under house arrest and forbidden topublish.Virginia: I think you 
ould identify with the plight of this fellow.Galileo: Indeed I do. While unaware of Bolzano's ideas, Augustin Cau
hy (1789-1857) published many of these results in 1821. We now state and prove a te
hni
alproposition, whi
h will help us prove the theorem. Intuitively, this proposition statesthat if a fun
tion f(x) maps a point x0 to a value above y0; then a whole open intervalof points must also be mapped above y0: A similar statement 
an be made if f(x)maps a point x0 to a lo
ation below y0;Proposition 10.2.1. Let f(x) : (a; b) ! < be a fun
tion, whi
h is 
ontinuous at apoint x0 2 (a; b):



10.2. INTERMEDIATE VALUES AND CONNECTEDNESS 2091. If f(x0) > y0; then there is a Æ > 0 with the property that f(x) > y0 for allx 2 (x0 � Æ; x0 + Æ):2. If f(x0) < y0; then there is a Æ > 0 with the property that f(x) < y0 for allx 2 (x0 � Æ; x0 + Æ):Proof. 1. If f(x0) > y0; then let � = f(x0) � y0 > 0: Sin
e f(x) is 
ontinuous atx = x0; there is a Æ > 0 with the property that if x 2 (x0�Æ; x0+Æ); then f(x) 2(f(x0)� �; f(x0) + �): Thus, f(x) > f(x0)� � = y0 for all x 2 (x0 � Æ; x0 + Æ):2. If f(x0) < y0; then let � = y0 � f(x0) > 0: Sin
e f(x) is 
ontinuous at x = x0;there is a Æ > 0 with the property that if x 2 (x0 � Æ; x0 + Æ); then f(x) 2(f(x0)� �; f(x0) + �): Thus, f(x) < f(x0) + � = y0 for all x 2 (x0 � Æ; x0 + Æ):Simpli
io: I didn't like that proposition. I hope I never see it again.Galileo: Unfortunately, we will see it again when we dis
uss extrema and 
ompa
tness.This proposition 
ontains useful 
onne
tions between 
ontinuous fun
tions and openintervals.Virginia: Open intervals aren't so hard.Galileo: Let us now state and prove the Intermediate Value Theorem. If we use ourexample to illustrate the theorem, we should let the fun
tion f(x) be your height attime x: This fun
tion will be a 
ontinuous fun
tion of time. Sin
e you were less than2 feet tall when you were born, f(0) < 2: If b denotes your 
urrent age, f(b) > 5:Sin
e y0 = 4 is intermediate between 2 and 5; the theorem guarantees that there willbe a time z0 with the property f(z0) = 4: Now, for the theorem itself.Theorem 10.2.2 (Intermediate Value Theorem). If f(x) : [a; b℄! < is 
ontin-uous at ea
h x 2 [a; b℄ and f(a) < y0 < f(b) (or f(a) > y0 > f(b) ); then there is apoint z0 2 [a; b℄ su
h that f(z0) = y0:Proof. The proof rests on the Law of Tri
hotomy, the Least Upper Bound Prin
iple,and the previous proposition.
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Figure 10.2: The Intermediate Value TheoremSimpli
io: What the he
k is the Law of Tri
hotomy?Galileo: The pre�x \Tri" indi
ates three possibilities. The Law of Tri
hotomy is afan
y way of saying that if someone gives you two real numbers x and y; then one ofthe following three possibilities must hold: x > y; x < y; or x = y:Simpli
io: That Law is obvious.Galileo: Well OK, but it 
an be proved from basi
 prin
iples. In any 
ase, our strategyis going to be to �nd a number z0 with the property that if f(a) < y0 < f(b); thenthere is a number z0 2 [a; b℄ su
h that the statements f(z0) > y0 and f(z0) < y0 areboth false.Virginia: So, by the Law of Tri
hotomy, there is no other possibility ex
ept thatf(z0) = y0:Galileo: Corre
t.Virginia: But how do we �nd z0?Galileo: The point z0 will be de�ned as the least upper bound of all those points xin [a; b℄; su
h that f(x) is \below" the line y = y0: To formalize this statement, wede�ne this set by the rule S = fx 2 [a; b℄ : f(x) � y0g: A detail that needs to be
he
ked is that this set is non empty.Virginia: Sin
e f(a) < y0; we immediately know that a 2 S:
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t. Now we simply identify z0 as the least upper bound of S:Virginia: And show the two other 
ases f(z0) > y0 and f(z0) < y0 are both false.Galileo: Corre
t.Case 1. Suppose the statement f(z0) > y0 is true.By the previous proposition we 
an �nd a Æ > 0 so that if x 2 (z0� Æ; z0+ Æ); thenf(x) > y0: Thus, if x 2 (z0�Æ; b℄; then x is NOT in the set S and the number z1 = z0�Æmust be an upper bound for S: Sin
e z1 = z0 � Æ < Æ; we have a 
ontradi
tion tothe assumption that z0 is the smallest upper bound. This 
ontradi
tion for
es us toabandon the supposition that f(z0) > y0 is true.Case 2. Suppose the statement f(z0) < y0 is true.Again, by the previous proposition we 
an �nd a Æ > 0 so that if x 2 (z0�Æ; z0+Æ);then f(x) < y0: Thus, if x 2 (z0 � Æ; z0 + Æ); then x 2 S: In parti
ular, the pointx = z0+Æ2 is NOT in the set S: Thus, we have a 
ontradi
tion to the assumption thatz0 is an upper bound of S:Galileo: Noti
e that the idea underlying this proof is that the problem of \breaks" or\jumps" in the 
urve y = f(x) is thrown ba
k to the problem of no \holes" in the realnumber line. A
tually, what we are saying is that if X is an interval and the imageset Y = f(X) is de�ned by Y = f(X) = fy 2 < : y = f(x) for some x 2 Xg; then Yis an interval. In other words, the 
ontinuous image of a 
onne
ted set is 
onne
ted.Virginia: The Least Upper Bound Prin
iple is what makes it all work.Galileo: Before we leave this subje
t, let's follow Professor Polya's di
tum that weshould look ba
k at what we have a

omplished. First, let me 
omment that the ideaof 
onne
tedness is a 
ompletely general 
on
ept, whi
h is valid in any dimension.In our setting, the point y0 separates the real line into the two open intervals V1 =(�1; y0) and V2 = (y0;1): The proposition shows that the two sets S1 = fx 2 [a; b℄ :f(x) 2 V1g and S2 = fx 2 [a; b℄ : f(x) 2 V2g are unions of open intervals. Su
h setsare 
alled open. Sin
e the sets V1 and V2 are disjoint, the sets S1 and S2 are disjoint.Thus, we have separated the interval [a; b℄ into the union two non-empty disjoint open



212 CHAPTER 10. CONNECTEDNESS AND COMPACTNESSsets. The point z0 we found shows this is impossible.Virginia: Why do we need the assumption that the fun
tion is 
ontinuous?Galileo: Re
all the Heaviside exampleH(x) = 8<: 1 if x � 00 if x < 0 ;where there is no point x with the property that H(x) = 12 : Thus, the intermediatevalue 12 is never attained.Virginia: Where might we see these ideas again?Galileo: In Complex Variables you will immediately be 
onfronted by the JordanCurve Theorem, whi
h says that any simple 
losed 
urve C separates the plane intotwo open sets, an \inside" and an \outside." Thus, the set <2 � C is not 
onne
ted.Simpli
io: That stu� sounds way too theoreti
al to be useful.Galileo: Not only is Complex Variables a beautiful subje
t, but it is used everywherein engineering and physi
s appli
ations.Exer
ise Set 10.2.1. Show that the fun
tion f(x) = x5 + x+ 1 has a root in the interval [�1; 0℄:2. Show that the fun
tion f(x) = x� ex has a root in the interval [0; 1℄:3. Prove the following theorem: If f(x) : [0; 1℄ ! [0; 1℄ is a fun
tion that is 
on-tinuous at ea
h x 2 [0; 1℄; then there is a point z 2 [0; 1℄ with the propertythat f(z) = z: (Hint: Apply the Intermediate Value Theorem to the fun
tionh(x) = x� f(x):)10.3 Extreme Values and Compa
tnessGalileo: We now turn to the Extremum Theorem for 
ontinuous fun
tions. This the-orem states that a 
ontinuous fun
tion f(x) : [a; b℄! < always attains its maximum.



10.3. EXTREME VALUES AND COMPACTNESS 213In other words, there is a point z0 2 [a; b℄ with the property that f(z0) � f(x) for allx 2 [a; b℄:Simpli
io: So, if I toss a ball into the air and 
at
h it a few moments later, then atsome instant z0 in time, the ball will be at its highest. Seems obvious to me.Galileo: Not so fast. What about the fun
tion f(x) = 1x de�ned on the interval (0:1℄:While the fun
tion is 
ontinuous, the graph be
omes arbitrarily high as x gets 
loseto zero.Simpli
io: In other words, the ball just keeps on going up.Galileo: Corre
t.Virginia: How do we keep that from happening?Galileo: Our friend the Least Upper Bound Prin
iple will on
e again save us. Notethat the theorem states that not only is the fun
tion f(x) bounded above, but thatthere is a parti
ular point (or instant in time) z0 whi
h is the highest point on the
urve.Theorem 10.3.1 (Extremum Theorem). If f(x) : [a; b℄! < is 
ontinuous at ea
hpoint x 2 [a; b℄; then there is a point z0 2 [a; b℄ with the property that f(z0) � f(x) forall x 2 [a; b℄: Similarly, there is a point z1 2 [a; b℄ with the property that f(z1) � f(x)for all x 2 [a; b℄:Proof. This theorem is proved in two steps.Our �rst step is to show the fun
tion f(x) must be bounded. In other words, thereis a 
onstantM with the property that f(x) �M for all x 2 [a; b℄: In parti
ular, f(x)
annot be unbounded the way the fun
tion f(x) = 1x is.The se
ond step in the proof is to guarantee that there is a point z0 2 [a; b℄with the property that f(z0) = L; where L = lub(f([a; b℄)) = lubfy 2 < : y =f(x) for some x 2 [a; b℄g: By the de�nition of L; L � f(x) for all x 2 [a; b℄: If f(z0) =L; then f(z0) � f(x) for all x 2 [a; b℄:Step 1. There is a 
onstant M th the property that f(x) �M for all x 2 [a; b℄:Suppose this statement is false. If false, then for ea
h integer n the set Sn = fx 2[a; b℄ : f(x) � ng is nonempty. Note that ea
h Sn is nonempty and that Sn+1 � Sn for



214 CHAPTER 10. CONNECTEDNESS AND COMPACTNESSall n: If bn = lub(Sn); then a � bn+1 � bn � b; for all n: Thus, the sequen
e fbng1n=1 isa de
reasing sequen
e, whi
h is bounded below by the number a: Hen
e the sequen
e
onverges to some number z0 2 [a; b℄: Note that z0 � bn for all n:Choose an integer n > f(z0): Sin
e the fun
tion f(x) is 
ontinuous at x = z0; weknow by Proposition 10.2.1 there is a Æ > 0 with the property that if x 2 (z0�Æ; z0+Æ);then f(x) < n: Sin
e no point x 
an be in both Sn and the interval (z0 � Æ; z0 + Æ);the number z0 � Æ is an upper bound for the set Sn: Sin
e z0 � Æ < z0 � bn; Thus,the number z0 � Æ is an upper bound for the set Sn; whi
h is smaller than its leastupper bound bn:This 
ontradi
tion shows that there is a 
onstantM with the property that f(x) �M for all x 2 [a; b℄:Step 2. If L = lub(f([a; b℄)); then there is a point z0 2 [a; b℄ su
h that f(z0) = L:Suppose this statement is false. If false, then de�ne the fun
tion g(x) = 1L�f(x) :Sin
e f(x) is 
ontinuous for all x 2 [a; b℄ and f(x) 6= L for all x 2 [a; b℄; we knowby Theorem 10.1.2 that the quotient g(x) = 1L�f(x) is also 
ontinuous. By Step 1,we know there is a 
onstant M > 0 with the property j 1L�f(x) j = jg(x)j � M for allx 2 [a; b℄:Sin
e L� f(x) > 0 for all x 2 [a; b℄; 1L�f(x) �M for all x 2 [a; b℄:Thus, 1M � L � f(x) for all x 2 [a; b℄ or f(x) � L � 1M for all x 2 [a; b℄: Thus,L� 1M is an upper bound for the set fy 2 < : y = f(x) for some x 2 [a; b℄g; whi
h issmaller than L:Thus, we have a 
ontradi
tion to the assumption that L is the least upper boundfor the set f([a; b℄): Thus, there is a point z0 2 [a; b℄ with the property that f(z0) =L � f(x) for all x 2 [a; b℄:Galileo: In the spirit of Professor Polya let us think about what we have a

omplished.Note that we have just 
onsidered two big ideas: 
onne
tedness and 
ompa
tness.Simpli
io: So?Galileo: So the 
ontinuous image of a 
losed bounded interval is a 
losed boundedinterval. Thus, 
ontinuous fun
tions preserve this type of interval. Note also that our



10.3. EXTREME VALUES AND COMPACTNESS 215proofs of both the Intermediate Value Theorem and the Extremum Theorem employProposition 10.2.1. What is the key idea embedded in this Proposition?Virginia: It seems to start with an open interval in the range of the fun
tion and thenwork ba
kwards to the domain.Simpli
io: The resulting set in the domain turns out to be the union of a bun
h ofopen intervals.Galileo: Exa
tly. If we introdu
e a bit of notation, we 
an 
larify the 
on
ept. Inparti
ular, if we de�ne the open interval in the range of the fun
tion by the ruleV = fy 2 < : y > y0g; then we showed that the inverse image set U = f�1(V ) =fx 2 (a; b) : f(x) > y0g is the union of open intervals ba
k in the domain. Betteryet, if we 
ombine the two parts of Proposition 10.2.1 we have shown that the inverseimage of an open set is open.Simpli
io: So why is this idea a big deal?Galileo: First, it throws all the problems ba
k to an open interval in the real line <:Thus, on
e we understand the real numbers, we are ready to go.Simpli
io: I have understood the real numbers for a long time.Galileo: Maybe so, but it wasn't until Cantor and Dedekind 
ame along that peoplefelt the Jello was nailed to the wall. Two thousand years is a long time. While studentsthink that 
omplex numbers are weird, the real diÆ
ulties lie in the real numbers,where Dedekind showed the asso
iative, 
ommutative, and distributive laws 
an beextended from the rational numbers to this bigger set of numbers.Simpli
io: Is that all?Galileo: A se
ond reason to think in terms of open intervals is that these ideasgeneralize to all dimensions. In parti
ular, the generalization of an open interval isan open disk in the plane and an open ball in three spa
e. An open set is the unionthese simple building blo
ks.Simpli
io: So.Galileo: If we de�ne a 
ontinuous fun
tion to be one with the property that U =f�1(V ) is an open set whenever V is open then we 
an show that the properties of
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ompa
tness and 
onne
tedness are both preserved by 
ontinuous fun
tions.Simpli
io: But that means we have to go through all that theory again. More proofs!Galileo: But this time the proofs are more 
on
eptual and mu
h easier be
ause wedon't have all those �s, Æs, and limits. This bran
h of mathemati
s is 
alled Topology.Virginia: Why don't we do it?Galileo: We 
ould, but it would be a distra
tion from our main mission.Simpli
io: If this approa
h is easier, why didn't we skip all the limit stu� and just doTopology?Galileo: We 
ould have, but you would have found the dis
ussions weird and abstra
t.You would have 
onstantly been asking where this stu� 
ame from.Virginia: It is interesting that one little proposition 
ould lead to a whole new viewon a subje
t.Galileo: Topology provides a wonderfully elegant framework for these ideas.Exer
ise Set 10.3.1. Identify the extreme values of the fun
tion f(x) = x2�1 on the interval [�1; 1℄:2. Identify the extreme values of the fun
tion f(x) = x2 � 5x + 6 on the interval[2; 3℄:3. Identify the extreme values of the fun
tion f(x) = x3 � 9x + 1 on the interval[�4; 4℄:



Chapter 11
Mean Value Theorems
11.1 Di�erentiationGalileo: While you have seen the de�nition of derivative and the di�erent rules for
omputing the sum, produ
t, and quotient of di�erentiable fun
tions, we now providea qui
k review.Simpli
io: It has been years sin
e I took Cal
ulus. A review would be appre
iated.Galileo: We will need the assumption of di�erentiability as an assumption in manyof our theorems. We will also need to 
ompute derivatives when we use the errorformulas to determine an upper bound on the error.Simpli
io: But aren't 
ontinuous fun
tions good enough? Every 
ontinuous fun
tionis di�erentiable. I am sure that is true.Galileo: Sorry, but you are mistaken on
e again.Virginia: Don't you remember that the fun
tion f(x) = jxj is 
ontinuous at everypoint but has a sharp 
orner at x = 0?Simpli
io: OK, OK.Galileo: Sin
e we have felt the impa
t of Murphy's �st when we dis
ussed the failuresof Newton/Raphson, our goal now is to get the language exa
tly right. As a politereminder we begin with the familiar de�nition for a fun
tion f(x) to be di�erentiable.De�nition 11.1.1. If X is an interval, f(x) : X ! <; and the limit limh!0 f(x+h)�f(x)h217



218 CHAPTER 11. MEAN VALUE THEOREMSexists, then f(x) is said to be di�erentiable at the point x 2 X: The derivative is de-�ned by f 0(x) = limh!0 f(x+h)�f(x)h :Galileo: If y = f(x); we will sometimes write f 0(x) = dydx : Just as we remarkedfor 
ontinuous fun
tions, the assumption of di�erentiability will o

ur in most of ourtheorems in
luding the Fundamental Theorem of Cal
ulus, the Mean Value Theorem,Taylor's Theorem, and the Lagrange Error Formula for polynomial interpolation.Example 11.1.1. If x 2 <; then re
all the following derivatives.1. If f(x) = 
os(x); then f 0(x) = � sin(x):2. If f(x) = sin(x); then f 0(x) = 
os(x):3. If f(x) = ex; then f 0(x) = ex:4. If x > 0 and f(x) = loge(x); then f 0(x) = 1x :Simpli
io: No problem, I think I remember seeing all those rules.Galileo: What about the derivative of h(x) = ex2?Simpli
io: Hmmm. Not sure.Virginia: That derivative follows from the 
hain rule, where you 
ompute the deriva-tive of the 
omposition of two fun
tions as the derivative of the outside holding theinside �xed and then multiply by the derivative of the inside. For this example, yousimply think of the fun
tion h(x) as the 
omposition of the two fun
tions f(x) = x2and g(y) = ey: Sin
e h(x) = ex2 = g(f(x)); h0(x) = g0(f(x))f 0(x) = ex22x:Galileo: Very good. The important 
omputational fa
ts about the sum, produ
t, quo-tient, and 
omposition of two di�erentiable fun
tions are summarized in the followingtheorem.Theorem 11.1.2 (Di�erentiation Rules). If X is an interval and f(x); g(x) :X ! Y � < are both di�erentiable at the point x 2 X and h(y) : Y ! Z � < isdi�erentiable at the point y = g(x); then



11.1. DIFFERENTIATION 2191. (f + g)0(x) = f 0(x) + g0(x);(The derivative of the sum equals the sum of the derivatives.)2. (f � g)0(x) = f(x) � g0(x) + f 0(x) � g(x);(The Produ
t Rule.)3. if g(x) 6= 0; then (fg )0(x) = g(x)f 0(x)�g0(x)f(x)(g(x))2 ; and(The Quotient Rule.)4. h(g(x))0 = h0(g(x))g0(x):(The Chain Rule.)Proof. Galileo: You should be familiar with these formulas so we will skip the proofs.Simpli
io: Not a problem.Galileo: Just as we 
ommented for 
ontinuous fun
tions, we see by the �rst derivativerule that the sum of two di�erentiable fun
tions is di�erentiable. By the se
ondderivative rule, we see that 
onstants 
an pulled a
ross derivative signs.Simpli
io: What?Virginia: In other words, dKf(x)dx = K df(x)dx :Simpli
io: Why would I 
are?Virginia: Be
ause you now know that the 
olle
tion of all di�erentiable fun
tions onan interval [a; b℄ forms a ve
tor spa
e.Galileo: Corre
t.Simpli
io: Why is this important?Galileo: The general rule is that the more smoothness you have in your data, the theeasier it is to �nd a

urate approximations.Simpli
io: Smoothness?Galileo: The more derivatives a fun
tion f(x) : [a; b℄ ! < has, the smoother it is.Let us make the following indu
tive de�nition for the nth derivative as the derivativeof the (n� 1)st derivative.



220 CHAPTER 11. MEAN VALUE THEOREMSDe�nition 11.1.3. If f(x) : [a; b℄! <; then the nth derivative of y = f(x) is de�nedas dnydxn = f (n)(x) = df(n�1)(x)dx ; where f (0)(x) = f(x); for all x 2 [a; b℄:Simpli
io: So, if y = f(x) = sin(x); then dydx = f (1)(x) = f 0(x) = 
os(x) and d2ydx2 =f (2)(x) = f 00(x) = � sin(x):Galileo: Corre
t. In other words, not only is f (0)(x) = f(x); but also f (1)(x) = f 0(x)and f (2)(x) = f 0(f (1)(x)) = f 00(x); et
. The purpose of the next de�nition is to gradea fun
tion by the number of derivatives it has. The more derivatives f(x) has, thesmoother it is. The smoother it is, the easier it is to �nd a

urate approximations.De�nition 11.1.4. The symbol C0[a; b℄ denotes the 
olle
tion of all fun
tions on theinterval [a; b℄ with the property that f(x) is 
ontinuous at ea
h x 2 [a; b℄:De�nition 11.1.5. The symbol Cn[a; b℄ denotes the 
olle
tion of all fun
tions on theinterval [a; b℄ with the property that f(x); f 0(x); f 00(x); : : : ; f (n)(x) are all 
ontinuousat ea
h x 2 [a; b℄:The larger the integer n; the smoother the fun
tions in the 
olle
tion.The next proposition shows that if f(x) 2 C1[a; b℄; then f(x) 2 C0[a; b℄:Proposition 11.1.6. If f(x) : [a; b℄ ! < is di�erentiable at a point x = z 2 [a; b℄;then f(x) is 
ontinuous at x = z:Proof. We must show that limx!z f(x) = f(z):Sin
e the statement limx!z f(x) = f(z) is equivalent to limx!z(f(x)� f(z) ) = 0;we need only prove this last equality.We know by the limit of the produ
t equals the produ
t of the limits thatlimx!z(f(x)� f(z) ) = limx!z f(x)� f(z)x� z (x� z)= limx!z f(x)� f(z)x� z limx!z(x� z)=f 0(x) � 0 = 0:Thus, limx!z f(x) = f(z) and f(x) is 
ontinuous at x = z:



11.2. ROLLE'S THEOREM 221Exer
ise Set 11.1.1. If f(x) = sin(x2 ); then 
ompute f 0(x):2. If f(x) = ex2; then 
ompute f 0(x):3. If f(x) = ex2 ; then 
ompute f 0(x):11.2 Rolle's Theorem

Mi
hel Rolle (1652-1719)
Galileo: Let us begin by introdu
ing the ideas of Mi
hel Rolle (1652-1719), a Fren
hmathemati
ian, who lived during the rein of King Louis XIV. While we will notgive a formal proof of this theorem, an easy physi
s appli
ation 
an be used to helpvisualize where it 
omes from. In parti
ular, if the variable x represents time andf(x) represents the height of a ball thrown into the air, then the theorem states thatif the ball leaves your hand at 4 feet above the ground at time x = a and is 
aughtat this same height at a se
ond time x = b; then there will be some time z when theinstantaneous velo
ity is zero. as it turns out, that time is at the exa
t moment whenthe ball a
hieves its greatest height.Simpli
io: But what about a bungee jumper, who jumps o� a bridge at time x = aand returns to the same height a few se
onds later at time x = b?



222 CHAPTER 11. MEAN VALUE THEOREMSGalileo: You are optimisti
 to think that the bungee jumper will return to his initialheight. However, if he does, then we 
an visualize the point z as the moment in timewhen a bungee jumper is at the bottom of his fall. Both situations are 
overed in histheorem.Theorem 11.2.1 (Rolle). If f(x) : [a; b℄ ! <; where f(x); f 0(x) are 
ontinuous,and f(a) = f(b); then there is a point z 2 (a; b) su
h that f 0(z) = 0:Proof. Galileo: To ease your pain we will skip the diÆ
ult part of the proof. Youmight be surprised to learn that the diÆ
ulties lie in showing that the fun
tion a
tu-ally attains a highest (and lowest) value at some point z: However, if we 
an �nd apoint z 2 (a; b) with the property that f(z) � f(x) for all x 2 [a; b℄; then all we haveto do is 
ompute the di�eren
e quotient on ea
h side. The di�eren
e quotient will bepositive on the left and negative on the right. Thus, the derivative at the top of themountain must be zero.A more quantitative argument 
an be given by simply noti
ing when the numer-ator and denominator of the di�eren
e quotient are positive and negative. Sin
ef(z) � f(x) for all x 2 [a; b℄; the numerator of the di�eren
e quotient f(z+h)� f(z)is negative. If the point z + h is to the left of z; then the quantity h must also benegative. Thus the fra
tion f(z+h)�f(z)h must be positive.Similarly, if the point z + h is to the right of z; then the quantity h must bepositive. Thus, the di�eren
e quotient f(z+h)�f(z)h equals a positive number dividedby a negative number and thus negative. Thus, f 0(z) is the limit of both a sequen
eof positive numbers and a sequen
e of negative numbers. Thus, f 0(z) = 0:Galileo: An appli
ation of Rolle's Theorem is in the area of roof repair. For example,when you are in need of a hammer and 
all to your assistant to get one to you rightaway, what is the fastest method?Simpli
io: The answer is simple. You simply throw it at him.Galileo: Very good. However, fewer injuries will o

ur if the highest point of thetraje
tory o

urs where you are standing on the roof. If the velo
ity is zero, then you
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an simply plu
k the hammer out of the air.Simpli
io: I think I am beginning to see that lo
ations where a fun
tion has zerovelo
ity might be useful.Galileo: Others have made this observation before you. The next de�nition makesthis idea oÆ
ial.De�nition 11.2.2. If X � <; and f(x) : X ! < is di�erentiable at ea
h point inX; then a point 
 2 X is a 
riti
al point of f(x) if f 0(
) = 0: The value y = f(
) is
alled a 
riti
al value.In other words, a 
riti
al point is where the 
urve y = f(x) has a horizontaltangent.Simpli
io: Ah! So the point x = 
 is nothing but a root of the �rst derivative. Whydo you 
all it a 
riti
al point?Galileo: Be
ause something important might be happening at that point. For us,the word important means a maximum or minimum value of f(x) o

urs at thatlo
ation. If you remember from Cal
ulus, maxima and minima o

ur at 
riti
alpoints or endpoints. Finding a root of a fun
tion's �rst derivative f 0(x) is a big deal.Virginia: Aren't we talking about roots tomorrow?Galileo: Absolutely. However, our immediate need for Rolle's Theorem is that itprovides a qui
k proof of the Mean Value Theorem.

Figure 11.1: An Appli
ation of Rolle's Theorem
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ise Set 11.2.1. If f(x) = �x2 + 3x� 2; then �nd a 
riti
al point for f(x): What is the 
riti
alvalue? (Graph the fun
tion y = f(x):)2. If f(x) = x3 + 2x; then show that f(x) has exa
tly one real root. (Graph thefun
tion y = f(x):)3. Compute the 
riti
al points and 
riti
al values of the fun
tion f(x) = xe�x2 :(Graph the fun
tion y = f(x):)11.3 The Mean Value TheoremGalileo: Now we turn to the proof of the Mean Value Theorem.Simpli
io: What is the idea underneath the Mean Value Theorem? How am I goingto remember it?Galileo: Sometimes we refer to this theorem as the \Highway Patrol Theorem."Simpli
io: Why is that?Galileo: Suppose you de
ide to visit your grandmother, who lives 80 miles away. Sin
eyou have just pur
hased a new 
ar, you de
ide to drive. If you get there in one hour,then do you deserve a ti
ket?Simpli
io: I am not sure. The time does sound a bit short.Galileo: Hopefully, the lo
al poli
e oÆ
er will be taking a lun
h break. If not, youmight warrant a speeding ti
ket, whi
h 
ould 
ost you a serious amount of money.Simpli
io: How so?Galileo: Sin
e the distan
e traveled in one hour was 80 miles, the average velo
ity is80mph. The Mean Value Theorem guarantees that at some time during the trip yourinstantaneous velo
ity will be exa
tly 80mph. If the maximum speed limit over theduration of the trip is 70mph, then you will need a very bright and energeti
 lawyerto get you o�.Simpli
io: How about if I get a fuzz-buster?



11.3. THE MEAN VALUE THEOREM 225Galileo: Let's turn to the theorem.Theorem 11.3.1 (Mean Value Theorem). If f(x) : [a; b℄ ! < has the propertythat f(x); f 0(x) are 
ontinuous, then there is a point z 2 (a; b) su
h that f 0(z) =f(b)�f(a)b�a :Proof. De�ne the fun
tion F (x) = f(x)� (f(a)+ f(b)�f(a)b�a (x� a)): Note that F (a) =f(a)� f(a) = 0 and F (b) = f(b)� f(a)� (f(b) � f(a)) = 0: Sin
e F 0(x) = f 0(x) �f(b)�f(a)b�a ; we 
an 
on
lude from Rolle's Theorem that there is a point z 2 (a; b) su
hthat F 0(z) = f 0(z)� f(b)�f(a)b�a = 0: Thus, f 0(z) = f(b)�f(a)b�a :Simpli
io: I do not like that proof. How did some one think of that idea?Galileo: While the proof of the theorem may appear arti�
ial, the basi
 idea is toredu
e the Mean Value Theorem to Rolle's theorem by subtra
ting the straight liney = f(a) + f(b)�f(a)b�a (x � a) from the fun
tion f(x): The next version of the MeanValue Theorem is rewritten into a form similar to Taylor's Theorem, whi
h we will
onsider shortly.Theorem 11.3.2 (Mean Value Theorem 2). If f(x) : [a; b℄! < has the propertythat f(x); f 0(x) are 
ontinuous, then for every pair of points x; x0 2 (a; b) there is apoint z 2 (a; b) su
h that f(x) = f(x0) + f 0(z)(x� x0):Proof. In the Mean Value Theorem 11.3.1 simply let x0 = a; x = b; and substituteinto the expression f 0(z) = f(b)�f(a)b�a to get f 0(z) = f(x)�f(x0)x�x0 : If we multiply both
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Figure 11.2: The Mean Value Theorem for f(x) = 4� (x� 2)2 on [0; 2℄



226 CHAPTER 11. MEAN VALUE THEOREMSsides of the equation by x0; we see that f(x)� f(x0) = f 0(z)(x � x0) and the resultfollows.Simpli
io: So what is this Mean Value Theorem good for?Galileo: The next theorem allows us to estimate how mu
h a fun
tion expands or
ontra
ts.Corollary 11.3.3 (Corollary to the Mean Value Theorem). If f(x) : [a; b℄! <has the property that f(x); f 0(x) are 
ontinuous and M = maxfjf 0(x)j : x 2 [a; b℄g;then for every pair of points x; x0 2 [a; b℄ we know that jf(x)� f(x0)j �M jx� x0j:Proof. By Mean Value Theorem 2 11.3.2 we know that for any two points x; x0 2 [a; b℄;there is a point z 2 [a; b℄ so that f(x)� f(x0) = f 0(z)(x� x0):Thus, if M = maxfjf 0(x)j : x 2 [a; b℄g; then jf(x) � f(x0)j = jf 0(z)jjx � x0j �M jx� x0j:Galileo: From an intuitive perspe
tive, the Corollary states that if you drive yourrusty old 
ar from your house to a party at your grandmother's house 80 miles awayand the jalopy 
annot go faster than 45mph, then you had better leave in plenty oftime or you will be late.Simpli
io: If you allow only an hour, then you will be assured of being late.Galileo: There it is, a mathemati
al fa
t.Example 11.3.1. If f(x) = sin(x); then we will show that j sin(x)� sin(y)j � jx� yjfor any two real numbers x and y:However, sin
e f 0(x) = 
os(x) for all x 2 < and 
os(x) � 1 for all x 2 <; we knowby the Mean Value Theorem 11.3.3 that j sin(x)� sin(y)j � jx� yj for all x; y 2 <:How about if you pra
ti
e on a 
ouple of the following problems?Exer
ise Set 11.3.1. If f(x) = x2 � 4; a = 0; and b = 1; then �nd the point z guaranteed by theMean Value Theorem 11.3.1. (Graph the fun
tion y = f(x):)



11.4. UNIFORM CONTINUITY 2272. If f(x) = x3 � 4; a = 1; and b = 5; then �nd the point z guaranteed by theMean Value Theorem 11.3.1. (Graph the fun
tion y = f(x):)3. If f(x) = ex and x; y 2 [0; 1℄; then show that jex � eyj � 3jx � yj: (Graph thefun
tion y = f(x):)4. IfK > 0 and T (x) = x� x2�K2x = 12x+ K2x ; then show that jT (x)�T (y)j � 12 jx�yjfor any two real numbers x; y 2 [pK;1): (We will see this problem again whenwe analyze the Ar
himedes/Heron square root algorithm. Graph the fun
tiony = T 0(x):)5. IfK > 0 and T (x) = x� x3�K3x2 = 23x+ K3x2 ; then show that jT (x)�T (y)j � 23 jx�yjfor any two real numbers x; y 2 [ 3pK;1): (We will see this problem again whenwe analyze the 
ube root algorithm. Graph the fun
tion y = T 0(x):)6. If T (x) = 13 
os(2x) � 3; then show that jT (x) � T (y)j � 23 jx � yj for any tworeal numbers x and y:11.4 Uniform ContinuityGalileo: We now turn to the topi
 of uniform 
ontinuity.Simpli
io: Yet a se
ond type of 
ontinuity? Isn't one enough?Galileo: It really isn't a new type of 
ontinuity, but rather is involved in the 
hoi
eof Æ when you have been 
hallenged by an �:Simpli
io: I have no idea what you are talking about.Galileo: Let us begin with a 
ouple of examples.Example 11.4.1. If f(x) : < ! < is de�ned by the rule f(x) = 2x; x0 2 <; and � > 0is given, then how small must Æ > 0 be 
hosen to guarantee that if x 2 (x0�Æ; x0+Æ);then f(x) 2 (f(x0)� �; f(x0) + �)?Simpli
io: Even I 
an answer that question. All we have to do is 
hoose Æ = �2 be
auseto 
he
k that this 
hoi
e works we simply note that jf(x) � f(x0)j = j2x � 2x0j =2jx� x0j < 2 �2 = �:



228 CHAPTER 11. MEAN VALUE THEOREMSGalileo: Very good. Now 
onsider a se
ond example.Example 11.4.2. If f(x) : < ! < is de�ned by the rule f(x) = x2; x0 2 <; and � > 0is given, then how small must Æ > 0 be 
hosen to guarantee that if x 2 (x0�Æ; x0+Æ);then f(x) 2 (f(x0)� �; f(x0) + �)?Simpli
io: This question is a bit harder, but let's �gure it out. If we assume thatÆ < 1; then jxj < jx0j + 1: Thus, jf(x) � f(x0)j = jx2 � x20j = j(x � x0)(x + x0)j =jx � x0jjx + x0j < Æ(jxj + jx0j) < Æ(2jx0j + 1): Thus, if I 
hoose Æ > 0 less than theminimum of 1 and Æ < �2jx0j+1 ; then I am done.Galileo: You are getting good at these 
omputations. I am impressed. OK, what isthe di�eren
e between the 
hoi
e of Æ in these two examples?Virginia: In the �rst example, the 
hoi
e of Æ does not depend on the given point x0:Namely, Æ = �2 for any point x0: In the se
ond example, the 
hoi
e of Æ must be madesmaller for larger values of x0:Galileo: In other words, in the �rst example, the 
hoi
e of Æ is independent of thepoint x0; while in the se
ond example, the 
hoi
e of Æ depends on x0: Let's modifythe se
ond example and see if you 
an �gure out what the 
hoi
e should be this time.Example 11.4.3. If x0 2 [�100; 100℄ and � > 0 are given and f(x) : [�100; 100℄! <is de�ned by the rule f(x) = x2; then how small must Æ > 0 be 
hosen to guaranteethat if x 2 (x0 � Æ; x0 + Æ); then f(x) 2 (f(x0)� �; f(x0) + �)?Simpli
io: This question is easy. If we 
hoose Æ = �200 ; then jf(x)�f(x0)j = jx2�x20j =j(x� x0)(x + x0)j = jx� x0jj100 + 100j < Æ(200) < �200200 = �:Thus, we are done.Galileo: Very good. Now, what is the di�eren
e between the se
ond and third exam-ples.Simpli
io: Obviously, the only di�eren
e is that the interval in the third example is
losed and bounded.Virginia: And you 
hoose Æ = �M ; where M � jf 0(x)j for all x in the interval.Galileo: Guess what! You have dis
overed two new theorems.



11.4. UNIFORM CONTINUITY 229Theorem 11.4.1 (Uniform Continuity 1). If X is an interval in < and f(x) :X ! < is a di�erentiable fun
tion with the property that jf 0(x)j < M for all x 2 X;then for any x0 2 X and any � > 0; there is a Æ > 0 with the property that ifjx� x0j < Æ; then jf(x)� f(x0)j < �:Proof. Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Choose Æ = �M+1 :Step 3. The Che
k:If jx� x0j < Æ; then by the Mean Value Theorem 11.3.3jf(x)� f(x0)j �M jx� x0j < MÆ < M �M+1 = MM+1� < �:Galileo: The next theorem provides the generality we desire. Note the hypotheseshave been 
hanged so that it is no longer ne
essary to assume that the fun
tion isdi�erentiable. However, to make up for this weaker assumption, we must assume thatthe interval is 
losed and bounded.Theorem 11.4.2 (Uniform Continuity 2). If f(x) : [a; b℄! < is a fun
tion withthe property that f(x) is 
ontinuous at ea
h x 2 [a; b℄; then for any � > 0 thereis a Æ > 0 with the property that if x0; x 2 [a; b℄ have distan
e jx � x0j < Æ; thenjf(x)� f(x0)j < �:Proof. By way of 
ontradi
tion, assume that there is no su
h delta:If this is true, then we have the following 
ases.Case n = 1:For Æ1 = 11 = 1 we 
an �nd points y1; z1 2 [a; b℄ with the property that jy1 � z1j <Æ1 = 11 and jf(y1)� f(z1)j � �:Case n = 2:For Æ2 = 12 we 
an �nd points y2; z2 2 [a; b℄ with the property that jy2 � z2j < Æ2 = 12and jf(y2)� f(z2)j � �:



230 CHAPTER 11. MEAN VALUE THEOREMSCase n = 3:For Æ3 = 13 we 
an �nd points y3; z3 2 [a; b℄ with the property that jy3 � z3j < Æ3 = 13and jf(y3)� f(z3)j � �:Case n = n:For Æn = 1n we 
an �nd points yn; zn 2 [a; b℄ with the property that jyn� znj < Æn = 1nand jf(yn)� f(zn)j � �:Sin
e we have assumed the interval [a; b℄ is 
losed and bounded, the sequen
efyng1n=1 has a 
onvergent subsequen
e. Without loss of generality, we 
an assume thesequen
e fyng1n=1 
onverges to some point x0: Sin
e the fun
tion f(x) is 
ontinuous atx0; we 
an �nd a Æ > 0 with the property that if jx�x0j < Æ; then jf(x)�f(x0)j < �2 :Choose an integer N suÆ
iently large that if n � N; then jyn � x0j < Æ2 :Sin
e jyn � x0j < Æ2 < Æ; jf(yn)� f(x0)j < �2 :Sin
e jzn � x0j = jzn � yn + yn � x0j � jzn � ynj + jyn � x0j < 1n + Æ2 � 1N + Æ2 �Æ2 + Æ2 = Æ; jf(zn)� f(x0)j < �2 :Combining these last two pie
es of information, we see that jf(yn) � f(zn)j =jf(yn)� f(x0) + f(x0)� f(zn)j � jf(yn)� f(x0)j+ jf(x0)� f(zn)j < �2 + �2 = �:Thus, we have a 
ontradi
tion to our assumption that jf(yn)� f(zn)j � � for allintegers n:Thus, the theorem is proved.Simpli
io: I have the 
reepy feeling I have seen that argument before.Galileo: You have. As part of the proof of the Extremum Theorem, we showed thata 
ontinuous fun
tion on a 
losed bounded interval is bounded. The argument is thesame ex
ept for the phrasing. In fa
t, our theorem on uniform 
ontinuity 
an beused to show a 
ontinuous fun
tion on a 
losed bounded interval is bounded. Theargument is straightforward.Simpli
io: Well, why didn't you give us this argument before? It would have beenmore e
onomi
al.Galileo: True, but it would have seemed a bit 
ontrived. In any 
ase, repetition is agreat tea
her.



11.4. UNIFORM CONTINUITY 231Simpli
io: I have one last question. Why did we go to the trouble to dis
uss uniform
ontinuity? It seems like a detail.Galileo: While you are 
orre
t that uniform 
ontinuity is a detail for an appli
ationsperson like yourself, it is the key idea in the proof that a 
ontinuous fun
tion on a
losed bounded interval is integrable.Simpli
io: As far as I am 
on
erned, any fun
tion 
an be integrated.Galileo: The 
ontinuous fun
tions on a 
losed bounded interval form a generally wellbehaved 
olle
tion. They possess the extremum and intermediate value properties. Aswe will see momentarily, they are also integrable. Thus, they form an important subsetof the 
olle
tion of integrable fun
tions. In some sense the 
olle
tion of 
ontinuousfun
tions are a ni
e subset of the 
olle
tion of integrable fun
tions. In an e�ort toisolate the 
on
ept of Uniform Continuity and unify the two theorems Theorem 11.4.1and Theorem 11.4.2, we make the following de�nition.De�nition 11.4.3. If X is an interval in < and f(x) : X ! < is a fun
tion with theproperty that � > 0 there is a Æ > 0 with the property that if x0; x 2 X have distan
ejx� x0j < Æ; then jf(x)� f(x0)j < �:Exer
ise Set 11.4.1. If f(x) = x3 + 3x is de�ned on the interval [�2; 2℄ and � > 0; then �nd aÆ > 0 with the property that if jx � x0j < Æ; then jf(x) � f(x0)j < � for allx; x0 2 [�2; 2℄:2. If f(x) = x4+x is de�ned on the interval [�3; 3℄ and � > 0; then �nd a Æ > 0 withthe property that if jx� x0j < Æ; then jf(x)� f(x0)j < � for all x; x0 2 [�3; 3℄:3. If f(x) = 5jxj + 3jx � 1j is de�ned on the interval [�2; 2℄ and � > 0; then �nda Æ > 0 with the property that if jx � x0j < Æ; then jf(x) � f(x0)j < � for allx; x0 2 [�2; 2℄:



232 CHAPTER 11. MEAN VALUE THEOREMS11.5 IntegrationGalileo: Sin
e our proofs of both Taylor's Theorem and the Fundamental Theoremof Cal
ulus require the Intermediate Value Theorem for Integrals, I guess we have no
hoi
e but to de�ne the integral of a fun
tion.Simpli
io: More theory?Galileo: While you dislike the theory, the de�nition is in the same spirit as thede�nitions we gave for limits of sequen
es and fun
tions. If you have forgotten thosedetails, go ba
k and look at your notes from those dis
ussions.Virginia: You mean you 
an phrase the de�nition in terms of a 
hallenge?Galileo: Absolutely. First, we have to de�ne the ideas of a partition and a re�nementof a partition. These terms will appear in the de�nition of the integral.De�nition 11.5.1. A partition of an interval [a; b℄ is a �nite ordered set of pointsof the form P = fa = x0 < x1 < x2 < � � � < xn = bg:De�nition 11.5.2. If P and P 0 are two partitions of an interval [a; b℄; then P 0 is arefinement of P if every member of P 0 is a member of P:De�nition 11.5.3. A bounded fun
tion f(x) : [a; b℄ ! < is integrable with integralR ba f(x) dx if for every � > 0; there is a partition P with the property that if P 0 =fa = x0 < x1 < x2 < � � � < xn = bg is any re�nement of P and for any 
hoi
e ofpoints x�k 2 [xk; xk+1℄; thenj n�1Xk=0 f(x�k)(xk+1 � xk)� Z ba f(x) dxj < �:Sin
e we have an ex
ess of notation, we will use the notationS(P ) = Pn�1k=0 f(x�k)(xk+1 � xk) to denote the sums approximating the integral. Wewill write this sum with the understanding that x�k 2 [xk; xk+1℄: With this notationwe 
an reformulate the de�nition a bit more su

in
tly.De�nition 11.5.4. A bounded fun
tion f(x) : [a; b℄ ! < is integrable with integralR ba f(x) dx if for every � > 0; there is a partition P with the property that if P 0 is any



11.5. INTEGRATION 233re�nement of P; then jS(P 0)� Z ba f(x) dxj < �:Simpli
io: This de�nition seems unne
essarily 
ompli
ated.Virginia: A
tually, no. I 
an already see that it 
an on
e again be phrased as a threestep pro
ess with the usual suspe
ts: Challenge, Choi
e, and Che
k. If I 
hallengeyou with an � > 0; then you are required to �nd me a partition P (The Choi
e) withthe property that any \bigger" partition P 0 has the property that S(P 0) is within �of the integral R ba f(x) dx: On
e again the � is a measure of our distan
e from thedesired answer. Not 
ompli
ated at all.Galileo: The next proposition en
apsulates the two most important fa
ts 
on
erningintegrals. The �rst states that the integrable of the sum is the sum of the integrals.The se
ond states that we 
an pull 
onstants a
ross the integral sign. Re
all thatderivatives also had these two properties. Together these two properties state thatthe derivative and integral are linear transformations and thus lie under the purviewof Linear Algebra. More about this later.Proposition 11.5.5 (Linearity Property for Integrals). If f(x); g(x) : [a; b℄! <are integrable and K is a real number, then1. R ba f(x) + g(x) dx = R ba f(x) dx + R ba g(x) dx:(The integral of the sum equals the sum of the integrals.)2. R ba Kf(x) dx = K R ba f(x) dx:(Pulling 
onstants.)Proof. Fa
t 1. Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Choose a partition P with the property that if P 0 is any re�nement of P; then1. jSf(P 0)� R ba f(x) dxj < �2 and



234 CHAPTER 11. MEAN VALUE THEOREMS2. jSg(P 0)� R ba g(x) dxj < �2 ;where Sf (P 0) and Sg(P 0) denote the approximating sums asso
iated with f(x) andg(x); respe
tively. (We assume that the 
hoi
e of x�k is the same for both approxima-tions.)Step 3. The Che
k: Sin
e Sf (P 0) + Sg(P 0) = Sf+g(P 0);jSf+g(P 0)� (Z ba f(x) dx+ Z ba g(x) dx)j =jSf(P 0) + Sg(P 0)� (Z ba f(x) dx+ Z ba g(x) dx)j=jSf(P 0)� Z ba f(x) dx+ Sg(P 0)� Z ba g(x) dxj�jSf(P 0)� Z ba f(x) dxj+ jSg(P 0)� Z ba g(x) dxj<�2 + �2 = �:Proof of Fa
t 2.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Choose a partition P with the property that if P 0 is any re�nement of P; thenjSf(P 0)� R ba f(x) dxj < �jKj+1 :Step 3. The Che
k:If P 0 is any re�nement of P; then jSKf(P 0)�K R ba f(x) dxj = jKSf (P 0)�K R ba f(x) dxj =jKjjSf(P 0)� R ba f(x) dxj < jKj �jKj+1 < �:Virginia: Those proofs weren't bad at all. They were almost the same as our limitfa
ts.Simpli
io: But why are they 
alled linearity properties? I don't see any proportions.Galileo: Do you remember the de�nition of linear transformation from your studiesof Linear Algebra?Simpli
io: I am not sure what you are getting at.Galileo: If you remember, a transformation L : U ! V from a ve
tor spa
e U to ave
tor spa
e V is 
alled linear if it satis�es two properties:



11.5. INTEGRATION 2351. L(u1 + u2) = L(u1) + L(u2) for all u1;u2 2 U and2. L(Ku) = KL(u) for all u 2 U and K 2 <:Of 
ourse, the ve
tor spa
e of integrable fun
tions is in�nite dimensional.Simpli
io: I have no use for in�nite dimensional ve
tor spa
es and their transforma-tions.Galileo: But you will.Simpli
io: Oh.Galileo: The global strategy will be to approximate in�nite dimensional spa
es by�nite dimensional spa
es and linear transformations by matri
es. You have heardof a matrix, haven't you? Derivatives, integrals, and Fourier Transformations alloperate in the in�nite dimensional arena. Fortunately, they all have �nite matrixrepresentations. Thus, Linear Algebra will be involved.Simpli
io: OK, OK. An integration example please.Galileo: Before we present an example, I would like to present two more notationsfor the lower and upper sums.De�nition 11.5.6. If f(x) : [a; b℄! < is a bounded fun
tion, P is a partition of [a; b℄;and zk 2 [xk; xk+1℄ has been 
hosen with the property that mk = f(zk) � f(x) for allx 2 [xk; xk+1℄; then de�ne the lower sum on P by S(P ) =Pn�1k=0 f(zk)(xk+1 � xk) =Pn�1k=0 mk(xk+1 � xk):De�nition 11.5.7. If f(x) : [a; b℄! <; P is a partition of [a; b℄; and zk 2 [xk; xk+1℄has been 
hosen with the property that f(x) � f(zk) =Mk for all x 2 [xk; xk+1℄; thende�ne the upper sum on P by S(P ) =Pn�1k=0 f(zk)(xk+1�xk) =Pn�1k=0 Mk(xk+1�xk):Virginia: A
tually, I hate to be pi
ky, but I have a 
omplaint about these last twode�nitions. If we assume the fun
tion f(x) is 
ontinuous, we know we 
an �nd thepoints zk and zk: However, if we don't make this assumption about f(x); we mightnot be able to �nd su
h points. What do we do then?Galileo: Good point. We would be on safer ground if we de�ned them more 
arefullyusing the 
on
epts greatest lower bound and the least upper bound.



236 CHAPTER 11. MEAN VALUE THEOREMSDe�nition 11.5.8. If f(x) : [a; b℄ ! < is bounded and P = fa = x0 < x1 < x2 <� � � < xn = bg is any partition of [a; b℄; then de�ne the notation mk = glbff(x) : x 2[xk; xk+1℄ and Mk = lubff(x) : x 2 [xk; xk+1℄:Virginia: I see why you are assuming your fun
tions are bounded. If you had un-bounded fun
tions, the quantities mk and Mk 
ould be in�nite.Galileo: You are 
orre
t. We are trying to keep our dis
ussion as simple as possible.Let us begin by making a number of observations.Proposition 11.5.9. If f(x) : [a; b℄! < is bounded and P is any partition of [a; b℄;then the lower and upper sums exist and S(P ) � S(P ) � S(P ):Proof. Sin
e mk � f(x�k) �Mk for all x 2 [xk; xk+1℄ and all k = 0; 1; : : : ; n� 1;S(P ) = n�1Xk=0 mk(xk+1 � xk) � S(P ) = n�1Xk=0 f(x�k)(xk+1 � xk)� n�1Xk=0 Mk(xk+1 � xk) = S(P ):Thus, we are done.Proposition 11.5.10. Let f(x) : [a; b℄ ! < be bounded. If P and P 0 are any twopartitions of [a; b℄ where P 0 is a re�nement of P; then S(P ) � S(P 0) � S(P 0) � S(P ):Proof. Simpli
io: Even I 
an see that this proposition is true.Galileo: But, you might want to be a bit 
areful and in
rease the partition P to P 0by adding one point at a time. This te
hnique is 
alled indu
tion.Simpli
io: Our example please.Galileo: OOPS! We need to remind you of one more detail. We need the sum formulafor the arithmeti
 series.Proposition 11.5.11. Pnk=1 k = 1 + 2 + � � �+ n = n(n+1)2 :Proof. Virginia: I remember the proof.



11.5. INTEGRATION 237If we let Sn = 1 + 2 + � � �+ n; thenSn = 1 + 2 + : : : + nSn = n + (n� 1) + : : : + 12Sn = (n+ 1) + (n+ 1) + : : : + (n+ 1)Sin
e the quantity 2Sn is written as n sums of the number n + 1; we see that2Sn = n(n + 1): Thus, Sn = n(n+1)2 :Virginia: Now we should be ready for our example.Example 11.5.1. Galileo: How about if we 
ompute the area under the 
urve y =f(x) = x for x 2 [0; 1℄?Simpli
io: Sure, but I already see the en
losed region is a right triangle with base andheight equal to one. The answer equals 12 :Galileo: We shall do as the young lady instru
ts.Virginia:Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Begin by 
hoosing an integer n with the property that n > 1� :Now 
hoose the partition P to be n + 1 equally spa
ed points between 0 and 1:In other words, P = f0 = x0 < x1 < x2 < � � � < xn = 1g; where xk = kn ; fork = 0; 1; 2; : : : ; n:Step 3. The Che
k:Let P 0 be any re�nement of P with x�k any 
hoi
e of points in the interval [xk; xk+1℄:Before we dis
uss P 0; let's make a 
ouple of observations about P: Sin
e xk+1�xk = 1nand mk = kn ; for all k = 0; 1; : : : ; n� 1;
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S(P ) = n�1Xk=0 mk(xk+1 � xk)= n�1Xk=0 kn 1n= 1n2 n�1Xk=0 k= 1n2 (n� 1)n2=12 n� 1n :Similarly, sin
e Mk = k+1n ; for all k = 0; 1; : : : ; n� 1;S(P ) = n�1Xk=0 Mk(xk+1 � xk)= n�1Xk=0 k + 1n 1n= 1n2 n�1Xk=0(k + 1)= 1n2 n(n + 1)2=12 n + 1n :Thus, 12 n� 1n = S(P ) � S(P 0) � S(P 0) � S(P 0) � S(P ) = 12 n+ 1n :Sin
e we have 
hosen n > 1� and 12 n+1n � 12 n�1n = 22n = 1n ; we 
an see thatjS(P 0)� 12 j < 1n < �: Thus, R 10 x dx = 12 :Virginia: Sin
e ea
h estimate of the integral is squeezed between a bit less than 12and a bit more than 12 ; I see we have a squeezing type pro
ess taking pla
e here.Simpli
io: OK, but I knew before we started that a triangle with height and baseequal to one has area equal to 12 :



11.5. INTEGRATION 239Example 11.5.2. Galileo: OK, then how do you 
ompute the area under the parabolay = f(x) = x2; for x 2 [0; 1℄?Simpli
io: I would use my antiderivatives from Cal
ulus.Galileo: But, what if you were Ar
himedes? He had no antiderivatives.Simpli
io: I would be in trouble.Galileo: While we won't give his proof, the next proposition provides the key to a proofhe would appre
iate. Virginia, how about if you lead the way again?Proposition 11.5.12. Pnk=1 k2 = 12 + 22 + � � �+ n2 = n(n+1)(2n+1)6 :Proof. Note the following spe
ial 
ases.If n = 1; then 12 = 1(1+1)(2+1)6 :If n = 2; then 12 + 22 = 2(2+1)(2�2+1)6 :If n = 3; then 12 + 22 + 32 = 3(3+1)(2�3+1)6 :The formal proof is by indu
tion.Virginia: Using the de�nition, we simply go through the same steps as before.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Begin by 
hoosing an integer n with the property that n > 1� :Now 
hoose the partition P to be n + 1 equally spa
ed points between 0 and 1:In other words, P = f0 = x0 < x1 < x2 < � � � < xn = 1g; where xk = kn ; fork = 0; 1; 2; : : : ; n:Step 3. The Che
k:Let P 0 be any re�nement of P with x�k any 
hoi
e of points in the interval [xk; xk+1℄:Before we dis
uss P 0; let's make a 
ouple of observations about P: Sin
e xk+1�xk = 1nand mk = ( kn)2; for all k = 0; 1; : : : ; n� 1;
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S(P ) = n�1Xk=0 mk(xk+1 � xk)= n�1Xk=0(kn)2 1n= 1n3 n�1Xk=0 k2= 1n3 (n� 1)n(2n� 1)6=16 (n� 1)(2n� 1)n2 :Similarly, sin
e Mk = (k+1n )2; for all k = 0; 1; : : : ; n� 1;S(P ) = n�1Xk=0 Mk(xk+1 � xk)= n�1Xk=0(k + 1n )2 1n= 1n3 n�1Xk=0(k + 1)2= 1n3 n(n+ 1)(2n+ 1)6=16 (n+ 1)(2n+ 1)n2 :Thus, 16 (n� 1)(2n� 1)n2 =S(P )�S(P 0)�S(P 0)�S(P 0)�S(P )=16 (n + 1)(2n+ 1)n2 :
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e we have 
hosen n > 1� ;S(P 0)� S(P 0) �16 (n+ 1)(2n+ 1)6n2 � 16 (n� 1)(2n� 1)6n2=2n2 + 3n + 16n2 � 2n2 � 3n+ 16n2= 6n6n2 = 1n;and both S(P 0) and 26 are trapped between S(P 0) and S(P 0); these estimates show thatjS(P 0)� 26 j < 1n < �: Thus, R 10 x2 dx = 13 :Simpli
io: These examples are not as bad as I would have expe
ted. However, howdid you know that mk = ( kn)2 and Mk = (k+1n )2?Virginia: Sin
e the fun
tion y = f(x) = x2 is in
reasing on the interval [x;xk+1℄; thelowest point on the 
urve o

urs at the left endpoint xk: Thus, mk = (xk)2 = ( kn)2:Similarly, the value ofMk+1 is 
omputed at the right endpoint so thatMk = (xk+1)2 =(k+1n )2:Example 11.5.3. Galileo: How about if we show that R 10 x3 dx = 14? The only fa
twe need is that Pnk=1 k3 = (n(n+1)2 )2:Simpli
io: Holy Mother of Jesus, save me from this mania
. Let's move on. I wouldrather we do it Isaa
 Newton's way.Galileo: So you do appre
iate a good theorem when you see one! OK, we will leave itfor an exer
ise.Galileo: OK, now it is time to move on to inequalities. Note that the next proposi-tion is analogous to the squeezing theorem for sequen
es. Unfortunately, just as theprevious squeeze involved a proof by 
ontradi
tion, the 
urrent proof does as well.Simpli
io: But, why 
an't we avoid new proofs?Galileo: Sadly, we did not de�ne the integral in terms of sequen
es.Simpli
io: I 
an smell that 
ontrapositive already.Proposition 11.5.13 (Monotone Property for Integrals). If f(x); g(x) : [a; b℄!< are bounded, integrable, and f(x) � g(x) for all x 2 [a; b℄; then R ba f(x) dx �R ba g(x) dx:



242 CHAPTER 11. MEAN VALUE THEOREMSProof. Begin by noting that if P is any partition of [a; b℄; then our assumption thatf(x) � g(x) for all x 2 [a; b℄; implies thatSf(P ) = n�1Xk=0 f(x�k)(xk+1 � xk) � n�1Xk=0 g(x�k)(xk+1 � xk) = Sg(P ):By way of 
ontradi
tion assume that R ba f(x) dx > R ba g(x) dx: We will show thisassumption leads to the absurdity that the number Sf(P ) is stri
tly less than itself.Step 1. The Choi
e of epsilon:Let � = R ba f(x) dx�R ba g(x) dx2 > 0:(Sin
e we are proving the 
ontrapositive, we get to 
hoose � to be any number wewant. The smart 
hoi
e is half the distan
e between the integrals R ba f(x) dx andR ba g(x) dx:)With this 
hoi
e of �; we know 2� = R ba f(x) dx�R ba g(x) dx: If we write 2� = �+ �and move one integral to the other side of the equation, thenZ ba g(x) dx+ � = Z ba f(x) dx� �:Step 2. The Choi
e of the partition P :(We now get to 
hoose the partition based on the 
hoi
e of �:)Choose a partition P with the property that if P 0 is any re�nement of P; thenjSf(P 0)� R ba f(x) dxj < � and jSg(P 0)� R ba g(x) dxj < �:Step 3. The Contradi
tion:(We now show that the number Sf(P 0) is less than itself.)Sin
e jSf(P 0)� R ba f(x) dxj < �; R ba f(x) dx� � < Sf(P 0):Sin
e jSg(P 0)� R ba g(x) dxj < �; Sg(P 0) < R ba g(x) dx+ �:Sin
e Sf(P 0) � Sg(P 0); we see thatSf(P 0) � Sg(P 0) < Z ba g(x) dx+ � = Z ba f(x) dx� � < Sf(P 0):Thus, Sf(P 0) < Sf (P 0); a 
ontradi
tion sin
e no number 
an be less than itself.Don't let all the notation 
onfuse you. The proof is easier than it looks. Draw api
ture.
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io: That proposition seems obvious to me. I don't see why it was ne
essaryto prove it.Galileo: The next 
orollary will provide the starting point in our proof of the MeanValue Theorem for Integrals.Corollary 11.5.14 (Integral Bounds). If f(x) : [a; b℄! < is bounded, integrable,and m � f(x) �M for all x 2 [a; b℄; then m(b� a) � R ba f(x) dx �M(b � a):Proof. This 
orollary follows immediately from the previous proposition.First, set g(x) =M for all x 2 [a; b℄: Thus, R ba f(x) dx � R ba M dx =M(b � a):Se
ond, set g(x) = m for all x 2 [a; b℄: Thus, m(b� a) = R ba m dx � R ba f(x) dx:Simpli
io: I have a qui
k question. Why all this generality in the de�nition of theintegral? In other words, as soon as you de
ided to 
ompute, you immediately 
hoseyour partition to have equally spa
ed points. Why not always limit your partitionsto equally spa
ed points?Galileo: Ex
ellent question! We have partitions with variable length intervals forboth pra
ti
al and theoreti
al reasons. A pra
ti
al reason is that the integral 
an beestimated more eÆ
iently and a

urately if we have shorter intervals where the fun
-tion y = f(x) is 
hanging rapidly and longer intervals where the fun
tion is 
hangingmore slowly. If the fun
tion happens to be di�erentiable, then the 
omputations willbe improved if the lengths of intervals are 
hosen relatively small in regions where thederivative is large and relatively long in regions where the derivative is 
lose to zero.This pro
ess 
an be automated.Example 11.5.4. For example, our friends in statisti
s are always having to approxi-mate integrals like R 10�10 e�x2 dx: Sin
e the fun
tion f(x) = e�x2 and its �rst derivativeare virtually zero on the intervals [�10;�5℄ and [5; 10℄; our partitionP = f�10 = x0 < x1 < x2 < � � � < xn�1 < xn = 10g 
an be 
hosen so that x1 = �5:and xn�1 = 5: The intermediate points 
an be 
lustered in the interval [�5; 5℄:
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al reasons?Galileo: If we use the de�nition of integral we just gave, it is easy to prove the ruleR ba f(x) dx = R 
a f(x) dx + R b
 f(x) dx for 
 2 [a; b℄: We simply add the point 
 toan arbitrary partition P = fa = x0 < x1 < � � � < xn = bg to 
reate a re�nementP 0 = fa = x0 < x1 < � � � < xk < 
 < xk+1 < � � � < xn = bg: The proof of this fa
t is abit of a nuisan
e if we had only 
onsidered equally spa
ed partitions. We will provethis fa
t momentarily.Simpli
io: Is that all?Galileo: As you will see during this dis
ourse, many te
hniques have diÆ
ulty whenmaking approximations near the boundary. The Runge and Gibbs example stand outas examples of this type. Some of these problems 
an be alleviated when we 
hooseour partition so that most of the points are 
lustered out near the boundary of theinterval. For numeri
al integration, Gauss Quadrature provides an elegant way tomake this 
hoi
e.Simpli
io: Any other thoughts?Galileo: While most of our dis
ussions will be restri
ted to the 1-dimensional setting,most real appli
ations take pla
e in 2; 3; or even higher dimensional spa
es. Whileupper sums and lower sums may not be well-de�ned in these settings, the expressionS(P ) = Pn�1k=0 f(x�k)(xk+1 � xk) makes sense as long as the value f(x�k) lies in areal ve
tor spa
e and the quantity (xk+1 � xk) is a real number. The other issue is
onvergen
e for the partial sums. However, if we de�ne the metri
 on the range ofthe fun
tion so 
onvergen
e implies 
onvergen
e on ea
h 
oordinate, then we are ba
kto dimension one. Pythagoras does that for us. He is our man. This heavy-handeddis
ussion implies that when we integrate a fun
tion of the form r(t) = (x(t); y(t));we simply integrate the two 
oordinates separately.Simpli
io: Hmmm.Virginia: I also have a question. When you 
omputed the examples, you immediatelyturned to the lower and upper sums. If you have equally spa
ed points, then thelower and upper sums are sequen
es so you simply 
ould have de�ned Pn to be the
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ed points. The integral 
an now bede�ned simply as the limit of the sequen
e limn! S(Pn) = limn! S(Pn): While thesetwo limits might not be equal, I doubt that happens. Can these limits di�er?Example 11.5.5 (A non-Integrable Fun
tion). Galileo: Now you are asking fora bizarre example. However, the following fun
tion has the property that all the uppersums equal +1; while all the lower sums equal �1: Thus, it 
annot be integrable.De�nition 11.5.15 (A non-Integrable Fun
tion). De�ne the fun
tion f(x) :[0; 1℄! < by the rulef(x) = 8<: �1 if x is a rational number1 if x is not a rational number :Virginia: Yes, I 
an see that no matter what the 
hoi
e of the partition, P; it willalways be true that mk = �1 and Mk = 1:Simpli
io: How so?Virginia: Sin
e there will always be a rational number x�k between xk and xk+1; mk =�1: Thus, S(P ) = �1 for any partition P: Sin
e there will always be an irrationalnumber x�k between xk and xk+1; Mk = 1: Thus, S(P ) = 1:Galileo: While this example makes the point that we should be 
areful, we won't useit mu
h. However, it does set the stage for a 
riterion that guarantees the existen
e ofthe integral. The 
riterion is similar to the Cau
hy 
riterion we had for sequen
es. Infa
t, the proof involves the same 
onstru
tion we went through for Cau
hy sequen
eswhere all but a �nite number of terms of a sequen
e are trapped in a nested sequen
eof intervals [an; bn℄; where bn � an < 1n :Galileo: OK, now it is time provide 
onditions, whi
h guarantee the integral exists.Simpli
io: This dis
ussion will be for the math majors.Galileo: True, but it will reinfor
e your understanding of the de�nition of the integral.Theorem 11.5.16 (Cau
hy Integrability Criterion). If f(x) : [a; b℄ ! < is abounded fun
tion, whi
h has the property that for every � > 0; there is a partition Psu
h that Sf(P )� Sf(P ) < �; then f(x) is integrable.
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onstru
tive, where a sequen
e of partitions fPng1n=1 are foundwith the property that Pn+1 re�nes Pn and Sf(Pn)� Sf(Pn) < 1n :Case n = 1. Let � = 1:Choose a partition P1 with the property that Sf (P1)� Sf (P1) < 1:Case n = 2. Let � = 12 :Choose a partition P2 with the property that Sf(P2)� Sf(P2) < 12 : Sin
e re�nementonly for
es the upper and lower sums to be 
loser, assume that P2 re�nes P1: (If itdoesn't, then add the points of P1 to P2:)Case n = 3. Let � = 13 :Choose a partition P3 with the property that Sf(P3)� Sf(P3) < 13 : Sin
e re�nementonly for
es the upper and lower sums to be 
loser, assume that P3 re�nes P2: (If itdoesn't, then add the points of P2 to P3:)Continue in this manner for arbitrary integers n to obtain a sequen
e of partitionswith the property thatSf(P1) � Sf(P2) � � � � � Sf (Pn) � Sf(Pn) � � � � � Sf(P2) � Sf(P1)and Sf (Pn)� Sf(Pn) < 1n :Sin
e the sequen
e fSf(Pn)g1n=1 is bounded in
reasing, it 
onverges to some num-ber, 
all it R ba f(x) dx:Sin
e the sequen
e fSf(Pn)g1n=1 is bounded de
reasing, it also 
onverges to somenumber.Sin
e Sf (Pn)�Sf (Pn) < 1n ; the sequen
e fSf (Pn)g1n=1 also 
onverges to R ba f(x) dx:Thus, the fun
tion f(x) is integrable.Simpli
io: But, wait a minute. Don't you have to go through the same Challenge,Choose, and Che
k routine we did before?Galileo: Of 
ourse, you are 
orre
t. Sin
e you asked, here it is.Step 1. The Challenge:Let � > 0 be given.
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e:Choose an integer n with the property that n > 1� :Now 
hoose the partition P = Pn; where Pn denotes the partition we just 
on-stru
ted.Step 3. The Che
k:Let P 0 be any re�nement of P with x�k any 
hoi
e of points in the interval [xk; xk+1℄:Sin
e Sf(Pn) � Sf (P 0) � Sf(Pn) and Sf(Pn) � R ba f(x) dx � Sf(Pn);jSf(P 0)� R ba f(x) dxj � Sf(Pn)� Sf(Pn) < 1n < �:Simpli
io: You told me more than I wanted to know.Virginia: But the argument really was the same as those given before. Namely, yousimply trap the two numbers Sf(P 0) and R ba f(x) dx in the interval [Sf(Pn); Sf(Pn)℄:Sin
e the length of this interval is less than �; the two points 
an't be separated bymore than �: Thus, we are done. Think visually.Virginia: What about the 
onverse?Galileo: The 
onverse is easy be
ause the integral is given to you for free. No in�nitepro
ess is required.Proposition 11.5.17. If f(x) : [a; b℄ ! < is a bounded integrable fun
tion, then ithas the property that for every � > 0; there is a partition P su
h that Sf (P )�Sf(P ) <�:Proof. Let � > 0 be given.Sin
e f(x) is integrable with integral R ba f(x) dx; there is a partition P with the prop-erty that if P 0 is any re�nement of P; then jSf(P 0)�R ba f(x) dxj < �2 : Sin
e the 
hoi
eof the point x�k is arbitrary in the approximating sum Sf(P ) =Pn�1k=0 f(x�k)(xk+1�xk);we see that jSf (P )� R ba f(x) dxj < �2 and jSf (P )� R ba f(x) dxj < �2 :Thus,Sf (P )� Sf (P ) = Sf (P )� Z ba f(x) dx+ Z ba f(x) dx� Sf(P ) � �2 + �2 = �:
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Galileo: The next proposition provides us with 
onditions when we know there willnever be a problem integrating.
Theorem 11.5.18 (Continuous Fun
tions are Integrable). If f(x) : [a; b℄! <is a fun
tion whi
h is 
ontinuous at ea
h x 2 [a; b℄; then f(x) is integrable.
Proof. To prove this proposition all we have to do is 
he
k the Cau
hy IntegrabilityCriterion. As with the de�nition of the integral, we have the Challenge, Choi
e, andChe
k.Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:By Theorem 11.4.2 we 
an �nd a Æ > 0 with the property that whenever jx� x0j < Æ;then jf(x)� f(x0)j < �b�a : Now 
hoose P = fa = x0 < x1 < � � � < xn = bg to be anypartition with the property that xk+1 � xk < Æ; for all k = 0; 1; : : : ; n� 1:Step 3. The Che
k:By the Extremum Theorem 10.3.1 we know that there are points x�k; x��k 2 [xk; xx+1℄with the property that f(x�k) = mk and f(x��k ) =Mk:



11.5. INTEGRATION 249Thus, Sf (P )� Sf(P ) = n�1Xk=0 Mk(xk+1 � xk)� n�1Xk=0 mk(xk+1 � xk)= n�1Xk=0(Mk �mk)(xk+1 � xk)= n�1Xk=0(f(x��k )� f(x�k))(xk+1 � xk)� n�1Xk=0 �(b� a)(xk+1 � xk)= �(b� a) n�1Xk=0(xk+1 � xk)= �(b� a)(b� a) = �:
Galileo: There it is.Virginia: In fa
t, the argument is virtually the same as for the two examples wedis
ussed earlier. The main di�eren
e is that we repla
ed those tri
ky summationformulas by Theorem 11.4.2, whi
h a
tually makes the argument easier.Galileo: And MUCH more general.Simpli
io: But there is one di�eren
e. With the examples we knew the answers beforewe started. Now we don't.Galileo: True. However, for the spe
ial 
ase when a fun
tion is di�erentiable, we
an use Theorem 11.4.1 to help 
hoose your partition. In parti
ular, this theoremprovides a tool for measuring the di�eren
e Sf (P )� Sf (P ):Simpli
io: How about an example?Galileo:Example 11.5.6. If f(x) = x2 on the interval [�3; 3℄ and � = 1106 ; then �nd apartition P = f�3 = x0 < x1 < � � � < xn = 3g with the property that Sf(P )�Sf(P ) <� = 1106 :
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io: Let me give this problem a try.First, 
ompute the �rst derivative f 0(x) = 2x:Se
ond, 
ompute the maximum value of jf 0(x)j = j2xj on the interval [�3; 3℄: Forthis fun
tion the maximum is M = 2 � 3 = 6:Third, 
hoose Æ > 0 suÆ
iently small that whenever jx � x0j < Æ; then jf(x) �f(x0)j � M jx� x0j < MÆ:Fourth, the di�eren
eSf (P )� Sf (P ) = n�1Xk=0 Mk(xk+1 � xk)� n�1Xk=0 mk(xk+1 � xk)= n�1Xk=0(Mk �mk)(xk+1 � xk)= n�1Xk=0 MÆ(xk+1 � xk)�MÆ n�1Xk=0(xk+1 � xk)=6 Æ(3� (�3)) = 36 Æ:Fifth, if we 
hoose Æ < �36 = 136� = 136 1106 ; then we guarantee thatSf(P )� Sf(P ) < 1106 for any partition P = f�3 = x0 < x1 < � � � < xn = 3g with theproperty that xk+1 � xk < Æ for all k = 0; 1; : : : ; n� 1:Galileo: You should appre
iate this 
ontrol.Simpli
io: It might surprise you, but I do appre
iate the ability to measure the error.Galileo: In the spirit of Professor Polya, let us take a se
ond look at this last example.Note that the key is being able to 
hoose a partition P with the property that Æ <�M(b�a) : The Mean Value Theorem 11.3.3 tells us the 
onstant M is needed in thedenominator.Simpli
io: It still bugs me that only justi�
ation for our dis
ussion of Uniform Con-tinuity is one inequality in the middle of Theorem 11.5.18. Mathemati
ians are neu-roti
.



11.5. INTEGRATION 251Galileo: It is hard to argue with your thought, but they have a need to get it right.At some point your future employer may apply the same test to your performan
e.If you like neuroti
 details, you will love this next proposition, whi
h states that if afun
tion is integrable on a 
losed bounded interval, then it is integrable on any 
losedbounded subinterval.Proposition 11.5.19. If f(x) : [a; b℄ ! < is integrable and a � 
 � d � b; thenR d
 f(x) dx exists.Proof. The proof of this proposition depends on Theorem 11.5.16. In order to use thistheorem properly, we need to notate the fun
tion f(x) restri
ted to the subinterval[
; d℄ by fR(x) : [
; d℄! <: (i.e.fR(x) = f(x) for all x 2 [
; d℄:) Now all that is requiredfor the proof is to show that for every � > 0 we 
an �nd a partition PfR = f
 = x0 <x1 < � � � < � � � < xn = dg with the property that S(P (fR))� S(P (fR)) < �:However, sin
e we are assuming that f(x) : [a; b℄! < is integrable, we 
an �nd apartition P of [a; b℄ with the property that S(P )�S(P ) < �: Sin
e re�nement alwaysmakes the upper and lower sums 
loser together, we might as well assume that thetwo points 
 and d are in
luded in P: Now simply 
reate a partition P (fR) of [
; d℄ asthe members of P with the points less than 
 and the points larger than d deleted.Thus, S(P (fR))� S(P (fR)) � S(P ))� S(P ) < � so we are done.OK, it is now time to mention a version of the distributive law for integration.Proposition 11.5.20. If f(x) : [a; b℄! < is integrable and 
 2 [a; b℄; then R ba f(x) dx =R 
a f(x) dx+ R b
 f(x) dx:Proof. Step 1. The Challenge:Let � > 0 be given.Step 2. The Choi
e:Sin
e we know by the previous proposition the fun
tion f(x) is integrable on theinterval [a; 
℄; we 
an �nd a partition PL = fa = x0 < x1 < � � � < xn = 
g with theproperty that if P 0L is any re�nement of PL; then jS(P 0L)� R 
a f(x) dxj < �2 :
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an �nd a partition PR = f
 = y0 < y1 < � � � < ym = bg with theproperty that if P 0R is any re�nement of PR; then jS(P 0R)� R b
 f(x) dxj < �2 :Choose P = PL [ PR = fa = x0 < x1 < � � � < xn = 
 = y0 < y1 < � � � < ym = bg:Step 3. The Che
k:If P 0 is any re�nement of P; then note that the members of P 0 
an be written asP 0 = P 0L[P 0R; where P 0L 
ontains all the members of P 0 to the left of 
 and P 0R 
ontainsall the members of P 0 to the right of 
: 
reate a partition of the left subinterval [a; 
℄de�ned by P 0L = fa = x0 < x1 < � � � < xq = 
g and a partition of the right subintervalP 0R = f
 = xq < xq+1 < � � � < xn = bg: Thus,jS(P 0)� (Z 
a f(x) dx+ Z b
 f(x) dx)j =jS(P 0L)� Z 
a f(x) dx + S(P 0R)� Z b
 f(x) dxj(11.5.1)�jS(P 0L)� Z 
a f(x) dxj+ jS(P 0R)� Z b
 f(x) dxj(11.5.2)<�2 + �2 = �: (11.5.3)
Simpli
io:Exer
ise Set 11.5.1. Using the DEFINITION of the integral, show that R 21 x dx = 32 :2. Using the DEFINITION of the integral, show that R 21 x2 dx = 73 :3. Using the DEFINITION of the integral, show that R 10 x3 dx = 14 :4. If f(x) = x3 + 3x is de�ned on the interval [�2; 2℄ and � > 0; then �nd apartition P with the property that jS(P )� R 2�2 f(x) dxj < �:5. If f(x) = x4+x is de�ned on the interval [�3; 3℄ and � > 0; then �nd a partitionP with the property that jS(P )� R 3�3 f(x) dxj < �:



11.6. THE INTERMEDIATE VALUE THEOREM FOR INTEGRALS 2536. If f(x) = 5jxj+ 3jx� 1j is de�ned on the interval [�2; 2℄ and � > 0; then �nd apartition P with the property that jS(P )� R 2�2 f(x) dxj < �:11.6 The Intermediate Value Theorem for Inte-gralsGalileo: We now turn to the Intermediate Value Theorem for Integrals. Some people
all it the Mean Value Theorem for Integrals. A
tually, its a bit of both.Simpli
io: Isn't one Intermediate Value Theorem enough?Galileo: Well no. These theorems provide the key steps in the proofs of the Funda-mental Theorem of Cal
ulus and Taylor's Theorem. While you are already familiarwith the Fundamental Theorem of Cal
ulus 11.7.3 and 11.7.4, the remainder form ofTaylor's Theorem will probably require some work on your part. In my experien
e,students are only visit Taylor Lite these days.Virginia: Even for me, it seems like we are a bit over the top on the theory. Why dowe need Taylor's Theorem?Simpli
io: Looks like I am beginning to get some support from the rear.Galileo: The short answer is that this theorem will provide the key step in explain-ing why the method of Newton/Raphson 
onverges more qui
kly than the bise
tionmethod. When we dis
uss this topi
, we will make numerous 
omputations of rootsof fun
tions. For example, we will �nd that the method of Newton/Raphson willonly require six iterations to a
hieve 14 de
imal pla
es of a

ura
y when approxi-mating p2: On the other hand, the bise
tion method will require more than thirty.Even with today's speedy 
omputer's this di�eren
e 
ould be
ome important in a big
omputational proje
t where these 
omputations must be made millions of times.The long answer is that Taylor's Theorem will provide a systemati
 way to numer-i
ally 
ompute �rst, se
ond, and higher order derivatives. These numeri
al derivativesare used to numeri
ally solve two point boundary value problems in di�erential equa-tions and partial di�erential equations. They are also used every where in image and
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essing. Taylor is a big deal.Simpli
io: While I don't 
are anything about di�erential equations, I like the signalpro
essing 
onne
tion.Galileo: Just as the derivative dete
ts the amount of 
hange that is taking pla
e witha fun
tion, an edge dete
tor is designed to identify those pixels in an image, whererapid 
hange is o

urring. Edge dete
tors are often 
onstru
ted from numeri
al �rstand se
ond derivatives. We now state and prove the Intermediate Value Theorem forIntegrals. Note that this theorem is a formal statement of the fa
t that the area underthe 
urve is the area of a re
tangle with base of length b � a and height somewherebetween the highest and lowest possible values of the fun
tion. For a visual of thegeometry see Figure 11.3. Note also that the key idea of the proof is that the meanof the fun
tion, 1b�a R ba f(x) dx; is intermediate between the lowest (i:e:f(z1)) andhighest values (i:ef(z0)): Thus, we named it the Intermediate Value Theorem forIntegrals.Theorem 11.6.1 (Intermediate Value Theorem for Integrals). If f(x) : [a; b℄!< is 
ontinuous at ea
h point x 2 [a; b℄; then there is a point z 2 [a; b℄ with the propertythat R ba f(x) dx = f(z)(b� a):Proof. Sin
e f(x) is 
ontinuous at ea
h x 2 [a; b℄; we know it is integrable. Thus, thesymbol R ba f(x) dx makes sense.By the Extremum Theorem 10.3.1 there are points z0; z1 2 [a; b℄ with the propertythat f(z1) � f(x) � f(z0) for all x 2 [a; b℄: Sin
e the numbers f(z0) and f(z1) are
onstants (wrt x), we know by Integral Bounds Corollary 11.5.14 thatf(z1)(b� a) = f(z1) Z ba 1 dx � Z ba f(x) dx � f(z0) Z ba 1 dx = f(z0)(b� a):Thus, f(z1) � 1b� a Z ba f(x) dx � f(z0)so the value 1b�a � R ba f(x) dx is intermediate between f(z1) and f(z0): By the In-termediate Value Theorem 10.2, there is a point z 2 [a; b℄ with the property thatf(z) = 1b�a R ba f(x) dx:



11.6. THE INTERMEDIATE VALUE THEOREM FOR INTEGRALS 255Thus, R ba f(x) dx = f(z)(b� a):

Figure 11.3: The Intermediate Value Theorem for IntegralsGalileo: The next theorem is a generalization of the Intermediate Value Theorem forIntegrals.Simpli
io: What!!!? Another one?Galileo: OK, I know you have had it with all this theory, but this theorem is exa
tlywhat we need to prove the error formula for Taylor's Theorem. This error formulais essential to our understanding of the 
onvergen
e rates of sequen
es generatedby Newton/Raphson. Error formulas guide us when, where, and things go wrong.Remember, the name of the game is 
ontrol.Theorem 11.6.2 (Intermediate Value Theorem for Integrals 2). If f(t); w(t) :[a; b℄ ! < are 
ontinuous at ea
h point t 2 [a; b℄ and w(t) � 0 for all t 2 [a; b℄; thenthere is a point z 2 [a; b℄ with the property that R ba f(t)w(t) dt = f(z) R ba w(t) dt:Proof. Sin
e f(t) is 
ontinuous at ea
h t 2 [a; b℄; we know by the Extremum Theoremthat there are points z0; z1 2 [a; b℄ with the property that f(z1) � f(t) � f(z0) for
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e w(t) � 0 for all t 2 [a; b℄; f(z1)w(t) � f(t)w(t) � f(z0)w(t) for allt 2 [a; b℄: Sin
e the numbers f(z0) and f(z1) are 
onstants (wrt t), we knowf(z1) Z ba w(t) dt = Z ba f(z1)w(t) dt� Z ba f(t)w(t) dt� Z ba f(z0)w(t) dt=f(z0) Z ba w(t) dt:Thus, f(z1) � R ba f(t)w(t) dtR ba w(t) dt � f(z0)so the value R ba f(t)w)t) dtR ba w(t) dt is intermediate between f(z1) and f(z0): By the IntermediateValue Theorem 10.2, there is a point z 2 [a; b℄ with the property thatf(z) = R ba f(t)w(t) dtR ba w(t) dtThus, R ba f(t)w(t) dt = f(z) R ba w(t) dt:Virginia: If you think about it, not only is this last theorem a generalization of theFirst Intermediate Value Theorem for Integrals, but the proof is the same.Galileo: Corre
t.Virginia: But how are we going to use it to prove Taylor's Theorem?Galileo: While the fun
tion w(t) is 
ompletely general, the 
ase most interesting tous is when w(t) = (x� t)n; where t 2 [x0; x℄:Simpli
io: But if x0 > x; then the interval [x0; x℄ has no points in it.Galileo: Te
hni
ally, you are 
orre
t. However, we only 
are about values of t betweenx and x0:Virginia: OK, but if the integer n is odd and x < t < x0; then the quantity x � t isnegative so that w(t) will be a negative number. The theorem does not apply.Galileo: Te
hni
ally, you are again 
orre
t. However, if you take a se
ond look at thetheorem, you will realize that the theorem is still true if we assume w(t) � 0 for all t:
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ise Set 11.6.1. If f(x) = x2 for x 2 [0; 2℄; �nd a point z 2 [0; 2℄ with the property thatf(z) = 12 R 20 x2 dx = 43 : Draw a graph of the fun
tion y = f(x): Indi
ate thepla
ement of the point (z; f(z)) on the graph.2. If f(x) = x3 for x 2 [0; 2℄; �nd a point z 2 [0; 2℄ with the property that f(z) =12 R 20 x3 dx: Draw a graph of the fun
tion y = f(x): Indi
ate the pla
ement ofthe point (z; f(z)) on the graph.3. If f(x) = x2 for x 2 [0; 2℄ and w(x) = (x� 2); then �nd a point z 2 [0; 2℄ withthe property that R 20 f(t)w(t) dt = f(z) R 20 w(t) dt:4. If f(x) = x3 for x 2 [0; 2℄ and w(x) = (x� 2)2; then �nd a point z 2 [0; 2℄ withthe property that R 20 f(t)w(t) dt = f(z) R 20 w(t) dt:11.7 The Fundamental Theorem of Cal
ulus

If I have been able to see further, it was only be
ause I stood on theshoulders of giants.-Isaa
 NewtonGalileo: Let us now introdu
e our 
olleague Sir Isaa
 Newton (1642-1727). ProfessorNewton made more 
ontributions to our understanding of the world around us than
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ientist. Not only was he an inventor of Cal
ulus, but he also ap-plied it to real physi
al problems. His Se
ond Law of Motion F = ma is fundamentalto the understanding of the motion of a 
annonball dropped from the Leaning Towerof Pisa, the orbits of the planets around the sun, the motion of a pendulum, and themotion of a parti
le through a 
uid. His 
ontributions to opti
s were also remarkableand in
luded building the �rst re
e
ting teles
ope and his re
ognition that that whitelight 
an be refra
ted into the many beautiful 
olors we have in the visible spe
trum.His Prin
ipia (1687) and Opti
ks (1704) are two of the greatest s
ienti�
 works everwritten.Newton: You forgot to mention that I served as the Lu
asian Professor of Mathemat-i
s at the University of Cambridge during the years 1669-1701 and I was president ofthe Royal So
iety during the years 1703-1727.Galileo: Thank you for reminding me of these details. Good sir, 
ould you give us afew insights into the Fundamental Theorem of Cal
ulus?Newton: The Fundamental Theorem of Cal
ulus provides the bridge that 
onne
tsthe two main themes in 
al
ulus: derivatives and integrals.Simpli
io: I must admit that the slope of a tangent line and an integral do not seemto have anything in 
ommon.Newton: But they do. Let us begin our dis
ussion by visualizing the area of a regionand the length of its boundary. How about if we begin with a 
ir
le?Simpli
io: From Geometry, I know the area of a 
ir
le is given by the formulaA = �r2;the 
ir
umferen
e is given by C = 2�r: So?Newton: But did you ever noti
e that dAdr = 2�r = C?Simpli
io: Seems like an a

ident of nature to me.Newton: Not so. This simple observation points out the general fa
t that the rate of
hange of the area of a region is the length of the 
hanging part of the boundary.Simpli
io: Sounds like double talk to me.Newton: How about a re
tangle with height h = 1 and base b = x: If we think of thearea as a fun
tion of the length of the base, then the area A = x and dAdx = 1; whi
h
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io: A se
ond a

ident of nature?Newton: A
tually, these two examples are 
ompletely general. For if we have afun
tion f(t); [a; b℄ ! <; whi
h is 
ontinuous at ea
h t 2 [a; b℄; then the fun
tionF (x) = R xa f(t) dt; 
omputes the area under the 
urve at ea
h point x 2 [a; b℄: The�rst part of the Fundamental Theorem of Cal
ulus states that F 0(x) = f(x):Virginia: Whi
h generalizes the example you just presented! Namely, the rate of
hange of the area under the 
urve y = f(t) equals the length of the right hand sideof the region, namely f(x):Galileo: Very good.Newton: But that observation is obvious. The �rst proposition is exa
tly what weneed to prove the se
ond part of the Fundamental Theorem of Cal
ulus. It basi
allystates that if you have no velo
ity, then you aren't going anywhere. Maybe some ofour students should a
hieve a little velo
ity.Proposition 11.7.1. If f(x) : [a; b℄! < is di�erentiable at ea
h point x 2 [a; b℄ andf 0(x) = 0 for all x 2 [a; b℄; then f(x) = f(a) for all x 2 [a; b℄:Proof. If x 2 [a; b℄; then by the Mean Value Theorem 11.3.1 we know there is az 2 [a; b℄ with the property that f 0(z) = f(x)�f(a)x�a : Sin
e we are assuming f 0(x) = 0for all x 2 [a; b℄; f 0(z) = 0; whi
h implies the fra
tion f(x)�f(a)x�a = 0: However, if afra
tion equals zero, then the numerator also equals zero. Thus, f(x) � f(a) = 0;whi
h implies f(x) = f(a):De�nition 11.7.2. If f(x); F (x) : [a; b℄! < and F 0(x) = f(x) for all x 2 [a; b℄; thenthe fun
tion F (x) is 
alled an antiderivative of f(x):Example 11.7.1. If F (x) = x3 and f(x) = 3x2; then F (x) is an antiderivative off(x):Example 11.7.2. If F (x) = x3 + 1 and f(x) = 3x2; then F (x) is an antiderivativeof f(x):



260 CHAPTER 11. MEAN VALUE THEOREMSVirginia: From these last two examples, we see that a fun
tion may have manyantiderivatives.Galileo: Corre
t.Newton: The Fundamental Theorem of Cal
ulus shows that there is a 
lose relation-ship between area and antiderivatives. For 
onvenien
e, the theorem is split into twoparts. The �rst part relates the derivative of the area under a 
urve and the height ofthe 
hanging boundary. The se
ond part is what every Cal
ulus student remembersabout 
omputing areas.Theorem 11.7.3 (Fundamental Theorem of Cal
ulus).1. If f(t) : [a; b℄ ! < is 
ontinuous at ea
h t 2 [a; b℄ and F (x) = R xa f(t) dt; thenF 0(x) = f(x):2. If f(t) : [a; b℄! < is 
ontinuous at ea
h t 2 [a; b℄ and G(t) is any antiderivativeof f(t); then R ba f(t) dt = G(b)�G(a):Proof. Part 1.If F (x) = R xa f(t) dt; then there is a z = z(h) (i.e. z depends on h) between x andx+ h so that F 0(x) = limh!0 F (x+ h)� F (x)h= limh!0 R x+ha f(t) dt� R xa f(t) dth= limh!0 R x+hx f(t) dth= limh!0 f(z(h)) R x+hx dth= limh!0 f(z(h))(x + h� x)h= limh!0 f(z(h) )hh= limz!x f(z) = f(x):Note that we used the Intermediate Value Theorem for Integrals 11.6.1 to justify theequality R x+hx f(t) dth = f(z(h)) R x+hx dth :
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io: Why did you write the point as z = z(h)?Newton: Sin
e the point z varies as the point h varies, the point z is a
tually afun
tion of h: The last equal sign is valid be
ause the fun
tion f(x) is 
ontinuous atthe point x and the values of z(h) 
onverge to x as h 
onverges to 0:Part 2.Let H(x) = G(x)� F (x): Sin
e H 0(x) = G0(x)� F 0(x) = f(x)� f(x) = 0 for allx; we know by the previous proposition that H(x) = H(a) for all x 2 [a; b℄: Thus,G(x) = F (x) + H(a) for all x 2 [a; b℄: If G(t) is any antiderivative of f(t); thenG(b)�G(a) = F (b) +H(a)� (F (a) +H(a)) = F (b)� F (a) = F (b)� 0 = R ba f(t) dt:Newton: We now give a simpli�ed statement of the Fundamental Theorem of Cal
u-lus, whi
h is in the form we will need.Theorem 11.7.4 (Fundamental Theorem of Cal
ulus 2). If x; x0 2 X; whereX is an interval in < and f(t) : X ! < is a fun
tion with the property that f 0(t) is
ontinuous at ea
h t 2 X; then R xx0 f 0(t) dt = f(x)� f(x0):Simpli
io: I like simpli�ed.Virginia: What about Ar
himedes' formula for the volume of a sphere?Simpli
io: What about it?Virginia: If V = 43�r3; then dVdt = 4�r2; whi
h just happens to be the surfa
e area ofa sphere. Is that an a

ident?Newton: And now it be
omes obvious where all those theorems in higher dimensionalCal
ulus 
ome from.Simpli
io: Enough of all this theory. How about an example?Galileo: OK, let's begin with an easy one.Example 11.7.3. Compute R 10 x4 dx:Virginia: Sin
e F (x) = x55 is an antiderivative of f(x) = x4; we know by the Funda-mental Theorem of Cal
ulus 11.7.3 thatZ 10 x4 dx = F (1)� F (0) = 155 � 055 = 15 :
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io: No fan
y summations. No partitions. Now I'm in my 
omport zone. Howabout another su
h beast?Galileo: Don't think those old guys were any less delighted.Example 11.7.4. Compute R 10 xn dx:Virginia: Sin
e F (x) = xn+1n+1 is an antiderivative of f(x) = xn; we know by theFundamental Theorem of Cal
ulus 11.7.3 thatZ 10 xn dx = F (1)� F (0) = 1n+1n+ 1 � 0n+1n+ 1 = 1n + 1 :Example 11.7.5. If F (x) = R x0 t2 dt; then 
ompute F 0(x):Simpli
io: I 
an do this one too. Here goes. Sin
e the fun
tion G(t) = t33 is anantiderivative of f(t) = t2; we know F (x) = R x0 t2 dt = G(x)�G(0) = x33 � 033 = x33 :Thus, F 0(x) = x2:Virginia: But you forgot to pay attention when we dis
ussed the �rst part of theFundamental Theorem of Cal
ulus. You worked mu
h too hard. All you have to do issubstitute the upper limit of the integral, namely x; into the fun
tion f(t) = t2 to getF 0(x) = f(x) = x2: You are �nished with zero e�ort.Galileo: Theorems are good.Example 11.7.6. If F (x) = R 0x t2 dt; then 
ompute F 0(x):Virginia: Sin
e F (x) = R 0x t2 dt = � R x0 t2 dt; F 0(x) = �x2:Simpli
io: I understand that example.Example 11.7.7. If F (x) = R ax f(t) dt; then 
ompute F 0(x):Virginia: Sin
e F (x) = R ax f(t) dt = � R xa f(t) dt; F 0(x) = �f(x):Example 11.7.8. If F (x) = R x20 t dt; then 
ompute F 0(x):Simpli
io: An antiderivative of f(t) = t is the fun
tion G(t) = t22 ; whi
h of 
oursehas derivative G0(t) = t: Thus, by Theorem 11.7.3 F (x) = R x20 t dt = G(x2) � G(0):By the Chain Rule for derivatives, F 0(x) = dG(x2)dx � dG(0)dx = G0(x2)2x = x22x:



11.7. THE FUNDAMENTAL THEOREM OF CALCULUS 263Virginia: If you noti
e that the fun
tion F (x) 
an be written as the 
ompositionF (x) = G(H(x)); where G(y) = R y0 t dt and H(x) = x2; then F 0(x) = G0(H(x))H 0(x)and you are done.Simpli
io: Your method was a lot easier.Virginia: Easy is good. The general method is summarized in the following proposi-tion.Proposition 11.7.5. If f(t) : [a; b℄! < is 
ontinuous at ea
h t 2 [a; b℄; and F (x) =R h(x)g(x) f(t) dx; then F 0(x) = f(h(x))h0(x)� f(g(x))g0(x):Galileo: How about one last example?Example 11.7.9. Compute R xx0(x� t) dt:Virginia: Sin
e the antiderivative of the fun
tion f(t) = x� t is � (x�t)22 ;Z xx0 (x� t) dt = �(x� t)22 jxt=x0 = 0� (�(x� x0)22 ) = (x� x0)22 :Simpli
io: Why did you present this last example?Galileo: That 
omputation is exa
tly what we will need for the last step in the proofof Taylor's Theorem.Simpli
io: How about a less abstra
t example?Example 11.7.10. Galileo: OK, how about if we 
ompute R10 e�x dx?Simpli
io: That's an easy one. By the Fundamental Theorem of Cal
ulus, we knowthat Z 10 e�x dx = �e�xj1x=0 = 0� (�1) = 1:Galileo: Very good. we will see that integral again.Simpli
io: How about another easy example?Example 11.7.11. Galileo: OK, how about if we 
ompute R ��� 
os2(x) dx?Simpli
io: I am not sure about that problem.



264 CHAPTER 11. MEAN VALUE THEOREMSVirginia: If you remember your half angle formulas from trigonometry, then you re
allthat 
os2(x) = 1+
os(2x)2 : Thus,Z ��� 
os2(x) dx = Z ��� 1 + 
os(2x)2 dx = Z ��� 12 dx + Z ��� 12 
os(2x) dx = � + 0 = �:Simpli
io: Why did you 
hoose this last example?Galileo: We just showed that the length of the fun
tion f(x) = 
os(x) on the interval[��; �℄ is p�:Simpli
io: Interesting. So there a
tually is a reason for 
omputing this example.Galileo: This pie
e of information will provide a key fa
t when we dis
uss FourierSeries.Exer
ise Set 11.7.1. Compute R ��� sin2(x) dx:2. If F (x) = R x0 t9 dt; then 
ompute F 0(x):3. If F (x) = R 0x t9 dt; then 
ompute F 0(x):4. If F (x) = R x20 t9 dt; then 
ompute F 0(x):5. If F (x) = R x0 sin(t2 + 1) dt; then 
ompute F 0(x):6. If F (x) = R x3x sin(t2 + 1) dt; then 
ompute F 0(x):7. Compute R xx0(x� t)2 dt:
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Brook Taylor (1685 - 1731)
Galileo: Let's now invite Professor Brook Taylor (1685-1731) to remind us aboutintegration by parts. Professor Taylor has many a
hievements to his 
redit. Virginia,what 
an you tell us about Professor Taylor?Virginia: Professor Taylor was born into a family of 
ulture and means. His fatherprovided him with a �ne edu
ation in mathemati
s both at home and later at Cam-bridge. While his �rst wife was from a good family, she had little money and hisfather disapproved of the mat
h. Unfortunately, she died in 
hildbirth. While hisfather approved of his se
ond marriage, she also died in 
hildbirth.Simpli
io: He su�ered a sad life.Virginia: Life is un
ertain.Galileo: But he a
hieved great mathemati
s! In addition to inventing the te
hniqueof integration by parts, Professor Taylor also developed methods for approximatingfun
tions by polynomials. These methods are now known as Taylor series. As youwill see, these methods 
an be used to numeri
ally approximate derivatives. To thisday these methods are used in a multitude of appli
ations from the design of anairfoil to predi
ting the path of a hurri
ane. These te
hniques are now known as�nite di�eren
e methods. We wel
ome you Professor Taylor.



266 CHAPTER 11. MEAN VALUE THEOREMSTaylor: Let us begin our dis
ussion of integration by parts by remarking that inte-gration generally has fewer tools than di�erentiation.Simpli
io: How so?Taylor: With di�erentiation we have the produ
t, quotient, and 
hain rules. Unfor-tunately, integration has no su
h rules.Simpli
io: Whi
h means there is less to learn. I like that.Taylor: Maybe so, but then you are left with fun
tions whi
h 
an be di�erentiated, butnot integrated. For example, try integrating the fun
tions f(x) = log(x)ex; f(x) =11+x6 ; or f(x) = e�x2 : While 
omputing the derivatives of these fun
tions is straight-forward, they are impossible to integrate using the Fundamental Theorem of Cal
ulus.Virginia: Is that be
ause you 
an't 
ompute their antiderivatives?Taylor: You got it. On the other hand, the te
hnique of integration by parts is anattempt to res
ue a produ
t rule for integrals.Simpli
io: What does that mean?Taylor: Sometimes it works, sometimes it doesn't.Simpli
io: An example please.Taylor: We will show that the te
hnique works great for the integral R �0 x 
os(x) dxand is helpless for the integral R 21 log(x)ex dx:Galileo: Let's move on to the theorem and its proof.Taylor: Sin
e we would like to be more formal, we state this method as a theoremwith de�nite integrals. The idea underneath the proof is to simply di�erentiate theprodu
t u(x)v(x) and then manipulate a bit.Theorem 11.8.1 (Integration by Parts). If u(x) and v(x) are di�erentiable fun
-tions on an interval [a; b℄; where u0(x) and v0(x) are 
ontinuous at ea
h x 2 [a; b℄;then R ba u(x)v0(x)dx = u(x)v(x)jbx=a � R ba v(x)u0(x)dx:Proof. By the Produ
t Rule for Derivatives 11.1.2, we know thatdu(x)v(x)dx = u(x)dv(x)dx + v(x)du(x)dx :Thus,



11.8. INTEGRATION BY PARTS 267u(x)dv(x)dx = du(x)v(x)dx � v(x)du(x)dx :Integrating both sides of the equation on the interval [a; b℄; we �nd thatZ ba u(x)dv(x)dx dx = Z ba du(x)v(x)dx dx� Z ba v(x)du(x)dx dx:Sin
e the fun
tion u(x)v(x) is an antiderivative of du(x)v(x)dx ; the result follows.Simpli
io: How about an example?Taylor: For a
tual 
omputations, we will simplify the theorem to R u dv = uv�R v du;where we understand the fun
tions u = u(x) and v = v(x) depend on x:Example 11.8.1. Compute the integral R 10 x(x� 1)3 dx:Simpli
io: I 
an do that problem. All you have to do is expand the expressionx(x� 1)3 = x(x3 � 3x2 + 3x1� 1) = x4� 3x3 + 3x2� x and integrate ea
h one of thefour terms.Taylor: Instead, if we let u = x and dv = (x � 1)3; then du = dx and v = (x�1)44 wesee thatZ x(x� 1)3 dx = x(x� 1)44 � Z (x� 1)44 dx = x(x� 1)44 � (x� 1)520 :Thus, Z 10 x(x� 1)3 dx = x(x� 1)44 j1x=0 � (x� 1)520 j1x=0 = �(�1)(�1)520 = � 120 :The worst aspe
t of the te
hnique is keeping tra
k of the minus signs.Simpli
io: How about another example?Example 11.8.2. Compute the integral R �0 x 
os(x) dx:If we set u = x and dv = 
os(x); then du = dx and v = sin(x):Thus,Z �0 x 
os(x) dx = x sin(x)j�x=0 � Z �0 sin(x) dx = �(� 
os(x))j�x=0 = �2:



268 CHAPTER 11. MEAN VALUE THEOREMSExample 11.8.3. Compute the integral R 10 x ex dx:If we set u = x and dv = ex; then du = dx and v = ex:Thus, Z 10 x ex dx = xexj1x=0 � Z 10 ex dx = e� (e� 1) = 1:Example 11.8.4. Compute the integral R 21 log(x) ex dx:If we set u = log(x) and dv = ex; then du = 1xdx and v = ex:Thus, Z log(x) ex dx = log(x)ex � Z ex 1x dx:So, what do you do with the integral R ex 1x dx?Simpli
io: I have no 
lue.Taylor: Exa
tly my point. The method provides no useful information.Virginia: What if you set u = ex and dv = log(x)?Taylor: You end up with an even bigger mess.Galileo: How about a set of guidelines for using your te
hnique?Taylor: To redu
e the 
omplexity of the integral R u dv for the following examples,make the following 
hoi
es.1. If n is a positive integer and R xn 
os(x) dx; then 
hoose u = xn and dv = 
os(x):(This 
hoi
e will have to be repeated n times.)2. If n is a positive integer and R xn sin(x) dx; then 
hoose u = xn and dv = sin(x):(This 
hoi
e will have to be repeated n times.)3. If n is a positive integer and R xnex dx; then 
hoose u = xn and dv = ex:(This 
hoi
e will have to be repeated n times.)4. If n is a positive integer and R xnlog(x) dx; then 
hoose u = log(x) and dv = xn:5. If R ex sin(x) dx; then 
hoose u = ex and dv = sin(x):(This 
hoi
e will have to be repeated twi
e.)
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os(x) dx; then 
hoose u = ex and dv = 
os(x):(This 
hoi
e will have to be repeated twi
e.)Exer
ise Set 11.8.1. Compute the integral R �0 x sin(x) dx:2. Compute the integral R �0 x2 sin(x) dx:3. Compute the integral R �0 log(x)x dx:11.9 Taylor's Theorem: Degree One Polynomials

Brook Taylor (1685 - 1731)
Galileo: We now turn to the �nal topi
 in our review: Taylor's Theorem.Simpli
io: Does this mean the pain of all this theory will soon lift?Galileo: A
tually, no. Let us now invite Professor Taylor for a se
ond visit. Goodsir, 
ould explain your methods for approximating fun
tions by polynomials?Taylor: The idea behind these approximations is that 
al
ulus would be a lot easierif we 
onsidered only polynomial fun
tions. As you have noti
ed, polynomials areattra
tive be
ause the 
omputation of derivatives and integrals is easy. Unfortunately,
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tions su
h as 
os(x); sin(x); ex; 11�x ; and ln(x) don't quite �t intothis setting. The beauty of my theorem is that it provides a strategy for approximatingthese fun
tions by polynomials.Simpli
io: I like this idea. Cal
ulus would 
ertainly be easier if every fun
tion was apolynomial.Taylor: That is the 
on
ept.Simpli
io: Where do we start?Taylor: The idea is to write a fun
tion f(x) = pn(x) + En(x); where pn(x) is apolynomial of degree n and En(x) represents the error. In the next theorem, weapproximate a fun
tion f(x) by the straight line y = p1(x) = f(x0) + f 0(x0)(x� x0):The error is represented as the integral E1(x) = R xx0 f 00(t)(x� t) dt:Theorem 11.9.1 (Taylor Theorem 1). If x; x0 2 X; where X is an interval in <and f(t) : X ! < is a fun
tion with the property that f 00(t) is 
ontinuous at ea
ht 2 X; then f(x) = f(x0) + f 0(x0)(x� x0) + Z xx0 f 00(t)(x� t) dt:Proof. The idea of the proof is to apply integration by parts to the last term. Inparti
ular, if we let u(t) = x � t and dv = f 00(t)dt; then du = �dt and v = f 0(t):Thus, by parts and the Fundamental Theorem of Cal
ulus, we have the followingsequen
e of equalities.Z xx0 f 00(t)(x� t)dt = (x� t)f 0(t)jxt=x0 � Z xx0 f 0(t)(�dt)= �(x� x0)f 0(x0) + f(x)� f(x0):Thus, f(x) = f(x0) + (x� x0)f 0(x0) + R xx0 f 00(t)(x� t) dt:Simpli
io: While the proof of this theorem is easier than I expe
ted, I don't like theformula for the error term.Galileo: Surprising you should mention this 
on
ern. I think you have someone whoagrees with you. Let me introdu
e Professor Joseph Louis Lagrange (1736-1813), who
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h Mathemati
ian. He did mu
h to explain and exploitProfessor Taylor's ideas. Wel
ome Professor Lagrange, but please don't mumble.Lagrange: I agree that the form of the error term is a nuisan
e. If you re
all the se
ondversion of Intermediate Value Theorem for Integrals 11.6.2, then we 
an present a formfor the error that is easier to remember.Simpli
io: You mean we are a
tually going to use that theorem?Galileo: We dis
ussed it for a reason.Lagrange: My version of Taylor's Theorem now be
omes:Theorem 11.9.2 (Lagrange Form of Taylor's Theorem). If x; x0 2 X; whereX is an interval in < and f(t) : X ! < is a fun
tion with the property that f 00(t) is
ontinuous at ea
h t 2 X; then there is a point z 2 X so thatf(x) = f(x0) + f 0(x0)(x� x0) + f 00(z)2 (x� x0)2:Proof. To prove this theorem will apply the Intermediate Value Theorem for Integrals11.6.2 to the integral R xx0 f 00(t)(x� t) dt: To be 
ertain we 
an apply this theorem wehave to 
he
k the fun
tion w(t) = x� t does not 
hange from positive to negative forvalues of t between x0 and x: On
e we have made this 
he
k, the hypotheses hold.We have two 
ases to 
onsider.Case 1. If x > x0; then we are 
onsidering t 2 [x0; x℄:For this 
ase, the fun
tion w(t) = x� t � 0 for all t 2 [x0; x℄:Case 2. If x � x0 then we are 
onsidering t 2 [x; x0℄:For this 
ase, the fun
tion w(t) = x� t � 0 for all t 2 [x; x0℄:Now, we 
an apply the Intermediate Value Theorem for Integrals 11.6.2 to theintegral R xx0 f 00(t)(x� t) dt and to �nd a point z 2 [x; x0℄ so thatZ xx0 f 00(t)(x� t) dt = f 00(z) Z xx0 (x� t) dt = f 00(z)(x� t)2�2 jxt=x0 = f 00(z)(x� x0)22 :
Lagrange: Noti
e that we have written the fun
tion f(x) in the form f(x) = p1(x) +



272 CHAPTER 11. MEAN VALUE THEOREMSE1(x); where p1(x) = f(x0) + f 0(x0)(x � x0) and E1(x) = f 00(z)2 (x � x0)2: Thus, theerror term now has the form of a se
ond degree polynomial.Galileo: There it is. Both the statement and proof are elegant and easy to understand.Simpli
io: I agree that this form of the remainder is easier to remember. How aboutan example?Galileo:Example 11.9.1. Use Taylor's Theorem to 
ompute p1(x) = f(x0) + f 0(x0)(x� x0)for the fun
tion f(x) = 
os(x); where x0 = 0:Simpli
io: Even I 
an do this problem. All we have to do is 
ompute f 0(x) = � sin(x)and noti
e that f(0) = 1 and f 0(0) = 0:Thus, p1(x) = 1: I wish all problems were this easy.Galileo: What about a bound on the error?Virginia: Sin
e f 00(x) = � 
os(x); jf 00(x)j � 1 for all x 2 <:Thus, jE1(x)j � 12(x� x0)2 = 12x2 for all x 2 <:Galileo: You should now understand Taylor.Simpli
io: Wait a minute. You promised that we would approximate a fun
tion bya polynomial of degree n: The only polynomial I see is the straight line p1(x) =f(x0)+ (x�x0)f 0(x0): Even I 
an see that a line y = 1 is not going to provide a 
loseapproximation to the fun
tion f(x) = 
os(x):Galileo: While you are 
orre
t, we only need this spe
ial 
ase for our dis
ussion of theNewton/Raphson method for 
omputing roots. No worries. We are going to inviteProfessor Taylor to return when dis
uss approximation theory. We will de�nitely seethe general 
ase then.Simpli
io: You are making an assumption.Galileo: Well folks. We have now 
on
luded our dis
ussion of the ba
kground materialrequired for tomorrow's gathering.Virginia: Wait. What is tomorrow's topi
?Galileo: We will show you how to 
ompute roots.
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overed an enormous amount of material today. Could you sum-marize the essentials of what we need for tomorrow?Galileo: You must have a
quired the following skill set.1. the ability to 
omprehend a mathemati
al argument,2. the ability to de�ne and apply limit fa
ts,3. be able to state and apply the Mean Value Theorem 11.3.3, and4. be able to state and apply Taylor's Theorem 11.9.2.Tomorrow we will begin to see how all this theory impa
ts �nding the root of afun
tion.Simpli
io: After dis
ussing all these di�erent topi
s, we are only required to havea
quired four skills?Virginia: Math is easy.Exer
ise Set 11.9.1. Use Taylor's Theorem to 
ompute p1(x) = f(x0)+f 0(x0)(x�x0) for the fun
tionsf(x) = sin(x); ln(1� x) and ex at the point x0 = 0:2. Use Taylor's Theorem to 
ompute p1(x) for the fun
tion f(x) = ln(x) at thepoint x0 = 1:3. If f(x) = sin(x); for x 2 [��; �℄ and x0 = 0; then use Taylor's Theorem toestimate a bound on E1(x) = f 00(z)2 (x�x0)2: Repeat the exer
ise for the fun
tionf(x) = ex:4. If f(x) = ln(1� x) for x 2 [�0:5; 0:5℄; and x0 = 0; then use Taylor's Theoremto estimate a bound on E1(x) = f 00(z)2 (x� x0)2:Simpli
io: But wait a minute, you never answered my question about approximationby polynomials of degree greater than one.Taylor: We will address that question at another gathering.
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Chapter 12
Su

essful Root Finding
Galileo: Our next goal is to establish 
onditions when our root �nding methods\work." In parti
ular, we will show that the method always 
onverges when 
omputingthe bise
tion method, square roots, 
ube roots, and nth roots. Of 
ourse, the squareroot methods and the 
ube root methods are spe
ial 
ases of the nth root method,but they are worth doing be
ause the geometry and arguments are so 
lear. A
tually,the three arguments are all based on the idea that a bounded de
reasing sequen
e
onverges.Virginia: So that's where the idea for those theorems on 
onvergen
e sequen
es 
amefrom.Galileo: Light bulb time.12.1 The Bise
tion MethodGalileo: Showing that the bise
tion method always works is easy. All we have to dois �nd a bounded in
reasing sequen
e or a bounded de
reasing sequen
e.Virginia: In fa
t, we have both. For if [an; bn℄ denotes the interval that has beenfound at the nth stage of the bise
tion algorithm, then the sequen
e of points fang1n=0is bounded and in
reasing, while the sequen
e fbng1n=0 is bounded and de
reasing. Inother words, you have two sequen
es from whi
h to 
hoose.277
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io: But what if they 
onverge to two di�erent points?Virginia: Remember that the error formula En � bn � an = b�a2n ; whi
h 
onverges tozero. Thus, limn!1 an = limn!1 bn:Simpli
io: Good. So the method always works.Virginia: Well, you do have to remember that the fun
tion f(x) is 
ontinuous andthat f(a) > 0 and f(b) < 0; or vi
e versa. Other than that, you are in your 
omfortzone.Example 12.1.1. If f(x) = x + sin(x) � 13; for x 2 [0; 15℄; then we have to 
he
ktwo 
onditions to make sure that the bise
tion method will �nd a root in the interval[0; 15℄:First, we have to 
he
k that f(x) is 
ontinuous. However, sin
e f(x) is the sumof three 
ontinuous fun
tions, it is 
ontinuous.Se
ond, we must 
he
k that f(0) and f(15) have opposite signs. However, sin
ef(0) = �13 < 0 and f(15) = 15+ sin(15)� 13 > 0; this 
ondition is satis�ed and weare done.Example 12.1.2. If f(x) = 3x2 + 2; for x 2 [�1; 1℄; the even though f(x) is 
ontin-uous, the signs of f(�1) and f(1) are the same. Thus, the bise
tion method does notguarantee a root will be found.Simpli
io: What about the fun
tion f(x) = 3x2 � 2; for x 2 [�1; 1℄?Galileo: Good point. Despite the fa
t that the fun
tion is 
ontinuous, the valuesof the fun
tion at the two endpoints do not have di�erent signs. In fa
t, we havef(�1) = f(1) = �1: Thus, the only problem with applying the bise
tion method is apoor 
hoi
e of interval. If we had 
hosen the interval [0; 1℄; we would have been �ne.12.2 The Ar
himedes/Heron AlgorithmGalileo: We now show that the square root method of Ar
himedes/Heron alwaysprodu
es a bounded de
reasing sequen
e. Re
all that when we 
omputedp2; our data



12.2. THE ARCHIMEDES/HERON ALGORITHM 279showed this property. The proof that this property always holds will be 
ompleted inthree steps.1. The geometri
 mean is less than or equal to the arithmeti
 mean.2. The points generated by the algorithm are bounded from below by pK:3. The sequen
e is always de
reasing.The next three propositions formalize these three statements.Proposition 12.2.1 (Geometri
/Arithmeti
 Mean). If x1; x2 � 0 thenpx1x2 � x1+x22 :Proof. Sin
e (x1 � x2)2 � 0; the result follows by simply expanding the produ
t andmanipulating the fa
tors.Proposition 12.2.2 (Boundedness). If K > 0; x0 = 1; xk+1 = xk+ Kxk2 ; and k � 1;then xk � pK:Proof. By the previous proposition, xk+1 = xk+ Kxk2 �qxk � Kxk = pK:Proposition 12.2.3 (De
reasing). If K > 0; x0 = 1; xk+1 = xk+ Kxk2 ; k � 0; andxk � pK; then xk+1 � xk:Proof. Sin
e xk � pK; x2k�K � 0: Sin
e xk+1 = xk+ Kxk2 = xk� x2k�K2xk and x2k�K � 0;the result follows.Galileo: The next theorem proves that the algorithm of Ar
himedes/Heron alwaysworks.Theorem 12.2.4 (Square Root Convergen
e for Ar
himedes/Heron). If K >0; x0 = 1; xk+1 = xk+ Kxk2 ; then the sequen
e fxkg1k=1 is bounded and de
reasing and thus
onverges. Moreover, if L = limk!1 xk; then L = 2pK:
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e the sequen
e fxkg1k=0 bounded and de
reasing, it 
onverges to somenumber L: Thus,L = limk!1fxk+1g = limk!1fxkg+ Klimk!1fxkg2 = L + KL2 ;whi
h implies that L = L+KL2 : Thus, 2L = L + KL and L2 = K:Virginia: Now I see why we proved that the limit of the sum is the sum of the limits.This argument is easy.Simpli
io: While I do not have the disposition or time to endure many proofs, I agreethat this one isn't too bad.Exer
ise Set 12.2.1. Show the se
ant method produ
es a bounded de
reasing sequen
e for the fun
-tion f(x) = x2 �K; when the algorithm is initialized by the points x0 and x1;where pK < x1 < x0:12.3 Cube Roots

Joseph-Louis Lagrange (1736-1813)I regard as quite useless the reading of large treatises of pure analysis:too large a number of methods pass at on
e before the eyes. It is in the
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ations that one must study them; one judges their abilitythere and one apprises the manner of making use of them.-Joseph-LouisLagrangeGalileo: We now turn to the problem of showing that the method for 
omputing 
uberoots always works. While it is virtually the same as the proof of the square rootmethod, it unfortunately has a new te
hni
al diÆ
ulty.Virginia: What seems to be the problem?Galileo: For 
ube roots the proof that the geometri
 mean is less than the arithmeti
mean be
omes a bit more 
ompli
ated. Let us introdu
e Joseph-Louis Lagrange(1736-1813). Though self taught, he was able to make signi�
ant 
ontributions to theCal
ulus of Variations, Group Theory, the three body problem, di�erential equations(the Euler-Lagrange equations), and the theory of 
onstrained maxima and minima.Virginia, 
ould you tell us more about his life?Virginia: While he is always thought of as Fren
h, Professor Lagrange was born inTurin in what is now a part of Italy. In 1755 he began a series of 
ollaborations withLeonhard Euler on problems related to the 
y
loid. He also worked on the three bodyproblem, the motion of the moon, and the perturbations of the orbits of 
omets bythe planets. He made 
ontributions to algebra and number theory in
luding the �rstproof of Wilson's theorem: If p is a prime number, then p divides (p � 1)! + 1: Inabstra
t algebra, he proved that the order of a subgroup divides the order of a group.Galileo: In 1793, he almost lost his life during the Fren
h Revolution. If the 
hemistLavoisier had not spoken on his behalf, he would have been exe
uted. Unfortunately,Lavoisier was not so lu
ky sin
e a revolutionary tribunal 
ondemned him to deaththe next year.Virginia: Need I reiterate, s
ien
e seems to be a most dangerous business.Simpli
io: I think I am going to like this guy. He works on real-world problems.Galileo: I agree. You will also get to meet him again when we dis
uss the errorformulas for Taylor's Theorem and polynomial approximation. Joseph-Louis 
ouldyou provide us with a bit of insight into your method of 
onstrained maxima and
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ular, we would like to show that the geometri
 mean never ex
eedsthe arithmeti
 mean.Lagrange: While this fa
t 
an be shown algebrai
ally, my method of (Lagrange!)multipliers is more elegant. The te
hnique 
an also be generalized to any number ofpoints.Proposition 12.3.1 (Geometri
/Arithmeti
 Mean). If x1; x2; x3 � 0; then3px1x2x3 � x1 + x2 + x33 :Proof. An elegant way to prove this result is to re
ast the problem as a 
onstrainedoptimization problem, where the fun
tion F (x; y; z) = xyz is maximized subje
t tothe 
onstraint x + y + z = M: By the method of Lagrange multipliers, we knowthat the solution to this problem will be found at a 
riti
al point of the fun
tionG(x; y; z; �) = F (x; y; z)� �(x+ y+ z�M): In parti
ular, we must solve the systemof 4 equations and 4 unknowns:�G�x = yz � � = 0�G�y = xz � � = 0�G�z = xy � � = 0�G�� = �(x + y + z �M) = 0:From the �rst 3 equations, we see that the only non-zero solution of this systemis when yz = xz = xy or x = y = z: From the 4th equation we see that x + y + z =x + x + x = 3x = M: Sin
e the maximum value of F (x; y; z) = xyz o

urs atx = y = z =M=3 and never ex
eeds M3 �M3 �M3 = (x+y+z)3=27; xyz � (x+y+z)3=27:The result follows by taking the 
ube root of both sides of this expression.Simpli
io: Unfortunately, I don't remember my Cal
ulus well enough to appre
iatethat proof. I think I will simply a

ept this proposition and ask that we move on.At least the statement is easy enough to understand. How did he 
ome up with that
ompli
ated proof anyway?Galileo: He was a smart fellow. In any 
ase, you will be pleased to note that the restof the argument is virtually the same as the one provided for square roots.



12.3. CUBE ROOTS 283Proposition 12.3.2 (Boundedness). If K > 0; x0 = 1; xk+1 = xk � x3k�K3x2k ; thenxk+1 � 3pK:Proof. By the previous proposition, xk+1 = xk+xk+ Kx2k3 � 3qxk � xk � Kx2k = 3pK:Proposition 12.3.3 (De
reasing). If K > 0; x0 = 1; xk+1 = xk � x3k�K3x2k ; k � 0; andxk � 3pK; then xk+1 � xk:Proof. Sin
e xk � 3pK; x3k � K � 0: Sin
e xk+1 = xk � x3k�K3x2k and x3k � K � 0; theresult follows.We 
an now use these two propositions to prove the following 
onvergen
e theoremfor the 
ube root method.Theorem 12.3.4 (Cube Root Convergen
e). If K > 0; x0 = 1; xk+1 = xk� x3k�K3xk2 ;then the sequen
e fxkg1k=1 is bounded and de
reasing and thus 
onverges. Moreover,limk!1 xk = 3pK:Proof. Sin
e the sequen
e fxkg1k=0 is bounded and de
reasing, it 
onverges to somenumber L: Thus, we immediately observe that L = L� L3�K3L2 and L3 = K:Simpli
io: Well, after we passed that initial te
hni
al detail, the ideas are not sodiÆ
ult. In fa
t, the proof is virtually the same as the one you presented for thesquare root method.Galileo: You seem to be getting more 
omfortable with these proofs. Maybe youshould 
onsider be
oming a mathemati
ian. You might like the profession.Simpli
io: I fear my e
onomi
 aspirations are higher than yours.Galileo: Good family, loyal friends, a glass of red wine, what more is there?Exer
ise Set 12.3.1. Show the se
ant method produ
es a bounded de
reasing sequen
e for the fun
-tion f(x) = x3 �K; when the algorithm is initialized by the points x0 and x1;where 3pK < x1 < x0:



284 CHAPTER 12. SUCCESSFUL ROOT FINDING12.4 nth RootsGalileo: Just as we were able to determine a method for �nding 
ube roots from thesquare root method, we 
an also determine a method for �nding nth roots. We havethe following re
ursive algorithm for nth roots of K; where K > 0 :x0 = 1;xk+1 = xk � xnk �Knxn�1k :This algorithm leads us to the 
onvergen
e theorem for the nth root method.Theorem 12.4.1. If K � 0; x0 = 1; and xk+1 = xk� xnk�Knxn�1k then the sequen
e fxkg1k=1is bounded and de
reasing and thus always 
onverges to npK:Again, to prove the 
onvergen
e theorem we use the following three propositions.The �rst proposition states that the geometri
 mean is always less than or equal tothe arithmeti
 mean.Proposition 12.4.2 (Geometri
/Arithmeti
 Mean). If x1; x2; x3; : : : ; xn � 0;then npx1x2x3 : : : xn � x1+x2+x3+���+xnn :Proof. The proof is the same Lagrange approa
h to the 
ube root 
ase. Just morevariables.Proposition 12.4.3 (Boundedness). If K > 0; x0 = 1; xk+1 = xk � xnk�Knxn�1k ; thenxk+1 � npK:Proof. By the de�nition of the sequen
e and the previous (i. e. Geometri
/Arithmeti
Mean) proposition, xk+1 = xk � xnk �Knxn�1k= (n� 1)xk + Kxn�1kn� nsxn�1k � Kxn�1k= npK:
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Proposition 12.4.4 (De
reasing). If K > 0; x0 = 1; xk+1 = xk � xnk�Knxn�1k ; k � 0 andxk � npK; then xk+1 � xk:Proof. Sin
e xk � npK for all k � 1; we see that xnk �K � 0: Sin
e xk+1 = xk� xnk�Knxn�1kand both the numerator and denominator of the expression xnk�Knxn�1k are both non-negative, xk+1 = xk� non-negative number. Thus, xk+1 � xk:Theorem 12.4.5 (nth Root Convergen
e). If K > 0; x0 = 1; xk+1 = xk � xnk�Knxkn�1 ;then the limk!1 xk exists and limk!1 xk = npK:Proof. Sin
e the sequen
e fxkg1k=0 is bounded and de
reasing, it 
onverges to somenumber L: Thus, by the limit theorems we know that L = L� Ln�KnLn�1 : Simplifying thisexpression we see that Ln = K and the result follows.Exer
ise Set 12.4.1. Show that the method for 
omputing the �fth root of a number always 
on-verges. Use your method to 
ompute the 5th root of 10. How does the rateof 
onvergen
e 
ompare with the rate of 
onvergen
e when the square roots ofthese numbers are 
omputed? Repeat for the numbers 100,000 and 0.000001.12.5 The Newton/Raphson AlgorithmGalileo: We would now like to build on the su

ess of the method of Ar
himedes/Heron.To do that, we need to 
onsider the key ingredients that guarantee the method willalways work.Virginia: In the dis
ussions of the su

ess of ea
h of the square root, 
ube root, andnth root methods, we only had to worry about three issues:1. The geometri
 mean does not ex
eed the arithmeti
 mean.2. The sequen
e is bounded from below by the root we are seeking.
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e is always de
reasing.Galileo: So how do these properties intera
t?Virginia: The only reason we need the geometri
 and arithmeti
 means is to showthat xn � r; where r = pK or r = 3pK is the root. We showed the sequen
e isde
reasing by showing that xn+1 = xn�Qn; where Qn equals a positive number thatbe
omes smaller for ea
h iteration.Galileo: How did we show Qn is positive?Simpli
io: The quantity Qn = Q(xn) = f(xn)f 0(xn) is positive be
ause both f(x) and f 0(x)are positive for all x > r:Galileo: Is this suÆ
ient?Virginia: I am not sure it will suÆ
e to only have f(x) > 0 and f 0(x) > 0: Think ofthe example f(x) = xex2 : If we initialize the method of Newton/Raphson with a pointjust to the left of the bump at x = p22 ; then the �rst iteration x1 will be negative andbe to the left of the root r = 0: For example if x0 = p22 � 0:001; then I suspe
t wewill have a problem.Galileo: Let's 
onsider the shapes of the 
urves y = f(x) = x2 �K and y = f(x) =xex2 : Re
all from Cal
ulus that 
on
avity is one measure of the shape of a 
urve. Iff 00(x) > 0 for all x in some interval X; then the 
urve y = f(x) is 
on
ave up.Virginia: And thus holds water!Galileo: Corre
t. On the other hand, if f 00(x) < 0 for all x in some interval X; thenthe 
urve y = f(x) is 
on
ave down.Simpli
io: And thus does not hold water!Galileo: Note that the �rst 
urve is 
on
ave up on the interval [0;1); while the se
ondis 
on
ave down on the interval [0;p32): Note further that when we use the methodof Newton/Raphson to �nd roots of these fun
tions, the approximations di�er.Virginia: In what way?Galileo: As we have established, the approximations for the positive root of f(x) =x2�K form a de
reasing sequen
e whi
h is bounded from below by the root r = pK:However, for the fun
tion f(x) = xex2 with a 
hoi
e of x0 = 0:4; the sequen
e of
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illates between positive and negative estimates. The goal of this dis
ussionis to build on the su

ess of Ar
himedes/Heron. To this end we �rst state and provea small proposition, whi
h states that if the method Newton/Raphson produ
es asequen
e whi
h 
onverges to a number L; then L will be a root of the fun
tion.Proposition 12.5.1 (Newton/Raphson Convergen
e). Let f(x) : [a; b℄ ! <be a di�erentiable fun
tion with the property that jf 0(x)j � M for all x 2 [a; b℄: Ifa sequen
e of points fxng1n=1 in [a; b℄ is de�ned re
ursively by x0 2 [a; b℄; xn+1 =xn � f(xn)f 0(xn) ; and limn!1 xn = r; then f(r) = 0: (i.e. The point x = r is a root off(x):)Proof. We will prove this theorem by showing that if � > 0; then we 
an �nd aninteger N with the property that jf(xn)j < � for all n � N:Step 1. (The Challenge)Let � > 0 be given.Step 2. (The Choi
e of N)Choose N so that if n � N; then j xn � rj < �2M :Step 3. (The Che
k)Sin
e xn+1 = xn� f(xn)f 0(xn) ; we begin by subtra
ting xn from both sides of the equationand multiplying by f 0(xn) so that f(xn) = �f 0(xn)(xn+1 � xn): Thus, jf(xn)j =jf 0(xn)j jxn+1 � xnj:However, if jf 0(x)j � M for all x 2 [a; b℄; then jf(xn)j � M jxn+1 � xnj �M(jxn+1 � r + r � xnj) �M(jxn+1 � rj+ jr � xnj) �M( �2M + �2M ) � 2 �2 = �:Simpli
io: A
tually, I think I 
an visualize this proposition in the following way. Ifthis proposition were to be false and f(r) > 0; then as the the points xn get 
lose to rthe slope of the tangent lines get steeper and steeper. Thus, the slope of the tangentline at x = r should be in�nite.Virginia: While a good idea, I think you have in mind the spe
ial 
ase when xn � rfor all n and f(x) > 0 and f 0(x) > 0 for all x > r: In this setting, we know thatf(xn) � f(L) > 0 whi
h I agree would for
e f 0(r) = +1:



288 CHAPTER 12. SUCCESSFUL ROOT FINDINGGalileo: The next theorem is a generalization of the proof of the 
onvergen
e ofAr
himedes/Heron.Theorem 12.5.2 (Newton/Raphson Convergen
e 2). Let f(x) : [r;+1) ! <be a fun
tion with the following properties:1. f(x) has a root at x = r;2. f(x); f 0(x); and f 00(x) exists for all x 2 (r;+1);3. x0 is any point 2 (r;+1); and4. xn+1 = xn � f(xn)f 0(xn) :If f(x) > 0; f 0(x) > 0; and f 00(x) > 0 for ea
h x 2 (r;+1); then1. xn+1 � xn (de
reasing),2. r � xn+1 (bounded below by r); and3. limn!1 xn = r: (
onvergen
e)Proof. Step 1.If xn 2 (;+1); then xn+1 = xn � f(xn)f 0(xn) = xn � pospos = xn � pos � xn: Thus,xn+1 � xn and the sequen
e is de
reasing.Step 2. If we suppose that xn > r; then we must show that xn+1 � r:If xn > r; then the verti
al distan
e between the 
urve y = f(x) and the tangentline y = f(xn) + f 0(xn)(x� xn) at the point x = xn is dn = f(xn) + f 0(xn)(r� xn)�f(r) = f(xn) � f(r) + f 0(xn)(r � xn): But, by the Mean Value Theorem, there is apoint z 2 [r; xn℄ with the property that f(xn)� f(r) = f 0(z)(xn � r):Thus, dn = f 0(z)(xn � r) + f 0(xn)(r � xn) = f 0(z)(xn � r) � f 0(xn)(xn � r) =(f 0(z)� f 0(xn) )(xn � r) = �f 00(z2)(xn � z)(xn � r) < 0: Thus, the tangent line is anegative number at the point x = r and the approximation xn+1 must be between rand xn:Step 3.
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e the sequen
e fxng1n=1 is bounded from below and de
reasing, it 
onvergesto some number L: By the previous proposition, we know that f(L) = 0: Sin
e weare assuming f(x) > 0; for all x > r; then we have a 
ontradi
tion if f(L) > 0: Thus,it must be true that L = r:Simpli
io: Despite your motivation, that proof was a bit over my head. How aboutan example?Galileo: Sure, how about the polynomial p(x) = x3 + x� 1?Example 12.5.1. If p(x) = x3 + x� 1; then note that1. p(0) = �1;2. p(1) = 1;3. p0(x) = 3x2 + 1 > 0 for all x; and4. p00(x) = 6x > 0 for all x > 0:Thus, the polynomial has a root x = r between 0 and 1: Sin
e both the �rst andse
ond derivatives are positive for x > 0; we know above theorem applies. Thus, if weinitialize Newton/Raphson with any point x0 � 1; the method will always 
onverge.Virginia: I was just thinking about the proof of the Proposition you just presented.If you apply the proof to the fun
tion f(x) = x2 + 1; then we know the sequen
ederived from Newton/Raphson 
annot possibly 
onverge. As we showed by 
omputingmillions of terms, the sequen
e boun
es all over the pla
e. The inequality jf(xn)j �M jxn+1 � xnj is useful here be
ause with our fun
tion we know that f(x) � 1 forall x 2 <: Thus, if we restri
t our attention to a parti
ular interval, say [�1; 1℄; thenf 0(x) = 2x so that jf 0(x)j � 2 =M for all x 2 [�1; 1℄: Thus, 1 � f(xn) � 2 jxn+1�xnj;whi
h implies that no two 
onse
utive terms of the sequen
e 
an be within 12 of oneanother.Simpli
io: Hmmm.Exer
ise Set 12.5.



290 CHAPTER 12. SUCCESSFUL ROOT FINDING1. If p(x) = x5 + x3 � 1; then show that the method of Newton/Raphson 
analways be used to 
ompute the positive real root.2. If p and q are positive numbers and p(x) = x3 + px � q; then show that themethod of Newton/Raphson 
an always be used to 
ompute the positive realroot.



Chapter 13
Convergen
e Rates For Sequen
es
Galileo: While we have mentioned linear and quadrati
 
onvergen
e, we now turn tothe problem of making these ideas pre
ise.Simpli
io: You mean you want to know why the method of Ar
himedes/Heron takes5 or 6 iterations to 
ompute p2; while the bise
tion method takes more than 30?Galileo: Corre
t.Virginia: I think it is interesting that it might be possible to make these ideas pre
ise.It seems like you would only be able to 
ompute a few simple examples and then hopethey are representative when ou are 
onfronted by a new problem.Galileo: I think you will be surprised how easy it is to understand the di�eren
e.Simpli
io: Easy is good.Virginia: What do we have to know?Galileo: The Mean Value Theorem will be the key for linear 
onvergen
e, Taylor'sTheorem will be the key for quadrati
 
onvergen
e,13.1 Linear Convergen
eGalileo: While the next dis
ussion may appear a bit annoying at �rst, we now needto de�ne the Newton/Raphson method in terms of fun
tions instead of sequen
es.The reason for this in
rease in diÆ
ulty is to provide a 
ontext so we 
an present a291



292 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCES
areful dis
ussion of the 
onvergen
e rate.Example 13.1.1. Galileo: Let us begin with the simple example T (x) = 12x: Notewith this example, we have a root at x = 0: Better yet, we 
an �nd that root by lettingx0 = 1 and making the following 
omputations:1. x1 = T (x0) = 12 ;2. x2 = T (x1) = 12x1 = 122 ; and3. x3 = T (x2) = 12x2 = 123 :What do you noti
e about this sequen
e?Simpli
io: Well, it is obviously 
onverging to zero.Galileo: Sure, but how fast?Simpli
io: The error seems to be 
ut in half at ea
h iteration.Galileo: Your observation is on target.Example 13.1.2. Galileo: Now, we present a slight variation on the previous exampleby de�ning T (x) = 23x?Simpli
io: Well if we let x0 = 1 and iterate, we see that1. x1 = T (x0) = 23 ;2. x2 = T (x1) = 23x1 = (23)2; and3. x3 = T (x2) = 23x2 = (23)3:Thus, the sequen
e fxkg1k=0 
onverges to zero. However, this time the error is redu
edby only 33% at ea
h iteration.Galileo: Now I think you 
an see that these examples lead us to the following de�ni-tion.



13.1. LINEAR CONVERGENCE 293De�nition 13.1.1 (Linear Convergen
e). If a sequen
e fxkg1k=0 
onverges to anumber L; then the rate of 
onvergen
e is 
alled linear or (1st � order) if there are
onstants K > 0 and 0 � M < 1 and an integer N with the property that if k � N;then jxk � Lj � KMk:Galileo: In the examples given above, note that the limit L = 0; K = 1: In the�rst example, M = 12 ; while in the se
ond M = 23 : Note also for these examplesthat limn!1Mn = 0: The next proposition will show that if 0 � M < 1; then thiswill always be true. A
tually, this proposition will be used on a number of di�erento

asions during our future dis
ussions. In parti
ular, we will need this fa
t when wedis
uss the 
onvergen
e of the Geometri
 Series.Proposition 13.1.2. If jM j < 1; then limn!1Mn = 0:Proof. If M = 0; then the proof is easy so let us assume that M 6= 0:Step 1. (The Challenge) Let � > 0 be given.Step 2. (The Choi
e of N:) Choose N > log(�)log(jM j) :Step 3. (The Che
k that N is suÆ
iently large.) If n � N; then n > log(�)log(jM j) :Sin
e jM j < 1; log(jM j) < 0: Note that the inequality 
hanges signs when wemultiply both sides by log(jM j):Thus, we know nlog(jM j) < log(�): By the properties of logarithms, log(jM jn) <log(�) and we are done.Simpli
io: I hate to be annoying, but whi
h log fun
tion did you use?Galileo: I guess I was a bit sloppy on that point, but it really doesn't matter. Re-member that all log fun
tions are the same up to some 
onstant multiple.The purpose of the next proposition is to establish suÆ
ient 
onditions for whenwe know a sequen
e 
onverges linearly. Sometimes mathemati
ians a
tually use this
riterion as the de�nition for linear 
onvergen
e. Sin
e our �rst goal will be to showthat the bise
tion method produ
es a sequen
e whi
h 
onverges linearly to a root andsin
e it is not obvious that this 
riterion is satis�ed for the bise
tion method, we willuse the weaker de�nition given above.



294 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESProposition 13.1.3 (Test for Linear Convergen
e for a Sequen
e). If jM j < 1and fxkg1k=0 is a sequen
e with the property that jxk+1�Lj �M jxk�Lj for all k � 0;then the sequen
e fxng1n=0 
onverges linearly to L: In parti
ular, jxn�Lj � jx0�LjMnfor all n � 0:Proof. Sin
e jxk+1 � Lj �M jxk � Lj for all k; we know1. If k = 0; then jx1 � Lj �M jx0 � Lj:2. If k = 1; then jx2 � Lj �M jx1 � Lj �M2jx0 � Lj:3. If k = 2; then jx3 � Lj �M jx2 � Lj �M3jx0 � Lj:4. If k = n� 1; then jxn � Lj �M jxn�1 � Lj �Mnjx0 � Lj:In the de�nition of linear 
onvergen
e, note that K = jx0 � Lj:Sin
e jM j < 1; we know that limn!1Mn = 0: Thus, limn!1xn = L:Virginia: Can you give us an example of a sequen
e, whi
h 
onverges but does not
onverge linearly?Example 13.1.3. Galileo: While the sequen
e xk = 1k 
onverges to zero at a reason-able rate, it does not 
onverge linearly.To show this we a
tually have to give a short proof by 
ontradi
tion.Proof. By way of 
ontradi
tion, assume there are 
onstants K and M so that 0 �M < 1 and j 1k � 0j � KMk for all k = 1; 2; : : : :However, if this is true, then by 
omputing the logarithms of both sides, we seethat log(1k ) � log(K) + k log(M)or �log(M) � log(k)k + log(K)k :Sin
e 0 �M < 1;�log(M) > 0:
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e limk!1 log(k)k = 0 and limk!1 log(K)k = 0; we 
on
lude that0 < �log(M) � 0;a 
ontradi
tion.Virginia: So I guess this sequen
e is in the \slow" group.Galileo: You got it.Exer
ise Set 13.1.1. Determine whether or not the sequen
e xn = 1n! 
onverges linearly to zero.2. Determine whether or not the sequen
e xn = 1nn 
onverges linearly to zero.3. Prove: The sequen
e xk = 1k2 does NOT 
onverge linearly to zero.4. Prove: If limn!1jxn+1�Lxn�L j = M < 1; then the sequen
e fxng1n=0 
onvergeslinearly to L:13.2 Linear Convergen
e for the Bise
tion MethodGalileo: Now let us now show that the bise
tion method 
onverges linearly. All wehave to do is show that our error formula satis�es the de�nition for linear 
onvergen
e.Proposition 13.2.1 (Linear Convergen
e for the Bise
tion Method). Letf(x) : [a; b℄ ! < be a fun
tion, whi
h is 
ontinuous at ea
h x 2 [a; b℄ and eitherf(a) > 0 and f(b) < 0 or f(a) < 0 and f(b) > 0: If [an; bn℄ denotes a sequen
e ofintervals de�ned by the Bise
tion Method, r is a root of f(x) with the property thatr 2 [an; bn℄; for all n; and En = r � an denotes the error between an and r; thenjEnj = jan � rj � (b� a) 12n :Proof. Let [a0; b0℄ = [a; b℄: Sin
e r 2 [an; bn℄ for all n; we knowjE1j = ja1 � rj � (b1 � a1) � (b0 � a0)12 :jE2j = ja2 � rj � (b2 � a2) � (b1 � a1)12 � (b0 � a0) 122 :jEnj = jan � rj � (bn � an) � (bn�1 � an�1)12 � (b0 � a0) 12n :



296 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESGalileo: A
tually, we 
ould have made a slightly smarter 
hoi
e for the approximationto the root if we had 
hosen the midpoint mn = an+bn2 : With this 
hoi
e we see thatthen jEnj � (b� a)(12)n+1:Simpli
io: Is that all there is to it?Galileo: Some topi
s are easy.13.3 Linear Convergen
e For Newton/RaphsonGalileo: I 
hose these examples be
ause they provide insight into why the square rootand 
ube root algorithms 
onverge.Proposition 13.3.1 (Linear Convergen
e for Ar
himedes/Heron). If K >0; x0 � pK; and xn+1 = xn+ Kxn2 ; then the sequen
e fxng1n=0 
onverges linearly to pK:Moreover, jxn �pKj � (12)njx0 �pKj:Proof. If f(x) = x2 � K; where K > 0; the square root algorithm is given by thefun
tion T (x) = x � f(x)f 0(x) = x � x2�K2x = 12x + K2x : Sin
e T (x) � pK for all x �pK; the domain and range of this fun
tion 
an both be taken to be the interval[pK;+1): Sin
e T 0(x) = 12 � K2x2 2 [0; 12 ℄ for all x � pK; we 
an apply the MeanValue Theorem to the fun
tion T (x) at the values a = xk and b = xk+1 to getxk+1 �pK = T (xk)� T (pK) = T 0(z)(xk �pK):Thus, if we initialize our algorithm with a 
hoi
e of x0 � pK; then for all integersk � 1 we see that jxk+1�pKj = jT 0(z)(xk�pK)j � 12 jxk�pKj: Thus, by the Testfor Linear Convergen
e we see that the sequen
e fxng1n=0 
onverges linearly to pKand jxn �pKj � (12)njx0 �pKj:Thus, the di�eren
e between the (n)th estimate and pK is less than 50% of thedi�eren
e between the previous estimate and pK for all n:Simpli
io: I noti
ed that you suddenly 
hanged the assumption in the Ar
himedes/Heronalgorithm from x0 = 1 to x0 � pK: What is going on here?



13.3. LINEAR CONVERGENCE FOR NEWTON/RAPHSON 297

Figure 13.1: The Graph of y = T 0(x) = 12 � K2x2 when T (x) = 12x+ K2xGalileo: I tried to slip that past you, but you 
aught me. The reason is that jT 0(1)jmay ex
eed 1: Even though it will always be true that x1 = T (x0) � pK; thestatement of the proposition is 
leaner if we assume x0 � pK: Maybe we should havealways initialized the algorithm with x0 = K2 : If K � 4; we will always know thatx0 � pK:Simpli
io: What about the 
ube root algorithm?

Figure 13.2: The Graph of y = T 0(x) = 23 � Kx3 when T (x) = 23x+ K3x2



298 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESGalileo: Same game. Begin by letting f(x) = x3 � K: If we initialize our algorithmwith a 
hoi
e of x0 � 3pK; then for all integers n � 1 we see thatT (x) = x� f(x)f 0(x) = x� x3 �K3x2 = 23x + K3x2 :Thus, T 0(x) = 23 � 2K3x3 : By looking at the graph of the fun
tion we see that T 0(x) 2[0; 23 ℄ for all x � 3pK: By the Mean Value Theorem we 
an again apply the LinearConvergen
e Criterion to make the estimate jxn � 3pKj = jT (xn�1) � T ( 3pK)j �23 jxn�1 � 3pKj � (23)njx0 � 3pKj so that the sequen
e 
onverges linearly to 3pK:Example 13.3.1. In our example where f(x) = (x � 1000)2 and x0 = 1; re
all thatthe sequen
e of Newton/Raphson iterates 
onverged to the root r = 1000: If we on
eagain let T (x) = x� f(x)f 0(x) = x2 + 500; then note that T (1000) = 1000 and T 0(x) = 12 :Thus, jT 0(x)j = 12 < 1 for all x 2 <: By the Mean Value Theorem, we 
an seethat if xn denotes the nth iterate generated by the method of Newton/Raphson, thenjxn� rj = jxn� 1000j = jT (xn�1)� T (1000)j = j12 jjxn�1� 1000j = 12 jxn�1� 1000j forall n: Thus,1. jx1 � 1000j = 12 jx0 � 1000j;2. jx2 � 1000j = 12 jx1 � 1000j = (12)2jx0 � 1000j;3. jx3 � 1000j = 12 jx2 � 1000j = (12)3jx0 � 1000j;4. jx4 � 1000j = 12 jx3 � 1000j = (12)4jx0 � 1000j;5. ...6. jxn � 1000j = 12 jxn�1 � 1000j = (12)njx0 � 1000j;Thus, our error is redu
ed by 50% for ea
h iteration. Note also that the 
loserthe initial guess is to the �nal answer, the better the approximation. This exampleshould help make the Theorem on Linear Convergen
e for Newton/Raphson more
on
rete.



13.3. LINEAR CONVERGENCE FOR NEWTON/RAPHSON 299Let X be an interval in <: If the fun
tion f(x) 2 C2(X); then de�ne a newtransformation by the rule T (x) = x � f(x)f 0(x) : If f 0(x) 6= 0 for all x 2 X; then T (x)will be well-de�ned for all x 2 X: We assume f(x) 2 C2(X) be
ause we will want to
ompute T 0(x) and f 00(x) appears as a fa
tor in the formula for T 0(x): Also, if r is aroot of f(x); then T (r) = r: Conversely, if T (r) = r; then f(r) = 0: Note also thatthe sequen
e of points generated by the method of Newton/Raphson 
an be writtenas xk+1 = T (xk): For example, if f(x) = x2 �K; then T (x) = x� x2�K2x :Galileo: The �rst step is to 
ompute the derivatives of T (x): This information isstored in the following proposition.Proposition 13.3.2. Let X be an interval in <: Let T (x) : X ! < be de�ned bythe formula T (x) = x� f(x)f 0(x) ; where f(x) 2 C2(X) and f 0(x) 6= 0 for all x 2 X; thenT 0(x) = f(x)�f 00(x)[f 0(x)℄2 for all x 2 X:Proof. Use the quotient rule from Cal
ulus to 
ompute the derivative of T (x):Galileo: Note in the previous proposition that the minus sign in the formula T (x) =x� f(x)f 0(x) is the key to the simpli�
ation.Simpli
io: The minus sign?Galileo: Note that if f(x) = x2�K and T (x) = x� f(x)f 0(x) = 12x+ K2x ; then the domainand range of T (x) are the intervals [pK;1): Thus, T (x) : [pK;1) ! [pK;1):The �rst derivative is T 0(x) = 12 � K2x2 ; whi
h has the property that 0 � T 0(x) < 12 forall x 2 [pK;1): We showed earlier that if x0 2 [pK;1) and xk+1 = T (xk); thenthe sequen
e fxkg1k=0 
onverges to pK:The next proposition provides general 
onditions whi
h guarantee that the New-ton/Raphson sequen
e will 
onverge to a root. While it may appear a bit forbiddingat �rst, it is not so diÆ
ult to remember if you keep the previous examples in mindwhen you read it. Better yet, the proof is no more diÆ
ult than the these examplesalready dis
ussed.Theorem 13.3.3 (Linear Convergen
e for Newton/Raphson). Let X be aninterval in <: Let f(x) : X ! X be a fun
tion with the property that the fun
tions



300 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESf(x); f 0(x); and f 00(x) are 
ontinuous at ea
h x 2 X: If1. x = r is a root of f(x);2. f 0(x) 6= 0 for all x 2 X;3. T (x) = x� f(x)f 0(x) ;4. T (x) 2 X for all x 2 X; and5. jT 0(x)j �M < 1 for all x 2 X;then for any 
hoi
e of x0 2 X the sequen
e de�ned by xn+1 = T (xn) 
onverges linearlyto the root r: Moreover, jxn � rj �Mnjx0 � rj for all n:Proof. Let x0 2 X:For any integer n we know by the Mean Value Theorem that there is a point zbetween x0 and r su
h that T (xn)� T (r) = T 0(z)(xn � r):Sin
e T (xn) = xn+1 and T (r) = r; xn+1 = r+T 0(z)(xn�r): Sin
e jT 0(z)j �M < 1;jxn+1 � rj � M jxn � rj so that xn+1 is not only between r and xn; but 
loser to rthan the previous estimate.Sin
e xn+1�r = T 0(z)(xn�r); jx1�rj �M jx0�rj so that jx2�rj � M jx1�rj �M2jx0�rj; jx3�rj �M jx2�rj �M3jx0�rj; et
. Thus, the general pattern emergesthat for all n jxn � rj � Mnjx0 � rj: Sin
e M < 1; the sequen
e fMng1n=0 
onvergesto zero. Consequently the sequen
e fxng1n=0 
onverges to r:Simpli
io: OK, the examples helped in following the proof, but what if M = 0:99?Galileo: If M = 0:99; then number of 
omputations required to a
hieve a reasonabledegree of a

ura
y 
ould be quite large. For example, if we would like to �nd thenumber of iterations required to guarantee a

ura
y of 0:1; then we have to �nd aninteger n so that (0:99)n < 0:1: Solving for n we �nd that n > �log(10)log(0:99) = 229:1053: Ifwe would like a

ura
y of less than 0:01; then we would have to 
hoose n > �log(100)log(0:99) =458:2106:Simpli
io: What if M > 1:0?



13.3. LINEAR CONVERGENCE FOR NEWTON/RAPHSON 301Galileo: First, the proposition doesn't allow for this 
ase so from a te
hni
al point ofview your question is irrelevant. However, if the fun
tion T (x) has the property thatjT 0(x)j > 1:0 for numerous points x 2 X; then the iterates may even diverge.Example 13.3.2. Galileo: If f(x) = x 13 ; then T (x) = �2x: Thus, if x0 = 1 andxn+1 = T (xn); then we obtain the following sequen
e of iterates.x0 1.000000000000000x1 -2.00000000000000x2 4.00000000000000x3 -8.00000000000000x4 16.00000000000000x5 -32.00000000000000x6 64.00000000000000Table 13.1: Six Computations of xn+1 = T (xn) = �2xSimpli
io: Even I 
an see that this sequen
e is os
illating to �1:Virginia: Now that we have dis
ussed all this theory, how about a simple question we
an all understand. In parti
ular, we know that the Newton/Raphson method worksfor all 
ubi
 polynomials of the form f(x) = x3 �K: Right?Galileo: Corre
t.Virginia: But what if we ask: Does Newton/Raphson work for any 
ubi
 polynomial?In fa
t, let us make the question even easier by restri
ting our attention to polynomialsof the form f(x) = x3 + px + q; where p > 0: Sin
e we know that the Cardanoformulas 
an be used to write down an answer, it would be reassuring to know thatNewton/Raphson will also produ
e an answer. We also know by the examples wehave dis
ussed that Newton/Raphson may fail. The reason the question interests meis be
ause if f(x) = x3 + px+ q; thenT (x) = x� f(x)f 0(x) = x� x3 + px + q3x2 + p :



302 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESThus, T 0(x) = f(x)f 00(x)f 0(x)2 = (x3 + px + q)(6x)(3x2 + p)2 :For large x we know that jT 0(x)j � 69 + � =� 69 + 19 = 79 < 1 so this problem seems to�t the above Proposition if x is \out near in�nity." Of 
ourse, if x is near zero, T 0(x)
ould be quite large so the 
ondition that jT 0(x)j � 79 < 1 will not always be satis�ed.Galileo: I don't know the answer immediately.Exer
ise Set 13.3.1. If f(x) = x5 �K; then �nd T (x):2. If f(x) = x5 �K and x0 = 1; then show that the Newton/Raphson algorithm
onverges linearly to the root 5pK:3. If f(x) = x7 �K and x0 = 1; then show that the Newton/Raphson algorithm
onverges linearly to the root 7pK:4. If f(x) = (x � 10; 000)2 and x0 = 1; then show that the Newton/Raphsonalgorithm 
onverges linearly to the root r = 10; 000: How mu
h is the errorredu
ed for ea
h iteration?5. If f(x) = (x � 10; 000)3 and x0 = 1; then show that the Newton/Raphsonalgorithm 
onverges linearly to the root r = 10; 000: How mu
h is the errorredu
ed for ea
h iteration?6. If f(x) = xe�x2 ; then �nd an interval (�a; a) so that the fun
tion T (x) = x� f(x)f 0(x)has the property that jT 0(x)j � 1:0 for all x 2 (�a; a): Show also that theNewton/Raphson algorithm 
onverges linearly to the root x = 0 in that interval.7. Compute T 0(x) for the fun
tions f(x) = x5 � K; f(x) = x7 � K; and f(x) =xn�K: What do you noti
e about T 0(x) when x � r; where r = npK is a root?



13.4. QUADRATIC CONVERGENCE FOR NEWTON/RAPHSON 30313.4 Quadrati
 Convergen
e For Newton/RaphsonGalileo: We now address two key issues asso
iated with the Newton/Raphson method.Sin
e our 
omputational experiments indi
ate that it 
onverges rapidly, our �rst goalis to understand exa
tly what the phrase \rapid 
onvergen
e" means. Sin
e themethod fails (with a poor 
hoi
e of initial point) for fun
tions as easy to de�ne asf(x) = xe�x2 ; the se
ond issue is to determine an interval of 
onvergen
e for themethod.Again, we 
all on our friend Taylor to explain the issues involved with this analysis.Taylor: We begin by de�ning two key fun
tions, whi
h generate sequen
es exhibitingthe di�eren
e between linear and quadrati
 
onvergen
e.T1(x) = 12xT2(x) = 12x2Example 13.4.1. Sequen
es generated by T1(x) 
onverge linearly to zero.Using the fun
tion T1(x) and a real number x0; de�ne the following sequen
e:x1 = T1(x0) = 12x0x2 = T1(x1) = 12x1 = 14x0x3 = T1(x2) = 12x2 = 18x0x4 = T1(x3) = 12x3 = 116x0...xk+1 = T1(xk) = 12xk = 12k+1x0Thus, for any 
hoi
e of x0 the limit limk!1 xk = 0: If we de�ne T1(x) = Mx;where M 2 (�1; 1); then the resulting sequen
e also 
onverges to zero. The 
loser Mis to zero, the faster the sequen
e 
onverges. If the value of M is 
lose to 1.0 (e.g.M = 0:99), then the sequen
e 
onverges slowly.Example 13.4.2. Sequen
es generated by T2(x) 
onverge quadrati
ally to zero.Using the fun
tion T2(x) and a real number x0 de�ne the following sequen
e:



304 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESx1 = T2(x0) = 12x20x2 = T2(x1) = 12x21 = 18x40x3 = T2(x2) = 12x22 = 127x80x4 = T2(x3) = 12x23 = 1215x160...xk+1 = T2(xk) = 12x2k = 122k+1�1x2k0Note that if x0 2 (�2; 2); then limk!1 xk = 0: If x0 = �1; then limk!1 xk = 2:If jx0j > 2; then the sequen
e fjxkjg1k=0 be
omes arbitrarily large and thus does not
onverge.Simpli
io: OK, let's see some numbers.Galileo: Note that if x0 = 0:1; then the sequen
e will be within single pre
ision a

u-ra
y (i.e. within 10�10) after only 3 iterations and within double pre
ision a

ura
y(i.e. within 10�14) after only 4 iterations.x xk = T1(xk�1) xk = T2(xk�1)x0 1.00000000000000 1.00000000000000x1 0.50000000000000 0.50000000000000x2 0.25000000000000 0.12500000000000x3 0.12500000000000 0.00781250000000x4 0.06250000000000 0.00003051757812x5 0.03125000000000 0.00000000046566x6 0.01562500000000 0.00000000000000Table 13.2: Six Computations of xn+1 = T1(xn) = 12x and xn+1 = T2(xn) = 12x2Galileo: How about those numbers?Simpli
io: They sure look familiar. In fa
t, they are almost the same as the sequen
ewe 
omputed for p2:Galileo: You got it.



13.4. QUADRATIC CONVERGENCE FOR NEWTON/RAPHSON 305Galileo: Let us summarize these two examples by making the following observationsfor more general 
hoi
es of the initial value x0:1. If x0 2 < and T1(x) = 12x; then the sequen
e of points fxng1n=0 generatedre
ursively by xn+1 = T1(xn) always 
onverges to zero.2. If jx0j < 2 and T2(x) = 12x2; then the sequen
e of points fxng1n=0 generatedre
ursively by xn+1 = T2(xn) always 
onverges to zero.3. If jx0j > 2; then the sequen
e of points fxng1n=0 generated by the fun
tion T2(x)always diverges.4. If x0 = 2; then the sequen
e of points fxng1n=0 generated by the fun
tion T2(x)
onverges to one.5. If x0 = �2; then the sequen
e of points fxng1n=0 generated by the fun
tion T2(x)os
illates between 1 and �1 (and thus diverges).6. If jx0j < 2; then the sequen
e of points generated by T2(x) 
onverges to zerofaster than the one generated by T1(x):The rate of 
onvergen
e asso
iated with T2(x) is 
alled quadrati
 (or 2nd-order)
onvergen
e.Taylor: We formalize the above 
on
epts in the following de�nitions.De�nition 13.4.1 (Quadrati
 Convergen
e). If a sequen
e fxng1n=0 
onverges toa number L; then the rate of 
onvergen
e is 
alled quadrati
 (or 2nd� order) if thereis a 
onstant M and an integer N su
h that if n � N; then jxn+1�Lj �M jxn�Lj2:Example 13.4.3. Galileo: Let's begin by showing the method of Ar
himedes/Herongenerates a quadrati
ally 
onverging sequen
e. Note the similarity between this dis-
ussion and the sequen
e generated by T2(x):If K > 1; f(x) = x2�K and x0 > pK; then the the method of Ar
himedes/Herongenerates a sequen
e, whi
h 
onverges quadrati
ally to pK:



306 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESLet T (x) = x� f(x)f 0(x) = x� x2�K2x : As we have noted many times before, the pointr = pK is a root of f(x):If x > pK and x0 = r; then by Taylor's Theorem we know there exists a pointz 2 [pK;1) with the property thatT (x) = T (r) + T 0(r)(x� r) + T 0(z)2 (x� r)2:Sin
e r = pK;T (x) = T (pK) + T 0(pK)(x�pK) + T 0(z)2 (x�pK)2:Sin
e T (x) = x� x2�K2x = 12x + K2x ; note that1. T 0(x) = 12 � K2x2 and2. T 00(x) = Kx3 :Thus,1. if x 2 [pK;1); then T (x) 2 [pK;1);2. T (pK) = pK;3. T 0(pK) = 12 � K2(pK)2 = 12 � 12 = 0; and4. if K > 1; then jT 00(x)j � jT 00(pK)j = KK 32 = 1pK � 1:Also, sin
e T 00(x) = Kx3 ; we see that for any x 2 [pK;+1);jT 00(x)j � jT 00(pK)j = KK 32 = 1pK � 1:Thus, the 
onstant M = 1 will have the property that jT 00(x)j � M = 1; for anyx 2 [pK;1):Thus, by Taylor's Theorem there is a point z 2 [pK;+1) with the property thatT (x) = T (pK ) + T 0(pK)(x�pK ) + T 00(z)2 (x�pK )2= pK + T 00(z)2 (x�pK )2:
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Figure 13.3: The Graph of y = T 00(x) = 2x3 :If n is any integer, x = xn; and xn+1 = T (xn); then there is a pointz = zn 2 [pK;+1) so thatjxn+1 �pKj = jT (xn)� T (pK) j= jT 00(zn)j2 (xn �pK )2 � 12(xn �pK )2:To illustrate the power of what we have a
hieved, let's 
onsider the spe
ial 
asewhen K = 32 = 9: Of 
ourse, this 
hoi
e implies that the root r = p9 = 3: If theinitial guess is x0 = 4; thenjx1 � 3j �12 jx0 � 3j2 = 12(4� 3)2 = 12jx2 � 3j �12 jx1 � 3j2 � 12(x1 � 3)2 = 12 (12)2 = (12)3jx3 � 3j �12 jx2 � 3j2 � 12(x2 � 3)2 = 12 ((12)3)2 = (12)7jx4 � 3j �12 jx3 � 3j2 � 12(x3 � 3)2 = 12 ((12)7)2 = (12)15In general, jxn � 3j � (12)2n�1:Simpli
io: But wait a minute, what if I 
hoose the initial guess to be x0 = 5? With
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hoi
e, we see thatjx1 � 3j �12 jx0 � 3j2 = 12(5� 3)2 = 12 22 = 2;jx2 � 3j �12 jx1 � 3j2 � 12(x1 � 3)2 = 12 22 = 2;jx3 � 3j �12 jx2 � 3j2 � 12(x2 � 3)2 = 12 22 = 2;jx4 � 3j �12 jx3 � 3j2 � 12(x3 � 3)2 = 12 22 = 2:
Galileo: Thus, if our initial guess that is far from the root, then these inequalities donot provide any useful information.Virginia: But the same is true of our fun
tion T2(x) = 12x2: If we 
hoose x0 = 2; thenthe sequen
e xn+1 = T2(xn) diverges. Mr. Simpli
io, you have simply pointed outthat poor initial 
hoi
es lead to evil out
omes.Galileo: The next theorem shows that this example generalizes to any fun
tion f(x).Simpli
io: This theorem looks 
ompli
ated.Galileo: Even though it has 6 separate hypotheses, they all say something you wouldwant to have happen with the fun
tion and its �rst and se
ond derivatives.Theorem 13.4.2 (Quadrati
 Convergen
e for Newton/Raphson). Let X bea 
losed interval in < and let f(x) : X ! X be a fun
tion. If1. f(x); f 0(x); f 00(x); and f 000(x) are all 
ontinuous at ea
h x 2 X;2. x = r 2 X is a root of f(x);3. f 0(x) 6= 0 for all x 2 X;4. T (x) = x� f(x)f 0(x) 2 X for all x 2 X5. jT 0(x)j �M1 < 1 for all x 2 X; and6. jT 00(x)j �M2 for all x 2 X;
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hoi
e of x0 2 X the sequen
e de�ned by xn+1 = T (xn) 
onvergesquadrati
ally to the root r: In fa
t, for all n we know that jxn+1 � rj � M22 jxn � rj2:Proof. If f(x) : [a; b℄! < is a fun
tion with the property that f(x); f 0(x); and f 00(x)are all 
ontinuous at ea
h x 2 [a; b℄ and f 0(x) 6= 0 for all x 2 X; then T (x) = x� f(x)f 0(x)is di�erentiable andT 0(x) = 1� f 0(x)f 0(x)� f 00(x)f(x)(f 0(x) )2 = f(x)f 00(x)(f 0(x))2 :Sin
e jT 0(x)j �M1 < 1 for all x 2 X; we know by the Mean Value Theorem thatthe sequen
e de�ned by xn+1 = T (xn) 
onverges linearly to the root x = r:By Taylor's Theorem we know that there is a point z 2 X su
h thatT (x) = T (r) + T 0(r)(x� r) + T 00(z)2 (x� r)2:Sin
e f(r) = 0; T (r) = r � f(r)f 0(r) = r � 0 = r: Sin
e T 0(x) = f(x)f 00(x)(f 0(x) )2 ; T 0(r) = 0:(Thus, if r is a root of f(x); then r is a �xed point of T (x) and also a root of T 0(x):)Thus, T (x) = T (r) + T 0(r)(x� r) + T 0(z)2 (x� r)2 = r + T 0(z)2 (x� r)2:Hen
e, for any x 2 X; there is a point z 2 X so thatT (x)� r = T 0(z)2 (x� r)2:If jT 00(x)j �M for all x 2 X; thenjT (x)� rj � M2 (x� r)2 for all x 2 X:If n is any integer, x = xn; and xn+1 = T (xn); then just as in the spe
ial 
ase withAr
himedes/Heron we see thatjxn+1 � rj = jT (xn)� rj � M22 (xn � r)2:Sin
e the sequen
e fxng1n=0 
onverges to r; the 
onvergen
e is quadrati
.



310 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESGalileo: A
tually, we 
an now 
ompute an error formula for Newton/Raphson thesame way we did for the sequen
e fxng1n=0 generated by the fun
tion T2(x):Corollary 13.4.3 (Quadrati
 Error Formula for Newton/Raphson). If the hy-potheses of the Quadrati
 Convergen
e Theorem for Newton/Raphson are all satis�edand n is any integer n � 0; thenjxn � rj � 2M2 [M22 (x0 � r)℄2n :Proof. Sin
e jxn+1 � rj = jT (xn)� rj � M22 (xn � r)2 for all n;jx1 � rj � M22 (x0 � r)2jx2 � rj � M22 (x1 � r)2 � M22 (M22 (x0 � r)2)2 = 2M2 [M22 (x0 � r)℄4jx3 � rj � M22 (x2 � r)2 � M22 ( 2M2 [M22 (x0 � r)℄4)2 = 2M2 [M22 (x0 � r)℄8
Example 13.4.4. Galileo: Note that we have already dis
ussed this error formulafor the fun
tion f(x) = x2 � 9 with initial guesses of x0 = 4 and x0 = 5: In general,if K � 1; f(x) = x2 � K; and x0 > pK is arbitrary, then we still noti
e that the
onstant M2 = 1 will dominate the 2nd derivative of T (x): Thus, we see that the rootr = pK and jxn �pKj � 2M2 [M22 (x0 �pK)℄2n � 2[12(x0 �pK)℄2n :Simpli
io: So if we are smart enough to 
hoose x0 
lose enough to pK so thatj12(x0 �pK) < 1; then the error estimate will tell us that the sequen
e will 
onvergerapidly to the root.Galileo: Corre
t.



13.4. QUADRATIC CONVERGENCE FOR NEWTON/RAPHSON 311Example 13.4.5. Galileo: If K � 1; f(x) = x3�K; and x0 > 3pK is arbitrary, thenT (x) = x� f(x)f 0(x) = x� x3�K3x2 = 23x+ K3x2 : Thus, T 0(x) = 23� 2K3x3 and T 00(x) = 2Kx4 : Thus,jT 00(x)j � 2K3pK4 = 23pK � 2: Thus, we see that the 
onstant M2 = 2 will dominate these
ond derivative jT 00(x)j andjxn � rj = jxn � 3pKj � 2M2 [M22 (x0 � 3pK)℄2n � [(x0 � 3pK)℄2n :Simpli
io: Again, If we are smart enough to 
hoose x0 
lose enough to 3pK so thatj(x0 � 3pK) < 1; then the error estimate will tell us that the sequen
e will 
onvergerapidly to the root.Galileo: Corre
t again.Simpli
io: OK, I understand this error formula now. However, I would like to askone simple question about that Quadrati
 Convergen
e Theorem.Galileo: Yes.Simpli
io: Why do we have all those hypotheses? Can't we just say that the 
onver-gen
e is always quadrati
?Galileo: A
tually, I am sorry to report that the answer to your question is: \No!"Example 13.4.6. For example, the polynomial p(x) = (x� 5)2 has a double root atx = 5: If we apply Newton/Raphson to �nd this root, we dis
over thatT (x) = x� p(x)p0(x) = x� (x� 5)22(x� 5) = x� 12(x� 5) = 12x + 52 :While it is easy to show that the 
onvergen
e rate is linear, the 
onvergen
e rate failsto be quadrati
. The root 
ause of the problem (pardon the pun) is that the �rstderivative p0(x) = 2(x� 5) happens to also have a root at x = 5: Thus, p0(5) = 0 andhypothesis 3 in the Quadrati
 Convergen
e Theorem is violated.Simpli
io: So?Galileo: While the error is redu
ed by 50% at ea
h iteration, the 
onvergen
e neverspeeds up the way it does for Ar
himedes/Heron. Make a few 
omputations and youwill see that I am 
orre
t.



312 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCESVirginia: Murphy strikes on
e again!Galileo: We now de�ne the term simple root to make this distin
tion. For New-ton/Raphson, the bottom line is that we are on �rm ground as long as we havesimple roots.De�nition 13.4.4. If f(x) is a di�erentiable fun
tion de�ned on the interval (a; b)with root x = r 2 (a; b); then r is 
alled a simple root if f 0(r) 6= 0:Taylor: Note that if K > 0; then the roots of p(x) = xn �K are simple.Simpli
io: Sin
e p0(x) = nxn�1; I 
an see that p0( npK) = n npKn�1 6= 0:Taylor: In general, a polynomial pn(x) will have a simple root if and only if it is notrepeated. For example, if pn(x) has a repeated root x = r implies the fun
tion p(x) hasa fa
tor of (x�r)2: If the root is repeated three times, then p(x) has a fa
tor of (x�r)3:The Fundamental Theorem of Algebra states that any polynomial 
an be 
ompletelyfa
tored. Gauss provided �ve di�erent proofs of this intuitively obvious theoremseveral hundred years ago. The proofs involve a knowledge of 
omplex variables{abeautiful subje
t you should know.Theorem 13.4.5 (Fundamental Theorem of Algebra). If an�1; an�2; : : : ; a1; a0are 
omplex numers and p(x) = xn+an�1xn�1+ : : :+a1x+a0; then there are 
omplexnumbers r1; r2; : : : ; rn with the property that p(x) = (x� r1)(x� r2) : : : (x� rn):Taylor: The next proposition 
hara
terizes polynomials, whi
h have a simple root atx = r: In parti
ular, a polynomial p(x) has a simple root if and only if it is divisibleby the fa
tor (x� r) and not by (x� r)2:Proposition 13.4.6. If an�1; an�2; : : : ; a1; a0 are 
omplex numers and p(x) = xn +an�1xn�1 + : : :+ a1x+ a0; then p(x) has a simple root at x = r if and only if p(x) =(x� r)g(x); where g0(r) 6= 0:Proof. By the Fundamental Theorem of Algebra we know that p(x) = (x � r1)(x �r2) : : : (x � rn) so that p(x) = (x � r)g(x): By the produ
t rule from Cal
ulus, weknow p0(x) = (x � r)g0(x) + g(x): Thus, p0(r) = g(r) so that p0(r) 6= 0 if and only ifg(r) 6= 0:



13.4. QUADRATIC CONVERGENCE FOR NEWTON/RAPHSON 313Taylor: I hope you agree that we now 
ompletely understand the role of simple rootsand quadrati
 
onvergen
e when we use the method of Newton/Raphson to 
omputeroots of fun
tions.Virginia: Yes, I do. However, I have one question. Namely, when used New-ton/Raphson to 
ompute a root of f(x) = x2 � 0:000001; the 
onvergen
e rate wasnoti
eably slower than when we 
omputed a root of f(x) = x2� 2: This fun
tion hassimple roots. What is going on here?Taylor: Ex
ellent question. I think you will understand the answer when if you simply
ompute the 
onstant M2: Give it a try.Exer
ise Set 13.4.1. Determine whether or not the sequen
e xn = 1n! 
onverges quadrati
ally to zero.2. Determine whether or not the sequen
e xn = 1nn 
onverges quadrati
ally to zero.3. Show: If x0 2 < and T1(x) = 12x; then the sequen
e of points fxng1n=0 generatedre
ursively by xn+1 = T1(xn) always 
onverges linearly to zero.4. Show: If jx0j < 1 and T2(x) = 12x2; then the sequen
e of points fxng1n=0 gener-ated re
ursively by xn+1 = T1(xn) always 
onverges quadrati
ally to zero.5. Show: If x0 2 < and T1(x) = 12x; then the sequen
e of points fxng1n=0 generatedre
ursively by xn+1 = T1(xn) fails to 
onverge quadrati
ally to zero. (Hint: Thisproblem requires a short proof by 
ontradi
tion.)6. Determine the rate of 
onvergen
e for the sequen
e xk = 17k : More spe
i�
ally,�rst show the sequen
e 
onverges linearly to zero, then de
ide whether or not it
onverges quadrati
ally to zero. Repeat this exer
ise for the sequen
e xk = 132k :7. Prove: If T (x) : < ! < is di�erentiable for ea
h x 2 <; x0 2 <; M 2 [0; 1); thesequen
e xn+1 = T (xn) 
onverges to L; and jT 0(x)j �M for all x 2 <; then thesequen
e fxng1n=0 
onverges linearly to L:



314 CHAPTER 13. CONVERGENCE RATES FOR SEQUENCES8. Show: If K > 1 and x0 > 5pK; then the method of Newton/Raphson produ
esa sequen
e whi
h 
onverges quadrati
ally to the root r = 5pK of the fun
tionf(x) = x5 � K: (Compute the 
onstants M1 and M2:) Note that if K = 32;then the root r = 2: If x0 = 3; then 
ompute the 
onstant M22 jx0�2j: How 
losedoes the initial guess x0 have to be 
hosen to the root r = 2 to guarantee thatM22 jx0 � 2j < 1?9. If f(x) = x3+3x+1; then show that the method of Newton/Raphson 
onvergesquadrati
ally to a root in the interval [�1; 0℄: (Suggestion: Use a graphingprogram to show that jT 0(x)j � 0:9 for all x 2 [�10; 10℄:)10. If f(x) = (x � 1000)2 and x0 = 1; then show that the method of New-ton/Raphson does NOT 
onverge quadrati
ally to the root r = 1000: Whydoesn't the Quadrati
 Convergen
e Theorem apply? Whi
h hypothesis is notsatis�ed?11. If f(x) = (x � 1000)3 and x0 = 1; then show that the method of New-ton/Raphson does NOT 
onverge quadrati
ally to the root r = 1000: Whydoesn't the Quadrati
 Convergen
e Theorem apply? Whi
h hypothesis is notsatis�ed?12. If f(x) = x2 or x3 and T (x) = x � f(x)f 0(x) ; then show the sequen
e de�ned byx0 = 1; xk+1 = T (xk) 
onverges to 0 at a linear, but not quadrati
 rate. Dothese examples 
ontradi
t the quadrati
 
onvergen
e of the Newton/Raphsonmethod?13. If f(x) = x2 � 0:00001; then use the method of Newton/Raphson to 
omputethe 
onstant M2:What do you 
on
lude about the Quadrati
 Error Formula forNewton/Raphson?



Chapter 14
The Contra
tion MappingTheorem

Stefan Bana
h (1892-1945)Mathemati
s is the most beautiful and most powerful 
reation of the hu-man spirit. Mathemati
s is as old as Man.-Stefan Bana
hGalileo: We now turn to Stefan Bana
h's (1892-1945) Contra
tion Mapping Theorem.Simpli
io: Who was this Bana
h guy?Galileo: He was a hard drinking, heavy smoker, who liked to so
ialize with his friendslate into the night at the S
ottish Caf�e in Lvov, Ukraine. You probably would haveenjoyed his 
ompany. 315



316 CHAPTER 14. THE CONTRACTION MAPPING THEOREMSimpli
io: I think I should.Galileo: His theorem 
onstitutes an amazing generalization of Ar
himedes/Heron andNewton/Raphson. Not only 
an this method be used to 
ompute roots of non-linearequations, but it also has appli
ations to areas you would never expe
t.Simpli
io: Like what?Galileo: The method 
an be used to solve a system of linear equations.Simpli
io: We have the te
hnique of row operations. Isn't that good enough?Galileo: While row operations work �ne for small systems, these alternative methodswork mu
h better for large sparse systems.Simpli
io: What does \sparse" mean?Galileo: A matrix is sparse if most of its entries equal zero. Re
all that the ideabehind row operations is to transform the given matrix into an upper triangular (oreven diagonal) form. Thus, the goal is to generate a new matrix with most entriesequal to zero. Two problems may arise if the original matrix has most entries equalto zero. The �rst problem is that we may be wasting our time if we make an entryzero when it is already zero. If we are not 
areful, we might a
tually transform zeroentries into non-zero entries.Simpli
io: OK, how about another appli
ation?Galileo: The Contra
tion Mapping Theorem 
an be used to show the existen
e anduniqueness of solutions of di�erential equations.Simpli
io: I don't want to hear math talk about existen
e and uniqueness.Galileo: What if the problem you are trying to solve has no solution? You mightwant to know if a solution exists. If you know a solution exists, you might want toknow if there is more that one solution. Uniqueness is useful be
ause on
e you �nd asolution, you 
an go home.Simpli
io: But I don't like di�erential equations.Galileo: Unfortunately, many of the most important real-world appli
ations requirea di�erential equation as part of their model. If 
hange o

urs, a good bet is thatthere is a di�erential equation lurking nearby. How about fra
tals?



317Simpli
io: What is a fra
tal?Galileo: Fra
tals are sets with the property that any part of the set is similar to thewhole set. More spe
i�
ally, the entire set 
an be translated, rotated, and shrunk to�t on top of any subset. In other words, the set is self similar. Fra
tal te
hniques 
anbe used to produ
e beautiful pi
tures. The wallpaper in my bath is of fra
tal origin.Virginia: I have seen the snow
ake and the fern and agree they are 
aptivating.Galileo: Fra
tal methods 
an also be used to 
ompress images.Simpli
io: Now that is an appli
ation even I 
an appre
iate.Galileo: As it turns out, the Contra
tion Mapping Theorem 
an often be used tosolve a problem written in the form T (x) = x; where jT 0(x)j < M < 1; for all x: Thesolution of su
h an equation will be a �xed point of T (x):Simpli
io: What is a �xed point?Galileo: A point x = F is a �xed point for a fun
tion T (x) if T (F ) = F:Virginia: Just as F = pK is a �xed point of the fun
tion T (x) = x� x2�K2x !Galileo: Corre
t.Virginia: I now understand why you began our dis
ussion with the method of Ar
himedes/Heron.The ideas of yesterday are the ideas of today.Galileo: Corre
t again.Simpli
io: So how do we solve for this �xed point?Virginia: How about if we begin by making an initial guess x = x0 and then iterateby setting xn+1 = T (xn): That strategy worked before. My hun
h would be that thesequen
e fxng1n=0 
onverges to the point F:Galileo: You should be tea
hing this seminar.Simpli
io: What about the 
onvergen
e rate? I like quadrati
.Galileo: While the 
onvergen
e rate for Newton/Raphson usually turns out to bequadrati
, the 
onvergen
e rate for the Contra
tion Mapping Theorem usually turnsout to be linear. The 
ontra
tion fa
tor M 
ontrols the rate of 
onvergen
e. IfT 0(F ) = 0; then the argument we used for Newton/Raphson 
an be used to show the
onvergen
e rate is quadrati
.



318 CHAPTER 14. THE CONTRACTION MAPPING THEOREM14.1 Contra
tion Mapping ExamplesGalileo: We now turn to a more detailed dis
ussion of the Contra
tion MappingTheorem.Simpli
io: How about if we begin with a simple example?Galileo: Let us begin with the problem that you are to solve the equation x = 12x+3:Simpli
io: But this problem is too easy. Obviously, the answer is x = 6:Galileo: The answer is easy be
ause you have an ex
ellent understanding of algebra.Remember that more than 1000 years passed between the geometry of the an
ientGreeks and the appearan
e of the 
ommutative, asso
iative, and distributive lawsfrom algebra.Example 14.1.1. Solve the equation x = 12x+ 3:If we let T (x) = 12x + 3; and x0 = 0; then we 
an iterate in the same way we didfor the method of Newton/Raphson. Note that the last 
omputation, namely 5.9766,is beginning to approa
h the 
orre
t answer.x1 = T (x0) = 3x2 = T (x1) = 123 + 3 = 4:5x3 = T (x2) = 124:5 + 3 = 5:25x4 = T (x3) = 125:25 + 3 = 5:625x5 = T (x4) = 125:625 + 3 = 5:8125x6 = T (x5) = 125:8125 + 3 = 5:9062x7 = T (x6) = 125:9062 + 3 = 5:9531x8 = T (x7) = 125:9531 + 3 = 5:9766Simpli
io: This method is too mu
h work. After a million iterations, we still won'thave the exa
t answer. I prefer using the laws of algebra for this problem.



14.1. CONTRACTION MAPPING EXAMPLES 319Galileo: We now repeat this te
hnique to solve a simple non-linear equation.Example 14.1.2. Solve the equation x = 12 sin(x) + 13:If we let T (x) = 12 sin(x) + 13; and x0 = 0; then we 
an iterate in the same waywe did for the method of Newton/Raphson. Note that the sequen
e fxkg1k=0 seems tobe 
onverging to a number approximately equal to 13.35.x1 = T (x0) = 13x2 = T (x1) = 12 sin(13) + 13 = 13:21x3 = T (x2) = 12 sin(13:21) + 13 = 13:30x4 = T (x3) = 12 sin(13:30) + 13 = 13:33x5 = T (x4) = 12 sin(13:33) + 13 = 13:35Galileo: Note that no algebrai
 manipulation of the expression x = 12 sin(x) + 13 
anbe used to solve this equation for x:Simpli
io: Now I see the point of this example.Galileo: One �nal remark is in order. Namely, the method is 
onstru
tive.Simpli
io: What do you mean by 
onstru
tive?Galileo: The method doesn't simply say a solution exists. Instead, the te
hniqueprovides a pro
edure to approximate the desired answer. As you might expe
t, engi-neers vastly prefer methods where you simply make a guess, 
ompute, and the answermagi
ally appears. The Contra
tion Mapping Theorem �ts that mold exa
tly.In fa
t, the te
hnique 
an be implemented in the following four lines of 
omputer
ode:Let x = x0 be the initial guess.for n = 0, 1, . . . , Nx = T(x);endExer
ise Set 14.1.



320 CHAPTER 14. THE CONTRACTION MAPPING THEOREM1. Use the above iterative te
hnique to approximate a solution of the equationx = 12 
os(x) + 3: Begin the pro
ess with x0 = 0:2. Use the above iterative te
hnique to approximate a solution of the equationx = e�x: Begin the pro
ess with x0 = 0:3. Use the above iterative te
hnique to approximate a solution of the equationx = ex: Begin the pro
ess with x0 = 0:14.2 The Contra
tion Mapping Theorem in <Simpli
io: That dis
ussion 
ontained many more te
hni
al details than I 
an tolerate.Let's move on to something more understandable.Galileo: It isn't as bad as you think, but OK. let's get ba
k to the Contra
tionMapping Theorem.Cau
hy: We now 
he
k a few te
hni
al propositions, whi
h will be used to provethe 
ontra
tion mapping theorem. The �rst proposition is the familiar formula forsumming a �nite geometri
 series.The next proposition provides a bound on the di�eren
e between two su

essiveterms in a sequen
e.Proposition 14.2.1. If jxk+1� xkj �M jxk � xk�1j for all k � 1; then jxk+1� xkj �Mkjx1 � x0j:Proof. If k = 1; then jx2 � x1j �M1jx1 � x0j:If k = 2; then jx3 � x2j �M2jx1 � x0j:If k = 3; then jx4 � x3j �M3jx1 � x0j:If k = 4; then jx5 � x4j �M4jx1 � x0j:Indu
tively, jxk+1 � xkj �Mkjx1 � x0j:The next proposition provides a bound on the di�eren
e between any two termsin a sequen
e. This proposition is fundamental to proving the 
ontra
tion mapping



14.2. THE CONTRACTION MAPPING THEOREM IN < 321theorem. It is also the key to unlo
king the rate of 
onvergen
e, whi
h is importantin real appli
ations.Proposition 14.2.2 (The Contra
tion Mapping Error Estimate). If 0 �M <1 and jxk+1 � xkj � M jxk � xk�1j for all k � 1; then whenever n � N; jxn � xN j �MN1�M jx1 � x0j:Proof. By the triangle inequality and su

essive appli
ations of the previous propo-sition, we know thatjxn � xN j = jxn � xn�1 + xn�1 � xn�2 + xn�2 � : : :+ xN+1 � xN j� jxn � xn�1j+ jxn�1 � xn�2j+ jxn�2 � xn�3j+ : : :+ jxN+1 � xN j�Mn�1jx1 � x0j+Mn�2jx1 � x0j+ : : :+MN jx1 � x0j= (Mn�1 +Mn�2 + : : :+MN )jx1 � x0j=MN (Mn�N�1 +Mn�N�2 + : : :+M + 1)jx1 � x0j:Sin
e 0 � M < 1;jxn � xN j �MN 1�Mn�N1�M jx1 � x0j � MN1�M jx1 � x0j:Proposition 14.2.3. If 0 � M < 1 and jxk+1 � xkj � M jxk � xk�1j for all k > 0;then there exists a unique real number L su
h that limk!1xk = L:Proof. Step 1. Let � > 0 be given.Step 2. Choose N large enough that MN1�M jx1 � x0j < �; for all i � j � N:Step 3. By the previous proposition, we know jxn � xN j � MN1�M jx1 � x0j < �:Thus, the sequen
e fxkg1k=1 is Cau
hy. Sin
e every Cau
hy sequen
e 
onverges,there is a unique real number L su
h that limk!1xk = L:De�nition 14.2.4. If X is a 
losed interval in < and T : X ! X; then T (x) is 
alleda 
ontra
tion if there is a number 0 � M < 1 su
h that jT (x)� T (y)j � M jx � yjfor all x; y 2 X:
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onstant M is 
alled the 
ontra
tion fa
tor of T (x):Simpli
io:: So what is this 
ontra
tion fa
tor?Galileo: The intuitive idea of a 
ontra
tion is exa
tly what the word implies. Namely,if given any two points x; y 2 X; then the fun
tion T (x) always moves the two pointsso that they are 
loser together. Sin
e the absolute value fun
tion always produ
esa measure of distan
e we know that dist(x; y) = jx � yj and dist(T (x); T (y)) =jT (x)� T (y)j: This, if M < 1; then dist(T (x); T (y)) � Mdist(x; y): Thus, the pointsx and y are moved 
loser together. If M = 12 ; then they will be 50% 
loser than theywere before.Simpli
io:: What if the 
ontra
tion fa
tor equals 2?Galileo: If jT 0(x) � 2 for many values of x; then we have an expansion rather than a
ontra
tion. While these fun
tions are sometimes studied, we will not 
onsider them.Simpli
io:: How do we tell whether or not a fun
tion is a 
ontra
tion?Galileo: The purpose of the next proposition is to present a 
riterion for when afun
tion 
an be identi�ed as a 
ontra
tion. The answer is to simply 
ompute the �rstderivative and 
he
k to see if it is always less (in absolute value) than 1. Note that thisproposition already appeared in the dis
ussion on the method of Newton/Raphson.Proposition 14.2.5. If X is a 
losed interval in < and T (x) is a di�erentiablefun
tion T : X ! X with the property that jT 0(x)j �M < 1 for all x 2 X; then T (x)is a 
ontra
tion with 
ontra
tion fa
tor M:Proof. If x; y 2 X; then by the Mean Value Theorem we know that there is a pointz 2 X su
h that T 0(z) = T (x)�T (y)x�y : Sin
e jT 0(z)j � M < 1; jT (x)�T (y)x�y j � M: Thus,jT (x)� T (y)j �M jx� yj:Galileo: Before we turn to the next idea, we need to prove that 
ontra
tions area
tually 
ontinuous fun
tions. This detail will be needed in the proof of the Con-tra
tion Mapping Theorem, where we need to know that limits 
ommute with 
on-tinuous fun
tions. In parti
ular, we need to know that if limn!1xn = P; thenlimn!1T (xn) = T (limn!1xn) = T (P ): Another way to phrase this fa
t is to state
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tion is 
ontinuous at a point P; then limits 
an be evaluated at P bysimply substituting the point P in the fun
tion.Simpli
io: In other words, we didn't need limits in the �rst pla
e.Galileo: You 
ould say that.Proposition 14.2.6 (Contra
tions are Continuous). If X is an interval andT (x) : X ! < is a 
ontra
tion with 
ontra
tion fa
tor 0 � M < 1; then T (x) is
ontinuous at every x 2 X:Proof. Let x 2 X:Step 1. Let � > 0 be given.Step 2. Choose Æ = �:Step 3. Sin
e T (x) is a 
ontra
tion, we know that if jx� xj < Æ; thenjT (x)� T (x) �M jx� xj < jx� xj < Æ = �:Galileo: We now turn to the se
ond idea embedded in the Contra
tion MappingTheorem.De�nition 14.2.7. If T : X ! X is a fun
tion and T (F ) = F for some F 2 X;then the point F 2 X is said to be a �xed point for T (x):Galileo: Consider the following examples.Example 14.2.1. If T1(x) = 12x; then F = 0 is a �xed point of T1(x): Note thatT1(x) has exa
tly one �xed point,Example 14.2.2. If T (x) = x + 5; then T (x) has no �xed points.Example 14.2.3. If T2(x) = x2; then F = 0 and F = 1 are �xed points for T2(x):Note that T2(x) has two �xed points.Example 14.2.4. If T3(x) = x3; then F = 0; F = 0; and F = 1 are all �xed pointsfor T3(x): Note that T3(x) has three �xed points.



324 CHAPTER 14. THE CONTRACTION MAPPING THEOREMExample 14.2.5. If T (x) = x� x2�K2x ; then T (pK) = pK: Thus, T (x) has pK fora �xed point. In Figure 14.1, this �xed point is displayed as the interse
tion of the
urves y = x and y = T (x) = x� x2�K2x :

Figure 14.1: The Fixed Point for the Fun
tion T (x) = x� x2�K2x :Example 14.2.6. If T (x) = x� x3�K3x2 ; then T ( 3pK) = 3pK: Thus, T (x) has 3pK fora �xed point. In Figure 14.2, this �xed point is displayed as the interse
tion of the
urves y = x and y = T (x) = x� x3�K3x2 :Example 14.2.7. If we want to solve the equation If x = T (x) = 12 sin(x) + 13; thenthe solution is the �xed point F of T (x): In Figure 14.3, this �xed point is displayedas the interse
tion of the 
urves y = x and y = T (x) = 12 sin(x) + 13:Example 14.2.8. If T (x) = x � f(x)f 0(x) ; where f(r) = 0; then T (r) = r: Thus, T (x)has x = r as a �xed point.Galileo: We now prove the Contra
tion Mapping Theorem. Note that the proof mir-rors exa
tly what we have dis
ussed with the root �nding method of Newton/Raphson.Namely, begin with an initial guess x0 and 
reate a sequen
e of numbers by iteratively
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Figure 14.2: The Fixed Point for the Fun
tion T (x) = x� x3�K3x2 :

Figure 14.3: The Fixed Point for the Fun
tion T (x) = 12 sin(x) + 13:
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omputing T (xn) and de�ning xn+1 = T (xn): Note that we a
tually produ
e a unique�xed point.Simpli
io: But why should I 
are if I only have one �xed point?Galileo: If you only have one �xed point, then you only have to 
ompute on
e.Theorem 14.2.8 (The Contra
tion Mapping Theorem). If X is a 
losed in-terval in < and T (x) : X ! X is a 
ontra
tion, then T (x) has a unique �xed pointF 2 X: Moreover, if the 
ontra
tion fa
tor for T (x) is M; x0 is any initial pointin X; and xk = T (xk�1); then the error at the nth iteration is given by the formulajxn � F j � Mn1�M jx1 � x0j:Proof. Let x0 be any point 2 X: Let xk+1 = T (xk) for all k � 0: Sin
e T (x) is a
ontra
tion, jxk+1�xkj �M jxk�xk�1j for all k � 1: Thus, the sequen
e fxkg1k=1 
on-verges to some point F: Sin
e the interval X is 
losed, the point F 2 X: Sin
e xk+1 =T (xk) and T (x) is a 
ontinuous fun
tion, F = limk!1fxkg = limk!1fxk+1g =limk!1fT (xk)g = T (limk!1fxkg) = T (F ): Thus, F is a �xed point for T (x):The fa
t that the �xed point is unique follows from the fa
t that the fun
tionT (x) is a 
ontra
tion. In parti
ular, if F1 and F2 are two distin
t �xed points ofT (x); then jF1 � F2j = jT (F1) � T (F2)j � M jF1 � F2j < jF1 � F2j; whi
h is a
ontradi
tion. Thus, T (x) has exa
tly one �xed point. The error estimate followsfrom the 
ontra
tion mapping error estimate.Simpli
io: So what is the important information that I need to remember from thisdis
ussion?Galileo: Remember this:1. The mapping T (x) MUST be a 
ontra
tion. (You 
an usually 
he
k this fa
tby showing jT 0(x)j �M < 1 for all x:)2. The 
hoi
e of initial point x0 is arbitrary.3. A sequen
e is 
reated by 
omputing xk = T (xk�1):



14.2. THE CONTRACTION MAPPING THEOREM IN < 3274. The sequen
e fxng1n=0 always 
onverges to some number F; whi
h is a �xedpoint of T (x):5. The 
onvergen
e rate of the sequen
e fxng1n=0 is linear and 
ontrolled by theinequality: jxn � F j � Mn1�M jx1 � x0j: (Thus the error 
an be pre
ontrolled.)Example 14.2.9. We will now show how the Contra
tion Mapping Theorem 
anbe used to solve the equation x = 12 sin(x) + 13 with the given pres
ribed a

ura
y of0:00001:We begin by de�ning T (x) = 12 sin(x)+13: To show that T (x) is a 
ontra
tion,all we have to do is to noti
e that T 0(x) = 12 
os(x) so that jT 0(x)j � 12 for allx 2 <: Thus, T (x) is a 
ontra
tion with 
ontra
tion 
onstant M = 12 : If x0 = 0;then x1 = T (x0) = T (0) = 13 so that jx0 � x1j = 13: Thus, to �nd an integer n withthe property thatxn is within 0:00001 of the solution F = 12 sin(F ) + 13 all we need to do is to�nd an integer n with the property that jxn � F j < Mn1�M � jx0 � x1j = ( 12 )n1� 12 � 13 =(12)n+1 � 13 < 0:00001:Taking natural logarithms of both sides of this last inequality we see that we should
hoose n large enough that n + 1 > ln(0:00001=13)� ln(2) = �14:0779�0:6931 = 20:3115: Thus, we must
hoose n > 20:3115� 1 = 19:3115:Simpli
io: So, the bottom line is that the formula tells us we get faster 
onvergen
eif we make a smart 
hoi
e of x0 and we are blessed with a small value for M:Galileo: Corre
t.Exer
ise Set 14.2.1. Use the Contra
tion Mapping Theorem to solve the equation x = 13 
os(2x)� 5with error less than 0.000001. If x0 = 0; then how many iterative steps arerequired to guarantee that the required a

ura
y.2. Use the Contra
tion Mapping Theorem to solve the equation x = e� 12x witherror less than 0:00001: If x0 = 0; then how many iterative steps are requiredto guarantee that the required a

ura
y.
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tion Mapping Theorem in <nGalileo: We begin this se
tion with an example, whi
h demonstrates an iterativemethod for solving a system of linear equations. Compare this method with therow operations you learned in linear algebra. Remember that this example is fordemonstration purposes only. In a real appli
ation, the matrix might be as large as1000� 1000 or even larger.Example 14.3.1. Solve the following system.2x+ y = 3x + 2y = 3Note that the answer is: x = 1; y = 1:To solve the problem using the te
hnique of the 
ontra
tion mapping theorem, webegin by manipulating the equation until it is in the form x = T(x); where x is a2-dimensional ve
tor. This task 
an be 
ompleted by solving the �rst equation for xand the se
ond for y: When we do this manipulation, we obtain 2 equations: x = 3�y2and y = 3�x2 : These 2 equations 
an be written in ve
tor/matrix form as:T0� xy 1A = 0� 32 � y232 � x2 1A = 0� 0 �12�12 0 1A0� xy 1A+0� 3232 1A :If we initialize the pro
ess be letting x0 = 0� 00 1A ; then x1 = T(x0) = 0� 3232 1Ax2 = T(x1) = 0� 3434 1A and x3 = T(x2) = 0� 9898 1A :If we let xn+1 = T(xn); then the sequen
e of ve
tors fxng1n=0 seems to be 
on-verging to the ve
tor 0� 11 1A :Simpli
io: Magi
!! This te
hnique looks good to me.Galileo: I am glad you like this method. Now let's take a look at another example.



14.3. THE CONTRACTION MAPPING THEOREM IN <N 329Example 14.3.2. Solve the following system.x + 2y = 32x + y = 3Note again that the answer is: x = 1; y = 1:Simpli
io: But we just solved this problem.Galileo: Solving for the variables x and y; we 
an again �nd the fun
tion T(x):T0� xy 1A = 0� 3� 2y3� 2x 1A = 0� 0 �2�2 0 1A0� xy 1A+0� 33 1A :We 
an again initialize the iterative pro
ess with the ve
tor x0 = 0� 00 1A :When we 
ompute x1 = T(x0);x2 = T(x1);x3 = T(x2);, et
, noti
e what hap-pens to the sequen
e of ve
tors.Simpli
io: I see that x1 = 0� 33 1A ;x2 = 0� �3�3 1A ; x3 = 0� 99 1A ; and x4 = 0� �15�15 1A :The sequen
e of ve
tors seem to be os
illating their way out to in�nity.Galileo: Ex
ellent observation.Example 14.3.3. Now 
onsider a system of three equations and three unknowns. Inparti
ular, solve the following system. 4x + y = 5x + 4y + z = 6y + 4z = 5Note that the answer is: x = 1; y = 1; z = 1:



330 CHAPTER 14. THE CONTRACTION MAPPING THEOREMAgain, these equations 
an be written in ve
tor/matrix form as:T0BBB� xyz 1CCCA = 0BBB� 0 �14 0�14 0 �140 �14 0 1CCCA0BBB� xyz 1CCCA+0BBB� 546454
1CCCA :

If we initialize the method with x0 = 0BBB� 000 1CCCA and de�ne xn+1 = T(xn); then thesequen
e of ve
tors again seems to 
onverge to the 
orre
t answer.Galileo: The beauty of the 
ontra
tion mapping theorem is that it is valid in amultitude of di�erent settings. In parti
ular, it works in <n as well as abstra
tsettings suitable for di�erential equations and fra
tals.Even better, the proof just provided for the 1-dimensional 
ase 
an be immediatelytranslated to a proof in any dimension. To a

ommodate the new setting in <n, theonly 
hanges that need to be implemented are:1. The 
losed interval X must be repla
ed by a 
losed subset of <n: (Thus, weneed to de�ne what it means for a set to be 
losed.)2. The absolute value sign must be 
hanged to a norm appropriate for the setting.(Thus, we need to de�ne what a norm is.)Note that while norms 
an be de�ned in many di�erent ways and 
an be quiteabstra
t, the underlying idea is always the same: measure the distan
e between twopoints. Thus, if P1 and P2 are two points in <n; then the distan
e between them isthe norm of P1 � P2: This distan
e is usually written in an expression of the formdist(P1; P2) = kP1 � P2k:While the de�nition of a 
ontra
tion 
an now be de�ned in terms of norms, it willbe helpful if we 
an establish a 
riterion, whi
h 
an be used to show a given fun
tionis a 
ontra
tion. Sin
e the 
ondition jT 0(x)j � M < 1 implies the fun
tion T (x) isa 
ontra
tion for fun
tions of one variable, the analogue for <n is the norm of the



14.3. THE CONTRACTION MAPPING THEOREM IN <N 331derivative dT (x); where dT (x) denotes the n � n matrix of derivatives. (Re
all thatthe matrix of derivatives is nothing but the matrix of partial derivatives.To keep the dis
ussion simple, let's not waste mental energy de�ning what itmeans for a subset of <n to be 
losed. Instead, let us 
onsider only the set <n andthen remark that it is, in fa
t, 
losed. While numerous di�erent norms 
an be de�nedon <n; let us 
onsider the one de�ned as the maximum of the absolute values of then 
oordinates. The next de�nition formalizes this in a more mathemati
al way.De�nition 14.3.1. If x 2 <n; then kxk1 =maxfjxkj : xk is the k-th 
oordinate of xg:Simpli
io: I don't like this notation, 
ould you give me a simple example?Galileo: The 1�norm of the ve
tor (1;�2; 3;�4) is 4:Simpli
io: Why are we interested in knowing about norms?Galileo: Be
ause we 
an use them to 
ompute the distan
e between two ve
tors (orpoints) in <n: In parti
ular, if x;y 2 <n; then the distan
e between x and y iskx�yk1: On
e we have the distan
e between two ve
tors de�ned, then we 
an de�newhat it means for a sequen
e to 
onverge. In parti
ular, with the 1�norm it is easyto show that a sequen
e of ve
tors 
onverges to a parti
ular ve
tor if and only if it
onverges in ea
h 
oordinate. Thus, all the hard work we did in the 1�dimensional
ase is immediately transferable to the setting in <n:We now de�ne the term 
ontra
tion for a fun
tion T (x) : <n ! <n: This de�nitionis given in terms of the 1�norm.De�nition 14.3.2. If T (x) : <n ! <n; then T (x) is 
alled a 
ontra
tion if there isa real number M 2 [0; 1) with the property that kT (x)� T (x0)k1 �Mkx� x0k1 forall x;x0 2 <n:Simpli
io: But how do I re
ognize a 
ontra
tion when I see one?Galileo: You simply show the norm of the fun
tion (or more formally \the operator")is less than one.Simpli
io: But what is the norm of an operator?



332 CHAPTER 14. THE CONTRACTION MAPPING THEOREMGalileo: You ask the right questions. We begin with the de�nition of the norm of amatrix.De�nition 14.3.3. If A 2 <m�n; then the 1�norm of A is de�ned bykAk1 = maxfka1k1; ka2k1; : : : ; kank1g;where ak denotes the kth row of A and kakk1 = jak1j+ jak2j+ : : :+ jakmj:Proposition 14.3.4. If A 2 <m�n; kAk1 = M; and T (x) = Ax + b; then for allx;x0 2 <n kT (x)� T (x0)k1 �Mkx� x0k1:Proof. This proof is left as an exer
ise.Simpli
io: And we 
an see from this proposition that the matrix given in the previousexer
ise has 1�norm equal to 12 and is thus a 
ontra
tion.Galileo: Very good. Now you are ready for a bit of formalism from Professor Cau
hy.First we give the de�nition of what it means for a sequen
e to 
onverge. Se
ond, wegive the de�nition of a Cau
hy sequen
e. As in the 1�dimensional setting, these twoideas are equivalent.De�nition 14.3.5. A sequen
e of ve
tors, fxkg1k=0 in <n is said to 
onverge to ave
tor xL 2 <n if for every � > 0 there is an integer N , su
h that if k � N , thenjjxk � xLjj1 < �:De�nition 14.3.6. A sequen
e of ve
tors fxkg1k=1 in <n is said to be Cau
hy if forevery � > 0 there is an integer N , su
h that if n � N , then jjxn � xN jj1 < �:Theorem 14.3.7. If a sequen
e of ve
tors fxkg1k=1 in <n 
onverges to a ve
tor xL 2<n; then it is Cau
hy. Conversely, if a sequen
e of ve
tors fxkg1k=1 in <n is Cau
hy,then it 
onverges to some ve
tor xL 2 <n:Proof. While the proof of the �rst statement in the proposition is straightforward.In parti
ular, it is left as an exer
ise. The proof of the se
ond statement is left foranother day.



14.3. THE CONTRACTION MAPPING THEOREM IN <N 333Galileo: Thus, if a sequen
e of ve
tors in <n is Cau
hy, then it is Cau
hy on ea
h
oordinate. Sin
e the sequen
e of ve
tors 
onverges on ea
h 
oordinate, it 
onverges.Theorem 14.3.8 (The Contra
tion Mapping Theorem in <n). If T : <n !<n is a 
ontra
tion, then T (x) has a unique �xed point xL in <n: Moreover, if the
ontra
tion fa
tor for T (x) is M; x0 is any initial ve
tor, and xk = T (xk�1); then theerror at the nth iteration is given by the formula kxn � xLk1 � Mn1�M kx0 � x1k1:Proof. Let x0 2 <n and xk+1 = T(xk) for all k � 0: Sin
e the same argument used inthe 1-dimensional version 
an be used to show that the sequen
e fxkg1k=0 is Cau
hyin <n; the sequen
e is Cau
hy in ea
h 
oordinate. Sin
e the sequen
e 
onverges onea
h 
oordinate, it 
onverges. The proof of the error estimate is virtually the same asthe proof given in the 1�dimensional 
ase. The only di�eren
e is that ea
h absolutevalue sign must be repla
ed by the symbol for the in�nity norm.Simpli
io: Hey, I think I am beginning to get the hang of this theorem for <n; butI already know how to solve systems of linear equations using the method of rowoperations or Gaussian elimination. Why would I want to bother with this newmethod?Exer
ise Set 14.3.1. Use the Contra
tion Mapping Theorem to solve the system of equations4x+ y = 5x+ 4y = 5:Initialize the method with the ve
torx0 = 0�001A :How many iterations are required to guarantee an a

ura
y of less than 0:00001on ea
h 
oordinate?
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Chapter 15
Aitken's Method

Alexander Craig Aitken (1895-1967)Ever the road beneathChanges: now night begins to fall,And I see the last long road of all,The road to dusty death.-Alexander Craig AitkenGalileo: The purpose of the te
hnique presented in this se
tion is to speed up therate of 
onvergen
e of a given sequen
e.Simpli
io: While the idea seems reasonable, how 
an that be possible?Galileo: Alexander Craig Aitken (1895 - 1967) 
ame up with the idea that if a sequen
e
onverges linearly, then we 
an give it boost towards the ultimate answer. If we 
ould335
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onvergen
e rate from linear to quadrati
, we would be quite satis�edwith the te
hnique.Simpli
io: Who was this Aitken fellow?Galileo: Professor Aitken was born in Dunedin, New Zealand and attended the Uni-versity of Otago. He had an in
redible memory being able to re
ite � to 2000 pla
es.He 
ould also instantly multiply and divide large numbers. An ex
ellent memory isnot always a blessing. He had trouble forgetting all the bad things that happened inhis life.Simpli
io: I 
an see the dark side in his poetry. I am not sure I want to 
ompete withhim in any way.Galileo: His idea is the following. If we assume the sequen
e fxng1n=1 
onverges to L(i.e. limn!1xn = L) and for large n enjoys the propertyxn+1 � Lxn � L � M < 1;then we know the 
onvergen
e will be linear. Thus, this 
ondition is a bit strongerthan linear 
onvergen
e. In any 
ase, if limn!1 xn+1�Lxn�L = M < 1; then both thequotient xn+1�Lxn�L and the quotient xn+2�Lxn+1�L : will be approximately equal to M:If we make this assumption about the two quotients, then we see thatxn+1 � Lxn � L � xn+2 � Lxn+1 � L;whi
h implies that (xn+1 � L)2 � (xn+2 � L)(xn � L)or x2n+1 � 2 xn+1L + L2 � xn+2xn � (xn + xn+2)L + L2or x2n+1 � 2 xn+1 � L � xn+2 � xn � (xn + xn+2)L:Therefore, L(�xn+2 + 2xn+1 � xn) � x2n+1 � xn+2xn



337and L � x2n+1 � xn+2 � xn�xn+2 + 2xn+1 � xn = xn � (xn+1 � xn)2xn+2 � 2xn+1 + xn :Therefore, we 
an (hopefully) a

elerate 
onvergen
e to L if we de�ne a newsequen
e by the rule:De�nition 15.0.9 (Aitken's Method). If fxng1n=0 is a sequen
e of numbers, thenthe Aitken's Method for a

elerating the 
onvergen
e is given by x̂n = xn� (xn+1�xn)2xn+2�2xn+1+xn :De�nition 15.0.10. If fxng1n=1 is a sequen
e, then the forward differen
e formulais given by �xn = xn+1 � xn. Higher powers are de�ned indu
tively by �kxn =�(�k�1xn):Virginia: Is there any 
onne
tion between this formula and the �rst derivative? Theylook similar.Galileo: In fa
t it is. If you think of the �rst derivative as a limit of the quotientsf(x+�)�f(x)� ; then the \derivative" of a sequen
e should be the \limit" ofxn+1�xnn+1�n = xn+1�xn1 = xn+1 � xn: Of 
ourse, we 
an't 
ompute limits be
ause we havea dis
rete set of points. Instead, we simply think of the two points xn+1 and xn as\
lose" to one another.Example 15.0.4. The only reason we need higher powers of the forward di�eren
eformula for Aitken's Method is to 
ompute the se
ond forward di�eren
e �2xn =�(�xn) = �(xn+1 � xn) = xn+2 � 2xn+1 + xnVirginia: This formula should represent the 2nd derivative. Corre
t?Galileo: You are 
orre
t.Proposition 15.0.11 (Aitken's Method). If fxng1n=0 is a sequen
e of numbers,then the Aitken's Method for a

elerating the 
onvergen
e is given by x̂n = xn� (�xn)2�2xn :Simpli
io: This formula looks suspi
iously familiar.Galileo: It should. Note the similarity between this formula and the formula T (x) =x � f(x)f 0(x) given by Newton/Raphson. This asso
iation should help you rememberAitken's formula.



338 CHAPTER 15. AITKEN'S METHODExample 15.0.5. Let us begin by applying Aitken's method to the linearly 
onvergentsequen
e xn = 12n : With this spe
ial 
ase, we see thatx̂n = xn � (xn+1 � xn)2xn+2 � 2xn+1 + xn= 12n � ( 12n+1 � 12n )212n+2 � 2 12n+1 + 12n= 12n � 2n+2( 12n+1 � 12n )21� 4 + 4= 12n � 2n+222n+2= 12n � 12n= 0:Thus, Aitken's Method 
onverts a linearly 
onvergent sequen
e to one that 
onvertsinstantly!!Simpli
io: Hey, this method works great. Does it give any relief for the bise
tionmethod?Galileo: To answer your question properly, we must �rst de
ide how we are going toimplement the method. In the previous example, we were given a formula for thenth term of the sequen
e. Unfortunately, nature is not so kind. The algorithm ofJohan Ste�ensen (1873-1961) 
omputes two terms of the sequen
e and then makesan Aitken's 
omputation. Try integrating this idea into a bise
tion algorithm and seehow it does when you 
ompute p2:Exer
ise Set 15.1.1. Apply Aitken's method to the sequen
e xn = 13n : How many steps does it taketo 
onverge to zero?2. Apply Aitken's method to the sequen
e xn = 3n: What number does the se-quen
e 
onverge to? How many steps does it take to 
onverge?3. Apply Aitken's method to the sequen
e xn = 1n : Do you �nd any bene�t byapplying Aitken's method?



3394. Apply Aitken's method to the sequen
e xn = 122n : How many steps does it taketo 
onverge?5. Devise a hybrid Bise
tion/Aitken's Method to �nd the positive root of thefun
tion f(x) = x2 � K; where K > 1 and the initial interval is [1; K℄: Applyyour algorithm to the fun
tion when K = 1010: Does your algorithm provide asigni�
ant improvement in the rate of 
onvergen
e? While there are a multitudeof di�erent ways to 
reate a hybrid algorithm, you might begin by alternatingthe two methods.6. Devise a hybrid Newton/Raphson/Aitken's Method to �nd the positive root ofthe fun
tion f(x) = x2�K; where K > 1 and the initial guess is x0 = K: Applyyour algorithm to the fun
tion when K = 1010: Does your algorithm provide asigni�
ant improvement in the rate of 
onvergen
e? While there are a multitudeof di�erent ways to 
reate a hybrid algorithm, you might begin by alternatingthe two methods.7. Devise a hybrid Contra
tion Mapping Theorem/Aitken's Method to solve theequation x = 12 sin(x) + 13: �nd the root of the fun
tion f(x) = x2 �K; whereK > 0: Apply your algorithm to the fun
tion when K = 1010: Does youralgorithm provide a signi�
ant improvement in the rate of 
onvergen
e? Whilethere are a multitude of di�erent ways to 
reate a hybrid algorithm, you mightbegin by alternating the two methods.
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Giuseppe Peano (1858-1932)Ambiguity of language is philosophy's main sour
e of problems. That iswhy it is of the utmost importan
e to examine attentively the very wordswe use. -Giuseppe PeanoGalileo: Linear Algebra is probably the most important prerequisite for appli
ations.Simpli
io: I took Linear Algebra from Professor Poubelle. All we did was solvesystems of equations using row operations. It was easy.Galileo: Unfortunately, Linear Algebra is probably the most important mathemati
s
ourse you will ever take.Virginia: More important than Cal
ulus?Galileo: Man has been making observations and measurements sin
e the beginningof written history. This data leads to 
onje
tures. Conje
tures lead to mathemati
almodels. Whenever you model a problem, your �rst instin
t is to make it linear.Linear models are easy to understand and 
ompute.Simpli
io: How about an example?Galileo: If I paid twi
e as mu
h for a house as you did, then mine ought to be twi
e asbig. In other words, if you double the pri
e, then you should double the size. Theseideas go ba
k several thousand years to the an
ient Greeks with their dis
ussions ofsimilar triangles and proportions.Simpli
io: But what if your house is on a Florida bea
h and 
osts twi
e as mu
h as



344my student ghetto trash littered dump, then my house might still be the same sizeas yours. Mine might even be larger.Galileo: That's 
orre
t. Life is often nonlinear.Virginia: How about a more s
ienti�
 example?Galileo: My 
olleague, Aristotle (384-322B.C.E.), asserted a linear relationship be-tween the distan
e a dropped obje
t travels and the time of 
ight. In other words, ifthe time of 
ight is doubled, then the distan
e should also be doubled. Unfortunately,my data showed that his spe
ulation was not 
orre
t.Virginia: So what do we need to know from Linear Algebra?Galileo: Despite Eu
lid's 
on
ern for detail, the story of Geometry wasn't 
ompleteduntil Hermann Grassmann (1809-1877), George Cantor (1845-1918), Bernhard Rie-mann (1826-1866), Giuseppe Peano (1858-1932), David Hilbert (1862-1943), KurtG�odel (1906-1978), Bertrand Russell (1872-1970), and others �nally redu
ed all themathemati
al and logi
al issues to the axioms of set theory. (While not quite a

u-rate, I refer to these fellows as the \grumpy, 19th 
entury, German mathemati
ians.")Thus, this e�ort to \get it right" took several thousand years to unfold.Simpli
io: Weren't we talking about Linear Algebra? Why have we digressed on
eagain to Geometry?Galileo: Every geometri
 idea 
orresponds with an algebrai
 expressions in LinearAlgebra. Do you remember Eu
lid's 14 axioms?Virginia: I remember a 
ouple of them:1. A point is that whi
h has no part.2. A line is breadthless length.Galileo: Very good. Now, do you remember Peano's 10 axioms for a ve
tor spa
e?Simpli
io: Not a 
han
e.Galileo: While you might prefer that all of Linear Algebra was limited to a dis
us-sion of <n; remember that the de�nition is given more abstra
tly. Namely, a ve
torspa
e V is a set V together with two operations addition, denoted by +; and s
alar



345multipli
ation, denoted by �: These operations satisfy a number of rules in
luding theasso
iative, 
ommutative, and distributive laws. We also have an additive identity(namely 0) and additive inverses.Simpli
io: Why all this unne
essary abstra
tion?Galileo: Be
ause when we study approximation theory, we need geometri
 ideas ex-pressed in algebrai
 language. Noti
e that the idea of a ve
tor in a ve
tor spa
e isEu
lid's idea of a point. All the s
alar multiples of that point produ
e a line. All thepositive multiples of a non-zero ve
tor produ
e a ray so we are ready to talk aboutthe angle between two rays emanating from the same point.Virginia: What about triangles and parallelograms?Galileo: We 
an build a triangle by taking linear 
ombinations of two sides.Simpli
io: The same idea works for parallelograms.Virginia: Ex
ept we have to be 
areful the sides of the �gure are linearly independent.Otherwise, we will end up with a ray. In fa
t, we need the idea of linear indepen-den
e to generate n�dimensional �gures. If I remember 
orre
tly, a ve
tor spa
e hasdimension n if it has a basis with n elements. We spent a lot of time in our LinearAlgebra 
lass showing that any two bases have the same number of elements.Simpli
io: Why did you do that? Isn't that obvious?Virginia: I found those proofs to be diÆ
ult.Galileo: Peano's axioms are exa
tly what you need to slug through those proofs.Let me now turn your attention ba
k to Eu
lid's idea of a point. Note that hisde�nition 
ontains the impli
it assumption the reader already knows a point shouldlie in the plane. The de�nition is rather negative be
ause it does not tell you what itis, but rather what it is not. Rene Des
artes (1596-1650) re
ognized that a point 
anbe thought of iin a more positive way as a pair of real numbers (x; y): Cantor andPeano realized that Eu
lid's de�nitions of a point was totally inadequate for modernappli
ations. In parti
ular, they realized that the fun
tions 
ould be thought of aspoints.Simpli
io: Your kidding? Fun
tions are't points. They are de�ned for points in their



346domain.Galileo: It is an interesting leap forward, isn't it? In any 
ase, they de
ided isworthwhile to abstra
t the idea of a point to su
h fun
tions as 1; x; x2; : : : ; xn:Virginia: And note that these fun
tions (or should I say points) are linearly indepen-dent. Thus, the ve
tor spa
e they span is n + 1-dimensional.Galileo: Similarly, Jean Baptiste Joseph Fourier (1768-1830) re
ognized that for anypositive integer n; the fun
tions 1; 
os(x); 
os(2x); : : : ; 
os(nx); sin(x); sin(2x); : : : ; sin(nx)represent 2n + 1 linearly independent fun
tions (or points!) whi
h span a 2n + 1-dimensional ve
tor spa
e. During our tutorial we will also dis
uss orthogonal poly-nomials, splines and wavelets. These new sets of fun
tions all form ve
tor spa
es ina natural way. While the de�nition of a ve
tor spa
e is a bit abstra
t when you �rsten
ounter it, the beauty is its generality. In other words, you don't have to keepreiterating the same de�nitions and theorems over and over again. Think of it as awell-written subroutine for some 
omputer program you are writing. The softwareshould be 
on
ise so it is simple to 
omprehend, but it should also be general so it
an be used in as many di�erent settings as possible.Simpli
io: What you said is interesting. I will have to think about it.Virginia: I guess Eu
lid's 
on
ept of a line is similarly limited.Simpli
io: I would have to agree.Galileo: We should now move on to the geometri
 ideas of distan
e, angles, andproje
tions. These ideas were distilled and abstra
ted into a single 
on
ept: the innerprodu
t.De�nition 15.0.12. If u = (u1; u2; : : : ; un)t and v = (v1; v2; : : : ; vn)t are ve
tors in<n; then the inner produ
t of u and v is de�ned as < u;v >= utv =Pnk=1 ukvk:Simpli
io: Why did you write the supers
ript t on the ve
tors?Galileo: In the 
ulture of Linear Algebra, we prefer to think of points as 
olumnve
tors. Unfortunately, in the 
ulture of publishing, it is more 
onvenient to writerow ve
tors to save spa
e on the page. The supers
ripts t denotes the transpose,whi
h 
ips a row ve
tor to a 
olumn ve
tor and vi
e versa. Thus, the inner produ
t



347< u;v > is simply equal to the matrix produ
t of the row ve
tor ut and the 
olumnve
tor v:Simpli
io: So you have simply de�ned the dot produ
t of two ve
tors.Galileo: Exa
tly. Now let's turn to the problem of de�ning length and distan
e.De�nition 15.0.13. If u = (u1; u2; : : : ; un)t is a ve
tor in <n; then the length (or2� norm) of u is kuk2 = p< u;u >:Simpli
io: What is that little subs
ript 2 doing there?Galileo: A
tually, I must apologize, but that subs
ript 
omes from the PythagoreanTheorem. As it turns out, there are a multitude of di�erent norms. In fa
t, for anyreal number p � 1; there is a p�norm. However, as someone interested in appli
ations,the only values of p that you might ever use are p = 1; 2;1:The 1�norm is sometimes 
alled the taxi-
ab metri
 and is de�ned as follows:De�nition 15.0.14. If u = (u1; u2; : : : ; un)t is a ve
tor in <n; then the 1� norm ofu is kuk1 =Pnk=1 jukj:The 1�norm is sometimes 
alled the sup norm and is de�ned but the followingrule. This metri
De�nition 15.0.15. If u = (u1; u2; : : : ; un)t is a ve
tor in <n; then the 1� normof u is kuk1 = maxfju1j; ju2j; : : : ; junjg:Note that the taxi-
ab and sup metri
s do not involve 
omputing a square root.Thus, they are faster and easier to 
ompute than the 2�norm.We now use the 2�norm to de�ne the distan
e between two ve
tors.De�nition 15.0.16. If u = (u1; u2; : : : ; un)t and v = (v1; v2; : : : ; vn)t are ve
tors in<n; then the distan
e between u and v is ku� vk2:Simpli
io: Sin
e I saw these de�nitions in Cal
ulus, I am 
omfortable with theseideas.Galileo: Good. Now we are ready to de�ne the 
osine of the angle between twove
tors and the proje
tion of one ve
tor onto another.



348De�nition 15.0.17. If u = (u1; u2; : : : ; un)t and v = (v1; v2; : : : ; vn)t are ve
tors in<n; then the 
osine of the angle � between u and v is 
os(�) = <u;v>kuk2kvk2While people in appli
ations expe
t a method to \always work," they may notbe so fortunate. As the patient reader will see, most te
hniques have to be usedwith 
aution. The purpose of many of the theorems is to provide 
onditions andguidelines when the te
hniques will provide useful estimates. Remarkably, one key toa multitude of stable methods is the 
on
ept of orthogonality, whi
h is nothing morethan another word for right angle. Thus, numeri
al te
hniques look to Geometry asa sour
e of ideas for methods that always work. We will see this theme throughoutthese notes.Galileo: You might be surprised to learn you have an ally in the mathemati
ianPafnuty Chebyshev (1821-1894), who on
e remarked: \To isolate mathemati
s fromthe pra
ti
al demands of the s
ien
es is to invite the sterility of a 
ow shut away fromthe bulls."Simpli
io: I bet Professor Chebyshev and I would get along just �ne.



Chapter 16
Stable Te
hniques: The Role ofOrthogonality
Galileo: I am a believer in \Appli
ations driven mathemati
s." However, before wemove on, I must add that the 
on
ept of orthogonality is essential to the su

ess ofa multitude of numeri
al methods. To say two ve
tors are orthogonal is just a fan
yway of saying they are perpendi
ular. A triangle is 
alled a right triangle if its twoshorter edges are perpendi
ular. As Virginia just noted, my 
olleague Pythagoras hasa lot to say about right triangles. More re
ently, Professor Chebyshev showed thathis polynomials also have spe
ial orthogonality properties.Simpli
io: But why should I 
are?Galileo: Some te
hniques are stable, while others are unstable.Simpli
io: Stable? Unstable? I don't get it.Galileo: Will no one rid me of this meddlesome fellow?Virginia: OK, OK. I think it is time to relax here.Galileo: Think of a mathemati
al te
hnique as a bla
k box that produ
es answersfor given types of inputs. An example of su
h a bla
k box is a 
al
ulator. Anyoneworking in appli
ations should worry about whether or not a te
hnique produ
es\reasonable" outputs when given \reasonable" inputs. Many te
hniques la
k thisimportant property{at least some of the time.349



350CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYSimpli
io: An example please.Galileo: Suppose A is a 2 � 2 matrix and we are suppose to solve the system oflinear equations Ax = b: In this example, the inputs are the the matrix A and the2-dimensional ve
tor b: The output is the 2-dimensional ve
tor x:Simpli
io: No problem. I remember the formula that solves su
h a system.Virginia: If I remember 
orre
tly, the formula requires that you divide by the deter-minant of A: Thus, if det(A) = 0; there may be a problem.Galileo: Yes, Virginia. You have pointed out an important hypothesis to that theo-rem. Namely, we must assume det(A) 6= 0:Simpli
io: I still don't see the problem.Galileo: Consider the following two systems of linear equations in the plane:System 1: 1:001x+ y = 2:001x + y = 2Note that the equations of these two lines are 
lose to being parallel. Solving thesystem we �nd x = 1 and y = 1:

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

The X Values 

Y
 

Figure 16.1: The Almost Parallel Lines for System 1Now 
onsider a slight modi�
ation of this system of equations.



351System 2: 1:001x+ y = 2x + y = 2Solving this new system we �nd x = 0 and y = 2: Thus, we have modi�ed only oneentry in the ve
tor b by the minus
ule amount 0:001:

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

The X Values 

Y
 

Figure 16.2: The Almost Parallel Lines for System 2This 
hange has led to a di�eren
e of 1 in both entries of the answer. If we de�nethe 
oeÆ
ient matrix by A = 0�1:001 11 11A ;then note that det(A) = 0:001 6= 0: Thus, the matrix equation 
an be solved by rowoperations. However, 
onsidering the size of the 
hange in the inputs, the size of the
hange in the outputs is large. This is evil.A se
ond phrasing of stability is: If given two di�erent sets of inputs whi
h are
lose together, then the outputs should also be 
lose together. Our little examplefails to possess this important property. If you are an engineer, you 
ome to avoidunstable methods be
ause they produ
e weird untrustworthy answers. If a te
hnique
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ks this property, then engineers won't use it. This issue appears repeatedly in amultitude of numeri
al te
hniques.Simpli
io: But we are talking about row operations here! People still use this methodevery day. I have solved dozens of problems using row operations and have neverobserved this problem. How 
ome nobody ever warned me about this problem before?What is the problem?Galileo: Its all in the hypotheses. Note that the two 
olumns of A are almost parallel,whi
h implies that the matrix A is mildly ill-
onditioned. I am willing to bet thatthe matrix equations you solved in your previous 
ourses all had integer entries.Your professors were being easy on you so you 
ould 
ompute the answer withouthaving to keep tra
k of a lot of de
imal pla
es. In real-life appli
ations, don't expe
tinteger entries. Let me �nish the dis
ussion of this example by remarking that thisproblem disappears if the 
olumns of A are orthogonal (or almost orthogonal). Wewill revisit this issue numerous times in our future dis
ussions. We will �nd thatmatri
es asso
iated with polynomial approximations of data are evil, while matri
esasso
iated with Fourier series, spline, and wavelet approximations are good. As youwill see, the mantra for numeri
al te
hniques is: \The name of the game is 
ontrol."Simpli
io: OK, let's get ba
k to a dis
ussion of the prerequisites for this tutorial.Galileo: Of 
ourse, you also need to have a solid ba
kground in Cal
ulus. I use thephrase \solid ba
kground" to mean that you either remember the material or arewilling to make an e�ort to review it on your own. At a minimum, you should beable to 
ompute derivatives of fun
tions using the sum, produ
t, quotient, and 
hainrules. You should also be able to 
ompute easy integrals using substitution. Wewill review integration by parts, the Fundamental Theorem of Cal
ulus, and Taylor'sTheorem. Re
all that the big 
on
ept in Di�erential Cal
ulus is that the tangentline at a given point on a 
urve is the line that best approximates the 
urve at thatpoint. The slope of this line is 
omputed as the derivative of the fun
tion. By theway, Brook Taylor (1685-1731) was a British mathemati
ian, whose ideas are usedeverywhere in Numeri
al Analysis. We will see a lot of him.



16.1. LINEAR ALGEBRA = GEOMETRY + ALGEBRA 353Simpli
io: I think I 
an handle the Cal
ulus prerequisite.16.1 Linear Algebra = Geometry + AlgebraGalileo: As for Linear Algebra, I 
an only say it is probably the most important
ourse you will ever take in mathemati
s. The �rst instin
t of an engineer is totransform a given problem into a linear one{at least over a short time span. Generalinterest in this magni�
ent subje
t is easy to understand: With only two te
hniquesyou have the ability to solve virtually any linear problem. The �rst te
hnique is themethod of Gaussian elimination, otherwise known as row operations. The se
ond isthe diagonalization of a matrix using eigenvalues and eigenve
tors.Simpli
io: Until a few minutes ago, I had no problem with row operations. However,I must admit that I have always been a bit inse
ure when it 
omes to eigenvalues.Professor Poubelle 
overed the topi
 at the end of the semester and we ran out oftime and energy.Galileo: And so it is. You learned one of the two big ideas.Virginia: I will agree with Mr. Simpli
io. I had Professor Pi
ky Pi
ky Pi
ky forLinear Algebra, While he was a good tea
her, we rarely 
omputed anything. We alsohad the problem that we got bogged down in lots of de�nitions, theorems, and proofs.The good Professor said the purpose of the 
ourse was to tea
h us about abstra
tmathemati
s. I worked hard and enjoyed the material, but was never quite able tomaster the topi
 of diagonalizing a matrix. Some how, I always got the transitionmatrix ba
kwards. That stu� at the end of the semester was very 
onfusing.Galileo: And there it is: the psy
hoti
 bifur
ation of a beautiful subje
t. My viewis that deep down Linear Algebra is the fusion of geometry and algebra. If you will,it is the \algebratization" of Eu
lid's Geometry. Maybe it should have been 
alledLinear Algebrai
 Geometry. Of 
ourse, it is too late now. The beauty of LinearAlgebra is that algebrai
 expressions and formulas are provided for ea
h geometri

on
ept. Points, rays, and lines 
an be represented by ve
tors; angles and distan
es
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an be 
omputed using the inner produ
t; areas and volumes 
an be 
omputed withthe determinant fun
tion; and 
ongruen
es 
an be represented by the 
ombinationof orthogonal and translational matri
es. This strong 
onne
tion between the twosubje
ts is no a

ident. For the 100 years of the 19th Century, mathemati
ians workedin
essantly to get Geometry \right."In fa
t, the subje
t matter you studied in your Cal
ulus, Linear Algebra, andVe
tor Analysis 
ourses is a dire
t result of this e�ort to algebratize geometry. The�rst reason was to make geometry rigorous; the se
ond was to fa
ilitate the in
orpo-ration of geometri
 ideas into the modeling of real-life appli
ations. In the pro
essof proving the Fundamental Theorem of Algebra, Gauss re
ognized that 
omplexnumbers 
ould be represented as ve
tors in the plane. Sir William Rowan Hamilton(1805-1865) generalized the idea of the 
omplex numbers to the quaternions, whi
hprovide an algebrai
 stru
ture for <4: This stru
ture satis�es the asso
iative and dis-tributive laws, but the multipli
ation fails to be 
ommutative. He also invented theword \ve
tor."Simpli
io: Can't the 
omplex numbers be thought of as a subset of the quaternions?Galileo: Corre
t. Three other mathemati
ians, who 
ontributed to this sear
h for theest blend of geometry and algebra were Hermann Grassmann (1809-1877), ArthurCayley (1821-1895), and Josiah Willard Gibbs (1839-1903). While Grassmann 
on-tributed to many aspe
ts of the subje
t, his e�orts were fo
used on making the subje
tas abstra
t and general as possible. In parti
ular, he formalized the terms inner andouter produ
t in terms of their properties instead of their formulas. These ideas willbe
ome important when we investigate Fourier series. Cayley worked with Hamiltonon matrix algebra. In fa
t, he invented the term. Do you know what the word matrixmeans in Latin?Simpli
io: No 
lue.Galileo: Womb.Simpli
io: Oh.Galileo: Gibbs was the �rst high quality Ameri
an mathemati
ian. Trained in Eu-
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s and heat transfer. Entropy and enthalpy were hisideas.Simpli
io: Why would I 
are about thermodynami
s? Thank heavens I never had tostudy that diÆ
ult subje
t.Galileo: Thermodynami
s is a subje
t that grew out of the invention of the steamengine. You drive a 
ar, don't you?Simpli
io: Sure.Galileo: Gibbs was also one of the founding fathers of Ve
tor Analysis. He eveninvented the notation for the dot produ
t and the 
ross produ
t. His Ve
tor Analysisemerged as the winner over Hamilton's quaternions for most appli
ations. GiuseppePeano (1858-1932) was a 
lear-thinking Italian, who has numerous 
redits to hisname in
luding the formal de�nition of indu
tion on the integers, the 
onstru
tion of
ontinuous fun
tions whi
h raise dimension, and the formal de�nition of an abstra
tve
tor spa
e. Peano is responsible for that abstra
t de�nition you should have learnedin your �rst 
ourse in linear algebra. The reason for the abstra
tion was to get awayfrom the idea of a �xed 
oordinate system in Eu
lidean n�dimensional spa
e <n:My 
olleagues Professors Giuseppe Peano (1858-1930) and David Hilbert (1862-1943) were instrumental in setting up the axioms for a ve
tor spa
e so they �t amultitude of di�erent appli
ations. It seems that di�erent resear
h groups were alldoing the same thing. They just didn't realize it. Peano and Hilbert 
ompleted thiswork at the end of the 19th Century. At the same time they put Eu
lid on a solidfoundation.Simpli
io: OK, that is enough history.Galileo: Let us now turn to the idea of a ve
tor spa
e, whi
h plays a fundamentalrole in the topi
s we will dis
uss.Simpli
io: What is a ve
tor spa
e? Professor Poubelle never dis
ussed that topi
.Virginia: A ve
tor spa
e is a set together with two operations: addition and s
alarmultipli
ation. The axioms in
lude asso
iative, 
ommutative, and distributive lawsas well as additive identity and inverses. The plane <2; three spa
e <3; and <n are
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tor spa
es, where the set of s
alars is the set of real numbers. Theelegant feature of a ve
tor spa
e is that a fun
tion f(x) 
ontinuous at ea
h x 2 [a; b℄
an be thought of as a ve
tor. If we denote the 
olle
tion of all 
ontinuous fun
tionson [a; b℄ by C0[a; b℄; then it is straightforward (but boring, boring, boring) to showthat C0[a; b℄ is a ve
tor spa
e.Simpli
io: When I think of ve
tors, I think of little arrows with a poison tip. Whi
hway does f(x) point?Galileo: Just as a ve
tor in the plane has two 
oordinates and a ve
tor in three spa
ehas three 
oordinates, a fun
tion f(x) has a 
oordinate for ea
h x 2 [a; b℄: Thus, thespa
e C0[a; b℄ is looking like an in�nite dimensional ve
tor spa
e. (Galileo sips fromhis goblet.)Simpli
io: This in�nite dimensional stu� is just mathemati
al games to keep you guyso� the streets. We live in three spa
e. I say three spa
e is as high as we need to go.Galileo: What about time?Simpli
io: OK, I will 
on
ede four dimensions.Galileo: What about phase spa
e in Physi
s? Those guys like to have a parti
le movearound in six dimensional spa
e: three 
oordinates for position and three for velo
ity.Simpli
io: OK, six.Galileo: String theory puts us at 11. A
tually, a signal with n terms 
an be thoughtof as a ve
tor in <n: Similarly, the set of all digital images in bitmap format with 256rows and 256 
olumns lie in a 256� 256 = 228 dimensional spa
e so you might as well
on
ede the point. You get one dimension for ea
h pixel lo
ation.Simpli
io: Those last two examples make this dis
ussion more interesting. I likeimages.Galileo: What about a 
areful de�nition of this notion of dimension?Simpli
io: It is what you said. The de�nition of dimension is simply the number of
oordinates. I don't see the problem.Galileo: Virginia, do you have any thoughts on this matter?Virginia: Dimension is a tri
ky 
on
ept to make mathemati
ally rigorous. If I re-
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orre
tly from Professor Pi
ky's 
lass, we �rst de�ned the notions of linear
ombination and linear dependen
e. On
e we had de�ned linear dependen
e, thede�nition of independen
e is easy. Namely, a set of ve
tors is independent if it is notdependent. A basis is de�ned as any subset of a given ve
tor spa
e with the propertythat it is both linearly independent and maximal with respe
t to the property of beingindependent. The de�nition of dimension for a ve
tor spa
e 
an now be de�ned as thenumber of ve
tors in a basis. Professor Pi
ky also de�ned the notion of a spanningset and then proved that any minimal spanning set is a basis.Simpli
io: That de�nition doesn't sound too bad. What's the problem.Virginia: The problem is that there 
an be a zillion di�erent bases for a given ve
-tor spa
e. Professor Pi
ky spent several days going through some kind of ex
hangeargument, whi
h showed that any two bases have the same 
ardinality.Simpli
io: Cardinality? What is that?Virginia: The 
ardinality of a set is the number of points in the set.Simpli
io: Well why didn't you say so? Professor Poubelle was right. All this mathstu� is rubbish. You make the easiest ideas diÆ
ult for absolutely no reason. Youmath people are all neuroti
ally obsessed by details. Boring, boring, boring. So Iguess I should be polite and ask why should we 
are whether or not two bases havethe same 
ardinality?Virginia: Consider your favorite ve
tor spa
e <2: It is easy to 
he
k that the standardbasis B = e1 = (1; 0); e2 = (0; 1) is a basis. From the dis
ussion I just gave, we nowknow that any other basis will also have two members. Similar 
omments apply to<3:Simpli
io: Big deal. The standard basis is good enough for me. Why should Itransform something easy into something 
ompli
ated?Galileo: A
tually, the opposite is true. Do you happen to remember my 
olleagueApollonius (262-190 B.C.E.)?Virginia: He was the one with the 
oni
 se
tions. Right?Galileo: And what did his theorem say?



358CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYVirginia: If you 
ut (or interse
t) a plane with a 
one, then you get either a parabola,a hyperbola, or an ellipse. A
tually, you 
an also get some less interesting 
ases su
has a point, a line, two lines, and even the empty set.Galileo: Very good. Now what did my friend Rene Des
artes (1596-1650) show?Virginia: I am not sure I remember.Galileo: Des
artes showed that if you 
onsider the subset of the plane de�ned byS = f(x; y) : Ax2 + Bxy + Cy2 +Dx + Ey + F = 0g; then the set must be a 
oni
se
tion. The argument pro
eeds in two steps. The �rst is to translate the x and yaxes so that in the new 
oordinate system the 
onstants D = E0: This step is easyand leaves us with the expression Ax2 + Bxy + Cy2 + F = 0: The se
ond step is torotate the 
oordinates so that B = 0: This rotation is 
arried out by the matrixS = 0�
 �ss 
 1A ;where 
 = 
os(�) and s = sin(�) for an appropriately 
hosen angle �: With thesetwo transformations, we end up with the same seven 
ases you just mentioned. Ifwe de�ne the dis
riminant by the formula � = B2 � 4AC; then the three interesting
ases be
ome:1. If � = 0; then the set S is a parabola de�ned by y = ax2:2. If � > 0; then the set S is a hyperbola de�ned by x2a2 � y2b2 = 1:3. If � < 0; then the set S is an ellipse de�ned by x2a2 + y2b2 = 1:This pro
ess has redu
ed a 
ompli
ated expression to one in standard form, wherethe three interesting 
ases 
an be identi�ed by simply 
omputing �:Virginia: In other words, the dis
riminant dis
riminates!Simpli
io: OK, all well and good, but what employer is going to pay me a worthysalary for knowing this little theorem about 
oni
 se
tions?Virginia: You 
an always tea
h.Simpli
io: Fat 
han
e of that ever happening.



16.1. LINEAR ALGEBRA = GEOMETRY + ALGEBRA 359Galileo: While I will admit that this theorem may seem a bit old fashioned, it pro-vides the 
on
ept for a multitude of appli
ations. In parti
ular, an employer willbe interested in whether or not you are knowledgeable about Fourier Series. Fourierdidn't invent Fourier series and he never got the math right, but he did manage todraw attention to a te
hnique that works over a broad range of appli
ations. He knewit worked.Simpli
io: Who is this Fourier and how did he get started?Galileo: Jean Baptiste Joseph Fourier (1768-1830) a

ompanied Napoleon Bonaparteto Egypt as his 
hief s
ientist in 1798. While Fourier enjoyed the sunny weather, itseems that the English did not parti
ularly appre
iate the Fren
h having 
ontrol ofthis important region. As a result, Lord Horatio Nelson atta
ked and defeated theFren
h in the Battle of the Nile in 1798. With his subsequent return to Fran
e, Fourier
hose to live in Grenoble, where the winters are long, 
old, and miserable. While heturned up the heat in his apartment and put on extra 
oats, he was unable to keepout the winter 
hill. He su�ered mightily. In his misery, he began his investigationsinto the heat equation.Simpli
io: Why are you telling me this sad story about poor old Mr. Fourier? I 
arenothing about his heat equation.Galileo: You might re
onsider that statement. While Fourier investigated the heatequation, his series 
ontinue to be used in a multitude of appli
ations even 200 yearsafter their invention. Two reasons for this longevity 
ome to mind. First, Fourierseries are simply linear 
ombinations of sines and 
osines so they should probably be
onsidered when modeling any phenomenon asso
iated with the motion of a wave. Ifyou think about it, waves are involved in a multitude of appli
ation areas in
ludingopti
s, ele
tromagneti
 waves, 
ommuni
ations, a
ousti
s, and spee
h re
ognition.For an ele
tri
al engineer or 
omputer s
ientist, Fourier also provides the basis forthe a
quisition, transmission, 
ompression, and �ltering of signals and images. Whenone speaks of \appli
ations driven mathemati
s," Fourier series should be one of the�rst topi
s to 
ome to mind. In any 
ase, Fourier is a 
ore subje
t for students in
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s. I apologize for the extended soliloquy.Simpli
io: Now you have my full attention.Galileo: Before we move on to Fourier, let's take one more look at Des
artes' rotationmatrix S: The new 
oordinate system 
an be des
ribed by the basis formed by thetwo 
olumn ve
tors of S: More spe
i�
ally, the two new basis ve
tors are:0�
s1A and0��s
 1A :These ve
tors have two fundamentally important properties. First, they are or-thogonal. Se
ond, they both have length one. In the language of modern LinearAlgebra, we have diagonalized the matrixM = 0�A B2B2 C1A ;whi
h allows us to write the quadrati
 expression Ax2 + Bxy + Cy2 as the matrixprodu
t: Ax2 +Bxy + Cy2 = (x; y)0�A B2B2 C1A0�xy1A :If �1 and �2 are the eigenvalues of M; then0��1 00 �21A = 0� 
 s�s 
;1A0�A B2B2 C1A0�
 �ss 
 1A :In other words, if �1 > 0 and �2 > 0; then the 
oni
 se
tion is an ellipse; if �1 > 0and �2 < 0; then the se
tion is a hyperbola; and if either �1 = 0 or �2 = 0; then these
tion is a parabola. Thus, the eigenvalues 
an also be used to distinguish the three
ases.Simpli
io: OK, OK, that ugly word orthogonal is now looking better.Galileo: The question now be
omes: How do you 
ompute lengths, distan
es, andangles in a ve
tor spa
e?



16.1. LINEAR ALGEBRA = GEOMETRY + ALGEBRA 361Virginia: There is nothing in the de�nition of a ve
tor spa
e that says anything abouteither property.Galileo: You are, in fa
t, 
orre
t.Simpli
io: So what do we do?Galileo: Leave it to another grumpy German geek from the 19th Century, one Her-mann Grassmann (1809-1877), to invent the idea of an inner produ
t. The virtue ofthis idea is that it solves all three problems at the same time. In parti
ular, this de-vi
e 
an be used to make abstra
t de�nitions for length (also 
alled norm), distan
e,and angle. His ideas were so ahead of his time, nobody 
ould understand what hewas talking about.Simpli
io: Why would anyone want all this abstra
tion? Why not keep it under-standable?Galileo: Think about your 
omputer software 
lasses. When you write a subroutineor pro
edure to make some 
omputation, you should make it as generally useful aspossible. If you are sloppy and write a new subroutine for ea
h new situation, yoursoftware will expand out of 
ontrol. The same strategy has existed in mathemati
ssin
e the an
ient Greeks, where it has taken the best minds to re
ognize that ahodgepodge of di�erent spe
ial 
ases sometimes fall under the same umbrella. As aninexperien
ed beginner, the problem be
omes a la
k of familiarity with all the relevantspe
ial 
ases that gave rise to the abstra
t de�nition. The problem with modernmathemati
al pedagogy is that we begin with the �nal produ
t. This approa
h tendsto be elegant, but sterile.Simpli
io: Don't think I haven't noti
ed.
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ts

Figure 16.3: Hermann Grassmann (1809-1877)Galileo: To begin our dis
ussion of inner produ
t spa
es, let us begin with the spe
ial
ase of the inner produ
t de�ned on <n:De�nition 16.2.1. If u = (u1; u2; : : : ; un)t and v = (v1; v2; : : : ; vn)t; are 
olumnve
tors in <n; then the inner produ
t is < u;v >= utv =Pnk=1 ukvk:Simpli
io: Remind me about that little t next to the ve
tor u:Galileo: That exponent t indi
ates the transpose of the 
olumn ve
tor to a row ve
tor.While publishers would like all ve
tors to be written horizontally, we would like tothink of them as 
olumn ve
tors.Simpli
io: What useful purpose does this serve?Galileo: We would like to 
onsider a matrix as a parti
ulary useful type of fun
tion,whose domain 
onsists of all the 
olumn ve
tors in <n and whose range 
onsists ofall the 
olumn ve
tors in <m: These 
olumn ve
tors will be 
onsidered to be points.This fun
tion fun
tion 
an be 
omputed by the rules of matrix multipli
ation.Simpli
io: Thus, the produ
t utv simply indi
ates the usual dot produ
t. For exam-ple, if u = (u1; u2)t and v = (v1; v2)t; then < u;v >= utv = u1v1 + u2v2:Galileo: Yes, you are 
orre
t. Now, using this inner produ
t, we 
an de�ne the lengthof the ve
tor.



16.2. LINEAR ALGEBRA: THE ROLE OF INNER PRODUCTS 363De�nition 16.2.2. kuk2 = p< u;u >:Simpli
io: Wait a minute. What is this notation kuk2? More to the point. What isthat little subs
ript 2 doing there?Virginia: On
e again, I bet it is Pythagoras lurking around.Galileo: We 
an also de�ne the distan
e between two ve
tors.De�nition 16.2.3. If u = (u1; u2; : : : ; un)t and v = (v1; v2; : : : ; vn)t; are 
olumnve
tors in <n; then the distan
e between u and v is dist(u;v) = ku� vk2:Simpli
io: In other words, the distan
e between two ve
tors is the length of theirdi�eren
e.Galileo: Corre
t. In addition to length, the notion of inner produ
t allows us to
ompute the 
osine of the angle between two ve
tors u and v:De�nition 16.2.4. The 
osine of the angle � between two ve
tors u and v is de�nedby the formula 
os(�) = < u;v >kuk2kvk2 :Thus, we 
an now 
ompute the angle � by the ar

osine fun
tion. We 
an also
he
k to see if two ve
tors are 90 degrees (or orthogonal) by simply 
omputing theinner produ
t < u;v > : If this quantity equals zero, they are orthogonal. Forexample, if u = (
;�s)t and v = (s; 
)t; then < u;v >= 
s � 
s = 0: Thus, theve
tors u and v are orthogonal.Simpli
io: What is that little subs
ript 2 doing on the length formula kuk2?Galileo: We put a subs
ript there to remind you to 
ompute the square root of thesum of the squares of the 
oordinates of u: As it turns out, we will sometimes �nd it
onvenient to 
ompute kukp: This symbol represents the pth root of the sum of thepth powers of the 
oordinates of u: You 
omputer types tend to like it when p = 1 orp =1:Simpli
io: In God's green earth, how 
an p = 1? If p = 1; then we are summingthe in�nite power of a bun
h of numbers.



364CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYGalileo: The 
ase p = 1 denotes the maximum of the absolute values of all the
oordinates. Don't worry. We will return to that point. OK, what 
an we observeabout our rotation matrix S?Simpli
io: The two 
olumns are orthogonal.Virginia: And hen
e we won't have the problem with stability we had with our matrixA!Galileo: You got it. Looking ahead, you might also like to know that the 2�2 Fouriermatrix is de�ned by the equation:F2 = 0�p22 p22p22 �p22 1Aso this matrix has orthogonal 
olumns ea
h with unit length. In fa
t, if we inter
hangethe two 
olumns of F2; the matrix represents a rotation of � = �45: Note thatdet(F2) = �1; whi
h implies that there is a \
ip" a
ross some line in the plane. Thebeauty of the general Fourier matrix Fn is that it will have orthogonal 
olumns ofunit length.Simpli
io: This stu� is OK.Galileo: Unfortunately, I have bad news for you. The situation deteriorates a littlefrom here.Simpli
io: How so?Galileo: When we begin approximating a fun
tion f(x) on an interval [a; b℄; we willhave many di�erent bases to 
hose from. For example, we 
an approximate the fun
-tion by linear 
ombinations of fun
tions from the basis BP = f1; x; x2; : : : ; xng: Thistype of approximation is by polynomials. We have a number of di�erent te
hniquesin
luding Taylor and polynomial interpolation. We 
an also approximate f(x) bylinear 
ombinations of fun
tions in the basisBF = f1; 
os(x); sin(x); 
os(2x); sin(2x); : : : ; 
os(nx); sin(nx)g: As it turns out formost appli
ations, the se
ond basis is preferred to the �rst. First, as we mentioneda few minutes ago, there are a multitude of appli
ations involving some kind of wavephenomena. Sin
e the fun
tions 
os(nx) and sin(nx) 
ertainly look like waves, they
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ond, as we shall see in a moment, these fun
tionshave marvelously stable mathemati
al properties.Simpli
io: How so?Galileo: I hate to tell you but the answer on
e again is, you guessed it, orthogonality.Simpli
io: But wait a minute. How the he
k 
an two fun
tions be orthogonal? Thatmakes no sense.Galileo: Now we are ba
k to grumpy Grassmann, who re
ognized that we 
an 
omputethe inner produ
t of two 
ontinuous fun
tions f(x) and g(x) de�ned on an interval[a; b℄ by simply 
ompute the integral. In other words, simply de�ne the inner produ
tby the formula: < f(x); g(x) >= Z ba f(x)g(x) dx:If you think of the integral as simply a fan
y summation symbol and the values of x as
oordinates, this formula is just an extension of the dot produ
t. Thus, the fun
tionsf(x) and g(x) are orthogonal if R ba f(x)g(x) dx = 0: In parti
ular, if we 
onsider thefun
tions 
os(mx) and sin(nx) to be de�ned on the interval [��; �℄; then it will turnout that R ��� 
os(mx) sin(nx) dx = 0: Thus, these two trigonometri
 fun
tions areorthogonal. Are you ba
k in your 
omfort zone yet?Simpli
io: I am getting there.Virginia: If I hear you 
orre
tly, we 
an now 
ompute the length of a fun
tion f(x)by the formula kf(x)k2 =p< f(x); f(x) > =sZ ba f(x)2 dx:We 
an also 
ompute the 
osine of the angle between two fun
tions f(x) and g(x) bythe formula 
os(�) = < f(x); g(x) >kf(x)k2kg(x)k2 :Galileo: Corre
t.Simpli
io: But what does it mean to talk about the length of a fun
tion? What sensedoes it make to talk about the angle between two fun
tions? In parti
ular, what isthe angle between the fun
tions xm and xn?



366CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYGalileo: Unfortunately, the news here is not good. While we 
an easily 
ompute therequired integrals on any interval, say [�1; 1℄; the 
osine of the angle between them
an be arbitrarily 
lose to one implying the fun
tions are 
lose to being parallel. Aswe have already observed, this situation 
an lead to evil.Virginia: I 
an visualize the problem here.Galileo: Before we leave the topi
 of inner produ
t, let's mention one more spe
ial
ase. In parti
ular, if the fun
tions f(x); g(x); and !(x) are 
ontinuous on the interval[a; b℄ and !(x) > 0 for all x 2 [a; b℄; then we 
an de�ne an inner produ
t by the rule< f(x); g(x) > = < f(x); g(x) >!(x) = Z ba f(x) g(x) !(x) dx:The fun
tion !(x) 
an be thought of as a weighting fun
tion.Simpli
io: On
e again, I see this de�nition as just one more playground for the mathgeeks. It looks to me like abstra
tion for the sake of abstra
tion.Galileo: Unfortunely, I think Professors Adrien-Marie Legendre (1752-1833), CharlesHermite (1822-1901), Pafnuty Chebyshev (1821-1894), and Edmund Ni
holas La-guerre (1834-1886) might beg to di�er. They ea
h 
ontributed to the study oforthogonal polynomials: As the name orthogonal polynomials suggests, these fel-lows studied polynomials, whi
h by the appropriate 
hoi
e of weighting fun
tion alsohappen to be orthogonal on some interval [a; b℄. In ea
h 
ase, their method pro-vides an elegant new basis for C0[a; b℄: Professor Legendre studied the 
ase when theweighting fun
tion !(x) = 1 for all x 2 [�1; 1℄: Professor Hermite studied the 
asewhen !(x) = e�x2 for all x 2 (�1;1): Professor Chebyshev studied the 
ase when!(x) = 1p1�x2 for all x 2 [�1; 1℄: Professor Laguerre studied the 
ase when !(x) = e�xfor all x 2 [0;1): For Professor Legendre the �rst few basis ve
tors areL0(x) = 1;L1(x) = x;L2(x) = x2 � 13 ;L3(x) = 5x3 � 3x; et
:
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tors areH0(x) = 1;H1(x) = 2x;H2(x) = 4x2 � 2;H3(x) = 8x3 � 3x; et
:For Professor Chebyshev the �rst few basis ve
tors areT0(x) = 1;T1(x) = x;T2(x) = 2x2 � 1;T3(x) = 4x3 � 3x; et
:Finally, for Professor Laguerre the �rst few basis ve
tors areL0(x) = 1;L1(x) = � x + 1;L2(x) = 12(x2 � 4x+ 2);L2(x) = 16(�x3 + 9x2 � 18x+ 6); et
:These polynomials 
an be 
omputed using their de�nition, integration by parts, andthe Gram-S
hmidt orthogonalization pro
ess you learned in a beginning Linear Al-gebra 
ourse.Sin
e the weighted integral R ba f(x)g(x)!(x) dx is an inner produ
t, anytime afa
t is demonstrated about an inner produ
t spa
e, it will also be true for theseorthogonal polynomials. The Pythagorean Theorem is the most notable example.These orthogonal polynomials not only have notable mathemati
al properties, butalso have appli
ations to di�erential equations and Physi
s. Legendre polynomialsare 
losely asso
iated with Lapla
e's equation, heat transfer, and the topi
 of spheri
alharmoni
s in physi
s. The literature written on these topi
s is vast.



368CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYSimpli
io: I never studied these properties in my physi
s 
lass. These appli
ationssound diÆ
ult.Galileo: We are now in a position to understand the virtues of orthogonal proje
tions.Simpli
io: I hate to think.Galileo: Well then, visualize for a moment that you are holding two 
annonballs inyour hands. If you let go, they drop to the 
oor. If they were 
lose together at thebeginning, they will land side-by-side when they hit the 
oor. Note that the anglebetween the 
ight-path of ea
h ball and the 
oor is 90 degrees. In other words, anyve
tor lying in the 
oor is orthogonal to the 
ight-path of ea
h ball.Simpli
io: I see.Galileo: On the other hand, suppose I 
ing the 
annonballs sideway towards the edgeof the room.Simpli
io: So?Galileo: Even if they are 
lose together when they are in your hands, they may stillstrike the 
oor at points far apart. If the room is large, they may land very farapart. The virtue of Fourier series approximation is that it amounts to an orthogonalproje
tion from an in�nite dimensional spa
e into a �nite dimensional spa
e. Smallerrors in measurement at the beginning remain small. This is good.Virginia: It is better to drop than 
ing?Galileo: You have it. Moreover, the te
hnique of linear least squares is also based onthis same 
on
ept. Statisti
ians give daily thanks to the Greek Goddess Orthogonal.Simpli
io: This is more than I 
an stand.Galileo: Sin
e it took people de
ades to understand Grassmann, it is not too surpris-ing you might have to think about these ideas for a minute or two. However, let me
omment that an inner produ
t 
an be de�ned on an abstra
t ve
tor spa
e by simplystating four simple properties. The whole pro
ess is amazingly elegant and simple.(Galileo sips.)Virginia: I like these ideas. Simple is good.Simpli
io: I think I am going to have a bad hangover.



16.2. LINEAR ALGEBRA: THE ROLE OF INNER PRODUCTS 369Galileo: No drinking for you. Al
ohol kills brain 
ells you 
annot a�ord to lose. Infa
t, we now summarize the 
onne
tions between Geometry and Linear Algebra inTable 16.2.
Geometry ! Linear Algebrapoint ! ve
torline ! ve
torray ! ve
tordistan
e ! inner produ
tangle ! inner produ
tright angle ! orthogonality (inner produ
t)area ! determinantvolume ! determinant
ongruen
e ! linear transformationsimilarity ! linear transformationTable 16.1: The Conne
tions Between Geometry and Linear Algebra.

Virginia: So the key ideas of Geometry are en
apsulated in the four 
on
epts: ve
tor,inner produ
t, determinant, and linear transformation.Galileo: You got it. Better yet, it is rigorous and set up for making 
omputations.The subje
t is perfe
t for our 
omputer guys.
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David Hilbert (1862-1943)David Hilbert: \He who seeks for methods without having a de�nite prob-lem in mind seeks in the most part in vain."Galileo: Let us introdu
e David Hilbert, an expert in Linear Algebra. He wrotea 
lassi
 work on the foundations of geometry, where his mission was to formulatethe logi
al stru
ture of geometry into the most mathemati
ally 
orre
t frameworkpossible. He also enjoyed appli
ations as well as dan
ing on Saturday nights. We willask him to present a more modern version of the Pythagorean Theorem.Simpli
io: Well, at least we don't have to deal with that logi
 guy. He was a downer.Virginia: You try my patien
e.Hilbert: In the interest of keeping the dis
ussion a

essible and 
on
rete, we beginwith an example.Example 16.3.1. Let u = 0�111Aand v = 0� 1�11A :



16.3. A LINEAR ALGEBRA VERSION OF PYTHAGORAS 371Note that the square of the length of the ve
tor u equals 2. Note that the square ofthe length of the ve
tor v also equals 2.Note that the square of the length of the ve
toru + v = 0�201Aequals 4. Sin
e 2 + 2 = 4; we have proved a spe
ial 
ase of the Algebrai
 Version ofthe Pythagorean Theorem.Simpli
io: Even I 
an handle that 
omputation.Hilbert: We now generalize this example by proving the theorem for 
olumn ve
torsin <n whi
h have the form
u = 0BBBBBB�u1u2...un

1CCCCCCA ;where ea
h uj 2 <:Theorem 16.3.1 (Algebrai
 Version of Pythagoras ). If u = (u1; u2; : : : ; un)tand v = (v1; v2; : : : ; vn)t are two orthogonal ve
tors in <n; then ku + vk22 = kuk22 +kvk22:Proof. By the properties listed in the previous proposition 
ombined with the as-sumption that < u;v >=< v;u > = 0; we see thatku+ vk22 = < u+ v;u+ v >= < u;u > + < u;v > + < v;u > + < v;v >= kuk22 + 0 + 0 + kvk22= kuk22 + kvk22:



372CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYSimpli
io: While the proof is short, I still don't like this unne
essary abstra
tion.Hilbert: Do you understand how the theorem applies to the examples?Simpli
io: No problem, for the ve
tors u = (1; 1)t and v = (1;�1)t; we simply observethat u+ v = (2; 0)t and 4 = 2 + 2:For the ve
tors u = (3; 4)t and v = (�4; 3)t; we simply observe that u + v =(�1; 7)t and ku+ vk22 = 1 + 49 = 52 + 52 = kuk22 + kvk22:Hilbert: Good. To help you visualize the theorem in two dimensions, we have in
ludeda diagram in Figure 16.4.

Figure 16.4: The Linear Algebra Version of the Pythagorean TheoremHilbert: Unfortunately, the abstra
tion gets worse. However, before we move in thatdire
tion, I would like to point out that the proof only used the properties of the innerprodu
t we showed in the proposition. You have now seen Hermann Grassmann atwork. Namely, �rst identify and isolate the key properties asso
iated with an ideaand then prove as mu
h as you 
an about the properties. A bene�t of this pro
essis that 
ompli
ated summation notation is repla
ed by a pair of bra
kets. On
e you



16.3. A LINEAR ALGEBRA VERSION OF PYTHAGORAS 373get used to this method of doing business, the ideas underlying the te
hnique be
omemore transparent. Later we will reprove the theorem for Fourier series, whi
h live in amore general inner produ
t spa
e. In an e�ort to prepare you for Fourier Series, howabout if we restate the Pythagorean Theorem the ve
tor w is a linear 
ombinationof two orthogonal ve
tors u and v; whi
h have the same length L: For Fourier seriesthe 
onstant L = p�: Note also, that if the 
onstant L = 1; then the statement isthe same as the theorem we just presented.Example 16.3.2. Let u = 0�111Aand v = 0� 1�11A :As we noted before, the length of the ve
tors u and v both equal p2:If w = au + bv; then kwk22 = 2(a2 + b2): Note that this observation is a spe
ial
ase of the next Theorem.Theorem 16.3.2 (Algebrai
 Version of Pythagoras 2). Let u = (u1; u2; : : : ; un)tand v = (v1; v2; : : : ; vn)t be two orthogonal ve
tors in <n with the property that kuk2 =kvk2 = L: If a; b 2 < and w = au+ bv; then kwk22 = L2(a2 + b2):Proof. Sin
e w = au+ bv;kwk22 = = < w;w >= < au + bv; au+ bv >= a2 < u;u > +ab < u;v > +ba < v;u > +b2 < v;v >= a2 < u;u > +0 + 0 + b2 < v;v >= a2L2 + b2L2= L2(a2 + b2):



374CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITYSimpli
io: OK, why should I 
are about this last theorem? Why don't we just leavethese ideas in Geometry where they belong?Hilbert: We are looking ahead to Fourier series, whi
h we will be dis
ussing at a laterdate. The 2� 2 matrix F2 = 0�1 11 �11Ais the matrix representing the dis
rete Fourier transform. Note that the 
olumns ofthis matrix are the ve
tors u andmathbfV we just dis
ussed in the previous example.The advantage of Peano's abstra
t de�nition of ve
tor spa
e is that fun
tions 
an alsobe thought of as ve
tors. In parti
ular, trigonometri
 fun
tions su
h as 1; 
os(x); andsin(x) 
an now be 
onsidered ve
tors in a very large (i.e in�nite dimensional) spa
e.While you may think of the inner produ
t as the dot produ
t of two ve
tors in <n;we 
an also de�ne the inner produ
t of two fun
tions as the integral of their produ
tover some interval [a; b℄: When we dis
retize these fun
tions, we end up with the 3�3Fourier matrix 0BBB�1 1 01 �12 p321 �12 �p32
1CCCA :Note that the 
olumns of this matrix are pairwise orthogonal.Simpli
io: So?Hilbert: This observation is important be
ause the Pythagorean Theorem 
an nowbe applied to these three 
olumn ve
tors to infor
e stability.Simpli
io: I see that the 
olumns are orthogonal. In�nite dimensional spa
es?Example 16.3.3. Hilbert: The idea of an in�nite dimensional spa
e is not so strangewhen you realize that ea
h point x 2 [a; b℄ 
an be thought of as a 
oordinate fora fun
tion f(x): Sin
e trigonometri
 fun
tions are usually de�ned on the interval[��; �℄ (or [0; 2�℄), the inner produ
t be
omes< f(x); g(x) > = Z ��� f(x)g(x) dx:
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onne
tion between Fourier series and Pythagoras, leth(x) = a 
os(x) + b sin(x): Sin
e it is an easy exer
ise from 
al
ulus to show that1. < 
os(x); 
os(x) >=< sin(x); sin(x) >= � and2. < 
os(x); sin(x) >=< sin(x); 
os(x) >= 0;we observe thatZ ���(h(x))2 dx = < a 
os(x) + b sin(x); a 
os(x) + b sin(x) >= a2 < 
os(x); 
os(x) > + 2ab < 
os(x); sin(x) >+ b2 < sin(x); sin(x) >= a2� + 2 � 0 + b2� = �(a2 + b2):Grassmann would be proud to see his abstra
t de�nition of the inner produ
t be-
oming a 
entral fo
us in this important appli
ation.Virginia: I see the potential here for some interesting mathemati
al ideas.Exer
ise Set 16.1.1. If u;v; and w represent the 
olumns of the matrix0BBB�1 1 01 �12 p321 �12 �p32
1CCCA ;then show that ku+ v +wk22 = kuk22 + kvk22 + kwk22:2. Prove the Pythagorean Theorem for three ve
tors: If u = (u1; u2; : : : ; un)t;v = (v1; v2; : : : ; vn)t; and w = (w1; w2; : : : ; wn)t are three ve
tors in <n with theproperty that u ? v; u ? w; and v ? w; then ku + v +wk22 = kuk22 + kvk22 +kwk22:



376CHAPTER 16. STABLE TECHNIQUES: THE ROLE OF ORTHOGONALITY3. Prove the following theorem: Let u = (u1; u2; : : : ; un)t;v = (v1; v2; : : : ; vn)t; andw = (w1; w2; : : : ; wn)t be pairwise orthogonal ve
tors in <n with the propertythat kuk2 = kvk2 = kwk2 = L: If a; b; 
 2 < and z = au + bv + 
w; thenkzk22 = L2(a2 + b2 + 
2):4. Prove the parallelogram law: If u = (u1; u2; : : : ; un)t and v = (v1; v2; : : : ; vn)t;then ku+ vk22 + ku� vk22 = 2kuk22 + 2kvk22:5. Prove the Law of Cosines.
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Chapter 17
Taylor Polynomials

Brook TaylorGalileo: We now ask Professor Taylor to rejoin us so he 
an explain the generalversion of the theorem that made him famous. While stri
tly speaking it is not amethod of interpolation, it does provide an entry point into the topi
 of polynomialinterpolation. Professor Taylor, tell us your theorem.Taylor: A
tually, it is a straight forward generalization of what we presented when weshowed the method of Newton/Raphson 
onverges quadrati
ally. Again, the 
on
eptis to write a given fun
tion f(x) = pn(x) + En(x); where pn(x) is a polynomial ofdegree n and En(x) represents the error. In other words, a smooth fun
tion 
an be379



380 CHAPTER 17. TAYLOR POLYNOMIALSwritten as the sum of a polynomial and an error. With lu
k, the error term will besmall.Theorem 17.0.3 (Taylor). If a < x; x0 < b and f(x) 2 Cn+1[a; b℄; thenf(x) = nXk=0 f (k)(x0)k! (x� x0)k + 1n! Z xx0 f (n+1)(t)(x� t)n dt:Proof. The proof employs the same te
hnique as the one given for the 
ase n = 1:The idea is to always atta
k the error term using the te
hnique of integration byparts, where we integrate f (n+1)(t) and di�erentiate (x � t)n: Sin
e we have alreadydemonstrated the proof for n = 1; we will prove the next 
ase when n = 2:For n = 2 we let u = (x � t)2 and dv = f 000(t) dt so that du = �2(x � t)dt andv = f 00(t): When we apply integration by parts, we get the following redu
tion.Z xx0 f 000(t)(x� t)2dt = (x� t)2f 00(t)jxt=x0 � Z xx0 f 00(t)(�2)(x� t)dt= �(x� x0)2f 00(x0) + 2 Z xx0 f 00(t)(x� t)dt= �(x� x0)2f 00(x0) + 2[f 0(x0)(x� x0) + f(x)� f(x0)℄:Thus, f(x) = f(x0) + (x� x0)f 0(x0) + f 00(x0)2 (x� x0)2 + 12 R xx0 f 000(x)(x� t)2 dt:The general 
ase is proved by applying the te
hnique of integration by parts ntimes to the integral R xx0 fn+1(t)(x� t)ndt; where u = (x� t)n and dv = fn+1(t)dt: Ifn = 47; then the te
hnique will have to be applied 47 times.Taylor: Note that any polynomial of the form p2(x) = a0 + a1x + a2x2 is a Taylorseries. Similarly, any nth degree polynomial pn(x) = Pnk=0 akxk represents a Taylorseries. Here is an example to work out.Example 17.0.4. Compute the �rst n + 1 non-zero terms of the Taylor series forthe fun
tion f(x) = 
os(x) at the point x = x0 = 0: Sin
e 
os(x) = 
os(�x); for allx 2 <; the fun
tion 
os(x) is an even fun
tion. This fa
t should tip you o� that theTaylor series expansion will only have even powers of x represented.



381Solution: When we 
ompute the derivatives of f(x); we �nd that f(0) = 1; f 0(0) =0; f 00(0) = �1; f 000(0) = 0; f (4)(0) = 1; et
:Thus, the series expansion at x = 0 is
os(x) � 1� 12!x2 + 14!x4 + � � �+ (�1)k 1(2n)!x2n = nXk=0(�1)k 1(2k)!x2k:Simpli
io: Where did the formula for the polynomialpn(x) =Pnk=0 f(k)(x0)k! (x� x0)k 
ome from? How did you ever think of that?Taylor: You 
an �gure out the formula for yourself. Just work out the next example.Example 17.0.5.Problem: If p2(x) = 2 + 3x + 5x2 and x0 = 7; then �nd 
onstants A;B;C so thatp2(x) = A+B(x� 7) + C(x� 7)2:Solution: If p2(x) = A+B(x� 7) + C(x� 7)2; then p2(7) = A:Sin
e p02(x) = B + 2C(x� 7); p02(7) = B:Sin
e p002(x) = 2C; p02(7) = C2 :Thus, p2(x) = p2(7) + p02(7)(x� 7) + p002 (7)2 (x� 7)2:Taylor: This last exer
ise provides formulas for a polynomial when expanded aboutan arbitrary point x0: This formula is exa
tly my theorem for the spe
ial 
ase thatthe fun
tion is a polynomial.Simpli
io: But what about the error term?Taylor: Sin
e you have begun the pro
ess with a polynomial, the errors are all zero.In other words, there is no error term.Simpli
io: And of 
ourse, I have to 
omplain about the proof. While I understandintegration by parts, I must say I am 
urious about how you 
ame up with that idea.Galileo: Now you are asking the more diÆ
ult question: How does the 
reative pro
esstake pla
e in your brain? While the answer will probably never be known, hard workand 
areful thought are de�nitely prerequisites.Lagrange: I would like to inter
ede a se
ond time to insist that I have a more elegantform of this theorem, where the integral in the error term is repla
ed by a derivativesimilar to the ones in the polynomial part.



382 CHAPTER 17. TAYLOR POLYNOMIALSTheorem 17.0.4 (Taylor). If a < b and f(x) 2 Cn+1[a; b℄; then for every pair ofpoints x; x0 2 (a; b) there is a point z 2 (a; b) su
h thatf(x) = nXk=0 f (k)(x0)k! (x� x0)k + f (n+1)(z)(n+ 1)! (x� x0)(n+1):Proof. As before, we will only prove this form of the theorem for the integer n = 2:In this 
ase, we have the equation f(x) = f(x0) + (x� x0)f 0(x0) + f 00(x0)2 (x� x0)2 +12 R xx0 f 000(t)(x� t)2 dt: Again, by the Intermediate Value Theorem for Integrals, we seethat there is a point z between x0 and x su
h that12 Z xx0 f 000(x)(x� t)2 dt = 12f 000(z) Z xx0 (x� t)2 dt= 12f 000(z)(x � x0)33= f 000(z)6 (x� x0)3
Simpli
io: While all this mathemati
s is quite lovely, 
ould you give me one usefulappli
ation.
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383Galileo: This request is not a problem. Consider the question of designing a 
al
ula-tor. On that 
al
ulator you would like to have a button, whi
h 
omputes the valueof sin(x) for a given value of x:Simpli
io: That feature would be 
onvenient.Galileo: So how do you think you might design su
h a devi
e?Simpli
io: Sin
e there is no formula for sin(x); I have no earthly idea.Galileo: While Taylor's theorem does not provide a formula for the exa
t value ofsin(x); it does manage to provide a formula for an approximation to an a

ura
y as
lose as you wish. In parti
ular, the strategy 
an be des
ribed in the following steps:1. De
ide the a

ura
y you require. For single pre
ision, this requirement is 1107 :For double pre
ision, this requirement is 11014 :2. De
ide the size of the interval (a; b) you would like to 
ompute. Sin
e sin(x) is2� periodi
, this interval might be [��; �℄:3. Find an integer n so that the error term En(x) = f(n+1)(z)(n+1)! (x�x0)n+1 is less thanthe required a

ura
y for all x 2 (a; b):Simpli
io: That strategy sounds reasonable.Galileo: Well then, here are some problems to pra
ti
e on.Exer
ise Set 17.1.
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384 CHAPTER 17. TAYLOR POLYNOMIALS1. Compute the �rst 5 non-zero terms of the Taylor series for the fun
tions sin(x); 11+x2 ; tan(x)and ex at the point x = x0 = 0: Note that while the fun
tion 11+x2 requires onlyeven powers of x; the fun
tions sin(x) and tan(x) have only odd powers of xrepresented. Do you remember the de�nition of what it means for a fun
tionto be even or odd?2. Compute the �rst 5 non-zero terms of the Taylor series for the fun
tion ln(x)at the point x = x0 = 1:3. Given the fun
tion f(x) = sin(x) de�ned on the interval [��; �℄; x0 = 0; anda toleran
e tol = 110;000 determine an integer n with the property that thepolynomial pn(x) =Pnk=0 f(k)(x0)k! (x�x0)k has the property that jf(x)�pn(x)j �tol for all x 2 [��; �℄: Could this te
hnique be e�e
tively programmed into a
al
ulator to estimate the fun
tion sin(x) to single pre
ision? What if we redu
ethe size of the interval to [��=2; �=2℄? What about double pre
ision?4. Given the fun
tion f(x) = 
os(x) de�ned on the interval [��=2; �=2℄ and atoleran
e tol = 110;000;000 determine how many terms of the Taylor series will berequired to guarantee that the error between the fun
tion and the Taylor seriesis less than the toleran
e.5. Given the fun
tion f(x) = ex de�ned on the interval [�1; 1℄ and a toleran
etol = 110;000;000 determine how many terms of the Taylor series will be requiredto guarantee that the error between the fun
tion and the Taylor series is lessthan the toleran
e.6. Given the fun
tion f(x) = ln(1 + x) de�ned on the interval [�12 ; 12 ℄; x0 = 0;and a toleran
e tol = 110;000 determine an integer n with the property that thepolynomial pn(x) =Pnk=0 f(k)(x0)k! (x�x0)k has the property that jf(x)�pn(x)j �tol for all x 2 [�12 ; 12 ℄: Could this te
hnique be e�e
tively programmed into a
al
ulator to estimate the ln(x) to single pre
ision? What if we redu
e the sizeof the interval to [�14 ; 14 ℄? What about double pre
ision?



3857. What about the Taylor Series error formula for the fun
tions 11+x2 and tan(x)?(Assume that x0 = 0:)8. Show that the Mean Value Theorem is a spe
ial 
ase of Taylor's Theorem whenn = 0:9. Use Taylor's Theorem to 
ompute the square root of 3. (Hint: Let f(x) =px; x0 = 4; and x = 3:) How many terms of the Taylor series will be neededto to guarantee an a

ura
y of less than 0.00001? What happens when x0 = 1;and x = 2 are used to 
ompute p2?10. If p2(x) = 2+3x+5x2 and x0 = 7; then show that p2(x) = p2(7)+p02(7)(x�7)+p002 (7)2 (x�7)2: (Hint: Let p2(x) = A+B(x�7)+C(x�7)2; 
ompute derivatives,substitute x = 7; and solve for A;B; and C:)11. If p2(x) = a0 + a1x + a2x2 and x0 is any real number, then show that p2(x) =p2(x0) + p02(x0)(x� x0) + p002 (x0)2 (x� x0)2:12. If pn(x) = Pnk=0 akxk and x0 is any real number, then show that pn(x) =Pnk=0 p(k)nk! (x� x0)k:13. Given the fun
tion f(x) = ln(x) de�ned on the interval [34 ; 54 ℄; x0 = 1; anda toleran
e tol = 110;000 determine an integer n with the property that thepolynomial pn(x) =Pnk=0 f(k)(x0)k! (x�x0)k has the property that jf(x)�pn(x)j �tol for all x 2 [34 ; 54 ℄:
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Chapter 18
Polynomial Interpolation
Galileo: Let us begin with an investigation of three simple and easy to understandsequen
es.The �rst sequen
e begins 1; 3; 5; 7; 9:The se
ond sequen
e begins 1; 2; 4; 8; 16:The third sequen
e begins 1; 1; 2; 3; 5; 8:The question 8 year old kids are often asked in their elementary mathemati
s
lasses is: What is the next term in ea
h of these sequen
es?Simpli
io: Even I 
an answer these questions. Sin
e the �rst sequen
e is 
learlyarithmeti
, the next term will be 2 more than the last and thus 11. Sin
e the se
ondsequen
e is 
learly geometri
 and ea
h term is twi
e the previous, the next term willequal 32. The last sequen
e is 
learly Fibona

i where the rule is that ea
h term isthe sum of the previous two terms, the answer is 13.Galileo: Not so fast. I 
ontend that the next term for ea
h sequen
e should equal 47.Simpli
io: Impossible!Galileo: A
tually, you provided eviden
e that indi
ates your prejudi
e when youidenti�ed the sequen
es as arithmeti
, geometri
, and Fibona

i. I did not providethat information. Thus, you read a stru
ture into the problem that was not present.Simpli
io: But that is what I did when I was a kid and I always got the right answersthen. Are you telling me that the rules of mathemati
s have 
hanged?387



388 CHAPTER 18. POLYNOMIAL INTERPOLATIONGalileo: No. I am telling you that the stru
ture of the answer was implied, but notexpli
itly provided, whi
h means that a a unique answer is not for
ed. In parti
ular,your tea
hers were suÆ
iently sloppy that any answer is 
orre
t. This problem 
ouldhave been avoided if they had been more spe
i�
 when they asked the question. Of
ourse, you have worked enough of these problems that you instin
tively know whi
hanswer the tea
her wants so you have no problem.Simpli
io: To think that I have been misled all these years. This turn of events isquite disturbing.Galileo: No worries. We will now show how to produ
e a formula to interpolateany set of data using the te
hnique of polynomial interpolation. The idea is thefollowing. For any given �nite set of data points (xk; yk), k = 0; 1; 2; : : : ; n; where thexk's are distin
t, we 
an �nd a degree n polynomial pn(x) su
h that pn(xk) = yk forall k = 0; 1; 2; : : : ; n: In parti
ular, we 
an �nd a 5th degree polynomial p5(x); whi
hinterpolates the data (0; 1); (1; 3); (2; 5); (3; 7); (4; 9); and (5; 47):Simpli
io: I will be interested to see that polynomial p5(x):Galileo: In this presentation we will provide three di�erent te
hniques used to performthe interpolation, a statement of the Lagrange error formula, and the 
lassi
al exampleof Runge, whi
h indi
ates that polynomial interpolation 
an be dangerous. Note thatwhile three di�erent te
hniques are presented, they all produ
e the same answer.Simpli
io: If the method is dangerous, then why would we play with it?Galileo: Be
ause the methods are easy to understand and they give insight into leastsquares, Fourier, and spline methods, whi
h are used on a daily basis in today's worldof high te
hnology.



18.1. THE METHOD OF LAGRANGE 38918.1 The Method of Lagrange

Joseph Louis-Lagrange: \As long as algebra and geometry have been sep-arated, their progress has been slow and their uses limited; but when thesetwo s
ien
es have been united, they have lent ea
h mutual for
es, and havemar
hed together towards perfe
tion."Galileo: The �rst interpolation te
hnique to be presented is the method of Lagrangepolynomial interpolation. While Joseph Louis-Lagrange (1736-1813) made numerous
ontributions to algebra, analysis, and di�erential equations, his observations 
on-
erning polynomial interpolation also bear his name. Napoleon named Lagrange tothe Legion of Honour and Count of the Empire in 1808. He summarized his life'swork with the quote \I do not know."We begin the dis
ussion of our �rst te
hnique for polynomial interpolation with ade�nition.Note that the following statements are easy to 
he
k.Proposition 18.1.1. If (xk; yk), k = 0; 1; 2; : : : ; n are given points with the xk'sdistin
t and wk(x) = (x � x0)(x � x1) � � � (x � xk�1)(x � xk+1) � � � (x � xn); then thefun
tions Lk(x) = wk(x)wk(xk) satisfy the following relations:1. deg(Lk(x)) = n;



390 CHAPTER 18. POLYNOMIAL INTERPOLATION2. Lk(xk) = 1; and3. Lk(xj) = 0 if j 6= k:De�nition 18.1.2. If the data points (xk; yk), k = 0; 1; 2; : : : ; n have the propertythat the xk's are distin
t, then Lagrange interpolating polynomials are de�ned by theformula pn(x) = nPk=0 yk � Lk(x):Proposition 18.1.3 (The Method of Lagrange). If points (xk; yk), k = 0; 1; 2; : : : ; nare given, where the xk's are distin
t, then the polynomial pn(x) = nPk=0 yk � Lk(x) hasthe property that pn(xk) = yk for all k = 0; 1; 2; : : : ; n:Proof. This proposition is immediate sin
e Lk(xk) = 1 and Lk(xj) = 0; if j 6= k:Exer
ise Set 18.1.1. Use the method of Lagrange to �nd a quadrati
 polynomial p2(x) su
h thatp2(1) = 3; p2(2) = 5; and p2(3) = 7:2. Use the method of Lagrange to �nd a 
ubi
 polynomial p3(x) su
h that p3(1) =3; p3(2) = 5; p3(3) = 7; and p3(4) = 11:3. Find a 5th degree polynomial p5(x); whi
h interpolates the data (0; 1); (1; 3); (2; 5); (3; 7); (4; 9);and (5; 47):18.2 The Te
hnique of Newton Divided Di�er-en
esGalileo: Sir Isaa
 Newton (1642-1727) was an English mathemati
ian, who made his-tori
 
ontributions to mathemati
s, opti
s, and 
elestial me
hani
s. The Prin
ipiais re
ognized as the greatest s
ienti�
 book ever written. In this monumental workhe analyzed the motion of the bodies in resisting and non-resisting media under thea
tion of 
entripetal for
es. The results were applied to orbiting bodies, proje
tiles,



18.2. THE TECHNIQUE OF NEWTON DIVIDED DIFFERENCES 391pendulums, and free-fall near earth. He further demonstrated that the planets wereattra
ted toward the sun by a for
e varying as the inverse square of the distan
e.He also explained the e

entri
 orbits of 
omets, the tides, and the pre
ession of theearth's axis. While the invention of the 
al
ulus may have been his greatest 
ontri-bution to mathemati
s, his method of divided di�eren
es provides a 
omputationallyeÆ
ient te
hnique for implementing polynomial interpolation.Let us begin the dis
ussion by solving the following simple problem. Given threepoints (x0; y0); (x1; y1); (x2; y2); �nd 
onstants 
0; 
1; 
2 with the property that thepolynomial p2(x) = 
0+
1(x�x0)+
2(x�x0)(x�x1) has the property that p2(x0) =y0; p2(x1) = y1; and p2(x2) = y2: A qui
k 
he
k shows that 
0 = y0 and 
1 = y1�y0x1�x0 : Anot so qui
k 
he
k shows that 
2 = y2�y1x2�x1 � y1�y0x1�x0x2 � x0We 
an begin to understand these formulas if we assume the data is generated bya fun
tion y = f(x): In parti
ular, if yk = f(xk) for all k = 0; 1; 2:De�nition 18.2.1. Let f(x) be a fun
tion de�ned on the interval [x0; xn℄:x0 f [x0℄ = f(x0) f [x0; x1℄ = f [x1℄�f [x0℄x1�x0x1 f [x1℄ = f(x1) f [x0; x1; x2℄ = f [x1;x2℄�f [x0;x1℄x2�x0 :f [x1; x2℄ = f [x2℄�f [x1℄x2�x1x2 f [x2℄ = f(x2)Note that su
h a 
onstru
tion is 
alled a \
as
ade."Proposition 18.2.2. If y = f(x) is a fun
tion and y0 = f(x0); y1 = f(x1); andy2 = f(x2); where the points x0; x1; and x2 are distin
t, then the polynomial p2(x)de�ned by p2(x) = f [x0℄ + f [x0; x1℄(x � x0) + f [x0; x1; x2℄(x � x0)(x � x1) has theproperty that p2(x0) = y0; p2(x1) = y1; and p2(x2) = y2:Proof. It is easy to 
he
k that p2(x0) = y0 and p2(x1) = y1: A bit of algebra 
an beused to show that p2(x2) = y2:



392 CHAPTER 18. POLYNOMIAL INTERPOLATIONThus, the previous proposition 
an be used to show that formulas exist for the
onstants 
0; 
1; and 
2; namely, the top entry of ea
h 
olumn in the 
as
ade.We now indi
ate how this te
hnique 
an be applied to any set of data points bymaking the following de�nition.De�nition 18.2.3. The kthdivided di�eren
e relative to xi; xi+1; xi+2; : : : ; xi+k is givenby f [xi; xi+1; : : : ; xi+k℄ = f [xi+1; : : : xi+k℄� f [xi; xi+1; : : : ; xi+k�1℄xi+k � xi :While it is easy to 
he
k that formula p2(x) = f [x0℄+f [x0; x1℄(x�x0)+f [x0; x1; x2℄(x�x0)(x� x1) interpolates the data, it is more tedious to 
he
k the general 
ase.Proposition 18.2.4 (Newton Divided Di�eren
es). If x0; x1; x2; : : : ; xn are dis-tin
t points and yk = f(xk) for all k = 0; 1; 2; : : : ; xn; then the polynomialpn(x) = f [x0℄ + nXk=1 f [x0; : : : ; xk℄(x� x0) : : : (x� xk�1)has the property that pn(xi) = f(xi) for all i = 0; 1; 2; : : : ; n.Simpli
io: So, why should I waste my time learning this se
ond method?Galileo: Let us inquire what our friendly expert, Isaa
 Newton, has to say on thismatter.Newton: Well, if you had bothered to work out the previous two exer
ises, you wouldhave noti
ed that 
omputing the 
ubi
 polynomial p3(x) is only slightly more workthan 
omputing the quadrati
 polynomial p2(x): If you want to really appre
iate mymethod, then use the method of Lagrange to 
ompute these two polynomials.Simpli
io: But I did use the method of Lagrange to 
ompute p2(x) and p3(x): Itdidn't seem bad at all.Newton: Did you simplify your answer for p3(x) so that it is in the form p3(x) =a0 + a1x + a2x2 + a3x3?Simpli
io: No.Newton: After you do this simple exer
ise, then you 
an 
omplain about my method.Not until.



18.3. THE TECHNIQUE OF VANDERMONDE 393Exer
ise Set 18.2.1. Use the method of Newton divided di�eren
es to �nd a quadrati
 polynomialp2(x) su
h that p2(1) = 3; p2(2) = 5; and p2(3) = 7:2. Use the method of Newton divided di�eren
es to �nd a 
ubi
 polynomial p3(x)su
h that p3(1) = 3; p3(2) = 5; p3(3) = 7; and p3(4) = 11:3. Show that the Newton divided di�eren
e formula works for 
ubi
 polynomials.18.3 The Te
hnique of VandermondeGalileo: Alexandre Theophile Vandermonde (1735-1796) was a Fren
h mathemati-
ian, whose �rst love was musi
. He only turned to mathemati
s when he was 35years old. His mathemati
al interests were in the theory of equations and the theoryof determinants.The te
hnique of Vandermonde evolves in a natural way from the problem: Givena set of data points (x0; y0); (x1; y1); and (x2; y2); where the xk's are distin
t, �nd aquadrati
 polynomial of the formp2(x) = a0 + a1x + a2x2 su
h that p2(x0) = y0; p2(x1) = y1; and p2(x2) = y2: Thus, asystem of three equations and three unknowns must be solved. In matrix format thissystem be
omes: 0BBB�1 x0 x201 x1 x211 x2 x22
1CCCA0BBB�a0a1a21CCCA = 0BBB�y0y1y21CCCA :More generally, given a set of data points (xk; yk), k = 0; 1; 2; : : : ; n; where thexk's are distin
t, �nd an n�degree polynomial of the form pn(x) = Pnk=0 akxk su
hthat pn(xk) = yk; for all k = 0; 1; 2; : : : ; n: The answer to this question is the solutionto the following system of equations:
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1 x0 x20 : : : xn01 x1 x21 : : : xn11 x2 x22 : : : xn2... ... ... : : : ...1 xn x2n : : : xnn

1CCCCCCCCCA
0BBBBBBBBB�
a0a1a2...an
1CCCCCCCCCA = 0BBBBBBBBB�

y0y1y2...yn
1CCCCCCCCCA :

Thus, the 
onstants a0; a1; : : : ; an 
an be found if the system 
an be solved. Thefollowing proposition shows the system 
an be solved as long as the xk's are distin
t.Proposition 18.3.1. If
Vn = 0BBBBBBBBB�

1 x0 x20 : : : xn01 x1 x21 : : : xn11 x2 x22 : : : xn2... ... ... : : : ...1 xn x2n : : : xnn
1CCCCCCCCCA ;

then det(Vn) =Q0�i<k�n(xk � xi):Proof. If we let
Vn(x) =

0BBBBBBBBBBBB�
1 x0 x20 : : : xn01 x1 x21 : : : xn11 x2 x22 : : : xn2... ... ... : : : ...1 xn�1 x2n�1 : : : xnn�11 x x2 : : : xn

1CCCCCCCCCCCCA ;
then noti
e that det(Vn(x)) is a polynomial of degree n with roots x0; x1; x2; : : : ; xn�1:Thus, det(Vn(x)) = Cn(x�x0)(x�x1) : : : (x�xn�1); where Cn is some 
onstant. Whilea straightforward indu
tion argument 
an be used to show that Cn = det(Vn�1(xn�1));the proof is best understood by simply 
omputing the spe
ial 
ases when n = 1 andn = 2:



18.3. THE TECHNIQUE OF VANDERMONDE 395A matrix of the form given in the previous proposition is 
alled a Vandermondematrix.The previous proposition shows that if the xk's are pair-wise distin
t, then thedeterminant is di�erent from zero and the system 
annot only be solved, but thesolution is unique. The matrix V is 
alled a V andermonde matrix.Proposition 18.3.2. If (xk; yk), k = 0; 1; 2; : : : ; n are n + 1 distin
t points, thenthe polynomial de�ned by pn(x) = Pnk=0 akxk; where the values of a0; a1; : : : ; an are
omputed as the solution of the equation0BBBBBBBBB�
1 x0 x20 : : : xn01 x1 x21 : : : xn11 x2 x22 : : : xn2... ... ... : : : ...1 xn x2n : : : xnn

1CCCCCCCCCA
0BBBBBBBBB�
a0a1a2...an
1CCCCCCCCCA = 0BBBBBBBBB�

y0y1y2...yn
1CCCCCCCCCAhas the property that pn(xk) = yk for all k = 0; 1; 2; : : : ; n:Proof. Note that this proposition is a simple restatement in matrix form that pn(xk) =yk for all k = 0; 1; 2; : : : ; n:Galileo: The next proposition is a uniqueness theorem.Simpli
io: Why would I possibly 
are about uniqueness?Galileo: Well, we have shown you three di�erent te
hniques to 
ompute the interpo-lating polynomial. You might wonder if you might get three di�erent answers. Infa
t, the next proposition shows that all te
hniques will result in the same answer.Proposition 18.3.3. Let (xk; yk), k = 0; 1; 2; : : : ; n be a set of n + 1 points. If thexk's are distin
t and pn(x) =Pnk=0 akxk and qn(x) =Pnk=0 bkxk are polynomials su
hthat pn(xk) = qn(xk) for all k = 0; 1; : : : ; n; then ak = bk for all k = 0; 1; : : : ; n:Proof. If pn(xk) = qn(xk) for all k = 0; 1; : : : ; n; then we have a system of linear equa-tions of the form Va = Vb, where V is a Vandermonde matrix, a = (a0; a1; : : : ; an)t;



396 CHAPTER 18. POLYNOMIAL INTERPOLATIONand b = (b0; b1; : : : ; bn)t: Sin
e the xk's are distin
t, the determinant of the Van-dermonde matrix is di�erent from zero so that the matrix V has an inverse. Thus,ak = bk for all k = 0; 1; : : : ; n:
Simpli
io: But wait a minute! How am I going to solve a system of 3 equations and3 unknowns or 4 equations and 4 unknowns? These 
omputations will be required toget the �nal answer?Galileo: That is why Babbage invented the 
omputer.Simpli
io: Who was Babbage?Galileo: Charles Babbage (1791-1871) was the designer of the di�eren
e engine, whi
himplemented Newton's method of divided di�eren
es. Together with a bit of help fromhis lady friend, Augusta Ada King, 
ountess of Lovela
e (1815-1852), he also designed(but never built) the forerunner of the modern ele
troni
 
omputer. If you want tosee a re
onstru
tion of his di�eren
e engine, visit the S
ien
e Museum in London. Itweighs a mere 3 tons.Simpli
io: Not a 
al
ulator you 
ould strap to your belt.Exer
ise Set 18.3.1. Use the method of Vandermonde to �nd a quadrati
 polynomial p2(x) su
h thatp2(1) = 3; p2(2) = 5; and p2(3) = 7:2. Use the method of Vandermonde to �nd a 
ubi
 polynomial p3(x) su
h thatp3(1) = 3; p3(2) = 5; p3(3) = 7; and p3(4) = 11:3. Use the method of Vandermonde to �nd a 
ubi
 polynomial p3(x) su
h thatp3(�1) = 2; p3(0) = 5; p3(2) = 7; and p3(�2) = 3:



18.4. ERROR ESTIMATION FOR POLYNOMIAL INTERPOLATION 39718.4 Error Estimation for Polynomial Interpola-tionGalileo: We now turn to the problem of 
omputing the error between a fun
tion andits polynomial interpolation. While we have three di�erent te
hniques for polynomialinterpolation (Lagrange, Newton, and Vandermonde), we saw at the end of the lastse
tion that they all produ
e the same answers. The fo
us of the next dis
ussion isto provide a formula for the error. Sin
e the three te
hniques all produ
e the samepolynomial approximation pn(x); we only need one error formula.Simpli
io: While one error formula is good news, I 
an tell that more theory is onthe way. I would appre
iate it if we 
ould keep the dis
ussion simple.Galileo: Professor Lagrange 
ould you help us?Lagrange: If a fun
tion f(x) is di�erentiable at every point in an interval [x0; x℄;then we know by the Mean Value Theorem that there is a point z 2 [x0; x℄ so thatf(x) = f(x0) + f 0(z)(x � x0): Just as Rolle's Theorem 
an be used to prove theMean Value Theorem, the generalized Rolle's Theorem 
an be used to prove the errorformula for polynomial interpolation.Simpli
io: But I don't remember Rolle's Theorem.Lagrange: The way to visualize Rolle's Theorem is to imagine throwing a ball in theair and 
at
hing it when it 
omes down. What 
an you say about the velo
ity of theball at its highest point?Simpli
io: Sin
e the ball is 
hanging dire
tion from upward to downward motion,obviously the velo
ity is zero.Lagrange: Your observation is 
orre
t. Now take that observation one step further bythrowing a ball into the air and instead of 
at
hing it on the way down, let it hit theground and boun
e ba
k up into your hand. If this experiment is 
ondu
ted 
arefully,there will be three di�erent moments in time, where the height of the ball is the same(i.e. the height of your hand above the ground). What 
an you 
on
lude?Simpli
io: The ball will now have two di�erent moments in time, where the velo
ity



398 CHAPTER 18. POLYNOMIAL INTERPOLATIONis zero. I don't get it.Lagrange: Well, if the velo
ity is zero at two di�erent points in time, then what 
anyou say about the a

eleration?Simpli
io: It seems like the a

eleration must be zero at some moment in time betweenwhen the velo
ities are zero.Lagrange: You are 
orre
t. Now you are ready to understand a general theorem,whi
h we now state. We indi
ate a proof for the 
ases when n = 1 and n = 2:Theorem 18.4.1 (The Generalized Rolle's Theorem). If f(x) 2 Cn[a; b℄, a �x0 < x1 < � � � < xn � b, and f(xk) = 0 for all k = 0; 1; 2; : : : ; n, then there exists apoint z 2 (a; b) su
h that f (n)(z) = 0:Proof. If n = 1; then we have two distin
t points x0 and x1 so that f(x0) = 0 andf(x1) = 0: By the Rolle's Theorem you endured in your �rst 
al
ulus 
ourse, thereis a point z between x0 and x1 so that f 0(z) = 0: In parti
ular, when n = 1; theGeneralized Rolle's Theorem is exa
tly Rolle's Theorem.If n = 2; then we have three distin
t points x0; x1; and x2 so that f(x0) = f(x1) =f(x2) = 0: Thus, a point z1 
an be found in the interval (x0; x1) su
h that f 0(z1) = 0and a point z2 
an be found in the interval (x1; x2) su
h that f 0(z2) = 0: Applyingthe familiar form of Rolle's Theorem a third time, we 
an �nd a point z 2 (z1; z2)su
h that f 00(z) = 0:The general form of this theorem is proved by employing the familiar form ofRolle's Theorem multiple times. For example, if n = 3; then Rolle's Theorem willhave to be 
ited 3 + 2 + 1 = 6 times.Lagrange: We now use this general theorem to prove the error formula for polynomialinterpolation. Note that the Mean Value Theorem is a spe
ial 
ase of this theorem.Note also, the error term is identi
al with the error term for Taylor's Theorem if weallow all the points x0; x1; x2; : : : ; xn to equal one another. Thus, in a very real sense,this theorem generalizes Taylor's Theorem. However, a di�erent proof is required.



18.4. ERROR ESTIMATION FOR POLYNOMIAL INTERPOLATION 399Theorem 18.4.2 (The Lagrange Error Formula for Interpolating Polyno-mials). If f(x) 2 Cn+1[a; b℄; a � x0 < x1 < x2 < � � � < xn � b, pn(x) is the uniquepolynomial of degree n su
h that pn(xk) = f(xk) for k = 0; 1; 2; : : : ; n, then for ea
hx 2 [a; b℄; there exists a z 2 [a; b℄ su
h thatf(x) = pn(x) + f (n+1)(z)(n+ 1)! (x� x0)(x� x1) : : : (x� xn):Proof. Let x 2 [a; b℄: Sin
e the theorem is obviously true if x = xk for some k; weassume x 6= xk for all k = 0; 1; : : : ; n:Let G(t) = f(t)� pn(t)� (f(x)� pn(x)) � wn(t)wn(x) ;where wn(t) = nQk=0(t� xk).1. G(x) = 0;2. G(xk) = 0 for k = 0; 1; 2; : : : ; n; and3. G(n+1)(t) = f (n+1)(t)� 0� (f(x)� pn(x)) � (n+1)!wn(x) :Thus, we have shown that we have n+ 2 distin
t points x; x0; x1; : : : ; xn with theproperty that G(x) = 0:By the Generalized Rolle's Theorem, there exists a z 2 [a; b℄ su
h that G(n+1)(z) =0 so that 0 = f (n+1)(z)� (f(x)� pn(x))(n+ 1)!wn(x) :Lagrange: Note the similarity between the error formula for interpolating polynomialsand Taylor's Theorem. You might �nd the next proposition useful in working thefollowing exer
ises.Proposition 18.4.3. If a = x0 < x1 < x2 < � � � < xn = b are equally spa
ed points,h = b�an ; and !n(x) = (x � x0)(x � x1) : : : (x � xn); then j!n(x)j � n!hn+1 for allx 2 [a; b℄:



400 CHAPTER 18. POLYNOMIAL INTERPOLATIONProof. The graph of the 10-degree polynomial !10(x) = (x� 1)(x� 2) : : : (x� 10) isdisplayed in 18.1. Note that the maximum (in absolute value) o

urs between 1 and 2and between 9 and 10: This fa
t is true in general. Thus, if h = b�an and x 2 [x0; x1℄;then j!n(x)j � hh(2h)(3h) : : : (nh) = n!hn+1:Exer
ise Set 18.4.1. Let f(x) = sin(�x) for x 2 [�1; 1℄: Let pn(x) be the Lagrange Interpolatingpolynomial for f(x) using the evenly spa
ed points �1 = x0 < x1 < x2 < � � � <xn = 1: Find an integer n with the property that jpn(x) � sin(�x)j � 10�3 forall x 2 [�1; 1℄:2. If f(x) = ex; x 2 [�1; 1℄ and tol = 10�7; then how many equally spa
ed points�1 = x0 < x1 < x2 < � � � < xn = 1 must be 
omputed to guarantee that theinterpolating polynomial pn(x) will di�er by less than tol from f(x) = ex for allx 2 [�1; 1℄:3. If f(x) = ln(1� x); x 2 [�12 ; 12 ℄ and tol = 10�7; then how many equally spa
edpoints �12 = x0 < x1 < x2 < � � � < xn = 12 must be 
omputed to guaranteethat the interpolating polynomial pn(x) will di�er by less than tol from f(x) =ln(1� x) for all x 2 [�12 ; 12 ℄:
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Figure 18.1: The Graph of the Fun
tion !10(x) = (x� 1)(x� 2) : : : (x� 10)



18.5. POLYNOMIAL INTERPOLATION: THE RUNGE EXAMPLE 40118.5 Polynomial Interpolation: The Runge Exam-pleSimpli
io: So we have 
ompleted our introdu
tion to statisti
s. I am se
ure in myknowledge of these methods.Galileo: Not so fast. We now introdu
e the German Mathemati
ian, Carle Runge(1856-1927), who showed quite 
learly why polynomials are a disaster. ProfessorRunge 
ould you explain your 
lassi
 example illustrating this problem?Runge: While polynomial interpolation is easy to understand and straightforward toimplement, it is dangerously unstable for uniformly spa
ed data sets 
ontaining asfew as 20 points. If we de�ne the fun
tion f(x) = 11+x2 on the interval [��; �℄; andtake the points �� = x0 < x1 < � � � < xn = � to be uniformly spa
ed points, thenyou would think that the approximation by the interpolating polynomials would getbetter and better as the degree of the polynomial n be
omes larger.Simpli
io: That 
on
lusion seems only reasonable sin
e the error terms for the fun
-tions f(x) = sin(x) and f(x) = ex de
rease rapidly as n is in
reased.Runge: The bad news is that many situations exist where this desirable propertyfails to hold. For example, let us 
onsider the fun
tion f(x) = 11+x2 be de�ned on theinterval [��; �℄: The graph of this fun
tion is displayed in Figure 18.2.
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Figure 18.2: The Graph of the Fun
tion f(x) = 11+x2 for x 2 [��; �℄



402 CHAPTER 18. POLYNOMIAL INTERPOLATIONRunge: Now let xk = �� + k 2�n be equally spa
ed points between �� and � andde�ne points (xk; yk); where yk = f(xk) = 11+x2k for k = 0; 1; : : : ; n: The next step is toapproximate f(x) by polynomials interpolating the points (xk; yk): To illustrate whathappens, in Figures 18.3,we graph the 6; 20; and 22 degree polynomial interpolants along with the fun
tionf(x): Even though the approximations are a

urate in the middle of the interval, theapproximations at the endpoints be
ome worse and worse. In fa
t, the di�eren
ebetween the polynomials pn(x) and the fun
tion f(x) 
onverges to in�nity.
Simpli
io: These graphs are disturbing. Even I 
an understand that if the data is
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Figure 18.3: The 6th Degree Polynomial Approximation of f(x) = 11+x2
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Figure 18.4: The 20th Degree Polynomial Approximation of f(x) = 11+x2



18.5. POLYNOMIAL INTERPOLATION: THE RUNGE EXAMPLE 403as smooth as those supplied by the fun
tion f(x) = 11+x2 ; then the approximationsshould improve. Why are the results so terrible?Galileo: For insight into the 
ause, think about the Pythagorean Theorem and theexample we dis
ussed many days ago, where the lines were almost parallel.Simpli
io: I am not sure what example you mean.Galileo: Re
all the system of two equations and two unknowns and its slight modi�-
ation:System 1: 1:001x+ y = 2:001x+ y = 2Note that these equations are 
lose to being parallel. Solving the system we �ndx = 1; y = 1:System 2: 1:001x+ y = 2x + y = 2The solution to this system of equations is x = 0; y = 2:Simpli
io: Now I remember.Galileo: When a mathemati
al method is unstable, it is often the 
ase that a set of
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Figure 18.5: The 22th Degree Polynomial Approximation of f(x) = 11+25x2



404 CHAPTER 18. POLYNOMIAL INTERPOLATIONbasis ve
tors are 
lose to parallel. Note the 
omputations in the following exampleand you might attain a better understanding of the problem.Example 18.5.1. If V = 0BBB�1 1 11 2 41 3 91CCCA ;then let's 
ompute the angles between the 
olumn ve
tors v1;v2;v3:If �12 represents the angle between the �rst two 
olumn ve
tors, then
os(�12) = < v1;v2 >kv1k kv2k = 1 + 2 + 3p3p1 + 4 + 9 = 6p3p14 = 0:93:Thus, the angle �12 = 22:2 degrees:If �13 represents the angle between the �rst and third 
olumn ve
tors, then
os(�13) = < v1;v3 >kv1k kv3k = 1 + 4 + 9p3p1 + 16 + 81 = 14p3p98 = 0:82:Thus, the angle �13 = 35:3 degrees:If �23 represents the angle between the se
ond and third 
olumn ve
tors, then
os(�23) = < v2;v3 >kv2k kv3k = 1 + 8 + 27p1 + 4 + 9p1 + 16 + 81 = 36p14p98 = 0:97:Thus, the angle �23 = 13:6 degrees:Simpli
io: While the angle between the �rst and se
ond 
olumns are over 22 degrees,the angle between the 2nd and 3rd is about 13 degrees so they are almost parallel. I now
an see that this 
omputation means that the solution of a polynomial interpolationproblem has the potential to have very poor results. It looks like the last two 
olumnsare the most parallel. Is that true in general?Galileo: Make some more 
omputations and see for yourself.Simpli
io: Hmmm.Galileo: I think you are beginning to understand why our friend Fourier sear
hed fora better method.



18.6. LINEAR LEAST SQUARES APPROXIMATION 405Exer
ise Set 18.5.1. Form the 5� 5 Vandermonde matrix generated by the ve
tor v = [1; 2; 3; 4; 5℄:Compute the angles between the �rst and se
ond, �rst and fourth, and fourthand �fth 
olumns. Whi
h pair of ve
tors is 
losest to being parallel?2. Compute the angle between the ve
tors v1 = [1:001; 1℄ and v2 = [1; 1℄:18.6 Linear Least Squares ApproximationGalileo: We begin our dis
ussion of linear least squares with the problem of �ndinga straight line through three given data points (x0; y0); (x1; y1); (x2; y2): If we try to\solve" this problem, we are in the position of trying to solve a linear system of 3equations and 2 unknowns. In parti
ular, if the equation of the line is in the formy = a0+a1x; then we have to �nd 
onstants a0 and a1 su
h that yk = y(xk) = a0+a1xk;for k = 0; 1; 2: Thus, we have to solve the matrix equation given by:0BBB�1 x01 x11 x21CCCA0�a0a11A = 0BBB�y0y1y21CCCA :Simpli
io: But how 
an you solve a system of 3 equations and 2 unknowns?Galileo: Yes, a problem does exist with having more equations (or 
onstraints) thanunknowns. While a solution may exist, it is unlikely. In fa
t, the probability is zero.Despite this problem, note that the system 
an be written Aa = y; where A = Vtand V is a Vandermonde matrix.Sin
e this task is usually impossible, we are in the position of identifying the lineof the form y = a0+a1x with the property that the sum of the squares of the distan
esfrom ea
h point to the 
orresponding point on the line is minimized. In parti
ular, if



406 CHAPTER 18. POLYNOMIAL INTERPOLATIONdk = a0 + a1xk � yk; then we need to minimize the residual:R = R(a0; a1)= d20 + d21 + d22= (a0 + a1x0 � y0)2 + (a0 + a1x1 � y1)2 + (a0 + a1x2 � y2)2:Sin
e the fun
tion R is minimized at a 
riti
al point, we 
ompute the derivatives:�R�a0 = 2(a0 + a1x0 � y0) + 2(a0 + a1x1 � y1) + 2(a0 + a1x2 � y2) = 0�R�a1 = 2(a0 + a1x0 � y0)x0 + 2(a0 + a1x1 � y1)x1 + 2(a0 + a1x2 � y2)x2 = 0;whi
h leads to the 2� 2 matrix equation:0� 3 x0 + x1 + x2x0 + x1 + x2 x20 + x21 + x221A0�a0a11A = 0� y0 + y1 + y2x0y0 + x1y1 + x2y21A :Galileo: Note that this matrix 
an be easily solved to �nd the line that \best �ts"the data. Note that if the matrix equation Vta = y is multiplied on both sides bythe matrix V = 0� 1 1 1x0 x1 x21A ;then the resulting 2� 2 system is exa
tly the same as the 2� 2 system dis
overed by
omputing partial derivatives and sear
hing for a 
riti
al point.Simpli
io: But what if we are presented an arbitrary numer of points? How does thedis
ussion 
hange?Galileo: Simply add up more terms. In other words, if we would like to �t a straightline through the points (x0; y0); (x1; y1); : : : (xn�1; yn�1); (xn; yn); where x0 < x1 <� � � < xn�1 < xn; then the matrix equation be
omes:0� n + 1 Pnk=0 xkPnk=0 xk Pnk=0 x2k1A0�a0a11A = 0� Pnk=0 ykPnk=0 xkyk1A :



18.6. LINEAR LEAST SQUARES APPROXIMATION 407Simpli
io: This formula looks like nothing but a fan
y way of averaging numbers tome.Galileo: Why is that?Simpli
io: Well if the parameter a1 happens to be zero, then a0 is simply the averageof the y�values.Galileo: That is 
orre
t. We now repeat this dis
ussion to 
ondu
t a sear
h for aquadrati
 polynomial p2(x) = a0 + a1x+ a2x2; whi
h \best �ts" a given data set of 4points(x0; y0); (x1; y1); (x2; y2); (x3; y3): For an exa
t �t of the data we would have to be ableto solve the system of 4 equations and 3 unknowns given by:0BBBBBB�1 x0 x201 x1 x211 x2 x221 x3 x23
1CCCCCCA0BBB�a0a1a21CCCA = 0BBBBBB�y0y1y2y3

1CCCCCCA :
Again, sin
e this system 
annot be solved, we minimize the residual:R = R(a0; a1; a2)= d20 + d21 + d22 + d23= 3Xk=0(a0 + a1xk + a2x2k � yk)2:The 
riti
al point where the minimum value of R o

urs 
an be found by 
omput-ing the partial derivatives of R with respe
t to the variables a0; a1; a2:�R�a0 = 2 3Xk=0(a0 + a1xk + a2x2k � yk) = 0;�R�a1 = 2 3Xk=0(a0 + a1xk + a2x2k � yk)xk = 0;�R�a2 = 2 3Xk=0(a0 + a1xk + a2x2k � yk)x2k = 0:



408 CHAPTER 18. POLYNOMIAL INTERPOLATIONThe resulting system of 3 equations and 3 unknowns is:0BBB� 4 P3k=0 xk P3k=0 x2kP3k=0 xk P3k=0 x2k P3k=0 x3kP3k=0 x2k P3k=0 x3k P3k=0 x4k
1CCCA0BBB�a0a1a21CCCA = 0BBB� P3k=0 ykP3k=0 xkykP3k=0 x2kyk

1CCCA :If x0 < x1 < x2 < � � � < xm are m + 1 distin
t points and y0; y1; : : : ; ym are anym + 1 values, then the polynomial pn(x) = a0 + a1x + � � �+ anxn with the propertythat p(xi) = yi 
an be found when m = n by solving the equation Vtx = b, where
V = 0BBBBBBBBB�

1 1 1 : : : 1x0 x1 x2 : : : xnx20 x21 x22 : : : x2n... ... ... ... ...xn0 xn1 xn2 : : : xnm
1CCCCCCCCCA ;

x = 0BBBBBB�a0a1...an
1CCCCCCA ; and b = 0BBBBBB�y0y1...yn

1CCCCCCA :If m > n; then m + 1 > n + 1; whi
h implies the \solution" of this equation will bein the least squares sense. In parti
ular, the equation(Vt)tVtx = (Vt)tb orVVtx = Vbmust be solved. The matrix VVt is (n + 1) � (n + 1)�dimensional. Sin
e detV =Qi<j(xj � xi), the rank of the matrix (V) = n+ 1 whenever the points xk are distin
t.Sin
e VVt has rank n+ 1; it 
an be shown that the matrix VVt is invertible, whi
himplies that the least squares problem always has a unique solution.If A 2 Rm�n and x;b 2 Rn; then the general linear least squares problem is to\solve" the matrix equation Ax = b even if m > n: In this formulation we wouldlike to �nd the ve
tor x whi
h minimizes the fun
tion r(x) = kAx� bk2: In the 
ase



18.7. LINEAR CLASSIFIERS 409when the rank (A) = n; the solution to this problem 
an be obtained by 
omputingthe gradient of r(x) with respe
t to the variables xk: It is an easy exer
ise to showthat the unique 
riti
al point of this fun
tion is the solution of the equation:AtAx = Atb:If A has rank = n; then the matrix AtA is symmetri
 and positive de�nite. Inparti
ular, it is invertible. If the Cholesky fa
torization is used to solve the linearsystem of equations AtAx = Atb; then this te
hnique for solving this least squaresproblem is referred to as the method of \normal equations".Exer
ise Set 18.6.1. Find the equation of the line y = p1(x) = a0 + a1x; whi
h provides the leastsquares best �t for the data (1; 2); (2; 3); (3; 5):2. Find the parabola y = p2(x) = a0+a1x+a2x2; whi
h provides the least squaresbest �t for the data (1; 2); (2; 3); (3; 5); (4;�1):18.7 Linear Classi�ersGalileo: One of the 
onsequen
es of the re
ent proliferation of te
hnology and 
om-puters is the in
redible amount of data that is generated daily. In fa
t, the data isgenerated so rapidly that it is impossible to analyze and interpret without numeri
alte
hniques. One of the most important areas of study in statisti
s is the developmentof automated te
hniques that 
lassify into two or more groups. For example, thepeople in the military would like to be able to reliably di�erentiate between a s
hoolbus and a tank, while a physi
ian would like assistan
e in automated diagnosis. Inmany approa
hes, you would like to train your te
hnique with data, where you alreadyknow the answers. The training pro
ess often involves the estimation of parametersfor some fun
tion or distribution, whi
h 
an be used to 
lassify a new data set. If



410 CHAPTER 18. POLYNOMIAL INTERPOLATIONyour method provides reasonable answers over a wide range of data, then it 
an be
onsidered a su

ess. If not, then it will be ignored.Simpli
io: How do we start?Galileo: As usual, let's start small. For example, if we would like to 
lassify a set ofpoints (xk; yk); for k = 0; 1; 2; : : : ; n into two 
ategories, then a linear 
lassi�er 
an beformulated as a least squares �t to the data (xk; yk; 1) for one group of the set and(xk; yk;�1) for the other group. In other words, �nd the parameters �0; �1 and �2;whi
h \solve" the system
�0 + �1x0 + �2y0 = z0�0 + �1x1 + �2y1 = z1�0 + �1x2 + �2y2 = z2... ...�0 + �1xn + �2yn = zn;

where zk = �1 or 1: Does this setting look familiar?Simpli
io: It 
ertainly does. But, what if you have four or �ve 
ategories? It seemsto me you have several di�erent ways to make the 
omputations.Galileo: True, but let us just keep it simple and 
onsider only two 
ategories. Letus now 
ompute an example, where one set of points in the plane is de�ned byS1 = f(0; 0); (1; 0); (0; 1); (1; 1)g and a se
ond is de�ned by S2 = f(�1;�1)g: Wethen �nd a linear fun
tion z = �0 + �1x1 + �2x2 with the property that the line0 = �0 + �1x1 + �2x2 separates S1 and S2: To this end simply 
reate the linearsystem:
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�0 + �10 + �20 = 1�0 + �11 + �20 = 1�0 + �10 + �21 = 1�0 + �11 + �21 = 1�0 + �1(�1) + �2(�1) = � 1;The matrix equation be
omes:0BBBBBBBBB�
1 0 01 1 01 0 11 1 11 �1 �1

1CCCCCCCCCA
0BBB��0�1�21CCCA = 0BBBBBBBBB�

1111�1
1CCCCCCCCCA :

The transpose of the 
oeÆ
ient matrix is:0BBB�1 1 1 1 10 1 0 1 �10 0 1 1 �11CCCA :Thus, multiplying both sides of the matrix equation by the transpose, we get0BBB�5 1 11 3 21 2 31CCCA0BBB��0�1�21CCCA = 0BBB�3331CCCA :The linear fun
tion be
omes z = 0:3913 + 0:5217x+ 0:5217y: The line separatingthe two sets is: 0:0 = 0:3913 + 0:5217x+ 0:5217y or y = �x� 0:75:Simpli
io: While I noti
e that this line is perpendi
ular to the line through themidpoints of the two sets, I would have thought it would be the perpendi
ular bise
tor.What is going on?



412 CHAPTER 18. POLYNOMIAL INTERPOLATIONGalileo: Sin
e the set S1 has a higher varian
e (or standard deviation) than the setS2; the line is shifted 
loser to the set S2; whi
h makes sense from a geometri
al pointof view.Simpli
io: Even I 
an understand that idea. For if one set has a small varian
e andthe other has a low varian
e, pla
e the line 
loser to the set with low varian
e.Galileo: Exa
tly.Exer
ise Set 18.7.1. Given two data sets S = f(�1; 1); (�1;�1); (0; 0)g and T = f(1; 1); (1;�1)g;�nd a line L of the form �0+�1x+�2y = 0 with the property that L separatesthe set S from T:2. Given two data sets S = f(1; 1); (0; 0)g and T = f(1; 0); (0; 1)g; �nd a line L ofthe form �0 +�1x+�2y = 0 with the property that L separates the set S fromT:



Chapter 19
Fourier Interpolation

Jean Baptiste Joseph Fourier: \The di�erential equations of the propaga-tion of heat express the most general 
onditions, and redu
e the physi
alquestions to problems of pure analysis, and this is the proper obje
t oftheory." Analyti
al Theory of HeatGalileo: We now turn to the problem of interpolation by trigonometri
 series of theform Tn(x) = a02 + nPk=1[ak 
os(kx) + bk sin(kx)℄: While this type of series is typi
allyreferred to as a Fourier series, after the Fren
h mathemati
ian Jean Baptiste JosephFourier (1768-1830), others had 
omputed these series many years before. In parti
-ular, Euler had used one su
h series to show su
h identities as P1n=1 1n2 = �26 : Whilethese identities are interesting and 
urious to mathemati
ians, it was Fourier who413



414 CHAPTER 19. FOURIER INTERPOLATIONshowed their usefulness in modeling heat 
ow through a medium.Let us ask him how he formed his insights.Fourier: I joined Napoleon's army when he invaded Egypt in 1798. While we enjoyedwarm weather and great su

ess for a while, Lord Nelson destroyed the Fren
h 
eetin the Battle of the Nile on August 1, 1798. Sin
e this event brought an end tothe sun and fun, I returned to Grenoble, where I was for
ed to endure 
old, drearywinters with freezing temperatures. In an e�ort to deal with this state of a�airs,I began an investigation of the heat equation. In 1807, I 
ompleted the memoir\On the Propagation of Heat in Solid Bodies," where I presented these ideas inmanus
ript form. This work was presented to the Paris Institute on 21 De
ember1807 and reviewed by a 
ommittee 
onsisting of Lagrange, Lapla
e, Monge, andLa
roix. The members of this 
ommittee were unhappy with the work be
ause ofunresolved questions 
on
erning the expansions of fun
tions as trigonometri
 series.My 
olleague, Biot, was also unhappy be
ause he felt he should have been referen
edfor the work he did on this topi
 in 1804. While I found this review unfair, I 
oulddo nothing about it. In 1811, I submitted an extension of this work to a se
ond
ompetition and a
tually won the prize.Simpli
io: That sounds great!Fourier: Well, there was only one other entry. Worse yet, the report of the 
ommit-tee (whose members were Lagrange, Lapla
e, Malus, Hauy, and Legendre) was not
ompletely favorable sin
e it obje
ted to the la
k of rigor in the treatment of themathemati
s. My paper, \Theorie analytique de la 
haleur," was �nally published in1822. Even then Biot 
ontinued to 
laim priority.Simpli
io: Well, don't take it so hard. Your ideas are appre
iated.Galileo: But it did take 100 years to get all the mathemati
al issues sorted out withhis series.Simpli
io: Whi
h issues?Galileo: Sin
e Linear Algebra had not yet been invented, su
h ideas as linear inde-penden
e, basis, inner produ
t, and orthogonality had not yet been formulated. Sin
e



415the de�nition of limit had not yet been invented, the understanding of 
onvergen
ewas also murky. Eventually, the mathemati
ians parsed 
onvergen
e into a numberof di�erent types in
luding: uniform 
onvergen
e, pointwise 
onvergen
e, and 
onver-gen
e in the mean. Trigonometri
 series live best in Hilbert Spa
e, where Pythagorasrules.Simpli
io: I am 
onfused about this 
onvergen
e 
on
ept.Galileo: If you remember the error formulas for Taylor series and polynomial inter-polation, they 
an be used to 
he
k for uniform and pointwise 
onvergen
e.Simpli
io: How so?Galileo: If you re
all the error formula for Taylor isEn(x) = f (n+1)(z)(n + 1)! (x� x0)n+1while the error formula for polynomial interpolation isEn(x) = f (n+1)(z)(n+ 1)! (x� x0)(x� x1) : : : (x� xn):In the problems you were assigned, you were given and � > 0 and then were expe
tedto �nd an integer n with the property that jEn(x)j < � for all x 2 [a; b℄: When yousolve this kind of problem, you are showing that the sequen
e of polynomials are
onverging uniformly to the given fun
tion f(x):Simpli
io: So what is pointwise 
onvergen
e?Virginia: Let me guess. Pointwise 
onvergen
e is when you begin the problem byrestri
ting your attention to a parti
ular point x:Galileo: Corre
t.Virginia: So with the Runge example f(x) = 11+x2 ; x 2 [��; �℄, we have pointwise
onvergen
e for any parti
ular 
hoi
e of x; but we do not have uniform 
onvergen
ebe
ause the approximations 
y o� to in�nity near the boundaries of the interval[��; �℄: In other words, For a given � > 0 (su
h as � = 0:00001), we 
annot �nd aninteger n whi
h works for all x in the interval.Galileo: For pointwise 
onvergen
e, ea
h point x requires its own individualized inte-ger n:



416 CHAPTER 19. FOURIER INTERPOLATIONSimpli
io: What is 
onvergen
e in the mean?Galileo: While we haven't yet observed this type of 
onvergen
e, it is a distan
e metri
based on the integral of the di�eren
e of two fun
tions. In parti
ular, d(f(x); g(x)) =qR ba (f(x)� g(x))2 dx: While this metri
 is tuned to work well with Fourier series,the bad news is that it is weaker than uniform 
onvergen
e. Surprisingly, this distan
eformula is 
losely 
onne
ted with Pythagoras.Simpli
io: Life would be easier if we only had one type of 
onvergen
e.Galileo: Sorry, Mother Nature won't allow it. In fa
t, She insists we 
onsider themall.19.1 Fourier Interpolation: Introdu
tory Exam-plesSimpli
io: How about if you give me the short le
ture on trigonometri
 series.Fourier: Sin
e you probably never appre
iated partial di�erential equations, let usbegin by solving the following simple interpolation question:Given three points y0; y1; and y2 and three angles x0; x1; and x2; �nd a trigono-metri
 polynomial of the form T1(x) = a02 + a1 
os(x) + b1 sin(x) with the propertythat T1(x0) = y0; T1(x1) = y1; and T1(x2) = y2:Simpli
io: The answer to that problem is easy. All you have to do is solve the systemof three equations and three unknowns.0BBB�1 
os(x0) sin(x0)1 
os(x1) sin(x1)1 
os(x2) sin(x2)1CCCA0BBB�a02a1b11CCCA = 0BBB�y0y1y21CCCA :But when do you ever have to 
onsider data in the form (xk; yk); where xk is anangle?Fourier: If you are modeling the temperature of a metal rod of length L; then thepoint xk 
an be used to represent the position along the rod. If the points x0; x1; x2
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ed, then x0 = 0; x1 = L2 ; and x2 = L: In general, if we have n + 1equally spa
ed points 0 = x0 < x1 < � � � < xn = L; then we 
an de�ne the points byxk = kLn for n = 0; 1; : : : ; n:Simpli
io: But these points don't represent angles!Fourier: No problem, we will simply repla
e ea
h xk by the angle 2k�xkL : Note thatthese angles vary between 0 and 2�: We will get to that aspe
t of the heat equation,but let's keep it simple for the moment and restri
t our attention to the questionabout interpolation.Simpli
io: How about the equally spa
ed angles x0 = 0; x1 = �; and x2 = 2�?Fourier: Well, the idea is right, but 
os(0) = 
os(2�) and sin(0) = sin(2�) so the �rstand third row of the 
oeÆ
ient matrix are the same.Virginia: Thus, the determinant of the matrix is zero, whi
h implies the solution maynot exist. We may not be able to solve for the 
onstants a0; a1; and b1:Fourier: A better 
hoi
e is x0 = 0; x1 = 2�=3; and x2 = 4�3 ; whi
h leads to the matrix:A = 0BBB�1 1 01 �12 p321 �12 �p32
1CCCA :Do you noti
e anything spe
ial about this matrix?Simpli
io: I 
an't say that I do.Fourier: If you take a 
areful look at the three 
olumns of this matrix, you will noti
ethat they are pairwise perpendi
ular.Simpli
io: You mean 
he
k if the dot produ
t of any two of these 
olumns are zero?Fourier: Pre
isely.Simpli
io: But, why should I 
are about this detail? Why would anyone 
are?Fourier: If you multiply the matrix A by its transpose A; you get the followingprodu
t: AtA = 0BBB�1 1 11 �12 �120 p32 �p32

1CCCA0BBB�1 1 01 �12 p321 �12 �p32
1CCCA = 0BBB�3 0 00 32 00 0 32

1CCCA :
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io: I think I am beginning to understand. It seems like the produ
t AtA is adiagonal matrix. Is that always true?Fourier: If you make a smart 
hoi
e of angles, the 
olumns of the matrix will beperpendi
ular. However, before we 
onsider that question, let us solve for the three
onstants a0; a1; and b1:Simpli
io: No problem, the answers are the solutions to the matrix equation AtAx =Aty; where x = 0BBB�a0a1b11CCCAand y = 0BBB�y0y1y21CCCA :Dividing through by the 
onstants on the diagonal, we un
over formulas for a0; a1;and b1 : a0 = 23(y0 + y1 + y2);a1 = 23(y0 
os(x0) + y1 
os(x1) + y2 
os(x2));b1 = 23(y0 sin(x0) + y1 sin(x1) + y2 sin(x2)):Virginia: Thus, we 
an summarize this dis
ussion by saying that while the matrixequation 
an be solved for a multitude of 
hoi
es of x0; x1; x2; a \smart" 
hoi
e isx0 = 0; x1 = 2�3 ; x2 = 22�3 :Galileo: Corre
t! With a 
lever 
hoi
e of x0; x1; x2; we 
an easily solve the matrixequation.Simpli
io: And we don't even need row operations!Galileo: Corre
t again.Simpli
io: But wait a minute. On
e we have the formulas for the 
oeÆ
ients a0; a1; b1;then 
an't we simply throw away the matri
es?Galileo: You are thinking like an engineer. To implement the method all you needare the formulas. However, let us 
onsider the question: Why are these Fourier still
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ause of Pythagoras.Galileo: Corre
t again. The Fourier matri
es avoid all the serious stability issuesexhibited by the Runge example. While polynomial interpolation has serious stabilityissues, the Fourier methods are always stable. In fa
t, the 
olumns of the Fouriermatrix have a Linear Algebra version of the Pythagorean Theorem that simply doesn'texist for a general Vandermonde matrix.Fourier: How about if we step through the pro
ess again with the number of pointsin
reased from three to �ve? If we 
hoose the angles to be equally spa
ed, we againsee that a workable 
hoi
e is: x0 = 0;x1 = 1 � 2�=5;x2 = 2 � 2�=5;x3 = 3 � 2�=5;x4 = 4 � 2�=5:To keep the determinant of the 
oeÆ
ient matrix from being equal to zero, note thatthe angle x4 has been 
hosen to be di�erent from 2�: Now, if we have been given �vepoints y0; y1; y2; y3; and y4; we are then expe
ted to �nd �ve 
onstants a0; a1; a2; b1;and b2; with the property that the trigonometri
 polynomialT2(x) = a02 + a1 
os(x) + a2 
os(2x) + b1 sin(x) + b2 sin(2x)has the property that T2(xk) = yk for all k = 0; 1; 2; 3; 4:Simpli
io: And the answer to this problem is going to be another one of those matrixequations?Fourier: Yes, and this time the matrix equation be
omes



420 CHAPTER 19. FOURIER INTERPOLATION0BBBBBBBBB�
1 
os(x0) 
os(2x0) sin(x0) sin(2x0)1 
os(x1) 
os(2x1) sin(x1) sin(2x1)1 
os(x2) 
os(2x2) sin(x2) sin(2x2)1 
os(x3) 
os(2x3) sin(x3) sin(2x3)1 
os(x4) 
os(2x4) sin(x4) sin(2x4)

1CCCCCCCCCA
0BBBBBBBBB�

a02a1a2b1b2
1CCCCCCCCCA = 0BBBBBBBBB�

y0y1y2y3y4
1CCCCCCCCCA :

When we 
ompute the matrix for the given angles, we get:
A = 0BBBBBBBBB�

1 1 1 0 01 0:3090 �0:8090 0:9511 0:58781 �0:8090 0:3090 0:5878 �0:95111 �0:8090 0:3090 �0:5878 0:95111 0:3090 �0:8090 �0:9511 �0:5878
1CCCCCCCCCA :

What do you noti
e about the 
olumns?Simpli
io: On
e again, ea
h entry in the �rst 
olumn equals 1.Fourier: What else?Simpli
io: Sin
e ea
h entry in the �rst 
olumn equals 1, the dot produ
t of the �rst
olumn and any other 
olumn will equal the sum of the entries in that parti
ular
olumn. Sin
e the sum of the entries in ea
h of these 4 
olumns equals zero, the �rst
olumn will be perpendi
ular to ea
h of the other four. In general, it appears thatany two 
olumns are on
e again perpendi
ular.Fourier: You have made an important and fundamental insight be
ause we are againin the position to easily solve the matrix equation Ax = y: In parti
ular, whathappens when we multiply both sides of this equation by the transpose At?Simpli
io: Of 
ourse we get the equation AtAx = Aty:Virginia: Sin
e the matrix produ
t AtA is always a diagonal matrix, it will be easyto solve as soon as we 
ompute the diagonal entries.Fourier: Simpli
io, let's 
ompute the produ
t AtA:
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io: No problem, the answer is the matrix:
AtA = 0BBBBBBBBB�

5:0000 �0:0000 �0:0000 0 0�0:0000 2:4999 0:0001 0 �0:0000�0:0000 0:0001 2:4999 0 �0:00000 0 0 2:5002 00 �0:0000 �0:0000 0 2:5002
1CCCCCCCCCA :

It looks like a diagonal matrix ex
ept for two o�-diagonal entries whi
h equal 0:0001:Fourier: If we had kept a few more digits of pre
ision, those terms would have disap-peared when we 
omputed the matrix A:.Virginia: In fa
t, it looks like the o�-diagonal entries should equal 0:0000 and all thediagonal entries other than the �rst should equal 5=2:Fourier: Those thoughts are 
orre
t. The next 
on
ern is to point out that theseideas are 
ompletely general. For this bene�t we need to expend a bit of e�ort toorganize the ne
essary mathemati
al fa
ts that will make the ideas pre
ise.Virginia: I am beginning to wonder about all that Gaussian elimination stu� welearned in Linear Algebra. This Fourier approa
h is so mu
h easier. No row operationsrequired.Exer
ise Set 19.1.1. Given data y0; y1; y2; y3; y4 
ompute the values for the 
oeÆ
ients a0; a1; a2; b1; b2:2. Given data y0 = 1; y1 = 2; y2 = 3; y3 = 4; y4 = 5 
ompute the values for the
oeÆ
ients a0; a1; a2; b1; b2: Che
k that the fun
tion T2(x) a
tually interpolatesthe data by showing that T2(x2) = y2 = 3:19.2 Fourier Interpolation: CoeÆ
ient FormulasFourier: The next goal is to show that the interpolation te
hnique we have justdis
ussed for 3 data points and �ve data points 
an be generalized to any odd numberof points. In parti
ular, we will dis
uss the general 
ase when we are given 2n+1 data



422 CHAPTER 19. FOURIER INTERPOLATIONpoints (xk; yk) for k = 0; 1; 2 : : : ; 2n: In this setting, our 
oeÆ
ient matrix will have2n+1 rows and 2n+1 
olumns. The �rst proposition states that any two 
olumns ofthe 
oeÆ
ient matrix A will always be perpendi
ular. As before this will imply thatthe matrix produ
t AtA will be a diagonal matrix. The se
ond proposition statesthat the diagonal entries of the matrix AtA are 2n+12 :Virginia: Ex
ept, of 
ourse, for the �rst entry whi
h is 2n + 1: Right?Fourier: Corre
t! Finally, the third proposition presents formulas for the 
oeÆ
ientsa0; a1; : : : ; an and b1; b2; : : : ; bn: The formulas follow easily from these key propertiesof A and AtA:Fourier: Sin
e the �rst proposition is written in mathemati
ally te
hni
al languagewith �ve di�erent summations (all equal to zero), we will begin by dis
ussing theimpli
ations of ea
h part. In parti
ular, we make the following observations:1. The summation 2nPk=0 
os(mxk) = 0 implies the inner produ
t (i.e. dot produ
t)of the 1st 
olumn and the mth 
os(x) 
olumn equals zero. Thus, the �rst 
olumnwill always be perpendi
ular to any 
os(x) 
olumn.2. The summation 2nPk=0 sin(mxk) = 0 implies the 1st 
olumn is perpendi
ular to themth sin(x) 
olumn. Thus, the �rst 
olumn will always be perpendi
ular to anysin(x) 
olumn.3. The summation 2nPk=0 
os(jxk) � sin(mxk) = 0 implies the jth 
os(x) 
olumn isperpendi
ular to the mth sin(x) 
olumn.4. The summation 2nPk=0 sin(jxk) � sin(mxk) = 0 implies the jth sin(x) 
olumn isperpendi
ular to the mth sin(x) 
olumn.5. The summation 2nPk=0 
os(jxk) � 
os(mxk) = 0 implies the jth 
os(x) 
olumn isperpendi
ular to the mth 
os(x) 
olumn.Simpli
io: But if j = m in the last two remarks, then we are 
omputing the dotprodu
t of a 
olumn with itself. That doesn't sound right to me.
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orre
t. In the proposition, we will assume that j 6= mto insure that the 
olumns are a
tually di�erent.Virginia: And these 5 pie
es of information imply that any two 
olumns of the 
oef-�
ient matrix are perpendi
ular. Isn't that right?Galileo: Corre
t.Proposition 19.2.1 (Orthogonality for Dis
rete Fourier). If 0 < m; j � 2n areintegers and xk = k2n+12� for k = 0; 1; : : : ; 2n; then the following statements hold:1. If m � 2n; then 2nPk=0 
os(mxk) = 0:2. If m � 2n; then 2nPk=0 sin(mxk) = 0:3. If j � n; and m � n; then 2nPk=0 
os(jxk) � sin(mxk) = 0:4. If j � n;m � n; and j 6= m; then 2nPk=0 sin(jxk) � sin(mxk) = 0:5. If j � n;m � n; and j 6= m; then 2nPk=0 
os(jxk) � 
os(mxk) = 0:Proof. The underlying idea behind this proof is that the formula for the geometri
series works just as well for 
omplex numbers as it does for real numbers. In parti
ular,if z 6= 1; then nXk=0 zk = 1� zn+11� z :The proof is exa
tly the same as before. All you need to know is that all the usualasso
iative, 
ommutative, and distributive rules apply.However, we will also need Euler's formula, whi
h 
an be stated as follows.Lemma 19.2.2. If i = p�1; then eix = 
os(x) + i sin(x):This formula 
an be proved by Taylor series, Cal
ulus, or Di�erential Equations.If we 
onsider the spe
ial 
ase when x = �; then we have Euler's famous identityei� = �1: Note that this identity 
ombines three remarkable 
onstants e; �; i into



424 CHAPTER 19. FOURIER INTERPOLATIONthe familiar number �1: However, we should not get distra
ted from the business athand.If we let z = e 2�i2n+1 = 
os( 2�2n+1)+ i sin( 2�2n+1); then note that whenever m � n; then(zm)2n+1 = (z2n+1)m = (e2�i)m = 1m = 1:By the geometri
 series formula we now observe that sin
e xk = k 2�2n+1 = 2�k2n+1 ; mxk =2�km2n+1 ; Z = 2nXk=0 
os(mxk) + i 2nXk=0 sin(mxk)= 2nXk=0 eimxk = 2nXk=0 ei 2�km2n+1 = 2nXk=0(ei 2�2n+1 )mk= 2nXk=0 zmk = 2nXk=0(zm)k = 1� (zm)2n+11� zm = 1� (z2n+1)m1� zm = 1� 1m1� zm = 0:Thus, both the real and imaginary parts of Z equal zero. Sin
e the real partof Z equals zero, 2nPk=0 
os(mxk) = 0: Sin
e the imaginary part of Z equals zero,2nPk=0 sin(mxk) = 0: Thus, the �rst two statements in the proposition are veri�ed.Virginia: But why did we assume that m � n?Fourier: If m is an integer multiple of 2n + 1; then zm = 1; whi
h mean that we aredividing by zero and thus 
an't apply the geometri
 series.The other three statements follow from the identities:
os(A) sin(B) = 12[sin(A +B) + sin(B � A)℄;
os(A) 
os(B) = 12[
os(A+B) + 
os(A� B)℄;sin(A) sin(B) = 12[
os(A� B)� 
os(A+B)℄:In parti
ular, if A = jxk and B = mxk; then
os(jxk) sin(mxk) = 12[sin((j +m)xk) + sin((m� j)xk)℄;
os(jxk) 
os(mxk) = 12[
os((j +m)xk) + 
os((j �m)xk)℄;sin(jxk) sin(mxk) = 12[
os((j �m)xk)� 
os((j +m)xk)℄:



19.2. FOURIER INTERPOLATION: COEFFICIENT FORMULAS 425Thus, the third summation 
an be written as2nXk=0 
os(jxk) � sin(mxk) = 12 2nXk=0[sin((j +m)xk) + sin((m� j)xk)℄= 12 2nXk=0[sin((j +m)xk)℄ + 12 2nXk=0[sin((m� j)xk)℄= 0 + 0 = 0:Fourier: Note that this argument requires the fa
t that you have already provedstatement 2 in the proposition and that the sums j +m � 2n and j �m � 2n:Statements 4 and 5 in the proposition follow from the same argument we just gavefor statement 3.Fourier: In the next proposition, we 
ompute the values of the entries along the diag-onal of the matrix produ
t AtA: This 
omputation is equivalent to the 
omputation ofthe norms (i.e lengths) of the 
olumns of A: The �rst statement in the Equal LengthFormulas 
an be used to show that the �rst diagonal entry of the matrix produ
t willequal 2n + 1; the se
ond two items 
an be used to show that all the other diagonalentries will equal 2n+12 :Proposition 19.2.3 (Equal Length Formulas for Dis
rete Fourier). If 0 <m � n are integers and xk = k2n+12� for k = 0; 1; : : : ; 2n; then1. 2nPk=0 1 = 2n+ 1;2. 2nPk=0 
os2(mxk) = 2n+12 ; and3. 2nPk=0 sin2(mxk) = 2n+12 :Proof. The relations follow from the half angle formulas and the orthogonality propo-sition. Re
all that the half angle formulas are:1. 
os2(�) = 1+
os(2�)2



426 CHAPTER 19. FOURIER INTERPOLATION2. sin2(�) = 1�
os(2�)2Note that these formulas have the virtue that they 
an be used to redu
e expres-sions of the form 
os2(�) and sin2(�) to linear expressions.In parti
ular, the �rst half angle formula 
ombined with statement 1 from theprevious proposition 
an be used to make the following redu
tion:2nXk=0 
os2(mxk) = 2nXk=0 1 + 
os(2mxk)2=12 2nXk=0f1 + 
os(2mxk)g=12 2nXk=0 1 + 12 2nXk=0 
os(2mxk)=12 2nXk=0 1 + 0=2n+ 12 :Similarly, the se
ond half angle formula 
an be used to prove the third equationin the proposition: 2nXk=0 sin2(mxk) = 2nXk=0 1� 
os(2mxk)2=12 2nXk=0f1� 
os(2mxk)g=12 2nXk=0 1 = 2n+ 12 :
Fourier: We now present the key formulas for the 
oeÆ
ients for the trigonometri
series. These formulas allow you to interpolate any given data set y0; y1; y2; : : : ; y2nwith a fun
tion of the formTn(x) = a02 + nXk=1[ak 
os kx+ bk sin kx℄:



19.2. FOURIER INTERPOLATION: COEFFICIENT FORMULAS 427Note that the argument is the same strategy, where we solve a matrix equationAa = y by multiplying both sides of the equation by At resulting in the equationDa = AtAa = Aty; where D is a diagonal matrix.Theorem 19.2.4 (Fourier CoeÆ
ients: Dis
rete Case). If xk = k2n+12�; fork = 0; 1; : : : ; 2n and y0; y1; y2; : : : ; y2n are 2n+ 1 given data values, then 
onstants akand bk 
an be found so that the trigonometri
 polynomialTn(x) = a02 + nXk=1[ak 
os kx + bk sin kx℄has the property that Tn(xk) = yk for all k = 0; 1; : : : ; 2n:In parti
ular, the formulas are:ak = 22n+ 1 2nXj=0 yj 
os(kxj) for k = 0; 1; 2; : : : ; n;and bk = 22n+ 1 2nXj=0 yj sin(kxj) for k = 1; 2; : : : ; n:Proof. Fourier: Sin
e we require the property Tn(xk) = yk for all k = 0; 1; : : : ; 2n;we must solve a (2n + 1) � (2n + 1) dimensional linear system of the form Aa =y; where A is the 
oeÆ
ient matrix 
onsisting of various sines and 
osines, a =(a0; a1; : : : ; an; b1; b2; : : : ; bn); and y = (y0; y1; : : : ; y2n):For the spe
ial 
ase n = 2 the requirement that T2(xk) = yk leads to a system of5 equations and 5 unknowns:a02 + a1 
os(x0) + a2 
os(2x0) + b1 sin(x0) + b2 sin(2x0) = y0a02 + a1 
os(x1) + a2 
os(2x1) + b1 sin(x1) + b2 sin(2x1) = y1a02 + a1 
os(x2) + a2 
os(2x2) + b1 sin(x2) + b2 sin(2x2) = y2a02 + a1 
os(x3) + a2 
os(2x3) + b1 sin(x3) + b2 sin(2x3) = y3a02 + a1 
os(x4) + a2 
os(2x4) + b1 sin(x4) + b2 sin(2x4) = y4:



428 CHAPTER 19. FOURIER INTERPOLATIONSimpli
io: So we 
an on
e again write a matrix equation Aa = y; where A; a; and yare the usual suspe
ts.Virginia: If we multiply both sides of the equation by the transpose At; the resultingequation is AtAa = Aty: Sin
e any two 
olumns of A are orthogonal, the matrix AtAis diagonal.Simpli
io: Even I 
an see this is true by the Orthogonality Proposition.Virginia: By the Equal Lengths Formulas, the �rst entry on the diagonal is 2n + 1;while the remaining diagonal entries equal 2n+12 :Simpli
io: Thus, the 
oeÆ
ient formulas are simply the result of multiplying the ve
-tor Aty by the inverse of the diagonal matrix D = AtA: In symbols, a = (AtA)�1Aty:Fourier: You got it.Simpli
io: A
tually, I rather liked that proof.Fourier: Then how about a se
ond proof?Simpli
io: Sorry, but one proof is plenty for me.Fourier: Well, let's 
all it an observation then.Virginia: Let's see it.Fourier: What we are really doing here is sear
hing for 
onstants (given by the ve
tora) whi
h allow us to write the ve
tor
y = 0BBBBBBBBB�

y0y1y2y3y4
1CCCCCCCCCAas a linear 
ombination of the sines and 
osines. In parti
ular, if we write the linearsystem Aa = y as a linear 
ombination of the 
olumns of the 
oeÆ
ient matrix A;we have
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a02
0BBBBBBBBB�
11111
1CCCCCCCCCA+a10BBBBBBBBB�


os(x0)
os(x1)
os(x2)
os(x3)
os(x4)
1CCCCCCCCCA+a20BBBBBBBBB�


os(2x0)
os(2x1)
os(2x2)
os(2x3)
os(2x4)
1CCCCCCCCCA+ b10BBBBBBBBB�

sin(x0)sin(x1)sin(x2)sin(x3)sin(x4)
1CCCCCCCCCA+ b20BBBBBBBBB�

sin(2x0)sin(2x1)sin(2x2)sin(2x3)sin(2x4)
1CCCCCCCCCA = 0BBBBBBBBB�

y0y1y2y3y4
1CCCCCCCCCA :

If we let uk = 0BBBBBBBBB�

os(kx0)
os(kx1)
os(kx2)
os(kx3)
os(kx4)

1CCCCCCCCCA and vk = 0BBBBBBBBB�
sin(kx0)sin(kx1)sin(kx2)sin(kx3)sin(kx4)

1CCCCCCCCCA ;
then we 
an write the ve
tor y as a linear 
ombinationy = a02 u0 + a1u1 + a2u2 + b1v1 + b2v2:Virginia: I see what you are after. You have 
hanged the basis for the ve
tor spa
e<5 from the usual basis ve
tors e1; e2; e3; e4; e5; to a new basis u0;u1;u2;v1;v2: The
onstants a02 ; a1; a2; b1; b2 are simply the result of the usual 
hange of basis formulas.Fourier: Very good.Simpli
io: So.Fourier: If we want to 
ompute the 
oeÆ
ient am; we simply 
ompute the innerprodu
t < um;y > : Sin
e the orthogonality lemma for dis
rete Fourier shows thatthe 
olumns are pairwise orthogonal, we know < um;uk >= 0 for all k 6= m: Sin
ealso know < um;vk >= 0 for all k,< um;y >= a02 u0 + a1u1 + a2u2 + b1v1 + b2v2 = am < um;um >= am 52 :Virginia: Thus, we see immediately thatam =25 < um;y >=25(y0 
os(mx0) + y1 
os(mx1) + y2 
os(mx2) + y3 
os(mx3) + y4 
os(mx4)):



430 CHAPTER 19. FOURIER INTERPOLATIONThe same argument 
an be used to show bm = 25 4Pj=0 yj sin(mxj): In both 
ases theOrthogonality and Equal Lengths properties are 
ru
ial.Simpli
io: But why would we want to go to this extra trouble?Fourier: Be
ause we will see this argument again in several other settings. First, wewill see this exa
t same argument in the proof of the Pythagoras/Parseval formulafor trigonometri
 series. Se
ond, we will see it again when we dis
uss least squares fortrigonometri
 series. Third, we will use this exa
t same argument for the 
ontinuous
ase, where we write a fun
tion f(x) : [��; �℄! < as an in�nite series of the formf(x) = a02 + 1Xk=1(ak 
os(kx) + bk sin(kx)):In this last 
ase, the inner produ
t relevant to the dis
ussion be
omes an integralrather than a dot produ
t.Simpli
io: But why would you want to do that?Fourier: You know how to hurt a guy. This te
hnique is exa
tly what I used to solvethe heat equation.Fourier: These thoughts 
an be summarized in the following proposition. Note thatwe have not even assumed that the matrix A is square. Note this proposition well.We will revisit it soon.Proposition 19.2.5. If A 2 <m�n is a matrix with m rows and n 
olumns, whi
hhas the property that every pair of 
olumn ve
tors are perpendi
ular, then the produ
tD = AtA is an n� n diagonal matrix. Moreover, the jth diagonal entry of D is thesquare of the length of the jth 
olumn of A:Proof. The proof is simply the observation that the (i; j)th entry of D is the dotprodu
t of the ith and jth 
olumns of A:Simpli
io: Even I 
an understand this one.



19.2. FOURIER INTERPOLATION: COEFFICIENT FORMULAS 431Example 19.2.1. Problem: Given the data y0 = 3; y1 = 2; y2 = 2; 
ompute theFourier 
oeÆ
ients a0; a1; b1:By the 
oeÆ
ient formulas,a0 = 23(y0 + y1 + y2) = 23(3 + 2 + 2) = 143 :a1 = 23(y0 � 12 y1 � 12 y2) = 23(3� 1� 1) = 23 :b1 = 23(p32 y1 � p32 y2) = 23(p32 2� p32 2) = 0:Sin
e b1 = 0; T1(x) = 73 + 23 
os(x): In parti
ular, the basis fun
tion sin(x) isunne
essary.Example 19.2.2. Problem: Given the data y0 = 0; y1 = 2; y2 = �2; 
ompute theFourier 
oeÆ
ients a0; a1; b1:By the 
oeÆ
ient formulas,a0 = 23(y0 + y1 + y2) = 23(0 + 2� 2) = 0:a1 = 23(y0 � 12 y1 � 12 y2) = 23(0� 1 + 1) = 0:b1 = 23(p32 y1 � p32 y2) = 23(p32 2 + p32 2) = 4p33 :Sin
e a0 = 0 and a1 = 0; T1(x) = 4p33 sin(x): In parti
ular, the basis fun
tions 1and 
os(x) are unne
essary.Example 19.2.3. Problem: Given the data y0 = 0; y1 = 2; y2 = 3; y3 = �3; y4 = �2;
ompute the Fourier 
oeÆ
ients a0; a1; a2; b1; b2:If
x = 0BBBBBBBBB�

x0x1x2x3x4
1CCCCCCCCCA = 0BBBBBBBBB�

02�522�532�542�5
1CCCCCCCCCA = 0BBBBBBBBB�

01:25662:51333:76995:0265
1CCCCCCCCCA ;
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os(x) = 0BBBBBBBBB�


os(x0)
os(x1)
os(x2)
os(x3)
os(x4)
1CCCCCCCCCA = 0BBBBBBBBB�

1:00000:3090�0:8090�0:80900:3090
1CCCCCCCCCA ; 
os(2x) = 0BBBBBBBBB�


os(2x0)
os(2x1)
os(2x2)
os(2x3)
os(2x4)
1CCCCCCCCCA = 0BBBBBBBBB�

1:0000�0:80900:30900:3090�0:8090
1CCCCCCCCCAand

sin(x) = 0BBBBBBBBB�
sin(x0)sin(x1)sin(x2)sin(x3)sin(x4)

1CCCCCCCCCA = 0BBBBBBBBB�
0:00000:95110:5878�0:5878�0:9511

1CCCCCCCCCA ; sin(2x) = 0BBBBBBBBB�
sin(2x0)sin(2x1)sin(2x2)sin(2x3)sin(2x4)

1CCCCCCCCCA = 0BBBBBBBBB�
0:00000:5878�0:95110:9511�0:5878

1CCCCCCCCCA :
Thus, by the 
oeÆ
ient formulas, we see thata0 = 25(y0 + y1 + y2 + y3 + y4)= 25(0 + 2 + 3� 3� 2) = 0;a1 = 25(y0 
os(x0) + y1 
os(x1) + y2 
os(x2) + y3 
os(x3) + y4 
os(x4))= 25(0 + 2 � 0:3090� 3 � 0:8090 + 3 � 0:8090� 2 � 0:3090) = 0;a2 = 25(y0 
os(2x0) + y1 
os(2x1) + y2 
os(2x2) + y3 
os(2x3) + y4 
os(2x4))= 25(0� 2 � 0:8090 + 3 � 0:3090� 3 � 0:3090 + 2 � 0:8090) = 0;b1 = 25(y0 sin(x0) + y1 sin(x1) + y2 sin(x2) + y3 sin(x3) + y4 sin(x4))= 25(0 + 2 � 0:9511 + 3 � 0:5878 + 3 � 0:5878 + 2 � 0:9511) = 2:9324;b2 = 25(y0 sin(2x0) + y1 sin(2x1) + y2 sin(2x2) + y3 sin(2x3) + y4 sin(2x4))= = 25(0 + 2 � 0:5878� 3 � 0:9511� 3 � 0:9511 + 2 � 0:5878) = �1:3422:Thus, a0 = a1 = a2 = 0; whi
h implies that T1(x) = 2:9324 sin(x)�1:3422 sin(2x):In parti
ular, the basis fun
tions 1; 
os(x); and 
os(2x) are unne
essary.
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io: I hate to be diÆ
ult, but I have just one qui
k question that has begun toeat at me.Fourier: Sure.Simpli
io: In all the dis
ussions you have given so far, you have always assumed thatyou are given 2n+1 points in your ve
tor y: If y = (y0; y1; : : : ; y2n); then it has an oddnumber of 
oordinates. What do you do if you are given an even number of points?Fourier: The short answer is that "It depends on the problem." The longer answer isthat 
ertain problems only require the 
os(mx) fun
tions and 
ertain other problemsonly require the sin(mx) fun
tions. For example, the heat equation only requiresthe sin(mx) fun
tions and the JPEG 
ompression te
hniques only require 
os(mx)fun
tions. With a 
ompression problem, we will \double" the data from n+ 1 pointsto 2n + 1 points in su
h a way that the 
oeÆ
ients bk = 0 for all k: Thus, we willalways have an odd number of points and we will never need the basis fun
tionssin(mx):Simpli
io: Interesting. In other words the basis fun
tions of the form 
os(mx) willsuÆ
e.Fourier: Pre
isely. Here are a few exer
ises, whi
h you should not �nd parti
ularly
hallenging.Exer
ise Set 19.2.1. Show that the quantity a02 always represents the average of the given data sety0; y1; : : : ; y2n:2. Given the data y0 = 1; y1 = 2; y2 = 3; 
ompute the Fourier 
oeÆ
ients a0; a1; b1:Plot the data and the fun
tion T1(x) = a02 + a1 
os(x) + b1 sin(x) on the samegraph.3. Given the data y0 = sin(0); y1 = sin(2�3 ); y2 = sin(4�3 ) 
ompute the Fourier
oeÆ
ients a0; a1; b1: Plot the data and the fun
tion T1(x) = a02 + a1 
os(x) +b1 sin(x) on the same graph.



434 CHAPTER 19. FOURIER INTERPOLATION4. Given the data y0 = 
os(0); y1 = 
os(2�3 ); y2 = 
os(4�3 ) 
ompute the Fourier
oeÆ
ients a0; a1; b1: Plot the data and the fun
tion T1(x) = a02 + a1 
os(x) +b1 sin(x) on the same graph.5. Given the data y0 = 0; y1 = 2; y2 = �2; 
ompute the Fourier 
oeÆ
ientsa0; a1; b1: Whi
h 
oeÆ
ients equal zero?6. Given the data y0 = 3; y1 = 1; y2 = 2; y3 = 2; y4 = 1; 
ompute the Fourier
oeÆ
ients a0; a1; a2; b1; b2: Whi
h 
oeÆ
ients equal zero?7. Given the data y0 = 0; y1 = 1; y2 = 2; y3 = �2; y4 = �1; 
ompute theFourier 
oeÆ
ients a0; a1; a2; b1; b2: Plot the data and the fun
tion T2(x) =a02 + a1 
os(x) + a2 
os(2x) + b1 sin(x) + b2 sin(2x) on the same graph. Whi
h
oeÆ
ients equal zero?8. Given the data y0 = 0; y1 = A; y2 = �A; where A is an arbitrary number,
ompute the Fourier 
oeÆ
ients a0; a1; b1: Whi
h 
oeÆ
ients equal zero?9. Given the data y0 = A; y1 = B; y2 = B; where A and B are arbitrary numbers.Compute the Fourier 
oeÆ
ients a0; a1; b1: Whi
h 
oeÆ
ients equal zero?10. Given the data y0 = 0; y1 = A; y2 = B; y3 = B; y4 = A; where A and B arearbitrary, 
ompute the Fourier 
oeÆ
ients a0; a1; a2; b1; b2: Whi
h 
oeÆ
ientsequal zero?19.3 Fourier Least SquaresFourier: Let's go ba
k to the just 
ompleted dis
ussion of interpolation and 
hangethe rules to the setting, where we have more data points than 
oeÆ
ients. In otherwords, let's 
onsider the problem:Given data y0; y1; y2; y3; y4 and equally spa
ed points x0 = 0; x1 = 2�5 ; x2 =22�5 ; x3 = 32�5 ; x4 = 42�5 ; �nd the fun
tion T1(x) = a02 + a1 
os(x) + b1 sin(x) \best�ts the data".



19.3. FOURIER LEAST SQUARES 435Virginia: Let me guess. We are on
e again 
onfronted by the same the setting wehad for polynomial least squares. Namely, we simply \solve" the set of equations:T1(x0) =a02 + a1 
os(x0) + b1 sin(x0) = y0T1(x1) =a02 + a1 
os(x1) + b1 sin(x1) = y1T1(x2) =a02 + a1 
os(x2) + b1 sin(x2) = y2T1(x3) =a02 + a1 
os(x3) + b1 sin(x3) = y3T1(x4) =a02 + a1 
os(x4) + b1 sin(x4) = y4:This set of equations morphs into equation Aa = y; where
A = 0BBBBBBBBB�

1 
os(x0) sin(x0)1 
os(x1) sin(x1)1 
os(x2) sin(x2)1 
os(x3) sin(x3)1 
os(x4) sin(x4)
1CCCCCCCCCA ; a = 0BBB�a02a1b11CCCA ; and y = 0BBBBBBBBB�

y0y1y2y3y4
1CCCCCCCCCA :

Sadly, this equation is on
e again overdetermined. However, the good news is that we
an solve it by multiplying both sides of the equation by the transpose At to obtainAtAa = Aty: The beauty of this matrix equation is thatD = AtA = 0BBB�5 0 00 52 00 0 52
1CCCA :Thus, the matrix equation Aa = y is easily \solved" for the 
oeÆ
ients a0; a1; b1:Better yet, the formulas for these 
oeÆ
ients are exa
tly the same as those we pre-sented moments ago.Simpli
io: How did she know that?Virginia: Math is easy.Fourier: A
tually, when I �rst began working on these series, I didn't understandthis issue all that well either. However, let's be sure to mention that this te
hnique



436 CHAPTER 19. FOURIER INTERPOLATIONis equivalent to the problem of minimizing the residual R =P4k=0(a02 + a1 
os(xk) +b1 sin(xk)� yk)2 with respe
t to the parameters a0; a1; b1:Simpli
io: Even I 
an see that this quantity R 
an be found by 
omputing the gradientrR = 0BBB� �R�a0�R�a1�R�b1
1CCCA ;setting ea
h 
oordinate equal to zero, and solving three equations and three unknowns.Fourier: The matrix equation is 2(AtAa�Aty) = 0; whi
h is obviously equivalent toour friend AtAa = Aty:Fourier: We summarize our dis
ussion with the following theorem.Theorem 19.3.1 (Fourier CoeÆ
ients: Linear Least Squares). If xk = k2n+12�;for k = 0; 1; : : : ; 2n and y0; y1; y2; : : : ; y2n are 2n + 1 given data values, then for anyinteger N � n; 
onstants ak and bk 
an be found so that the trigonometri
 polynomialTN(x) = a02 + NXk=1[ak 
os kx + bk sin kx℄has the property that the fun
tion TN (x) provides a best least squares �t to the datayk for all k = 0; 1; : : : ; 2n:Moreover, the 
oeÆ
ients 
an found by be 
omputing the following formulas:ak = 22n+ 1 2nXj=0 yj 
os(kxj) for k = 0; 1; 2; : : : ; N;and bk = 22n+ 1 2nXj=0 yj sin(kxj) for k = 1; 2; : : : ; N:Simpli
io: That WAS easy.Fourier: Now its time to work some problems. Sin
e the formulas are the same as forinterpolation, these problems should provide no 
hallenge.Exer
ise Set 19.3.



19.4. FOURIER INTERPOLATION: THE RUNGE EXAMPLE REVISITED 4371. Given the data y0 = 3; y1 = 1; y2 = 2; y3 = 2; y4 = 1; 
ompute the fun
tionT1(x) = a02 + a1 
os(x) + b1 sin(x) whi
h best �ts the data in the sense of leastsquares. Plot the data and the fun
tion.2. Given the data y0 = 0; y1 = 1; y2 = 2; y3 = �2; y4 = �1; 
ompute the fun
tionT1(x) = a02 + a1 
os(x) + b1 sin(x) whi
h best �ts the data in the sense of leastsquares. Plot the data and the fun
tion.3. Given the data y0 = 1; y1 = �1; y2 = 1; y3 = �1; y4 = 1; y5 = �1; y6 = 1;
ompute the fun
tion T2(x) = a02 + a1 
os(x)+ a2 
os(2x)+ b1 sin(x)+ b2 sin(2x)whi
h best �ts the data in the sense of least squares. Plot the data and thefun
tion.19.4 Fourier Interpolation: The Runge ExampleRevisitedFourier: To illustrate the bene�t of using trigonometri
 interpolation, let's revisitour friend Carl Runge. Re
all that polynomial interpolation is a disaster when weapproximate the 
urve y = f(x) = 1x2+1 ; for x 2 [��; �℄:Simpli
io: That's right. We saw those rabbit ears pop up near the boundary pointsof the interval x = �� and �: The graphs of the approximations 
y o� to in�nity.Fourier: Let's apply our new interpolation method to this same 
urve. In parti
ular,let's approximate the 
urve f(x) = 1x2+1 by the trigonometri
 polynomials Tn(x)on the interval [��; �℄: The results of these experiments (for the integers n = 1; 2;and n = 20) are displayed in Figures 19.1, 19.2, and 19.3. Note that in Figure19.3 it is impossible to distinguish between the original 
urve and the approximationby T20(x): Unlike polynomial interpolation, the approximations provide improvedapproximations of the original 
urve when more points are added.Simpli
io: I am glad to see that we now have a reliable method we 
an 
ount on to
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Figure 19.1: Fourier Interpolation of f(x) = 11+x2 by T1(x); x 2 [��; �℄
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Figure 19.2: Fourier Interpolation of f(x) = 11+x2 by T2(x); x 2 [��; �℄always give the results we want.Fourier: In a moment, we will dis
uss the trigonometri
 approximation of the fun
-tion y = f(x) = x; where we again en
ounter a slight \blip" at the endpoints ofthe interval. However, this time the problem is not as violent as is the 
ase withpolynomial interpolation.Simpli
io: I have an unimportant question, whi
h has been nagging me. Namely,while all the data (xk; yk) mention in the theorems we have proved is designed sothat xk 2 [0; 2�℄; you took the domain of the fun
tion f(x) = 11+x2 to be the interval[��; �℄: Thus, the points xk must lie in the interval [��; �℄: I know this is a smalldi�eren
e, but sin
e we are being pi
ky, I thought : : : :Fourier: You should have been a mathemati
ian. You spotted a bit of sloppiness onmy part. A
tually, sin
e the fun
tions 
os(x) and sin(x) are both 2� periodi
, we 
ouldgo through the same analysis for any interval of length 2�: While the Orthogonalityand Equal Lengths propositions will hold, the 
oeÆ
ients will be di�erent.
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Figure 19.3: Fourier Interpolation of f(x) = 11+x2 by T20(x); x 2 [��; �℄Virginia: But the 
oeÆ
ients ak; bk will be di�erent only be
ause the entries in the
oeÆ
ient matrix will have been permuted around. Right?Fourier: For example, if x0 = �� = �180 (deg); x1 = �� + 2�3 = �60 (deg);x2 = �� + 22�3 = 60 (deg); then the 
oeÆ
ient matrix be
omesA = 0BBB�1 �1 01 12 �p321 12 p32
1CCCA :Simpli
io: Looks like Orthogonality and Equal Lengths are OK to me.Exer
ise Set 19.4.1. Compute the Fourier 
oeÆ
ient matrix for �ve points on the interval [��; �℄:(i.e. Compute the matrix A when x0 = ��; x1 = �� + 2�5 ; x2 = �� + 22�5 ; x3 =�� + 32�5 ; x4 = �� + 42�5 :2. Let y = f(x) = 11+x2 ; for x 2 [��; �℄: Write a program to approximatef(x) by the fun
tions T0(x) for various evenly evenly spa
ed points �� =x0; x1; : : : ; x2n < �: Plot the fun
tions y = f(x) and y = T0(x) on the samegraph. How good are the approximations? What do you noti
e?19.5 Fourier Interpolation: Gibbs' PhenomenonFourier: We now provide a short dis
ussion of the famous Gibbs' phenomenon. JosiahWillard Gibbs(1839-1903) was the �rst outstanding Ameri
an mathemati
ian. His
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ontributions were in a wide range of areas in
luding ve
tor analysis, the orbits of
omets, the thermodynami
s of 
uids, ele
tromagneti
 radiation, and statisti
al me-
hani
s. His investigations into thermodynami
s involved the mathemati
s surround-ing the words energy, entropy, and enthalpy.Simpli
io: Doesn't entropy involve the ideas of order and disorder?Virginia: If I remember 
orre
tly, entropy always in
reases. Isn't that the idea behindthe Se
ond Law of Thermodynami
s?Fourier: Very good. Gibbs was a dedi
ated natural s
ientist, who developed sophis-ti
ated mathemati
al ideas to model real physi
al phenomena. He 
ontinued theinvestigations into the study of the steam engine begun by Sadi Carnot (1796-1832).Their resear
h led to the modern theory of Thermodynami
s. Gibbs brought moremathemati
s to the table. In any 
ase, we are not going to dis
uss this topi
 today.Instead, we are going to mention Gibbs' 
ontribution to Trigonometri
 series.Simpli
io: And, : : :Fourier: While the phenomenon appears in many di�erent disguises, we will demon-strate it only for the fun
tion f(x) = x de�ned on the interval [��; �℄: If we letTn(x) = 2 nPk=1 (�1)k+1k � sin(kx) on [��; �℄ for n = 4; 8; and 20; then note the graphs ofthe approximations in Figures 19.4, 19.5, and 19.6.Simpli
io: Sin
e we are 
omputing on the interval [��; �℄; won't we on
e againen
ounter a modi�ed version of the Fourier matrix the way we just did with theRunge example? In other words, when we 
ompute the entries in the 
oeÆ
ient ma-trix A; we will use the points x0 = ��; x1 = �� + 2�2n+1 ; x2 = �� + 2 2�2n+1 ; x3 =�� + 3 2�2n+1 ; : : : x2n = �� + 2n 2�2n+1 :Fourier: Corre
t. In any 
ase, these examples lead to the well-known Gibbs phe-nomenon, where a slight \blip" appears at the endpoints �� and �: Note that this\blip" 
ontinues to appear even for a 20 degree polynomial. This blip is about 9% ofthe di�eren
e between +� � (��) = 2� and thus about 0:56:Simpli
io: And on
e again we have a setting, where an approximation of good dataleads to medio
re results.



19.5. FOURIER INTERPOLATION: GIBBS' PHENOMENON 441Virginia: But at least the blips don't go o� to in�nity. I would say that is animprovement.Fourier: That's why we 
all them Fourier series.
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

The Graph y = x 

The X Values 

Y
 

Figure 19.4: The Gibbs E�e
t When Approximating f(x) = x by T4(x)
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Figure 19.5: The Gibbs E�e
t When Approximating f(x) = x by T8(x)Exer
ise Set 19.5.1. Compute and plot the trigonometri
 series approximation of the fun
tion de�nedby f(x) = 8<: �1 if x 2 [��; 0)1 if x 2 [0; �℄ :Approximate the blip at x = 0 for the integers n = 4; 6; and 10: Where do you�nd the blips? How big are they?
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Figure 19.6: The Gibbs E�e
t When Approximating f(x) = x by T20(x)2. Compute and plot the trigonometri
 series approximation of the fun
tion de�nedby f(x) = 8<: 0 if x 2 [0; �)1 if x 2 [�; 2�℄ :Approximate the blip at x = 0 for the integers n = 4; 6; and 10: Where do you�nd the blips? How big are they?19.6 Fourier Interpolation: Pythagoras/ParsevalGalileo: We are now in a position to prove the theorem of Pythagoras one more time.How about an explanation Professor Fourier?Fourier: The only di�eren
e between this theorem and the one Professor Hilbert gaveyou previously is that the word ve
tor will be repla
ed by the word fun
tion. Inparti
ular, we will prove the theorem for fun
tions of the form Tn(x): If you under-stood Professor Hilbert's Linear Algebra proof, you will understand this one with noproblem. The data ve
tor y = (y0; y1; y2; : : : ; y2n)t 
an be visualized at the diagonalin an n-dimensional parallelepiped (i.e. re
tangle). If x = (x0; x1; : : : ; x2n)t; then thesides of the box 
an be visualized as represented by a set of orthogonal ve
tors of theformu0 = (1; 1; : : : ; 1)t;u1 = 
os(x)t;u2 = 
os(2x)t; : : : ;un = 
os(nx)t;v1 = sin(x)t;v2 =sin(2x)t; : : : ;vn = sin(nx)t: We understand that the notation u1 = 
os(x)t simply



19.6. FOURIER INTERPOLATION: PYTHAGORAS/PARSEVAL 443means that u1 = 
os(x)t = (
os(x0; 
os(x1); : : : ; 
os(x2n)t: The proof works be
ausethe ve
tors um = 
os(mx)t and vk = sin(kx)t are mutually perpendi
ular.Virginia: Interesting.Simpli
io: Groan.Theorem 19.6.1 (Pythagoras/Parseval). If xk = k2n+12�; for k = 0; 1; : : : ; 2n;and y0; y1; y2; : : : ; y2n are 2n+ 1 given data values, andTn(x) = a02 + nXk=1[ak 
os kx + bk sin kx℄has the property that Tn(xk) = yk for all k = 0; 1; : : : ; 2n; then22n+ 1 2nXk=0 y2k = a202 + nXk=1(a2k + b2k):Proof. As in the previous theorem, we only give the proof for the 
ase when n = 2:If we set y = (y0; y1; y2; y3; y4)t;u0 = (1; 1; 1; 1; 1)t;u1 = 
os(x)t;u2 = 
os(2x)t;v1 =sin(x)t; and v2 = sin(2x)t; then T2(x) = a02 u0 + a1u1 + a2u2 + b1v1 + b2v2: Thus, bythe Orthogonality and Equal Lengths Properties, we see that< y;y >= < a02 u0 + a1u1 + a2u2 + b1v1 + b2v2; a02 u0 + a1u1 + a2u2 + b1v1 + b2v2 >= < a02 u0; a02 u0 > + < a1u1; a1u1 > + < a2u2; a2u2 > +< b1v1; b1v1 > + < b2v2; b2v2 >= (a02 )2 < u0;u0 > +a21 < u1;u1 > +a22 < u2;u2 > +b21 < v1;v1 > +b22 < v2;v2 >= 5(a02 )2 + 52a21 + 52a22 + 52b21 + 52b22:Thus, 25 4Xk=0 y2k = a202 + 2Xk=1(a2k + b2k):The reason the argument works is be
ause orthogonality implies that all the in-ner produ
ts < um;vk >;< um;uk >; and < vm;vk > equal zero ex
ept for thespe
ial 
ases when < u0;u0 >= 5; < u1;u1 >= 52 ; < u2;u2 >= 52 ; < v1;v1 >= 52 ; <v2;v2 >= 52 : Orthogonality does the tri
k.



444 CHAPTER 19. FOURIER INTERPOLATIONFourier: As I think you 
an see, the proof of the general theorem is going to be thesame as the n = 2 
ase. The only di�eren
e is that we will need to sum more terms.Simpli
io: Even I 
an see that. In fa
t, this proof looks familiar.Fourier: It should. When we proved the 
oeÆ
ient formula, we used almost the sameargument.Simpli
io: Ok, but what is all this theory good for? How about an example?Fourier: It is a bit diÆ
ult to give an interesting example for this theorem be
auseif I give you a ve
tor y = (y0; y1; y2; : : : ; y2n)t; note that all you are going to do is
ompute the sum 22n+1P2nk=0 y2k and the sum a202 +P2nk=1(a2k+ b2k) and 
he
k if they areequal. Do you want me to bore you?Simpli
io: Not today.Virginia: But the theorem is a lovely extension of Pythagoras's ideas. I really likethis theorem.Simpli
io: I am sure you do.19.7 A Fourier Appli
ation: Signal CompressionFourier: How about an appli
ation?Simpli
io: An appli
ation would be appre
iated.Fourier: How about signal and image 
ompression?Simpli
io: I must admit that I �nd image 
ompression interesting.Fourier: The �rst pie
e of information to mention is that the dis
rete 
osine transformis an integral 
omponent of the JPEG and MPEG �le formats that are used to displayimages on the internet. At least that was true until the year 2000.Simpli
io: What happened then?Fourier: The te
hniques were upgraded from trigonometri
 series to wavelets.Simpli
io: What is a wavelet?Fourier: While there are a multitude of te
hni
alities with wavelets, the basi
 idea isto build a 
olle
tion of basis fun
tions that have the same orthogonality properties



19.7. A FOURIER APPLICATION: SIGNAL COMPRESSION 445as sines and 
osines, but whi
h don't os
illate up and down forever. In other words,outside of some �nite interval (e.g. [0; 1℄), they always equal zero. These fun
tionsare preferred in a multitude of real appli
ations be
ause data 
olle
tion and 
omputermemory are ne
essarily �nite.Galileo: Professor Fourier you digress.Fourier: While there are a number of ways to 
ompress a signal, the idea we willexplore uses the Theorem of Pythagoras/Parseval to measure how many 
oeÆ
ientswill be required to produ
e an a

urate re
onstru
tion of the signal.Simpli
io: What does it mean to re
onstru
t a signal?Fourier: By the CoeÆ
ient Formula for Trigonometri
 Interpolation, we 
an alwayssolve the problem: If given xk = k2n+12�; for k = 0; 1; : : : ; 2n and y0; y1; y2; : : : ; y2nare 2n + 1 given data values, then 
onstants ak and bk 
an be found so that thetrigonometri
 polynomialTn(x) = a02 + nXk=1[ak 
os kx + bk sin kx℄has the property that Tn(xk) = yk for all k = 0; 1; : : : ; 2n:Sin
e Tn(xk) = yk for all k = 0; 1; : : : ; 2n; we have perfe
t re
onstru
tion. If wethrow away some of the 
oeÆ
ients (i.e. set some ak's or bk's = 0), then we 
anno longer expe
t the equalities Tn(xk) = yk to always hold. This issue leads to the
on
ept of imperfe
t re
onstru
tion and provides a fundamental te
hnique for lossy
ompression.Simpli
io: In other words, the idea is to repla
e the given data values y0; y1; y2; : : : ; y2nby the 
oeÆ
ients a0; a1; a2; : : : ; an; b1; b2; : : : ; bn: If you retain all the 
oeÆ
ients, youhave perfe
t re
onstru
tion be
ause you 
an always 
ompute yk = Tn(xk): The prob-lem with perfe
t re
onstru
tion is that you have no savings when you store your dataon your hard drive. For lossy 
ompression, you 
an \re
onstru
t" the data by 
om-puting ŷk = T̂n(xk); where the formula for T̂n(x) is the same as for Tn(x) ex
ept thatsome of the 
oeÆ
ients have been set equal to zero.Fourier: Very good. First of all, when we set 
ertain 
oeÆ
ients ak = 0 and bk = 0;



446 CHAPTER 19. FOURIER INTERPOLATIONfor k > N; then we are simply 
omputing the best least squares approximation of thedata using the fun
tionT̂n(x) = TN (x) = a02 + NXk=1[ak 
os(kx) + bk sin(kx)℄;where N < n:Se
ond, as we remarked in our dis
ussion of least squares, the 
oeÆ
ient formulasare the same as before. In parti
ular,ak = 22n+ 1 2nXj=0 yj 
os(kxj) for k = 0; 1; 2; : : : ; N;and bk = 22n+ 1 2nXj=0 yj sin(kxj) for k = 1; 2; : : : ; N:Virginia: But wait a minute. I dete
t a potential problem here. What if ŷk = TN (xk)is not 
lose to the original value yk?Fourier: We should now 
all in our friend Pythagoras. He would be proud to knowhis ideas are still being dis
ussed after all these years. In his pla
e, let us remark thatwe know by Pythagoras/Parseval that22n + 1 2nXk=0 y2k = a202 + nXk=1(a2k + b2k):If we form the fra
tion Q = a202 +Pnk=1(a2k + b2k)22n+1P2nk=0 y2k ;then Q most de�nitely equals 1.Simpli
io: No argument on this point.Fourier: If N � n and we form the fra
tionQN = a202 +PNk=1(a2k + b2k)22n+1P2nk=0 y2k ;then Q � 1:Simpli
io: We have simply dis
arded some positive terms in the numerator. Noargument on this point as well.



19.7. A FOURIER APPLICATION: SIGNAL COMPRESSION 447Fourier: Let me now ask you an old question in Physi
s. What is the formulas forkineti
 energy?Virginia: Of 
ourse, KE = 12mv2:Fourier: Noti
e that kineti
 energy has the velo
ity squared. If you think about it, thefra
tion QN 
an be thought of as providing a measure of the energy in the 
oeÆ
ientsused divided by the total energy of the data. If N = n; the two measures of energyare in balan
e and QN = 1: In this 
ase, we have lossless 
ompression. We now askthe following question: If we want 90% of the information in the data, then how dowe 
hoose N?Virginia: I bet I 
an guess. How about if we simply 
hoose N to be an integer lessthan n with the property that QN > 0:90: We will a
hieve the greatest 
ompression,if we 
hoose N to be the smallest su
h integer.Fourier: You got it.Simpli
io: How about an example?Fourier:Example 19.7.1. Given seven data points �3;�2;�1; 0; 1; 2; 3; 
ompute the smallestinteger N with the property that QN > 0:85; where oeÆ
ients N are needed so thatthe quotient QN = a202 +PNk=1(a2k + b2k)22n+1P2nk=0 y2k :If we make the 
omputations, we �nd Q1 = 0:6640 and Q2 = 0:8685: Thus, we 
an
hoose N = 2:Simpli
io: Seems OK to me.Fourier: Now lets 
ondu
t a little experiment, where we \double the data" before we
ompute the 
oeÆ
ients and the quotient QN : What I mean by doubling the datais to take the 7-dimensional ve
tor y = (�3;�2;�1; 0; 1; 2; 3) and extend it to the13-dimensional ve
tory2 = (�3;�2;�1; 0; 1; 2; 3; 3; 2; 1; 0;�1;�2): When we do this, we �nd that all the
oeÆ
ients bk = 0; for all k = 1; 2; 3; 4; 5; 6
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io: Why didn't you make y2 into a 14-dimensional ve
tor with last 
oordinateequal to �3?Fourier: If we use that strategy, we don't quite a
hieve the key symmetry relationthat makes the terms 
an
el out. Sin
e the fun
tions sin(kx) are \anti-symmetri
"about the verti
al line x = � (i.e. f(� + x) = �f(� � x) for all x 2 <) and sin
e� � xj = x13�j � �; we know thatsin(kx7) =� sin(kx6);sin(kx8) =� sin(x5);sin(kx9) =� sin(x4);sin(kx10) =� sin(x3);sin(kx11) =� sin(x2);sin(kx12) =� sin(x1):Note that we may need the sum formulas for sin(x) to make this argument 
omplete.Thus, y6 sin(kx7) + y6 sin(kx6) = 0;y5 sin(kx8) + y5 sin(kx5) = 0;y4 sin(kx9) + y4 sin(kx4) = 0;y3 sin(kx10) + y3 sin(kx3) = 0;y2 sin(kx11) + y2 sin(kx2) = 0;y1 sin(kx12) + y1 sin(kx1) = 0and thus bk = y0 sin(0) + y1 sin(kx1) + y2 sin(kx2) + y3 sin(kx3) +y4 sin(kx4) + y5 sin(kx5) + y6 sin(kx6) + y6 sin(kx7) +y5 sin(kx8) + y4 sin(kx9) + y3 sin(kx10) + y2 sin(kx11) +y1 sin(kx12) = 0:



19.7. A FOURIER APPLICATION: SIGNAL COMPRESSION 449We have just proved a spe
ial 
ase of the following proposition.Proposition 19.7.1. If y = (y0; y1; : : : ; yn; yn+1; : : : ; y2n) is a (2n+ 1)�dimensionalve
tor with the property that yn+1 = yn; yn+2 = yn�1; : : : ; y2n = y1; then bk = 0; forany integer k = 1; 2; : : : ; n:Proof. Sin
e xj = j 2�2n+1 and x2n+1�j = (2n + 1 � j) 2�2n+1 ; a bit of arithmeti
 
an beused to show that � � xj = x2n+1�j � �:By the sum formula for sin(x); we knowsin(k(� � xj)) = sin(k�) 
os(kxj)� sin(kxj) 
os(k�) = � sin(kxj) 
os(k�)and sin(k(x2n+1�j � �)) = sin(kx2n+1�j) 
os(k�)� sin(k�) 
os(kx2n+1�j)= sin(kx2n+1�j) 
os(k�):Thus, � sin(kxj) 
os(k�) = sin(kx2n+1�j) 
os(k�):Dividing both sides of this equation by 
os(k�); we see that� sin(kxj) = sin(kx2n+1�j):Sin
e y2n+1�j = yj; for all j,�yj sin(kxj) = y2n+1�j sin(kx2n+1�j) for all j: Sin
e the
oeÆ
ient bk = 22n+ 1 nXj=1(yj sin(kxj) + y2n+1�j sin(kx2n+1�j) = 0;we are done.Simpli
io: That last proof was a bit te
hni
al. How about an example.Fourier: No problem How about if we repeat the same problem we dis
ussed a fewminutes ago?Simpli
io: I'm easy.



450 CHAPTER 19. FOURIER INTERPOLATIONExample 19.7.2. Given the same seven data points (so n = 6) �3;�2;�1; 0; 1; 2; 3;we double the data to the 13 point set �3;�2;�1; 0; 1; 2; 3; 3; 2; 1; 0;�1;�2: We nowwould like to interpolate this data with the fun
tion T6(x): By the proposition, weknow that b1 = b2 = b3 = b4 = b5 = b6 = 0 so we only need to 
ompute the 
oeÆ
ientsak's. As before, we would like to �nd the smallest integer N � 6 with the propertythat QN > 0:85; where QN = a202 +PNk=1 a2k22n+1(y20 + 2P6k=1 y2k) :If we make the 
omputations, we �nd Q1 = 0:9839 > 0:85: Thus, we 
an 
hooseN = 1:Simpli
io: N = 1! Hey, that tri
k worked mu
h better than when the bk's wereinvolved. With the previous 
omputations, we saw thatQ1 = 0:6640 andQ2 = 0:8685;where the value of Q1 requires the three 
oeÆ
ients a0; a1; b1 and the value of Q2requires the �ve 
oeÆ
ients a0; a1; a2; b1; b2: By doubling the data and saving only the
oeÆ
ients a0 and a1; we get far better re
onstru
tion than before. I am getting abit more interested. What's going on here?Virginia: I bet there is a theorem lurking here somewhere.Fourier: You got it. The problem with the data set is that the �rst value y0 = �3and the last data point y6 = 3: In parti
ular, the values y0 does not equal y6:Simpli
io: In fa
t, the data is essentially a straight line between the two points (0;�3)and (2�; 3) so Gibbs is sure to haunt you.Fourier: The Gibbs problem disappears if you approximate a 
ontinuous fun
tionf(x) : [��; �℄! <; whi
h is blessed with the additional property that f(��) = f(�):An even fun
tion always has this desired property.Virginia: So this theorem will show that the approximations of the Runge examplef(x) = 11 + x2 by fun
tions Tn(x) will 
onverge with no blips?Fourier: Corre
t.Simpli
io: So, even is good, odd is evil.Fourier: Not quite.



19.8. COMPLEX NUMBERS: A BRIEF REVIEW 451with the property that f(��) = f(�): Similarly, the Gibbs problem disappears ifyou are approximating a 
ontinuous fun
tion f(x) : [0; 2�℄ ! < with the propertythat f(0) = f(2�): While we always manage to ge pointwise 
onvergen
e for any
ontinuous fun
tion, we manageFourier: How about working a few problems to 
he
k your understanding?Exer
ise Set 19.7.1. Given seven data points 0; 2; 3; 5; 7; 11; 13; 
ompute the 
oeÆ
ients a0; a1; a2; a3; b1; b2; b3:How many 
oeÆ
ients N � 3 are needed so that the quotientQ = a202 +PNk=1(a2k + b2k)22n+1P6k=0 y2k � 0:90?2. Redo the previous problem after the data has been doubled.3. If the data y0; y1; : : : ; y2n has the property that it is anti-symmetri
 about themiddle value (i.e. yn = �yn+1; yn�1 = �yn+2; et
.) and y0 = 0; then showthat all the 
oeÆ
ients ak = 0: Thus, if a data set has this property, then the
oeÆ
ients ak do not have to be 
omputed.19.8 Complex Numbers: A Brief ReviewGalileo: In preparation of our dis
ussion of the 
omplex Fourier transform, we noware for
ed to 
onsider (and understand!) 
omplex numbers.Virginia: Mother Nature insists!Galileo: This transform arises from polynomial interpolation, where the points (zk; yk)are 
hosen with the restri
tion that the points zk lie uniformly spa
ed on the unit
ir
le in the 
omplex plane.Simpli
io: Wait a minute. Our previous dis
ussion of the dis
rete Fourier transformseems just �ne to me. Why would we 
ompli
ate the dis
ussion by introdu
ing 
om-plex numbers? I am only interested in real data. In any 
ase, I am out of my 
omfortzone here.



452 CHAPTER 19. FOURIER INTERPOLATIONVirginia: They have always seemed a bit imaginary to me as well.Galileo: If our goal is to solve equations, Mother Nature won't allow us to ignore
omplex numbers. Re
all that the equation x2 = �1 does not have a real solution.In general, even though your problem 
an be stated in terms of 
omplex numbers,the solution may not.Simpli
io: Onward.Galileo: While the an
ient Greeks had the 
on
epts of distan
e, numbers, addition,subtra
tion, multipli
ation, and division, they had only a limited understanding ofAlgebra. In fa
t, not only were negative numbers unknown to them, they didn't evenhave the 
on
ept of zero.Simpli
io: I understand zero dollars!Galileo: No problem arose when the an
ients wanted to solve an equation of the formx+2 = 3 or a proportion of the form x1 = 1�xx : However, this trun
ated understandingof Algebra led to trouble when they tried to solve equations like x + 3 = 2:Virginia: Where the answer is negative and you are for
ed to 
onsider negative num-bers?Galileo: Corre
t. Even mu
h later the Father of Algebra, Muhammad ibn Musaal-Khwarizmi (780-850) avoided negative numbers. For example, he would write theexpression ax2 � bx = 0 as ax2 = bx:Simpli
io: But negative numbers are easy. You just add, subtra
t, multiply, anddivide the same way you manipulate positive numbers. No problem.Galileo: Very good. but for the an
ients, negative numbers were just as virtual as
omplex numbers are for you. What does it mean for you to have �$100:00 in yourpo
ket?Virginia: Your last pur
hase was 
harged to your 
redit 
ard!Galileo: Exa
tly my point. Credit 
ards are virtual. How about a se
ond question:Why does (�1)(�1) = +1?Simpli
io: I'm not sure. A
tually, I never did like that rule.Galileo: The underlying for
e behind that equation is the desire to solve di�erent



19.8. COMPLEX NUMBERS: A BRIEF REVIEW 453types of equations. These equations 
an be linear, quadrati
, 
ubi
, or worse. Itdoesn't matter.Simpli
io: I don't see the 
onne
tion between the rule (�1)(�1) = +1 and solvingequations.Galileo: While the subje
t of Algebra has taken several millenia to unfold, we arenow 
lear that the essen
e of an algebrai
 stru
ture is a set of points X together withone or two operations su
h as addition and/or multipli
ation. The points in the setX are usually represented by the letters a; b; 
 and x; y; z; et
:; while the operationsare usually represented by the symbols +;�; �; =: It wasn't until Ni
ole d' Oresme(1323-1382), Johannes Widmann (1460-1524), William Oughtred (1574-1660), andGottfried Wilhelm Leibniz (1646-1716) 
ame along that people began to realize thesemathemati
al operations deserve their own symbology. By using di�erent symbolsfor points and operations, the impli
it message is that they are indeed di�erent. Didyou realize that the symbol for addition \ + " is derived from the Latin word \et."Virginia: Whi
h, of 
ourse, means \and."Galileo: Not only were the an
ient Greeks not quite 
lear about points and operations,but even the Father of Algebra, the Medieval Indian mathemati
ians, and Leonardoof Pisa (1188-1250) (otherwise known as Fibona

i) were also not quite 
lear. Themodern view is that the starting point should be the set of natural numbers N =1; 2; : : : ; n; : : : together with the operations of addition (+) and multipli
ation (�):These operations should satisfy both the asso
iative and 
ommutative laws for bothaddition and multipli
ation. The distributive law is the for
e that binds additionand multipli
ation. If you didn't have the distributive law, then you 
ould studythese two operations separately. The whole numbers are the slightly larger set W =0; 1; 2; : : : ; n; : : : with the same two operations.Simpli
io: So what about negative numbers?Galileo: The dis
ussion be
omes 
lear when we 
onsider the whole numbers as asubset of the integers Z = : : : ;�n; : : : ;�3;�2;�1; 0; 1; 2; : : : ; n; : : : ; where the minussign (�) fun
tions in two ways. First, this sign indi
ates a new symbol to be added



454 CHAPTER 19. FOURIER INTERPOLATIONto the set N: Se
ond, it a
ts as a new operation, whi
h is the inverse operation foraddition. Not only does the set Z 
ontain both N and W; but the operations ofaddition and multipli
ation 
an be extended so the asso
iative, 
ommutative, anddistributive laws 
ontinue to hold. The fa
t that the number zero 
ontinues as theadditive identity (along with the rules n + 0 = n; n + (�n) = 0; and n � n = 0) is
ru
ial.Simpli
io: So, why do I want all these laws?Galileo: Be
ause you 
an now solve equations by repeated appli
ations of just afew simple laws. In other words, on
e you know these laws, you 
an manipulate theequations with no fear of getting an in
orre
t answer. This pro
ess a
tually make slifeeasier. Colin Ma
laurin (1698-1746) understood this strategy. He always 
onsidereda negative quantity to be no less real than a positive one.Virginia: Didn't you forget the additive and multipli
ative identities?Galileo: Oops! You are 
orre
t. You need to know:1. n+ 0 = n;2. n � 1 = n;3. n � 0 = 0; and4. n+ (�n) = 0:Simpli
io: Ok, so why is (�1) � (�1) = +1?Galileo: By rearranging, we 
an write (�1)� (�1) = +1 as (�1)� (�1)�1 = 0; whi
his equivalent to(�1) � (�1) + (�1) � (+1) = (�1) � (�1 + 1) = (�1) � 0 = 0:Thus, if we de
ide to extend the distributive law to the integers Z; then MotherNature gives us no 
hoi
e other than to make the rule (�1) � (�1) = +1:Simpli
io: So how do these remarks apply to 
omplex numbers?Galileo: While the an
ient Greeks were well aware of the quadrati
 formula and whileCardano extended (with the help of others!) extended the formula to 
ubi
s, it wasn't



19.8. COMPLEX NUMBERS: A BRIEF REVIEW 455until Rafael Bombelli (1526-1572) that 
larity emerged. In his text, Algebra; hepresented our now familiar rules for addition and multipli
ation of 
omplex numbers.Virginia: It is remarkable that su
h simple ideas took so long to unfold.Simpli
io: No wonder I have always hated Algebra and found it so diÆ
ult. Theytook 1500 years to �gure it out.Galileo: We have seen that before. Think about the Contra
tion Mapping Theorem.It is simple theorem to state and prove, but remarkably general.Simpli
io: I would say abstra
t.Virginia: So Bombelli had the idea that the real numbers 
an be thought of as asubset of a larger set of numbers with the property that the equation x2 = 1 
an besolved. Better yet, the operations of addition and multipli
ation 
an be extended tothis larger set in su
h a way that the asso
iative, 
ommutative, and distributive laws
ontinue to hold.Simpli
io: I worry.Galileo: If we assume that that the real numbers are well understood (and that is notat all obvious), we 
an write a 
omplex number in two di�erent ways. The �rst is asa sum z = a+ bi; where i = p�1: From this vantage point, we 
an add two numbersby the following rule:De�nition 19.8.1 (Complex Addition). If a; b; 
; d 2 <; i = p�1; z1 = a + bi;and z2 = 
+ di; then z1 + z2 = (a+ b) + (
+ d)i:We 
an also multiply two 
omplex numbers by the rule:De�nition 19.8.2 (Complex Multipli
ation). If a; b; 
; d 2 <; i = p�1; z1 =a+ bi; and z2 = 
+ di; then z1 � z2 = (a
� bd) + (ad+ b
)i:The advantage of 
omplex numbers is that Euler's formula ei� = 
os(�) + i sin(�)allows you to 
onsolidate two trigonometri
 fun
tions into one exponential. With onlyslight modi�
ations, all the ideas of interpolation, least squares, and orthogonality
ontinue as before.



456 CHAPTER 19. FOURIER INTERPOLATIONSimpli
io: While I don't mind the rule for addition, I don't see the justi�
ation formultipli
ation.Virginia: Obviously, the rule for multipli
ation is motivated by the distributive law.For if z1 = a + bi and z2 = 
 + di; then we 
an simply assume the distributive lawholds, multiply out the produ
t and gather terms. In parti
ular,z1 � z2 = (a+ bi) � (
+ di)= a
+ adi + b
i + bdi2= a
+ adi + b
i� bd= (a
� bd) + (ad+ b
)i:The real part of the number is a
 � bd; while the imaginary part is ad + b
: Thenegative sign appears be
ause i2 = �1:Galileo: Corre
t.Simpli
io: Are we done with all this Algebra?Galileo: How about if we formulate the algebrai
 rules into a proposition?Proposition 19.8.3. If z1; z2; z3 are 
omplex numbers, then the following rules hold.1. z1 + 0 = z1 (additive identity property)2. z1 � 1 = z1 (multipli
ative identity property)3. z1 + (z2 + z3) = (z1 + z2) + z3; (asso
iative law for addition)4. z2 + z1 = z1 + z2; (
ommutative law for addition)5. z1(z2z3) = (z1z2)z3; (asso
iative law for multipli
ation)6. z1z2 = z2z1; (
ommutative law for multipli
ation)7. z1(z2 + z3) = z1z2 + z1z3: (distributive law)Simpli
io: How about an example?Galileo: Sure.



19.8. COMPLEX NUMBERS: A BRIEF REVIEW 457Example 19.8.1. If z1 = 1+p3i2 ; and z2 = 1�p3i2 ; then by the distributive lawz1 � z2 = (1 +p3i2 ) � (1�p3i2 )= 14 + 34 + (�12p32 + 12p32 )i= = 1 + 0i = 1:This example leads to the Geometry of the 
omplex numbers.Simpli
io: Geometry?Galileo: If we think of the quantity i = p�1 as a pla
e holder for a 
oordinate, thenthe 
omplex number z = 1+p3i2 
an be written as the ve
tor z = (12 ; p32 ): Thus, theproposition given above indi
ates that we 
an add, subtra
t, multiply, and divide two2-dimensional ve
tors z1 = (a; b) and z2 = (
; d):Simpli
io: And the multipli
ation rule isz1 � z2 = (a; b) � (
; d) = (a
� bd; ad+ b
):Galileo: Now that we have addition and multipli
ation out of the way, we 
an turnto the idea of the modulus of a 
omplex number. This 
on
ept is de�ned by the rule:De�nition 19.8.4. If z = a + bi = (a; b); then the modulus is de�ned by kzk =pa2 + b2:Simpli
io: But wait a minute. Haven't you just 
omputed the length of the ve
tor(a; b)? Is modulus another word for length?Galileo: Corre
t. We 
ould just easily have 
alled it the 2�norm. For 
omplexnumbers, the words modulus, length, absolute value, and 2�norm are di�erent termsto des
ribe the same 
on
ept. They all have the same meaning. However, as soon aswe are talking about length, we are talking about Geometry.Virginia: And it all began with Pythagoras.Galileo: The next geometri
 
on
ept is embedded in the 
omputation of the 
onjugateof a 
omplex number. This 
omputation 
an be used whenever we 
ompute themodulus. We 
an visualize the 
onjugate as a \
ip" of a 
omplex number a
ross thex�axis.



458 CHAPTER 19. FOURIER INTERPOLATIONDe�nition 19.8.5. If z = a + bi = (a; b); then the 
onjugate is de�ned by the rulez = a� bi = (a;�b):The �rst appli
ation of the 
onjugate is to give us a se
ond de�nition of themodulus of a 
omplex number.Proposition 19.8.6. If z = a+ bi = (a; b); then kzk = pzz:Proof. Simpli
io: But this formula is obvious. All you have to do is make the 
om-putation.Virginia: It is also 
onvenient.Galileo: It is more than 
onvenient. In Geometry we are also interested in whetheror not two lines or ve
tors are orthogonal. In general, we would like to 
ompute theangle between two ve
tors. Right?Simpli
io: Sure.Galileo: How did we 
ompute angles before?Simpli
io: We 
omputed 
os(�) using the dot produ
t and norm.Virginia: More generally, we en
apsulated these 
omputations in the idea of innerprodu
t.Galileo: Ok, so to de
ide whether or not two 2�dimensional ve
tors z1 = (a; b) andz2 = (
; d) are orthogonal we 
he
k whether or not < (a; b); (
; d) >= a
 + bd equalszero.Virginia:Simpli
io:where x 2 [0; 2�℄ and z = a+ bi is a point on the unit 
ir
le in the 
omplex plane.In parti
ular, the length of z = pa2 + b2 = 1:Exer
ise Set 19.8.



19.9. THE DISCRETE FOURIER TRANSFORM: THE COMPLEX CASE 45919.9 The Dis
rete Fourier Transform: The Com-plex CaseGalileo: To begin our dis
ussion of the dis
rete 
omplex Fourier transform, let us
onsider the \polynomial" p1(z) = 
0 + 
1z + 
�1z�1 where z = a + bi is a point onthe unit 
ir
le in the 
omplex plane. (i.e. a2+ b2 = 1:) In our dis
ussions, we will usethe letter i to denote the square root of �1: In parti
ular, i2 = �1: As was the 
asewith previous dis
ussions of interpolation, we have the setting:Given the data (z0; y0); (z1; y1); (z2; y2);Find the 
onstants 
0; 
1; 
�1 so that p1(z0) = y0; p1(z1) = y1; p1(z2) = y2:This problem leads to the matrix equation:0BBB� 1z0 1 z01z1 1 z11z2 1 z21CCCA0BBB� 
0
1
�11CCCA = 0BBB�y0y1y21CCCA :As it turns out, a \smart" 
hoi
e of the points isz0 = 1; z1 = �1+p32 ; z2 = �1�p32 ; whi
h leads to the matrix equation0BBB�1 1 11 �1+p3i2 �1�p3i21 �1�p3i2 �1+p3i2
1CCCA0BBB� 
0
1
�11CCCA = 0BBB�y0y1y21CCCA :Does this equation look familiar?Simpli
io: Sure, but I still don't like those imaginary numbers in there.Galileo: To ease the pain, how about if think begin by thinking about the geometryasso
iated with Euler's formula.Virginia: You mean where the variable x denotes an angle between zero and 2� andeix = 
os(x) + sin(x) represents the 
orresponding point on the unit 
ir
le.To begin the dis
ussion, let us 
onsider the fun
tion T1(x) = a02 + a1 
os(x) +b1 sin(x) and the \polynomial" p1(z) = 
�1z�1 + 
0 + 
1z; where x 2 [0; 2�℄ andz = a+bi is a point on the unit 
ir
le in the 
omplex plane. In parti
ular, the length of



460 CHAPTER 19. FOURIER INTERPOLATIONz = pa2 + b2 = 1: This setting is virtually identi
al to the one we gave for polynomialinterpolation, where we were given n+1 data points (x0; y0); (x1; y1); : : : ; (xn; yn) andwere expe
ted to �nd a polynomial pn(x) = a0 + a1x + � � �+ anxn with the propertythat pn(xk) = yk for all k = 0; 1; 2; : : : ; n:Simpli
io: Exa
tly the same? I am suspi
ious here.Galileo: Well OK, if the setting were exa
tly the same, then I would be repeatingmyself. I 
ertainly wouldn't want to bore you. The di�eren
e this time is that wenow allow the variable x to be a 
omplex number z:Virginia: Do we still get to make \smart 
hoi
es" for the points x0; x1; : : : ; xn?Galileo: Absolutely. However, sin
e these numbers will be 
omplex, we will denotethem by the letters zk: Also, the notation will be a bit easier if we assume we have npoints and are interpolating with a polynomial of the form pn�1(z) = 
0+ 
1z+ � � �+
n�1zn�1:Simpli
io: Why did you 
hange the 
oeÆ
ients from ak to 
k?Galileo: While it is part of our 
ulture to use the 
oeÆ
ients ak and bk in the de�nitionof the fun
tion Tn(x) = a02 +Pnk=1[ak 
os(kx)+ bk sin(kx)℄; there is a 
lose 
onne
tionbetween these 
oeÆ
ients and the 
oeÆ
ients 
k in the \polynomial" pn(z) =Pnk=�n :In parti
ular, if z = eix; where x 2 [0; 2�℄; then by Euler's formula pn(z) = Tn(x)as long as we 
hoose ak = 
k and bk = i
k for all k = 0; 1; : : : ; n:integer n; we will be given let x0 = z0 = 1; x1 = z1 = ! = e 2�in ; where i = p�1;and xk = zk = !k for k = 1; 2; : : : ; n� 1:An example of the type of problem we are solving is: Given data points y0 and y1;�nd a polynomial of the form p2(z) = 
0 + 
1z su
h that p2(1) = y0 and p2(!) = y1:In this simple setting, ! = �1 and we need to solve the matrix equation0�1 11 �11A0�
0
11A = 0�y0y11A :The de�nition of the Fourier matrix F2 be
omes



19.9. THE DISCRETE FOURIER TRANSFORM: THE COMPLEX CASE 461F2 = 0�1 11 �11A :For three points, the problem we are solving be
omes: Given data points y0; y1;and y2; �nd a polynomial of the form p2(z) = 
0 + 
1z + 
2z2 su
h that p2(1) =y0; p2(!) = y1; and p2(!2) = y2; where ! is the 
ube root of unity de�ned by ! = e 2�i3 :In parti
ular, !3 = 1:The matrix equation that must be solved is0BBB�1 1 11 ! !21 !2 !41CCCA0BBB�
0
1
21CCCA = 0BBB�y0y1y21CCCA :The de�nition of the Fourier matrix F3 is given by
F3 = 0BBB�1 1 11 ! !21 !2 !41CCCA :If n = 4; then ! = e 2�i4 = i;!2 = �1;!3 = �! = �i; and!4 = 1:The 
orresponding Fourier matrix be
omes

F4 = 0BBBBBB�1 1 1 11 ! !2 !31 !2 (!2)2 (!3)21 !3 (!2)3 (!3)3
1CCCCCCA = 0BBBBBB�1 1 1 11 i �1 �i1 �1 1 �11 �i �1 i

1CCCCCCA :



462 CHAPTER 19. FOURIER INTERPOLATIONNote that the F2; F3; and F4 matri
es all have the stru
ture of a Vandermondematrix. Sin
e ea
h one arose as part of a solution to a problem in polynomial inter-polation, this observation is not an a

ident.We are now in a position to show that ea
h Fourier matrix Fn has two importantproperties. First, every pair of 
olumns are orthogonal. Se
ond, ea
h 
olumn haslength pn: Thus, on
e again we 
an eÆ
iently 
ompute the Fourier 
oeÆ
ients bysimply multiplying both sides of the equation by a matrix A�; whi
h has the propertythat A�A is diagonal. The purpose of the next dis
ussion is to give a 
areful de�nitionof this new matrix.We begin with a de�nition of the Fourier matrix.De�nition 19.9.1. If n is a positive integer and ! = e 2�in , then the Fourier matrixFn is de�ned by the rule:
Fn =

0BBBBBBBBBBBB�
1 1 1 1 : : : 11 ! !2 !3 : : : !n�11 !2 (!2)2 (!3)2 : : : (!n�1)21 !3 (!2)3 (!3)3 : : : (!n�1)3... ... ... ... : : : ...1 !n�1 (!2)n�1 (!3)n�1 : : : (!n�1)n�1

1CCCCCCCCCCCCA :
To make the dis
ussion of orthogonality more pre
ise, we need to extend thede�nition from the domain of ve
tors in <n to the 
omplex n�dimensional spa
e Cn:First, re
all the following de�nitions.De�nition 19.9.2. If z = a+bi 2 C; then the 
onjugate of z is denoted by z = a�bi:Example 19.9.1. If z = 3 + 4i; then z = 3� 4i:Sin
e an equivalent way to represent a 
omplex number z = a + bi is as a pointz = (a; b); we 
an graph any 
omplex number in the plane. Note that the graph of the
omplex 
onjugate z = (a;�b) is on the opposite side of the x�axis (or line y = 0:)from z:



19.9. THE DISCRETE FOURIER TRANSFORM: THE COMPLEX CASE 463Example 19.9.2. If z = 0BBB� 2 + i35� 2i1CCCADe�nition 19.9.3. If
A = 0BBBBBBBBB�

a11 a12 a13 a14 : : : a1na21 a22 a23 a24 : : : a2na31 a32 a33 a34 : : : a3n... ... ... ... : : : ...am1 am2 am3 am4 : : : amn
1CCCCCCCCCA ;

then the 
onjugate of A is the matrix
A = 0BBBBBBBBB�

a11 a12 a13 a14 : : : a1na21 a22 a23 a24 : : : a2na31 a32 a33 a34 : : : a3n... ... ... ... : : : ...am1 am2 am3 am4 : : : amn
1CCCCCCCCCA :

De�nition 19.9.4. If A 2 Cm�n; then the adjoint of A is de�ned by A� = At:De�nition 19.9.5. If z1 and z2 are 
omplex 
olumn ve
tors in Cn; then the innerprodu
t is de�ned by < z1; z2 >= z�1z2:Example 19.9.3. If z1 = 0BBB� 2 + i35� 2i1CCCA and z2 = 0BBB� 7 + i11� 5i13� 8i1CCCAthen < z1; z2 >=(2 + i)(7 + i) + 3(11� 5i) + (5� 2i)(13� 8i)=(2� i)(7 + i) + 3(11� 5i) + (5 + 2i)(13� 8i)=129� 34i:



464 CHAPTER 19. FOURIER INTERPOLATIONDe�nition 19.9.6. If z1 and z2 are 
omplex 
olumn ve
tors in Cn; then they areorthogonal if < z1; z2 >= 0:De�nition 19.9.7. If z is a 
omplex 
olumn ve
tor in Cn; then the 2-norm of z isgiven by jzj = p< z; z >:Note that the 2-norm of a 
omplex ve
tor simply represents its length.Proposition 19.9.8. If n is a positive integer and ! = e 2�in ; then 1 + !+ !2 + : : :+!n�1 = 0:Proof. Sin
e !n = 1; we know by the formula for the geometri
 series that 1 + ! +!2 + : : :+ !n�1 = 1�!n1�! = 0:Proposition 19.9.9 (Complex Fourier: Orthogonality and Equal Lengths).The 
olumns of the Fourier matrix Fn are pairwise orthogonal and the matrix D =F �nFn is a diagonal matrix with ea
h entry on the diagonal equal to the integer n: Inparti
ular, the 2-norm of ea
h 
olumn of Fn is pn:Proof. This proposition follows immediately from the assumption that !n = 1; thefa
t that !! = 1; and the previous proposition.Proposition 19.9.10. The inverse of the Fourier matrix Fn is the matrix 1nF �n :Proof. This fa
t follows immediately from the previous proposition.Theorem 19.9.11 (Complex Fourier: CoeÆ
ient Formulas). If y0; y1; : : : ; yn�1is a given set of data and ! = e 2�in ; then the 
oeÆ
ients of the polynomial pn�1(z) =
0+
1z+ : : :+
n�1zn�1 with the property that pn�1(!k) = yk for all k = 0; 1; : : : ; n�1are 
k = 1nPn�1j=0 yj!jk; for k = 0; 1; : : : ; n� 1:Proof. The matrix equation that must be solved is Fn
 = y; where 
 = (
0; 
1; : : : ; 
n�1)tand y = (y0; y1; : : : ; yn�1)t: Sin
e the 
olumns of Fn are pairwise orthogonal and allhave 2-norm equal to pn; 
k = 1n < !k; y >; where !k is the kth 
olumn of Fn: Sin
e< !k; y >=Pn�1j=0 yj!jk; we are done.



19.9. THE DISCRETE FOURIER TRANSFORM: THE COMPLEX CASE 465Theorem 19.9.12 (Complex Parseval/Pythagoras). If y0; y1; : : : ; yn�1 is a givenset of data in C; ! = e 2�in ; pn�1(z) = 
0 + 
1z + : : : + 
n�1zn�1 with 
k 2 C for allk = 0; 1; : : : ; n � 1 is a polynomial with the property that pn�1(!k) = yk for allk = 0; 1; : : : ; n� 1; thenn�1Xj=0 y2j = 1n(j
0j2 + j
1j2 + : : :+ j
n�1j2):Exer
ise Set 19.9.1. If z = 0BBB� 2 + i35� 2i1CCCA ;then 
ompute the 2-norm of the ve
tor z:2. If ! = e 2�i3 and y0 = 2; y1 = 3; y2 = 5 are given points, then �nd 
onstants
0; 
1; 
2 su
h that the polynomial p2(z) = 
0 + 
1z + 
2z2 has the property thatp2(1) = y0; p2(!) = y1; and p2(!2) = y2:3. If ! = e 2�i3 and y0; y1; y2 are given points, then �nd 
onstants 
0; 
1; 
2 su
h thatthe polynomial p2(z) = 
0+
1z+
2z2 has the property that p2(1) = y0; p2(!) =y1; and p2(!2) = y2:
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Chapter 20
Cubi
 Spline Interpolation

Isaa
 S
hoenbergGalileo: The idea behind this next dis
ussion is to show that polynomials 
an beof great use as long as you make an e�ort to 
ontrol them. These ideas were �rstdeveloped by Romanian born Isaa
 S
hoenberg (1903-1990), who is re
ognized asthe inventor of splines. While he was more interested in their use in theoreti
almathemati
s, they now play a fundamental role in numerous appli
ations in
luding467



468 CHAPTER 20. CUBIC SPLINE INTERPOLATIONdata �tting, 
omputer graphi
s, and 
omputer-aided design. The primary reasonspline te
hniques are used in so many di�erent real-world appli
ations is that theyare stable.Simpli
io: I am not sure of the meaning of the word stable when used in this 
ontext.Galileo: Hopefully you remember our dis
ussion of the Runge example, where thesmooth fun
tion f(x) = 11+25x2 was approximated by interpolating polynomials onthe interval [�1; 1℄: As the degree of the polynomial was in
reased, the a

ura
y ofthe approximation be
ame worse.Simpli
io: Oh yes, the approximation was parti
ularly poor at the endpoints.Galileo: The good news is that with splines that type of problem will never o

ur.Simpli
io: Sounds good.Galileo: While a multitude of di�erent kinds of splines have been devised, we will
onsider only four di�erent types: B-splines, 
lamped, free, and periodi
. Note thatsome resear
hers refer to 
lamped splines as \
omplete splines" and some people 
allfree splines \natural."While ea
h of the di�erent types of splines have their uses, periodi
 splines areparti
ularly useful be
ause they 
an be used to 
onstru
t digital 
ontours in the planepassing through a given �nite set of points. These 
ontours will be smooth and thusnot 
ontain any sharp 
orners.Simpli
io: Where do we begin?Galileo: For several reasons the 
lass of pie
ewise linear fun
tions provide a naturalentry point into the dis
ussion of splines. The �rst reason is a pedagogi
al issue.Namely, the idea of a spline is most a

essible if the 
onstru
tion of a pie
ewiseapproximation is well understood. The se
ond reason is that the error formula forpie
ewise linear approximation is not only useful by itself, but also provides a keypie
e of information used in the proof of the 
onvergen
e formula for 
lamped splines.The theory for 
lamped splines turns out to be spe
ial in a number of ways.First, the 
lamped spline is 
hara
terized as the smooth interpolating fun
tion withthe \fewest number of os
illations." This idea 
an be formulated mathemati
ally as



469an integral of the se
ond derivative squared. This integral 
an be thought of as ameasure of the \energy" of the fun
tion. The less energy in the fun
tion, the feweros
illations. The 
lamped 
ubi
 spline is the smooth interpolant, whi
h minimizesthis energy fun
tion. Remarkably, integration by parts and a modern version of thePythagorean Theorem are used in the proof of this minimization theorem.Simpli
io: Why should I 
are about the integral of the square of the se
ond derivative?Galileo: While the minimization theorem provides enjoyable reading for a mathemati-
ian, an engineer is more likely to be interested by the high 
onvergen
e rates providedby 
lamped 
ubi
 splines. For most situations, the 
onvergen
e rate is 4th-order forthe interpolants and 2nd-order for the se
ond derivatives. As a demonstration of thepower of the method, we will apply splines to the fun
tion f(x) = 11+25x2 and showthat not only does the sequen
e of splines 
onverge to the fun
tion, but the sequen
eof se
ond derivatives 
onverge as well.Simpli
io: What are the di�eren
es between these splines?Galileo: To avoid te
hni
al diÆ
ulties, we will limit our dis
ussion to the settingwhere the partition has equally spa
ed points. When we make this assumption, theinterpolant 
an be written as a linear 
ombination of fun
tions whi
h are formed astranslated and s
aled versions of a single standard spline fun
tion. In all four 
ases,the 
onstants 
an be found by solving a system of equations, where the 
oeÆ
ientmatrix has a spe
ial easy to understand form. The 
oeÆ
ient matrix for the B-splineinterpolant has 10s on the diagonal and 14 0s on the super and sub-diagonals. Everyother entry in the matrix is zero. The matri
es for the other three types of splinesare minor variations of this one.The B-spline interpolation te
hnique is the easiest to explain be
ause no dis
ussionof the endpoints is required. The other three types of splines are the same as B-splinesex
ept that additional restri
tions are pla
ed on the endpoints of the interval. For the
lamped spline, the �rst derivatives of the interpolant SC(x) are for
ed to be equalto preset values at the two endpoints. Thus, S 0C(a) = y00 and S 0C(b) = y0n; where y00and y0n are given values. For the free spline, the se
ond derivatives of the interpolant



470 CHAPTER 20. CUBIC SPLINE INTERPOLATIONSF (x) are set equal to zero at the two endpoints. Thus, S 0F (a) = 0 and S 0F (b) = 0: Forperiodi
 splines, the interpolant SP (x) is for
ed to have the property that derivativesagree at the endpoints. Thus, SP (a) = SP (b); S 0P (a) = S 0P (b); and S 00P (a) = S 00P (b):Simpli
io: While this all sounds interesting, I am not sure I am a believer yet.Galileo: It took S
hoenberg 20 years to get people to pay attention to what hewas doing. However, with the advent of the 
omputer in the early 1960's interestskyro
keted be
ause engineers found them useful in a multitude of appli
ations.20.1 Pie
ewise Linear InterpolationGalileo: Even though the fo
us of this se
tion is on splines, we begin with a dis
ussionof linear interpolation. While we 
ould have presented this material earlier, it providesan ex
ellent introdu
tion into the ideas and 
onvergen
e theorems we will en
ounterfor 
lamped splines.We begin our dis
ussion with a brief review of some notation and a brief intro-du
tion to some new notation.Let P = fa = x0 < x1 < : : : xn = bg denote a �xed partition of [a; b℄:De�nition 20.1.1. If P = fa = x0 < x1 < : : : xn = bg is a partition, then the meshof P is de�ned by kPk = maxfxi+1 � xi : i = 0; 1; : : : ; n� 1g:If P is a partition of [a; b℄, then let CP [a; b℄ denote the set of all 
ontinuousfun
tions on [a; b℄ whi
h are linear on ea
h segment [xi; xi+1℄. This 
olle
tion offun
tions will be referred to as the pie
ewise linear fun
tions.De�nition 20.1.2. A Pie
ewise Linear Bump or Chapeau fun
tion is de�ned byBi(x) = 8>>>>><>>>>>: x�xi�1xi�xi�1 x 2 [xi�1; xi℄xi+1�xxi+1�xi x 2 [xi; xi+1℄0 otherwise.



20.1. PIECEWISE LINEAR INTERPOLATION 471Note that the fun
tions Bi(x) are 
ontinuous on [a; b℄: In fa
t, these fun
tions arezero from �1 to xi�1; a straight line with positive slope from xi�1 to xi; a straightline with negative slope from xi to xi+1; and zero from xi+1 to 1:Proposition 20.1.3. If a fun
tion f(x) is de�ned on an interval [a; b℄ and P =fa = x0 < x1 < : : : xn = bg is a partition of [a; b℄; then the pie
ewise linear fun
tionIf(x) = n�1Pk=0 f(xk) �Bk(x) has the property that If(xk) = f(xk) for all k = 0; 1; : : : ; n:Proof. Note that Bi(xj) = Æij = 8><>:0 if i 6= j1 if i = j:Note that the fun
tion If(x) = n�1Pk=0 f(xk) � Bk(x) is 
alled the pie
ewise linearapproximation of f(x): Sin
e any pie
ewise linear fun
tion �(x) in the 
olle
tionCP [a; b℄ 
an be written in the form �(x) = n�1Pk=0 �(xk) � Bk(x); the set of fun
tionsfBk : k = 0; 1; : : : ; n� 1g form a basis for the set of all fun
tions in CP [a; b℄: This setof fun
tions is 
omparable to the fun
tions Lk(x); whi
h were used in the Lagrangemethod for polynomial interpolation. In parti
ular, note that the Chapeau fun
tionBk(xj) is equal to zero at all points xj; where j 6= k:De�nition 20.1.4. If a fun
tion f(x) is de�ned on an interval [a; b℄; then the1�norm(or sup norm) of f(x) is de�ned by the rule kfk1 = maxfjf(x)j : x 2 [a; b℄g:More intuitively, kfk1 is the maximum value of jf(x)j on the interval [a; b℄:Proposition 20.1.5. If f(x) 2 C2[a; b℄ and f(a) = f(b) = 0; then kfk1 � 18kf 00k1:Proof. By the Lagrange error formula there is a �rst degree polynomial p1(x) su
hthat for every x 2 [a; b℄ there is a z su
h thatf(x) = p1(x) + f 00(z)2 (x� a)(x� b):Sin
e f(a) = f(b) = 0; p1(x) = 0 for all x 2 [a; b℄: Thus, there is a point z 2 [a; b℄su
h that f(x) = f 00(z)2 (x� a)(x� b):



472 CHAPTER 20. CUBIC SPLINE INTERPOLATIONBut the extreme (i.e. minimum) value of parabola (x � a) � (x� b) o

urs at thepoint a+b2 so that for all x 2 [a; b℄jf(x)j � kf 00k12 �b� a2 �2� kf 00k18 � (b� a)2:Therefore, kfk1 � kf 00k18 � (b� a)2:The next 
orollary is a pre
ise statement that as the partition is re�ned to have asmaller mesh size, the pie
ewise linear interpolants will 
onverge to the given fun
tion.Even more important is the fa
t that the 
onvergen
e rate is quadrati
.Corollary 20.1.6. Let P = fa = x0 < x1 < � � � < xn = bg be a partition of [a; b℄: Iff 2 C2[a; b℄; then the interpolating fun
tion If(x) = nPk=0 f(xk) �Bk(x) has the propertythat kf � Ifk1 � kPk28 � kf 00k1:Proof. The proof of this 
orollary follows immediately from the appli
ation of theprevious proposition applied to ea
h interval [xk; xk+1℄:While the next 
orollary is an immediate 
onsequen
e of the previous one, it willbe used as one of the key steps in the proof of 
onvergen
e for the 
lamped 
ubi
splines.Theorem 20.1.7 (Error Theorem For Pie
ewise Linear Approximation). LetP = fa = x0 < x1 < � � � < xn = bg be a partition of [a; b℄: If f 2 C4[a; b℄, then theinterpolating fun
tion If 00(x) = nPk=0 f 00(xk) �Bk(x) has the property that kf 00� If 00k1 �kPk28 � kf (4)k1.Proof. Simply repla
e the fun
tion f(x) by the fun
tion f(x)00�If 00(x) in the previousproposition.Exer
ise Set 20.1.



20.2. CUBIC B-SPLINE INTERPOLATION 4731. Given that the 
os(23) = 0:92050485345244 and 
os(24) = 0:91354545764260;what is the pie
ewise linear approximation of 
os(23:56)? Use your 
al
ulatorto 
he
k that 
os(23:56) = 0:91664200257852: How does the di�eren
e betweenthese two numbers 
ompare with the estimate provided by the Error TheoremFor Pie
ewise Linear Approximation?2. If f(x) = 
os(x) for x 2 [��; �℄ and tol = 1105 ; then how many equally spa
edpoints will be required to guarantee that the pie
ewise linear approximationIf(x) will approximate 
os(x) with error less than 1105 for all x 2 [��; �℄?3. If f(x) = 11+25x2 for x 2 [�1; 1℄ and tol = 1105 ; then how many equally spa
edpoints will be required to guarantee that the pie
ewise linear approximationIf(x) will approximate f(x) with error less than 1105 for all x 2 [�1; 1℄?20.2 Cubi
 B-Spline InterpolationGalileo: The most straight forward path to understanding splines is through thestudy of standard \bumps." The �rst standard bump is the pie
ewise linear Chapeaufun
tion from the previous se
tion.De�nition 20.2.1. The standard pie
ewise linear bump is de�ned by the followingrules: B(x) = 8>>>>>>>><>>>>>>>>:
0 x � �1x + 1 x 2 [�1; 0℄1� x x 2 [0; 1℄0 x � 1:A graph of this fun
tion is displayed in Figure 20.1.Galileo: Note that if the points in a partition P = fa = x0 < x1 < � � � < xn = bgare equally spa
ed, then the fun
tions Bi(x) de�ned in the previous se
tion 
an bede�ned by the formulas Bi(x) = B(x�xih ); where h = b�an : In other words, the fun
tion



474 CHAPTER 20. CUBIC SPLINE INTERPOLATIONBi(x) is nothing more than a translation by xi and a stret
h by h of the StandardChapeau fun
tion B(x): Thus, any 
ontinuous fun
tion f(x) 
an be approximated bylinear 
ombinations of translations and stret
hes of B(x):Sin
e numerous appli
ations (e.g. 
omputer graphi
s) require the use of smooth
urves rather than 
urves with sharp 
orners, these fun
tions are not always appro-priate. However, the same 
on
epts 
an be translated into the domain of smoothapproximations. The only te
hni
al diÆ
ulty is to 
reate a smooth bump. The nextde�nition provides the formulas needed for the standard 
ubi
 spline bump. Thegraph of this fun
tion is presented in Figure 20.2.De�nition 20.2.2. The standard spline bump is a pie
ewise 
ubi
 polynomial de�nedby the following rules:
S(x) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
0 x � �214 [(2� x)3 � 4(1� x)3 � 6x3 + 4(1 + x)3℄ x 2 [�2;�1℄14 [(2� x)3 � 4(1� x)3 � 6x3℄ x 2 [�1; 0℄14 [(2� x)3 � 4(1� x)3℄ x 2 [0; 1℄14(2� x)3 x 2 [1; 2℄0 x � 2:Proposition 20.2.3. The standard spline bump S(x) has the property that it is in
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Figure 20.1: The Graph of the Standard Chapeau PWL Bump B(x)



20.2. CUBIC B-SPLINE INTERPOLATION 475C2(�1;1): In parti
ular, S(x); S 0(x); and S 00(x) are all 
ontinuous for all x 2(�1;1): Moreover,1. S(0) = 1; S(�1) = 14 ; and S(�2) = 0;2. S 0(�1) = 34 ; S 0(1) = �34 ; S 0(�2) = S 0(0) = S 0(2) = 0; and3. S 00(�2) = S 00(2) = 0; S 00(�1) = S 00(1) = 32 ; and S 00(0) = �3:Proof. Sin
e S(x) is a 
ubi
 polynomial at all points x 2 (�1;1) ex
ept wheretwo polynomials join. Thus, we only need to 
he
k 
ontinuity at the �ve pointsx = �2;�1; 0; 1; and 2: However, sin
e S(�2) = 0; S(�1) = 14 ; and S(0) = 1 whether
omputed by the formula on the left side or right side of the possible trouble spot,the fun
tion is 
ontinuous.The �rst derivative of S(x) is given by the rules:
S 0(x) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
0 x � �214 [�3(2� x)2 + 12(1� x)2 � 18x2 + 12(1 + x)2℄ x 2 [�2;�1℄14 [�3(2� x)2 + 12(1� x)2 � 18x2℄ x 2 [�1; 0℄14 [�3(2� x)2 + 12(1� x)2℄ x 2 [0; 1℄�34(2� x)2 x 2 [1; 2℄0 x � 2:
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Figure 20.2: The Graph of the Standard Spline Bump S(x)



476 CHAPTER 20. CUBIC SPLINE INTERPOLATIONAgain, we only need to 
he
k the �ve possible trouble spots, where the quadrati
polynomials are joined. However, S 0(�1) = 34 ; S 0(�2) = S 0(0) = S 0(2) = 0; andS 0(1) = �34 : Thus, the fun
tion S 0(x) is 
ontinuous for ea
h x 2 (�1;1):The se
ond derivative of S(x) is given by the rules:
S 00(x) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
0 x � �214 [6(2� x)� 24(1� x)� 36x+ 24(1 + x)℄ x 2 [�2;�1℄14 [6(2� x)� 24(1� x)� 36x℄ x 2 [�1; 0℄14 [6(2� x)� 24(1� x)℄ x 2 [0; 1℄64(2� x) x 2 [1; 2℄0 x � 2:For the se
ond derivative S 00(x); the 
al
ulations are S 00(�2) = S 00(2) = 0; S 00(�1) =S 00(1) = 32 ; and S 00(0) = �3:Thus, the fun
tion S 00(x) is 
ontinuous for ea
h x 2 (�1;1):Simpli
io: How would anyone think up those weird formulas?Galileo: In any resear
h proje
t, one of the key ingredients is to ask the right ques-tions. The best questions are straightforward to understand, but whose answersprovide insight beyond the stated question. To answer your immediate question, thefun
tion S(x) equals the 
onvolution of B(x) with itself.Simpli
io: The word 
onvolution means nothing to me.Galileo: The 
onvolution of two fun
tions is a fan
y word for the integration of theirprodu
t{in a very parti
ular way. Not only does this idea provide solutions to anumber of questions in di�erential equations, but also o

urs whenever �ltering isdis
ussed in signal pro
essing and image pro
essing. I have pla
ed the topi
 on theagenda for a meeting in the not-to-distant future. In any 
ase, we now give the formalde�nition.De�nition 20.2.4. If f(x) and g(x) are 
ontinuous fun
tions on (�1;1) with theproperty that R1�1 f(x)2 dx <1 and R1�1 g(x)2 dx <1; then the 
onvolution of f(x)



20.2. CUBIC B-SPLINE INTERPOLATION 477and g(x) is given by the formulaf � g(x) = Z 1�1 f(x� t)g(t) dt:Galileo: As it turns out, the bump S(x) is the 
onvolution of B(x) with itself. Ifwe also know that the operation of 
onvolution tends to make a fun
tion smoother,then we are 
loser to the fa
t that the fun
tion S(x) has 
ontinuous �rst and se
ondderivatives.Simpli
io: I bet the 
omputation is messy.Galileo: Maybe so, but the 
omputation 
an be visualized as simply dragging one
opy of B(x) a
ross another. When the bumps are disjoint, the integrals are zero.As they begin to interse
t, we are integrating the produ
t of two straight lines so theanswer is a 
ubi
 polynomial.Simpli
io: And if we would like to 
onstru
t a pie
ewise linear 5th degree polynomialbump, then we simply 
onvolve the fun
tions B(x) and S(x) to 
reate a fun
tionwhi
h has 
ontinuous �rst, se
ond, third, and fourth derivatives. Is that not 
orre
t?Galileo: You have the pi
ture.Simpli
io: But is there method a with easier formulas?Galileo: A
tually, some resear
hers use the pie
ewise 6th degree polynomial:C(x) = 8><>:(x� 1)3(x + 1)3 if x 2 [�1; 1℄0 if jxj � 1Galileo: However, the more popular method is the one we des
ribed. Sin
e the�rst and se
ond derivatives of S(x) play an important role in both the theory andappli
ation of splines, we present their graphs in Figures 20.3 and 20.4.Galileo: We now turn to the problem of 
onstru
ting the B�spline from buildingblo
ks provided by the spline bump S(x): Given a partition of equally spa
ed pointsP = fa = x0 < x1 < � � � < xn = bg; the se
ond step is to translate and stret
h thestandard bump n + 1 times so that the kth bump, Sk(x); has 
enter xk and equalszero outside the interval [xk�2; xk+2℄:



478 CHAPTER 20. CUBIC SPLINE INTERPOLATIONGiven data points (xk; yk) k = 0; 1; 2; 3; : : : ; n; where xk+1 � xk = h for all k =0; 1; 2; : : : ; n; the goal now is to �nd 
onstants 
k; where k = 0; 1; 2; : : : ; n so thatSB(x) = nPk=0 
kS(x�xkh ) has the property that it interpolates the data. In parti
ular,we insist that SB(xk) = yk for all k = 0; 1; : : : ; n:If we let Sk(x) = S(x�xkh ), then we 
an write SB(x) = nPk=0 
kSk(x): As was the
ase for both polynomial and Fourier interpolation the 
onstants 
k 
an be found bysolving the matrix equation SB
 = y; where

 = 0BBBBBB�
0
1...
n

1CCCCCCA ; y = 0BBBBBB�y0y1...yn
1CCCCCCA ; and
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Figure 20.3: The Graph of S 0(x)
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Figure 20.4: The Graph of S 00(x)
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SB =

0BBBBBBBBBBBBBBB�
1 14 0 0 0 : : : 014 1 14 0 0 : : : 00 14 1 14 0 : : : 0... . . . . . . . . . ...... . . . . . . 1 14 0... 14 1 140 : : : : : : : : : 0 14 1

1CCCCCCCCCCCCCCCA :
The 
onstants 1 and 14 in the (n + 1) � (n + 1) matrix SB are for
ed by therelationships Sk(xk) = S(0) = 1 and Sk(xk+1) = Sk(xk�1) = S(�1) = 14 ; respe
tively.The zero entries in the matrix follow from the fa
t that Sk(x) = 0 for all x su
h thatjx� xkj � 2h:The beauty of the matrix SB is that it is tridiagonal, diagonally dominant, sym-metri
, and well-
onditioned [1℄.Exer
ise Set 20.2.1. Given the data (0; 2); (1; 2); (2; 2); (3; 2); (4; 2); set up the matrix equation thatmust be solved to 
ompute the 
onstants for the B-spline interpolation fun
tionSB(x): Use 
omputer software to 
ompute the 
onstants 
0; 
1; 
2; 
3; 
4: Usethese 
onstants to 
ompute SB(x) for x = 1; 5; 7:2. Compute the LU fa
torization of the 5�5 spline matrix SB: How would you usethis fa
torization to write eÆ
ient 
ode to solve the matrix equation SB
 = y?20.3 Clamped Cubi
 Spline InterpolationGalileo: We now turn to the problem of 
lamped 
ubi
 spline interpolation. In thisappli
ation, we again have a partition of equally spa
ed points P = fa = x0 < x1 <� � � < xn = bg; where xk+1 � xk = h for all k = 0; 1; 2; : : : ; n � 1: As before, we arealso given data points (xk; yk) for k = 0; 1; 2; : : : ; n: The di�eren
e this time 
onsists



480 CHAPTER 20. CUBIC SPLINE INTERPOLATIONof two new pie
es of information, y00 and y0n; 
onstraining the value of the derivativeat the two endpoints. In parti
ular, we require that the interpolating fun
tion SC(x)has the property that S 0C(a) = S 0C(x0) = y00 and S 0C(b) = S 0C(xn) = y0n: Sin
e we havetwo new 
onstraints, we must have two new free variables. The tri
k is to simply addtwo new bumps.Simpli
io: But, where are you going to add them?Galileo: Simply add one at ea
h end of the interval [a; b℄: Sin
e the points in P areassumed to be equally spa
ed, we simply add the points x�1 and xn+1 to the partitionso that x0 � x�1 = h and xn+1 � xn = h: We now have to solve n + 3 equations andn+3 unknowns for 
�1; 
0; 
1; : : : ; 
n; 
n+1: The new interpolant is de�ned by the linear
ombination SC(x) = n+1Pk=�1 
kS(x�xkh ):The two new 
onstraints are for
ed by the equations S 0C(x0) = y00 and S 0C(xn) = y0n:But if x = x0; thenS 0C(x0) = 
�1S 0�1(x0) + 
0S 00(x0) + 
1S 01(x0) = 
�1 34h + 0 + 
1�34h = y00:If x = xn; thenS 0C(xn) = 
n�1S 0n�1(xn) + 
nS 0n(xn) + 
n+1S 0n+1(xn) = 
n�1 34h + 0 + 
n+1�34h = y0n:Solving the �rst equation for 
�1 and the se
ond for 
n+1; we �nd that 
�1 = 4h3 y00+
1and 
n+1 = 4h3 y0n + 
n�1: Thus, the two new equations be
ome:
0 + 12
1 = y0 � h3y00and 12
n�1 + 
n = yn � h3y0n:Thus, the modi�ed system of equations we need to solve be
omes SC
 = yy;where

 = 0BBBBBB�
0
1...
n

1CCCCCCA ; yy = 0BBBBBB�y0 � h3y00y1...yn � h3y0n
1CCCCCCA ; and
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SC =

0BBBBBBBBBBBBBBB�
1 12 0 0 : : : : : : 014 1 14 0 : : : : : : 00 14 1 14 0 : : : 0... . . . . . . . . . ...... . . . . . . 1 14 0... 14 1 140 : : : : : : : : : 0 12 1

1CCCCCCCCCCCCCCCA :
Again, the 
onstants 1 and 14 in the (n+1)� (n+1) matrix SC are for
ed by therelationships Sk(xk) = S(0) = 1 and Sk(xk+1) = Sk(xk�1) = S(�1) = 14 ; respe
tively.The zero entries in the matrix 
ome from the fa
t that Sk(x) = 0 for all x su
h thatjx� xkj � 2h:As before, the matrix SC is tridiagonal, diagonally dominant, almost symmetri
,and well-
onditioned. Again, the LU -fa
torization 
an be used to solve the matrixequation SC
 = yy:Exer
ise Set 20.3.1. Given the data (0; 2); (1; 2); (2; 2); (3; 2); (4; 2); y00 = 3 and y04 = 7; set up thematrix equation that must be solved to 
ompute the 
onstants for the 
lamped
ubi
 spline interpolation fun
tion SC(x): Use 
omputer software to 
ompute the
onstants 
0; 
1; 
2; 
3; 
4: Use these 
onstants to 
ompute SC(x) for x = 1; 5; 7:2. Compute the LU fa
torization of the 5�5 
lamped spline matrix SC : How wouldyou use this fa
torization to write eÆ
ient 
ode to solve the matrix equationSC
 = yy: How does this fa
torization 
ompare with the fa
torization of the5� 5 matrix SB?20.4 Natural Cubi
 Spline InterpolationGalileo: We now turn to the problem of natural 
ubi
 spline interpolation. Sometimesthis type of spline is referred to as a free spline. In this appli
ation, we will again



482 CHAPTER 20. CUBIC SPLINE INTERPOLATIONassume we have been given data points (xk; yk) for k = 0; 1; 2; : : : ; n; where thepartition P = fa = x0 < x1 < � � � < xn = bg has equally spa
ed points andxk+1 � xk = h for all k = 0; 1; 2; : : : ; n � 1: While the spirit is the same as 
lampedsplines, the strategy this time is to simply de�ne the endpoint 
onditions by the rules:y000 = 0 and y00n = 0:Simpli
io: Why would you make this assumption?Galileo: You may not have any information on the �rst derivatives and yet you maywant to temper the behavior at the endpoints.Simpli
io: May I guess that you simply add two new bumps, whi
h provide two newfree variables?Galileo: Exa
tly! If we let SN(x) = n+1Pk=�1 
kS(x�xkh ); then we 
an 
reate two new
onstraints: S 00N(x0) = y000 = 0 and S 00N(xn) = y00n = 0: These 
onstraints provide uswith two new endpoint 
onditions.First, if x = x0; thenS 00N(x0) = 
�1S 00�1(x0) + 
0S 000 (x0) + 
1S 001 (x0) = 
�1 32h2 � 
0 3h2 + 
1 32h2 = y000 = 0:Se
ond, it x = xn; thenS 0N(xn) = 
n�1S 00n�1(xn)+
nS 00n(xn)+
n+1S 00n+1(xn) = 
n�1 32h2�
n 3h2+
n+1 32h2 = y00n = 0:These equations simplify to the following:

�1 � 2
0 + 
1 = 0
n�1 � 2
n + 
n+1 = 0:Solving for the variables 
�1 and 
n+1; we immediately see that 
�1 = 2
0� 
1 and
n+1 = 2
n � 
n�1:Thus, the matrix equation be
omes: SN
 = y; where
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 = 0BBBBBB�
0
1...
n

1CCCCCCA ; y = 0BBBBBB�y0y1...yn
1CCCCCCA ; and

SN =
0BBBBBBBBBBBBBBB�

32 0 0 0 : : : : : : 014 1 14 0 : : : : : : 00 14 1 14 0 : : : 0... . . . . . . . . . ...... . . . . . . 1 14 0... 14 1 140 : : : : : : : : : 0 0 32
1CCCCCCCCCCCCCCCA :

Simpli
io: Let me �nish your thoughts by saying that the matrix SN is tridiago-nal, diagonally dominant, almost symmetri
, and well-
onditioned. Again, the LU -fa
torization 
an be used to solve the matrix equation SN
 = y:Exer
ise Set 20.4.1. Given the data (0; 2); (1; 2); (2; 2); (3; 2); (4; 2); set up the matrix equation thatmust be solved to 
ompute the 
onstants for the natural spline interpolationfun
tion SN(x): Use 
omputer software to 
ompute the 
onstants 
0; 
1; 
2; 
3; 
4:Use these 
onstants to 
ompute the value of SN(x) for x = 1; 5; 7:2. Compute the LU fa
torization of the 5� 5 natural spline matrix SN : How doesthis fa
torization 
ompare with the fa
torizations for the 5�5 matri
es SB andSC? How would you use this fa
torization to write eÆ
ient 
ode to solve thematrix equation SN
 = y?20.5 Periodi
 Cubi
 Spline InterpolationGalileo: We now turn to the problem of periodi
 
ubi
 spline interpolation for equallyspa
ed points. If you understood what we did before, this dis
ussion will only take a



484 CHAPTER 20. CUBIC SPLINE INTERPOLATIONminute.Simpli
io: I think I have time in my s
hedule for this item.Galileo: To 
ontinue, when we are given a data set (xk; yk) for k = 0; 1; 2; : : : ; n; weassume the data is smoothly periodi
. Thus, we not only assume yn = y0; but alsothat y0n = y00 and y00n = y000 : A moments re
e
tion makes us realize that the data 
anbe thought of as 
ontinuing from �1 to 1 so the interpolating fun
tion has theform SP (x) = 1Pk=�1 
kS(x�xkh ): Better yet, the solution will have the property that
k = 
n+k for any integer k:Simpli
io: But won't we be adding up an in�nite number of numbers?Galileo: Not really, be
ause for any given x only a �nite number of integers k exist withthe property that S(x�xkh ) 6= 0: In fa
t, if S(x�xkh ) 6= 0 for some k; then S(x�xjh ) = 0for all j � k+4 and all j � k� 4: Sin
e 
�1 = 
n�1 and 
0 = 
n; the matrix equationbe
omes SP
 = y; where

 = 0BBBBBB� 
0
1...
n�1

1CCCCCCA ; y = 0BBBBBB� y0y1...yn�1
1CCCCCCA ; and

SP =
0BBBBBBBBBBBBBBB�
1 14 0 0 : : : : : : 1414 1 14 0 : : : : : : 00 14 1 14 0 : : : 0... . . . . . . . . . ...... . . . . . . 1 14 0... 14 1 1414 : : : : : : : : : 0 14 1

1CCCCCCCCCCCCCCCA :
Simpli
io: In other words, you wrapped the data around from beginning to end andthrew away a bump be
ause the data at x0 equals the data at xn:Galileo: Exa
tly.Exer
ise Set 20.5.



20.6. ORTHOGONALITY PROPERTY FOR CLAMPED CUBIC SPLINES 4851. Given the data (0; 2); (1; 2); (2; 2); (3; 2); (4; 2); set up the matrix equation thatmust be solved to 
ompute the 
onstants for the periodi
 spline interpolationfun
tion SN(x): Use 
omputer software to 
ompute the 
onstants 
0; 
1; 
2; 
3; 
4:Use these 
onstants to 
ompute the value of SP (x) for x = 1; 5; 7:2. Compute the LU fa
torization of the 5� 5 natural spline matrix SP : How doesthis fa
torization 
ompare with the fa
torizations for the 5�5 matri
es SB; SC ;and SN? How would you use this fa
torization to write eÆ
ient 
ode to solvethe matrix equation SP
 = y?20.6 Orthogonality Property for Clamped Cubi
SplinesGalileo:The purpose of this se
tion is to prove an orthogonality property for splines, whi
his analogous to the Pythagorean Theorem. This property is also fundamental to thestability and 
onvergen
e properties that make splines useful.Let a = x0 < x1 < x2 < � � � < xn = b be a partition of [a; b℄.If g 2 C2[a; b℄, then let gs denote the 
lamped spline asso
iated with g: In parti
-ular, gs(xi) = g(xi) for i = 0; 1; 2; : : : ; n and g0s(a) = g0(a) and g0s(b) = g0(b).Let eg(x) = g(x)� gs(x):Note that eg(xi) = 0 for all i = 0; 1; : : : ; n and e0g(a) = e0g(b) = 0:Lemma 20.6.1. If �(x) is a pie
ewise linear 
ontinuous fun
tion on [a; b℄ whi
h islinear on ea
h interval [xi; xi+1℄; thenZ ba e00g(x) � �(x)dx = 0:Proof. The idea behind the proof is to integrate the integral by parts. Sin
e we areusing 
lamped splines, the endpoint information g0s(a) = g0(a) and g0s(b) = g0(b) willensure that the integral is zero.
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Theorem 20.6.2 (Orthogonality Property For Clamped Cubi
 Splines). Ifg 2 C2[a; b℄ and eg(x) = g(x)�gs(x); then R ba [g00(x)℄2dx = R ba [g00s (x)℄2dx+R ba [e00g(x)℄2dx.Proof. Sin
e g00s (x) is pie
ewise linear and 
ontinuous, we observe thatZ ba [g00(x)℄2dx = Z ba [g00s (x) + e00g(x)℄2dx= Z ba [g00s (x)℄2dx + 2 Z ba g00s (x) � e00g(x)dx+ Z ba [e00g(x)℄2dx= Z ba [g00s (x)℄2dx + Z ba [e00g(x)℄2dx:
20.7 Minimization Property for SplinesWe now present a mathemati
al formulation of the intuitive 
on
ept that spline inter-polation provides the �t with the fewest \wiggles." This minimization property willbe one of the key fa
ts needed to prove the 
onvergen
e theorem for splines.Let C2g [a; b℄ denote the set of all � 2 C2[a; b℄ su
h that �(xi) = g(xi) for alli = 0; 1; 2; : : : ; n and �0(a) = g0(a) and �0(b) = g0(b).Note that the set C2g [a; b℄ is a 
onvex subset of C2[a; b℄:Proposition 20.7.1. If � 2 C2g [a; b℄; then �s(x) = gs(x) for all x 2 [a; b℄:Theorem 20.7.2. (Minimization Property) If g 2 C2[a; b℄ and any � 2 C2g [a; b℄; thenZ ba [g00s (x)℄2dx � Z ba [�00(x)℄2dx:Proof. By the orthogonality propertyZ ba [�00(x)℄2dx = Z ba [�00s(x)℄2dx+ Z ba [�00(x)� �00s(x)℄2dx:
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e � 2 C2g [a; b℄, �s � gs on [a; b℄;Z ba [�00(x)℄2dx = Z ba [g00s (x)℄2dx+ Z ba [�00(x)� �00s(x)℄2dx� Z ba [g00s (x)℄2:
20.8 Convergen
e for SplinesThe �rst step in the proof of the 
onvergen
e theorem for splines is to atta
k these
ond derivative of a fun
tion by a linear 
ombination of \hat" fun
tions, whi
h arebest as measured by a least squares �t, (i.e. in the L2 norm).De�nition 20.8.1. If P is a partition of [a; b℄ and g 2 C0[a; b℄; then a fun
tiongLS 2 CP [a; b℄ is 
alled the best pie
ewise linear approximation to g in the least squaressense, if Z ba (g(x)� gLS(x))2dx � Z ba (g(x)� �(x))2dxfor all � 2 CP [a; b℄:The next proposition provides the solution to the least squares problem for these
ond derivative of a fun
tion. This proposition states that the se
ond derivative ofthe 
lamped 
ubi
 spline provides the best least squares approximation to the se
ondderivative of a given fun
tion. Note that the proof of this theorem uses the fa
t thatthe spline of the sum is the sum of the splines.Proposition 20.8.2 (Corollary). If g 2 C2[a; b℄ and gs denotes the 
lamped 
ubi
spline approximation of g, then g00s = (gs)00 is the best pie
ewise linear approximationof g00 in the least squares sense. In parti
ular, (g00)LS = (gs)00.



488 CHAPTER 20. CUBIC SPLINE INTERPOLATIONProof. To prove this proposition we must show that if � is any member of CP [a; b℄;then Z ba [g00(x)� g00s ℄2dx � Z ba [g00(x)� �(x)℄2dx:By the fundamental theorem of 
al
ulus, a fun
tion � 
an be found in C2[a; b℄with the property that �00(x) = �(x) for all x 2 [a; b℄. (i.e. �(x) is the doubleantiderivative of �(x).)Let G(x) = g(x)� �(x):If eG(x) = G(x)�Gs(x); then by the orthogonality propertyZ ba [G00(x)℄2dx = Z ba [G00s(x)℄2dx + Z ba [e00G(x)℄2dx:Sin
e e00G(x) = G00(x)�G00s(x) and �00(x) = �00s(x) = �(x) for all x 2 [a; b℄;e00G(x) = g00(x)� �(x)� (g00s (x)� �00s(x))= g00(x)� g00s (x):Thus, Z ba [g00(x)� �(x)℄2dx = Z ba [G00(x)℄2dx� Z ba [e00G(x)℄2dx= Z ba [g00(x)� g00s (x)℄2dx:Sin
e � is an arbitrary member of CP [a; b℄ we are done.Corollary 20.8.3. Let P = fa = x0 < x1 < � � � < xn = bg be a partition of [a; b℄: Ifg 2 C2[a; b℄; then the 
lamped 
ubi
 spline gs(x) has the property thatkg � gsk1 � kPk28 � kg00 � g00sk1:Proof. Simply let G(x) = g(x)� gs(x) and apply Corollary 4.4.



20.9. CONVERGENCE FOR CLAMPED SPLINES 489Note that if the points xi in the partition are equally spa
ed, then the matrix Ahas the form
A = 2h

0BBBBBBBBBBBBBBB�
12 14 0 0 : : : 014 1 14 0 : : : 00 14 1 14 0 .... . . . . . . . . . . . .... . . . . . . . . . . . 0. . . . . . . . . 140 0 14 1

1CCCCCCCCCCCCCCCA :
Proposition 20.8.4. If g 2 C0[a; b℄ and gLS is the best pie
ewise linear approximationto g in the least squares sense, thenkgLSk1 � 3 � kgk1:Proof. The proof of this proposition is quite te
hni
al and thus omitted.Corollary 20.8.5. If g 2 C2[a; b℄, then kg00sk1 � 3 � kg00k1.Proof. By the previous proposition kg00LSk1 � 3 �kg00k1. By the 
orollary to Pythago-ras, gLS = g00s . Therefore kg00sk1 � 3 � kg00k1.The previous proposition shows that the most simple{minded interpolation is nomore than twi
e as bad as the best.Proposition 20.8.6. If g 2 C2[a; b℄; then kg00 � g00sk1 � 4 � kg00 � Ig00k1:Proof. kg00 � g00sk1 � kg00 � Ig00k1 + kIg00 � g00sk1 � kg00 � Ig00k1 + 3kIg00 � g00k1 =4 � kg00 � Ig00k1:
20.9 Convergen
e for Clamped SplinesThe purpose of the next dis
ussion is to prove the 
onvergen
e theorem for the
lamped 
ubi
 spline. Better yet, this theorem guarantees a 4th-order 
onvergen
erate. In addition, the 
onvergen
e theorem for the se
ond derivatives is also proved.



490 CHAPTER 20. CUBIC SPLINE INTERPOLATIONThe following list of 3 fa
ts provides a summary of the key steps used to prove
onvergen
e for the 
lamped 
ubi
 spline.1. kg � gsk1 � 18 � kg00 � g00sk1 � kPk22. kg00 � g00sk1 � 4 � kg00 � Ig00k13. kg00 � Ig00k1 � 18kg(4)k1 � kPk2Theorem 20.9.1. Convergen
e for Clamped SplinesIf g 2 C4[a; b℄, then kg � gsk1 � 116 � kg(4)k1 � kPk4:Proof. By fa
t 1, kg � gsk1 � 18kg00 � g00sk1 � kPk2:By fa
t 2, kg00 � g00sk1 � 4 � kg00 � Ig00k1:Therefore, kg � gsk1 � 12kg00 � Ig00k1 � kPk2:By fa
t 3, kg � gsk1 � 12 � 18kg(4)k1 � kPk2 � kPk2= 116 � kg(4)k1 � kPk4:Note that the best result is by Hall in 1968 where he showed:kg � gsk1 � 5384 � kPk4 � kg(4)k1:The next theorem guarantees a 2nd-order 
onvergen
e rate for the se
ond deriva-tive of the 
laimed 
ubi
 splines to 
onverge to the se
ond derivative of the fun
tion.
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e for the 2nd derivative of the 
lamped 
ubi
splines.). If g 2 C(4)[a; b℄, thenkg00 � g00sk1 � 12 � kg(4)k1 � kPk2:Proof. By the previous proposition kg00 � g00sk1 � 4 � kg00 � Ig00k1:By fa
t 2, kg00 � Ig00k1 � 18kg(4)k1 kPk2. Therefore,kg00 � g00sk1 � 48 � kg(4)k1 � kPk2:Note that Hall and Meyer showed in 1976 [2℄ thatkg00 � g00sk1 � 38kg(4)k1 � kPk2:Exer
ise Set 20.9.1. If g(x) = 
os(x) for x 2 [��; �℄ and tol = 1105 ; then how many equally spa
edpoints will be required to guarantee that the 
lamped 
ubi
 spline approximationgs(x) will approximate 
os(x) with error less than 1105 for all x 2 [��; �℄? Repeatthis exer
ise for g00(x): Compare your answer with the answer you found for thepie
ewise linear approximation.2. If g(x) = 11+25x2 for x 2 [�1; 1℄ and tol = 1105 ; then how many equally spa
edpoints will be required to guarantee that the pie
ewise linear approximationgs(x) will approximate g(x) with error less than 1105 for all x 2 [�1; 1℄? Repeatthis exer
ise for g00(x): Compare your answer with the answer you found for thepie
ewise linear approximation.
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