ADVANCED CALCULUS MAA4102
 THIRD HOUR EXAM
 FALL 2004

Abstract

Name: No calculators permitted during the exam. Each problem is worth 20 points. Explain all answers! 1. a. Give a careful statement of the Intermediate Value Theorem.

b. Prove the Intermediate Value Theorem.
2.
a. Give a careful statement of Taylor's Theorem. (Be sure to include the error term.)
b. If $f(x)=\sin (3 x)$ for $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $t o l=\frac{1}{10^{5}}$, then find an integer n so that the $n^{\text {th }}$ degree Taylor polynomial approximates $f(x)$ with error less than $\frac{1}{10^{5}}$.
3.
a. Give a careful statement of the theorem for polynomial interpolation. (Be sure to include the error term.)
b. Given the three data points $(1,5), 3,-1),(8,6)$, find the $2^{\text {nd }}$ degree polynomial which interpolates the data. (Set up the formulas or equations, but PLEASE do not simplify your answer.)
c. If $f(x)=\sin (3 x)$ for $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $t o l=\frac{1}{10^{5}}$, and a partition $P=$ $\left\{-\frac{\pi}{2}=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=\frac{\pi}{2}\right\}$ with equally spaced points, then find an integer n so that the $n^{\text {th }}$ degree interpolating polynomial approximates $f(x)$ with error less than tol.
4.
a. If $f(x)=\sum_{n=0}^{\infty}(2 n)^{2} x^{n}$, then determine the interval of convergence for $f(x)$.
b. If $f(x)=\sum_{n=0}^{\infty}(2 n)^{2} x^{n}$, then write $f(x)$ in closed form. (i.e. Write $f(x)$ as the quotient of two polynomials.)
5.
a. Define the function $\log _{e}(x)$ for $x>0$.
b. Prove: If $x, y>0$, then $\log _{e}(x y)=\log _{e}(x)+\log _{e}(y)$.
c. Explain how a slide rule can be used to compute $3 * 2=6$.

