ADVANCED CALCULUS MAA4102
 FINAL EXAM

FALL 2005

Abstract

Name: No notes, books, or calculators permitted during the exam. Each problem is worth 25 points. Explain all answers! 1. a. Give a careful statement of the least upper bound principle.

b. Prove: Every bounded increasing sequence converges.
2.
a. Give a careful definition of what it means for a sequence to be Cauchy.
b. Prove: If a sequence is Cauchy, then it is bounded.
c. Prove: Every Cauchy sequence converges.
3.
a. Prove: If $f(x):[a, b] \rightarrow \Re$ is continuous at each $x \in[a, b]$, then $f(x)$ is bounded. (In the proof of this theorem, you are NOT allowed to assume the extremum theorem.)
b. Give a careful statement of the Extremum Theorem.
c. Give a careful statement of Rolle's Theorem.
d. Prove Rolle's Theorem.
4.
a. Give a careful statement of the intermediate value theorem.
b. Prove: If $f(x):[a, b] \rightarrow \Re$ is continuous at each $x \in[a, b]$, $w(x):[a, b] \rightarrow \Re$ is continuous at each $x \in[a, b]$, and $w(x) \geq 0$ for each $x \in[a, b]$, then there is a point $z \in[a, b]$ so that
$\int_{a}^{b} f(x) w(x) d x=f(z) \int_{a}^{b} w(x) d x$.
5.
a. If $f(x)=x-\frac{1}{2} \sin (x)+10$, then show that $f(x)$ has at least one real root.
b. If $f(x)=x-\frac{1}{2} \sin (x)+10$, then show that $f(x)$ cannot have two distinct real roots.
c. If $f(x): \Re \rightarrow \Re$ is differentiable at every $x \in \Re$ and $f(x)$ is strictly increasing, then is it necessarily true that $f^{\prime}(x)>0$ for all $x \in \Re$? Explain!
6.
a. Give a careful statement of Taylor's theorem. (Be sure to include the error term.)
b. If $f(x)=\cos (7 x)$ for $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and tol $=\frac{1}{10^{5}}$, then find an integer n so that the $n^{\text {th }}$ degree Taylor polynomial approximates $f(x)$ with error less than $\frac{1}{10^{5}}$.
c. Find the Taylor series for the function $f(x)=x \ln \left(1-x^{3}\right)$.
7.
a. If $f(x)=x-e \ln (x)$, then show that $f(x)$ is increasing on the interval $[e,+\infty)$.
b. If $f(x)=x-e \ln (x)$, then show that $f(x) \geq 0$ for all $x \in[e,+\infty)$.
c. Show: $\pi \geq e \ln (\pi)$.
d. Show: $e^{\pi} \geq \pi^{e}$.
8.
a. Define what it means for the integral to exist. (i.e. Define the symbol $\int_{a}^{b} f(x) d x$.)
b. If $F(x)=\int_{x^{2}}^{3 x} \sin \left(x^{3}\right) d x$, then compute $F^{\prime}(x)$.
c. Using the $\epsilon-\delta$ definition show that $\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}=10$.

