ADVANCED CALCULUS MAA4102 FINAL EXAM FALL 2005

Name: No notes, books, or calculators permitted during the exam. Each problem is worth 25 points. Explain all answers! 1.

a. Give a careful statement of the least upper bound principle.

b. Prove: Every bounded increasing sequence converges.

a. Give a careful definition of what it means for a sequence to be *Cauchy*.

b. Prove: If a sequence is Cauchy, then it is bounded.

c. Prove: Every Cauchy sequence converges.

3.

a. Prove: If $f(x) : [a, b] \to \Re$ is continuous at each $x \in [a, b]$, then f(x) is bounded. (In the proof of this theorem, you are NOT allowed to assume the extremum theorem.)

b. Give a careful statement of the Extremum Theorem.

c. Give a careful statement of Rolle's Theorem.

d. Prove Rolle's Theorem.

a. Give a careful statement of the intermediate value theorem.

b. Prove: If $f(x) : [a,b] \to \Re$ is continuous at each $x \in [a,b]$, $w(x) : [a,b] \to \Re$ is continuous at each $x \in [a,b]$, and $w(x) \ge 0$ for each $x \in [a,b]$, then there is a point $z \in [a,b]$ so that $\int_a^b f(x)w(x) \, dx = f(z) \int_a^b w(x) \, dx.$

a. If $f(x) = x - \frac{1}{2}\sin(x) + 10$, then show that f(x) has at least one real root.

b. If $f(x) = x - \frac{1}{2}\sin(x) + 10$, then show that f(x) cannot have two distinct real roots.

c. If $f(x) : \Re \to \Re$ is differentiable at every $x \in \Re$ and f(x) is strictly increasing, then is it necessarily true that f'(x) > 0 for all $x \in \Re$? Explain!

5.

a. Give a careful statement of Taylor's theorem. (Be sure to include the error term.)

b. If $f(x) = \cos(7x)$ for $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $tol = \frac{1}{10^5}$, then find an integer n so that the n^{th} degree Taylor polynomial approximates f(x) with error less than $\frac{1}{10^5}$.

c. Find the Taylor series for the function $f(x) = x \ln(1 - x^3)$.

a. If $f(x) = x - e \ln(x)$, then show that f(x) is increasing on the interval $[e, +\infty)$.

b. If $f(x) = x - e \ln(x)$, then show that $f(x) \ge 0$ for all $x \in [e, +\infty)$.

c. Show: $\pi \ge e \ln(\pi)$.

d. Show: $e^{\pi} \ge \pi^e$.

7.

a. Define what it means for the integral to exist. (i.e. Define the symbol $\int_a^b f(x) \; dx.)$

b. If $F(x) = \int_{x^2}^{3x} \sin(x^3) dx$, then compute F'(x).

c. Using the $\epsilon - \delta$ definition show that $\lim_{x \to 5} \frac{x^2 - 25}{x - 5} = 10$.