ADVANCED CALCULUS MAA4102
 FINAL EXAM

FALL 2006

Name:
No notes, books, or calculators permitted during the exam.
Each problem is worth 25 points.
Explain all answers!
1.
a. Show how the Archimedes/Heron Algorithm can be used to compute the square root of 7 . (i. e. If $x_{0}=1$, then give the recursive formula to compute x_{n+1} from $\left.x_{n}\right)$.
b. Prove: If $K>0$, then the Archimedes/Heron Algorithm produces a sequence which is bounded from below by \sqrt{K}.
c. Prove: If $K>0$ and x_{n} denotes the $n^{\text {th }}$ term in the Archimedes/Heron algorithm to approximate \sqrt{K} and $x_{0}=1$, then $x_{n+1} \leq x_{n}$.
2.
a. Give a careful DEFINITION of what $\lim _{x \rightarrow a} f(x)=L$. means.
b. Using the DEFINITION of limit, prove: $\lim _{x \rightarrow 3} \frac{x^{2}-11 x+24}{x-3}=-5$.
c. Give a careful DEFINITION of what it means for a function $f(x)$ to be continuous at a point $x=a$.
d. Using the DEFINITION of limit, prove that the function $f(x)=|x|$ is continuous at each $x \in \Re$.
3.
a. Give a careful statement of the Mean Value Theorem.
b. Give a careful proof of the Mean Value Theorem.
c. Prove: If $f(x):[a, b] \rightarrow \Re$ is a differentiable function with the property that $f^{\prime}(x)=0$ for all $x \in[a, b]$, then $f(x)=f(a)$ (= constant) for all $x \in[a, b]$.
d. Explain the connection between the proposition you just proved in part c (above) and the Fundamental Theorem of Calculus.
4.
a. Give a careful statement of the Intermediate Value Theorem for integrals.
b. Prove the Intermediate Value Theorem for integrals.
5.
a. Give a careful definition of what it means for a series $\sum_{n=0}^{\infty} a_{n}$ to be convergent.
b. Give a careful statement of the $n^{t h}$ root test for a series $\sum_{n=0}^{\infty} a_{n}$.
c. Prove the $n^{t h}$ root test for a series $\sum_{n=0}^{\infty} a_{n}$. (i.e. Compare this series with another well-known series.)
d. Draw a picture which explains why an alternating series converges.
6.
a. Give a careful statement of the Lagrange Theorem for polynomial interpolation. (Be sure to include the error term.)
b. Given the data $(1,2),(5,47)$, and $(-7,2)$, find a 2-degree polynomial $p_{2}(x)$ with the property that $p_{2}(1)=2, p_{2}(5)=47, p_{2}(-7)=2$.
c. If $f(x)=e^{3 x}$ for $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and tol $=\frac{1}{10^{5}}$, then find an integer n so that the $n^{\text {th }}$ degree interpolating polynomial $p_{n}(x)$ for equally spaced points has the property that $\left|f(x)-p_{n}(x)\right|<\frac{1}{10^{5}}$, for all $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
7.
a. If $f(x) ;\left[x_{0},+\infty\right) \rightarrow \Re$ is a differentiable function and $f^{\prime \prime}(x)>0$ for all $x \in\left[x_{0},+\infty\right)$ and $F(x)=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ for all $x>x_{0}$, then show that $F(x)$ is increasing on the interval $\left(x_{0},+\infty\right)$.
b. Give a careful DEFINITION of what it means for a function to be concave up ($==$ convex).
c. Prove: If $f(x):[a, b] \rightarrow \Re$ is a differentiable function with the property that $f^{\prime \prime}(x)>0$ for all $x \in[a, b]$, then show that $f(x)$ is concave up on $[a, b]$.
8.
a. Define what it means for a function $f(x) ;[a, b] \rightarrow \Re$ to be integrable. (i.e. Define the symbol $\int_{a}^{b} f(x) d x$.)
b. Using the DEFINITION of the integral, prove that $\int_{0}^{2} x d x=2$.
c. Give a careful statement of the Fundamental Theorem of Calculus.
d. Prove: The second part of the Fundamental Theorem of Calculus.

