ADVANCED CALCULUS MAA4102
 FINAL EXAM

FALL 2004

Abstract

Name: No calculators permitted during the exam. Each problem is worth 25 points. Explain all answers! 1. a. Give a careful statement of what it means for a sequence to converge to a number L.

b. Using the DEFINITION of limit show that $\lim _{n \rightarrow \infty}\left(4+\frac{7}{n^{2}}\right)=4$.
c. Describe an algorithm used to approximate the cube root of 11. ($=11^{\frac{1}{3}}$)
d. Compute the first three steps in the approximation of $11^{\frac{1}{3}}$.
2.
a. Give a careful statement of the least upper bound principle.
b. Prove that every bounded increasing sequence converges.
c. Prove the Bolzano-Weierstrass theorem. (i.e. Every bounded sequence has a convergent subsequence.)
3.
a. Give a careful definition of what it means for a sequence to be Cauchy.
b. Prove: If a sequence is Cauchy, then it is bounded.
c. Prove: If a sequence is Cauchy, then it converges.
4.
a. Give a careful statement of the Extremum Theorem.
b. Give a careful statement of Rolle's Theorem.
c. Prove Rolle's Theorem.
d. Show how Rolle's Theorem can be used to prove the Mean Value Theorem.
5.
a. Give a careful statement of the intermediate value theorem.
b. If $f(x)=x^{5}+x+1$, then show that $f(x)$ has at least one root in the interval $[-1,1]$.
c. If $f(x)=x^{5}+x+1$, then show that $f(x)$ cannot have two distinct real roots.
6.
a. Give a careful statement of Taylor's theorem. (Be sure to include the error term.)
b. Give a careful statement of the Lagrange theorem for polynomial interpolation. (Be sure to include the error term.)
c. Given data $(0,2),(1,-3),(2,2),(3,-2),(4,2),(5,3)$ set up a matrix equation that will produce the $5^{t h}$ degree polynomial $p_{5}(x)=a_{0}+a_{1} x+a_{2} x^{2}+$ $a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}$ that will interpolate the data.
d. Given the function $f(x)=e^{\frac{1}{5} x}$ for $x \in[-2,2]$ and $t o l=\frac{1}{10^{7}}$, find an integer n so that the Lagrange interpolation polynomial approximates $f(x)$ with error less than $\frac{1}{10^{7}}$ for all $x \in[-2,2]$.
7.
a. Prove: Limits are unique. (i.e. Prove: If $\lim _{\rightarrow \infty} x_{n}=L_{1}$ and $\lim _{\rightarrow \infty} x_{n}=L_{2}$, then $L_{1}=L_{2}$.)
b. Give a careful statement of the $n^{t h}$ root test.
c. Prove the $n^{\text {th }}$ root test.
8.
a. Prove: If $f(x)$ is differentiable, then $f(x)$ is continuous.
b. Define what it means for the integral to exist. (i.e. Define the symbol $\int_{a}^{b} f(x) d x$.)

