L1 Precalc review

1. **Function:** rule which assigns to each element in set D exactly one element in set R.
 - domain = D (allowable inputs)
 - range = R (outputs)
 - graph: \(\{(x, y) : x \text{ is in } D \text{ and } y = f(x) \} \)
 - zero (root, solution): \(c \) is a zero of \(f(x) \) if \(f(c) = 0 \)
 - even/odd function even: \(f(-x) = f(x) \), odd: \(f(-x) = -f(x) \)
 - increasing/decreasing increasing: walk uphill from L to R, decreasing: walk downhill from L to R

2. **Transform** the graph of \(y = f(x) \)
 - \(f(x) \pm c \): shifts graph up/down \(c \) units
 - \(f(x + c) \): shifts graph left \(c \) units while \(f(x - c) \): shifts graph right \(c \) units
 - \(cf(x) \) is a vertical stretch if \(c > 1 \) and vertical shrink if \(0 < c < 1 \)
 - \(f(cx) \): horizontal shrink if \(c > 1 \), horizontal stretch if \(0 < c < 1 \)
 - \(-f(x) \): reflect across \(x \)-axis
 - \(f(-x) \): reflect across \(y \)-axis
Solving equations

Factor and solve \(x^{-\frac{3}{3}}(2 - x)^2 - 6x^{\frac{1}{3}}(2 - x) = 0 \)

Solve \(x = \sqrt{5 - x^2} - 1 \)

Solving inequalities:

\(a < b \) and \(c > 0 \) \(\rightarrow \) \(ac < bc \)

\(a < b \) and \(c < 0 \) \(\rightarrow \) \(ac > bc \)

Find the solution set: \(\frac{10-x}{x+2} \geq 2 \)
Absolute Value

Def. If a is a real number $|a|$

so that $|a| = \begin{cases}
 a \leq 0 \\
 a > 0
\end{cases}$

ex If $x \neq 0$, find an expression for $f(x) = \frac{x}{|x|}$

$\frac{x}{|x|} = \begin{cases}
 \frac{x}{-x} & x < 0 \\
 \frac{x}{x} & x > 0
\end{cases}$

ex if $x \neq 1$ find an expression for

$g(x) = \frac{2(x-1)}{|x-1|} = \begin{cases}
 x & x < 1 \\
 x & x > 1
\end{cases}$

Absolute Value Inequalities

Let $a > 0$:

$|x| < a$ if and only if

$|x| > a$ if and only if

ex. Solve and express your answer using intervals.

$3 - \left|\frac{1-3x}{2}\right| < -1$

Graph the solution set.
Elementary functions

1. **Polynomials** \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \) where \(n \) is a nonnegative integer

 - linear functions \(f(x) = mx + b \)

 point-slope form: \(y - y_1 = m(x - x_1) \) uses point \((x_1, y_1)\) and slope \(m = \frac{y_2 - y_1}{x_2 - x_1} \)

 slope-intercept form: \(y = mx + b \), \(m = \text{slope}, (0, b) = \text{y-intercept} \)

 - quadratic functions \(f(x) = ax^2 + bx + c, a \neq 0 \)

 \(f(x) = a(x - h)^2 + k \) (complete the square to put in vertex form)

 - **power functions** \(f(x) = x^n, n \) a positive integer

2. **Rational functions** \(f(x) = \frac{P(x)}{Q(x)} \) where \(P \) and \(Q \) are polynomials

 - reciprocal function \(f(x) = \frac{1}{x} \)

3. **Root functions** \(f(x) = x^{\frac{1}{n}}, n \) is a positive integer

4. **Algebraic functions**: functions that can be constructed from polynomial functions using operations addition, subtraction, multiplication, division, and taking roots

5. **Transcendental functions**, which are not algebraic (trigonometric functions, inverse trig functions, exponential and logarithmic functions)
Domain

\[f(x) = 2x + 1 \quad \quad g(x) = \frac{2x^2 - 3x - 2}{x - 2} \]

Are these equivalent functions?

Piecewise Defined Functions

ex. a) Sketch the graph:

\[f(x) = \begin{cases}
 x & x < 0 \\
 \frac{x}{|x|} & 0 < x < 2 \\
 3 - x & 0 < x < 2 \\
 2x^2 - 8x + 9 & x \geq 2
\end{cases} \]

b) Find each interval on which \(f(x) \) is increasing, decreasing and constant.
Translations and Transformations

ex. \(y = 2 - \sqrt{x - 1} \)

Use the following order to graph a function involving more than one transformation:
1. Horizontal Translation
2. Stretching or shrinking
3. Reflecting
4. Vertical Translation (done last)
Function Composition

Def. \((f \circ g)(x) =\)

Def. \((g \circ f)(x) =\)

ex. If \(f(x) = \frac{1}{x + 2}\) and \(g(x) = \frac{4}{x - 1}\), find with domain:

\((f \circ g)(x)\)

NOTE: The domain of \(F(x) = (f \circ g)(x)\) is the intersection of the domain of inner function \(g\) and the resulting function \(F\).
Trigonometry

1. Unit conversion: degrees \leftrightarrow radians

2. Trigonometric functions

\[
\begin{align*}
\sin \theta &= \\
\cos \theta &= \\
\tan \theta &= \\
\csc \theta &= \\
\sec \theta &= \\
\cot \theta &=
\end{align*}
\]

3. Two basic triangles

4. Unit circle ($r = 1$, so $\sin \theta = y$ and $\cos \theta = x$)

<table>
<thead>
<tr>
<th>θ</th>
<th>0</th>
<th>$\pi/6$</th>
<th>$\pi/4$</th>
<th>$\pi/3$</th>
<th>$\pi/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin \theta$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\cos \theta$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tan \theta$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Graphs

\[y = \sin x \]

\[y = \cos x \]

\[y = \tan x \]

\[y = \cot x \]

\[y = \sec x \]

\[y = \csc x \]

NOTE: \[\leq \sin x \leq 1 \], \[\leq \cos x \leq 1 \]
Identities

1) $\sin^2 \theta + \cos^2 \theta = 1$

2) $\tan^2 \theta + 1 = \sec^2 \theta$

3) $1 + \cot^2 \theta = \csc^2 \theta$

4) $\sin(-\theta) = -\sin \theta$

5) $\cos(-\theta) = \cos \theta$

Add/subtract formulas

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y \quad \cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

Double Angle formulas

$$\sin(2x) = 2 \sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x$$

Half-Angle formulas

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$

ex. Solve for θ in $[0, 2\pi)$ if $\sqrt{3} \sin 2\theta + 2 \sin^2 \theta = 0$.

Inverse functions.

1. One-to-one functions

Def. A function f is called a **one-to-one function** if for any x_1 and x_2 in the domain:

 if $x_1 \neq x_2$ then

 • Horizontal Line Test

2. Inverse functions

 $f^{-1}(y) = x$ if and only if

 • If (x, y) is a point on the graph of $f(x)$, then

 Therefore, the graph of f^{-1} is the graph of f reflected through the line

 • domain and range of f^{-1}

 • inverse relationships

 $f^{-1}(f(x)) = x$ for every x in A

 $f(f^{-1}(x)) = x$ for every x in B

ex. Find the inverse of $f(x) = \sqrt{x + 2}$. Check domain and range.
Inverse Trigonometric Functions

- $y = \sin^{-1} x$ if and only if

- $y = \cos^{-1} x$ if and only if

- $y = \tan^{-1} x$ if and only if

There are similar definitions for the inverse of the other trigonometric functions.

NOTE: Inverse Properties

1. $\sin(\sin^{-1} x) = x$ for $-1 \leq x \leq 1$

 $\sin^{-1}(\sin x) = x$ for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$

2. $\cos(\cos^{-1} x) = x$ for $-1 \leq x \leq 1$

 $\cos^{-1}(\cos x) = x$ for $0 \leq x \leq \pi$

3. $\tan(\tan^{-1} x) = x$ for all x

 $\tan^{-1}(\tan x) = x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$
ex. Find the following if possible:

1) $\sin^{-1}\left(\frac{-1}{2}\right)$
2) $\cos^{-1}\left(\frac{-1}{2}\right)$
3) $\cos^{-1}(2)$

4) $\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$
5) $\tan^{-1}\left(\tan\frac{7\pi}{5}\right)$

ex. Use a triangle to find the exact value: $\sin(\tan^{-1}(-2))$

ex. Use a triangle to simplify the expression: $\cos(2\tan^{-1}x)$
Exponential Functions

Def. An exponential function with base b is a function of the form $f(x) = b^x$, where $b > 0$ and $b \neq 1$.

- **Laws of Exponents ($b \neq 0$)**
 1.) $b^0 =$
 2.) $b^{-x} =$
 3.) $b^{1/n} =$ \hspace{2cm} n a positive integer
 4.) $b^x \cdot b^y =$
 5.) $\frac{b^x}{b^y} =$
 6.) $(b^x)^y =$
 7.) $(ab)^x =$

- If $b > 0$ and $b \neq 1$, then $y = b^x$ is a one-to-one increasing or decreasing function.

\[
f(x) = b^x \quad \quad f^{-1}(x) = \log_b(x)
\]

1. domain:

2. range:

3. intercept:

4. asymptote:

5. increasing if
decreasing if
Logarithmic functions

The inverse of $y = b^x$ is the logarithmic function with base b, written

$y = \log_b(x)$ if and only if

- Laws of Logarithms ($x > 0$ and $y > 0$)
 1.) $\log_b(1) =$
 2.) $\log_b(b) =$
 3.) $\log_b(xy) =$
 4.) $\log_b \left(\frac{x}{y} \right) =$
 5.) $\log_b(x^n) =$

- Inverse Properties
 1.) $\log_b(b^x) =$
 2.) $b^{\log_b x} =$

- Change of base formula
 For any $b > 0$ and $b \neq 1$, $\log_b(x) = \frac{\log_a x}{\log_a b}$

Properties of graphs of $f(x) = b^x$ and $f^{-1}(x) = \log_b(x)$:

$\begin{array}{c}
\text{Properties of graphs of } f(x) = b^x \text{ and } f^{-1}(x) = \log_b(x): \\
\text{For any } b > 0 \text{ and } b \neq 1, \log_b(x) = \frac{\log_a x}{\log_a b}
\end{array}$

There is a base that occurs frequently in applications and is especially useful in calculus. It is the irrational number $e \approx 2.7182818284590452353602874713526625...$
Def. Common logarithm: $\log x =$

Def. Natural logarithm: $\ln x =$

ex. Evaluate:

1) $e^{-3 \ln 2} \\
2) \log \left(\frac{1}{1000^2} \right)$

ex. Solve for x:

$$2 \ln(x) - \ln(3 - x) = \ln \left(\frac{1}{2} \right) + \ln(8)$$

ex. Find the inverse of $f(x) = \log(x + 2) - 1$.