L10 Linear Approximations

We have seen that a curve y = f(x) closely follows its tangent line at a point (a, f(a)). That is, we can approximate a function value f(x) for x near a by the corresponding function value on the tangent line.

Find the equation of the tangent line to y = f(x) at (a, f(a)):

The linearization of f at a is the linear function

$$L(x) =$$

For x-values near a, we note that

This is the **Tangent line** or **Linear approximation** of f at a.

ex. Find the linearization of $f(x) = \sin x$ at a = 0.

Use it to approximate $\sin \frac{\pi}{6}$ and $\sin \frac{\pi}{10}$.

NOTE: $\sin \frac{\pi}{6} = 0.5$ and $\sin \frac{\pi}{10} = 0.3090...$

ex. Find the linearization of $f(x) = \sqrt{x+2}$ at a = 2, and use it to approximate $\sqrt{3.96}$ and $\sqrt{4.04}$.

NOTE: $\sqrt{3.96} = 1.989975...$ and $\sqrt{4.04} = 2.009975...$

Differentials

<u>Def.</u> Let y = f(x) be a differentiable function. The **differential** dx is an independent variable (it can be any real number). The **differential** dy or d(f(x)) is a dependent variable defined by

ex. 1) Find
$$dy$$
 if $y = f(x) = \frac{x}{3 - x^2}$.

2) Evaluate dy when x = 2 and dx = -0.02.

Geometrically

$$f(x + \Delta x) =$$

$$f(x + \Delta x) =$$

 $f(x + \Delta x) \approx$

<u>ex.</u> Compare Δy and dy if $y = f(x) = \frac{x}{3 - x^2}$ and x changes from 2 to 1.98.

NOTE: Linearization and the differential

We have seen that for an x-value near a number a,

$$f(x) \approx L(x) = f(a) + f'(a)(x - a).$$

ex. Use differentials to approximate $\sqrt[3]{7.8}$.

Actual value: $\sqrt[3]{7.8} = 1.983129248...$

Extreme Values

<u>Def.</u> A function f has an absolute maximum at x = c if

$$f(x) = 2 - |x|$$

f(c) is the

of f on D.

<u>Def.</u> f has an absolute minimum at x = c if

$$f(x) = x^2 - 1$$

f(c) is the

of f on D.

Together they are called

Let
$$f(x) = \begin{cases} x^2 & -2 \le x \le 1\\ \sqrt{x-1} & x > 1 \end{cases}$$
.

Find the absolute maximum and minimum values of f(x) on each of the following intervals:

$$[-2, 1]$$

$$(-2,1)$$

$$(1,\infty)$$

Are there conditions for which absolute extrema must exist?

Extreme Value Theorem:

If f is continuous on a closed interval [a, b], then f has

at some numbers c and d in [a, b].

ex. Find the absolute extrema of $f(x) = \frac{1}{x}$ on [-1, 1].

How can we find those extreme values?

 $\underline{\mathbf{Def.}}$ A function f has a local (relative) maximum at c if there is an open interval I containing c such that for all x in I

<u>Def.</u> A function f has a local (relative) minimum at c if there is an open interval I containing c such that for all x in I

<u>ex.</u> Find all local and absolute extrema of the function f(x) sketched below.

Where might a local extreme value occur?

 $\underline{\mathbf{Def.}}$ A number c in the domain of a function f is called a **critical number** if

$$f'(c) = 0$$
 or $f'(c)$ does not exist.

ex. Find all critical numbers of
$$f(x) = \frac{x^{2/3}}{x+1}$$
.

Note that
$$f'(x) = \frac{2-x}{3x^{1/3}(x+1)^2}$$
.

Fermat's Theorem:

If f has a local extremum at x = c, and if f'(c) exists, then

NOTE: If f has a local extreme value at c, then c is a

<u>ex.</u> Find the critical numbers and local extrema of $f(x) = x^3$.

We can now see that the absolute extrema of a function f(x) must occur at one of two places:

To find the absolute maximum and minimum values of a continuous function f on a closed interval [a,b]:

1.

2.

3.

 $\underline{\mathbf{ex.}}$ Find the maximum and minimum values of $f(x)=2x^{5/3}-5x^{2/3}$ on [0,8].

 $\underline{\mathbf{ex.}}$ Find the absolute maximum and minimum values of

$$f(x) = \frac{\ln x}{x}$$
 on the intervals

1)
$$[1, e^2]$$

$$2) \left[\frac{1}{e}, 1\right]$$