L14 L'Hopital's Rule and Antiderivatives

Consider the following limits:

$$\underline{\mathbf{ex.}} \quad \lim_{x \to 0} \frac{e^x - 1}{x}$$

$$\underline{\mathbf{ex.}} \quad \lim_{x \to \infty} \frac{\ln(x)}{x+1}$$

These limits are **Indeterminate Forms** $\frac{0}{0}$ and $\frac{\infty}{\infty}$. We have seen how to evaluate some limits of this form, but the process can be complicated.

$$\underbrace{\mathbf{ex.}}_{x \to 1} \lim_{x \to 1} \frac{\sqrt{x^2 + 3} - 2}{x - 1}$$

$$\lim_{x \to 0} \frac{\sin x}{x}$$

We introduce a new method that applies to many limits of this form:

L'Hôpital's Rule

Suppose that f and g are differentiable and $g'(x) \neq 0$ near a (except possibly at a). Suppose that

$$\lim_{x \to a} f(x) = 0 \text{ and } \lim_{x \to a} g(x) = 0$$

or

$$\lim_{x \to a} f(x) = \pm \infty$$
 and $\lim_{x \to a} g(x) = \pm \infty$.

Then

if it exists or is $\pm \infty$.

Note the following:

- L'Hôpital's rule applies to one-sided limits and limits at infinity.
- L'Hôpital's rule is the limit of quotient of derivatives, not the limit of derivative of the quotient.

ex. Find the following limits:

$$1. \lim_{x \to 0} \frac{a^x - 1}{x}$$

$$2. \lim_{x \to 0} \frac{\sin x}{x}$$

$$3. \lim_{x \to 0^-} \frac{\tan x}{x^2}$$

$$4. \lim_{x \to 0} \frac{e^{3x} - 3x - 1}{x^2}$$

 $\underline{\mathbf{ex.}}$ Find the following limits:

$$1. \lim_{x \to +\infty} \frac{\ln(x^2 + 1)}{\ln x}$$

$$2. \lim_{x \to 0^+} \frac{\ln x}{\csc x}$$

Caution: You must have an indeterminate form to use L'Hôpital's Rule!

ex. Find the limit:
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x + x}{\sin x}$$

ex. Evaluate:
$$\lim_{x\to 0^+} \frac{1+e^x}{\ln x}$$

Indeterminate Products $(0 \cdot \infty)$

ex. Evaluate:

$$\lim_{x\to 0} \left(\frac{1}{x}\cdot x\right) = \lim_{x\to 0} \left(\frac{1}{x}\cdot x^2\right) =$$

If
$$\lim_{x\to a} f(x) = 0$$
 and $\lim_{x\to a} g(x) = \pm \infty$, how to find

$$\lim_{x \to a} f(x) g(x)?$$

Rewrite as

$$\underline{\mathbf{ex.}}$$
 Find $\lim_{x\to 0^+} x \ln(x)$

 $\underline{\mathbf{ex.}}$ Find $\lim_{x \to \frac{\pi}{4}} (1 - \tan x) \sec 2x$.

Indeterminate Differences $(\infty - \infty)$

ex. Consider the following:

$$\lim_{x\to 0}\left(\frac{1}{x}-\frac{1}{x}\right)=\qquad \qquad \lim_{x\to 0}\left(\frac{2}{x}-\frac{1}{x}\right)=$$

$$\underline{\mathbf{ex.}} \quad \lim_{x \to 0^+} \left(\frac{1}{x} - \csc x \right)$$

Indeterminate Powers $(0^0, \infty^0, \text{or } 1^\infty)$

To evaluate, rewrite $\lim_{x\to a} [f(x)]^{g(x)}$ as

$$\lim_{x \to a} e^{\ln([f(x)]^{g(x)}} = e^{\left(\lim_{x \to a} g(x) \ln f(x)\right)}.$$

That limit has the form $0 \cdot \infty$.

$$\underline{\mathbf{ex.}}$$
 Evaluate: $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$

 $\underline{\mathbf{ex}}$. Find $\lim_{x \to 0^+} (1 + \sin 2x)^{\cot x}$.

Antiderivatives (Section 4.9)

<u>ex.</u> Suppose that the slope of the tangent line of a function f(x) at any x-value is given by 2x - 5. Can we find f(x)?

 $\underline{\mathbf{Def.}}$ A function F is called an of f on an interval I if for all x in I.

ex. Find an antiderivative of the function $f(x) = x^4 + x$.

How many antiderivatives can there be?

Recall the theorem (page L24 - 8) which states that if two functions have the same derivative on an interval, they can only differ by a constant.

Theorem: If F is an antiderivative of f on I, then

is the most general antiderivative of f on I, where C represents any constant.

ex. Find the most general antiderivative of the following:

1)
$$f(x) = \sec x \tan x$$

2)
$$f(x) = e^{5x}$$

NOTE: If
$$f(x) = x^n$$
 $(n \neq -1)$, then $F(x) =$
If $n \geq 0$, then x
If $n < 0$, then x

$$\underline{\mathbf{ex.}}$$
 Find $F(x)$ if $f(x) = x^{-3}$.

$$\underline{\mathbf{ex.}}$$
 If $f(x) = \frac{1}{x}$, find $F(x)$.

Antidifferentiation Formulas

Let F and G be antiderivatives of functions f and g.

Function	General antiderivative
cf(x)	
$f(x) \pm g(x)$	
$x^n\;(n\neq -1)$	
$\frac{1}{x}$	
$x = e^x$	
$\sin x$	
$\cos x$	
$\sec^2 x$	
$\sec x \tan x$	
$\csc^2(x)$	
$\csc x \cot x$	
$\frac{1}{\sqrt{1-2}}$	
$\frac{\sqrt{1-x^2}}{1}$	
$\frac{1}{1 \perp x^2}$	

Notation:
$$\int f(x) dx = F(x) + C$$
 means that

We say that F(x) + C is the general antiderivative or **indefinite integral** of f(x).

ex. Find all functions f(x) such that

$$f'(x) = 6x^3 - 3\sqrt{x} - \frac{1}{\sqrt{1-x^2}}.$$

ex. Find the general antiderivative of each of the following:

$$1) f(x) = \tan^2 x + 1$$

$$2) \ f(x) = \frac{x^2 + 3}{x^2 + 1}$$

ex. Find all functions g(x) such that

$$g'(x) = \frac{1}{x} + \frac{3}{x^2} - 6.$$

What can you say about the graphs of those functions?

Particular Solutions

ex. Find
$$f(x)$$
 if $f'(x) = \sin x + 2$ and $f(\pi) = -1$.