L15 Areas

How to find the area of the region that lies under the curve y = f(x) from a to b?

<u>ex.</u> Let $f(x) = \sqrt{x}$ and consider the area beneath the graph of the function on [0,4].

Let R_n be the sum of the areas of n rectangles with equal width and height

1) Find R_4 (n = 4):

2) Find R_8 (n = 8):

For any n,

$$R_n =$$

As $n \to \infty$, what happens to our approximation?

We define the area as $\lim_{n\to\infty} R_n$

$$= \lim_{n \to \infty} \frac{4}{n} \left[\sqrt{x_1} + \sqrt{x_2} + \dots + \sqrt{x_i} + \dots + \sqrt{x_n} \right]$$

Similarly, we can also define the area as $\lim_{n\to\infty} L_n$ or $\lim_{n\to\infty} M_n$, where L_n is the left endpoint approximation and M_n is the midpoint approximation (see page 290 of the text).

We now generalize this process:

To find the area under the curve y = f(x) on [a, b]:

Divide [a, b] into n subintervals using partition

$$a = b$$

This creates n subintervals:

Then consider n rectangles, one for each subinterval:

Width $\Delta x =$

Height: $f(x_i)$, where x_i is

Area A can be approximated by the sum of the areas of the n rectangles:

This sum is called a Riemann sum.

Summation Notation

We use summation notation to write sums in compact form:

$$\sum_{i=m}^{n} a_i =$$

$$\underline{\text{ex.}} \sum_{i=1}^{4} i^3 =$$

$$\underline{\mathbf{ex.}} \sum_{k=2}^{5} (k^2 - 1) =$$

Now, we use summation notation to express the sum more concisely as

$$A \approx$$

Generally, if f is continuous, as the number of subintervals gets larger and widths get smaller the approximation is closer to actual area. We can then define

$$A =$$

ex.

1) Find an expression for the exact area under $f(x) = x^2 + 1$ from x = 0 to x = 3 as the limit of a Riemann sum with n subintervals of equal width.

Consider the following formula

$$1^2 + 2^2 + \dots + n^2 = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}.$$

Use it to find the exact area under $f(x) = x^2 + 1$ from x = 0 to x = 3 by evaluating the limit of the Riemann sum:

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\left(\frac{3i}{n} \right)^2 + 1 \right) \left(\frac{3}{n} \right)$$

 $\underline{\mathbf{ex.}}$ What area is represented by

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{1}{1 + \frac{2i}{n}} \right) \left(\frac{2}{n} \right)$$

NOTE:

Application of Area: Distance

<u>ex.</u> Suppose an object moves along a track, and its velocity in feet per second is measured every five seconds over a 20 second time interval as recorded in the following table:

Time	0	5	10	15	20
Velocity(ft/sec)	24	30	36	40	45

Estimate the distance traveled over the 20 second interval.

Find the distance traveled by an object during a certain time interval [a, b] if the velocity is known at all times (and is positive).

The Definite Integral

<u>**Def.**</u> If f is defined for $a \le x \le b$, divide [a, b] into n subintervals of equal width

$$\Delta x =$$

Let $x_0(=a), x_1, x_2, ..., x_n(=b)$ be the endpoints of these subintervals and let x_i be the right endpoint in the subinterval $[x_{i-1}, x_i]$.

The **definite integral** of f from a to b is

if the limit exists. If so, f is **integrable** on [a, b].

The sum
$$\sum_{i=1}^{n} f(x_i) \Delta x$$
 is a

It is used to approximate the definite integral.

Notation

Integral sign

Integrand

Integration

Limits of integration (lower and upper)

dx

NOTE:

<u>ex.</u> Express $\lim_{n\to\infty} \sum_{i=1}^n x_i e^{(x_i)^2 - 3} \Delta x$ as a definite integral on [0,4].

Theorem: If f is continuous or has a finite number of jump discontinuities on [a, b], then f is integrable on [a, b].

Riemann Sums, Definite Integral, and Area:

If $f(x) \ge 0$ on [a, b]

If $f(x) \leq 0$ for some x in [a, b]

NOTE:

Signed area of a region =

$$\int_{a}^{b} f(x) \, dx =$$

$$\int_{a}^{b} f(x) dx =$$

$$\int_{a}^{b} |f(x)| dx =$$

Evaluating Definite Integrals as Signed Area

$$\underline{\mathbf{ex.}}$$
 Evaluate $\int_{-2}^{6} (4-x) dx$.

$$\underline{\mathbf{ex.}}$$
 Evaluate $\int_{-2}^{6} |4 - x| \, dx$.

To evaluate definite integrals using sums

If c is any constant and if n is a positive integer, then

1.
$$\sum_{i=1}^{n} ca_i =$$

$$2. \sum_{i=1}^{n} (a_i + b_i) =$$

$$3. \sum_{i=1}^{n} (a_i - b_i) =$$

$$4. \sum_{i=1}^{n} c =$$

5.
$$\sum_{i=1}^{n} i =$$

6.
$$\sum_{i=1}^{n} i^2 =$$

7.
$$\sum_{i=1}^{n} i^3 =$$

NOTE: Using right endpoints, if f is integrable on [a, b],

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

with $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$.

$$\underline{\mathbf{ex.}}$$
 Evaluate $\int_0^3 (x^2 - 3x) \, dx$.

Properties of integrals

$$1. \int_b^a f(x) \, dx =$$

$$2. \int_{a}^{a} f(x) \, dx =$$

3. If c is a constant,
$$\int_a^b c \, dx =$$

4.
$$\int_{a}^{b} [f(x) \pm g(x)] dx =$$

$$5. \int_a^b cf(x) \, dx =$$

$$6. \int_a^b f(x) \, dx =$$

$$\underline{\mathbf{ex.}} \quad \text{If } f(x) = \begin{cases} 2 & x < 0 \\ \sqrt{4 - x^2} & x \ge 0 \end{cases},$$
 find
$$\int_{-3}^2 f(x) \, dx.$$

Comparison Properties of Integrals

1. If $f(x) \ge 0$ for $a \le x \le b$, then

2. If $f(x) \geq g(x)$ for $a \leq x \leq b$, then

3. If $m \leq f(x) \leq M$ for $a \leq x \leq b$, then

We can see this if f is continuous on [a, b]:

ex. Find the maximum and minimum values of

$$f(x) = \sqrt{x^2 + 1}$$
 on $[-1, 1]$,

and use them to find upper and lower bounds for the value of $\int_{-1}^{1} \sqrt{x^2 + 1} \, dx$.