L16 The Fundamental Theorem of Calculus

ex. Given the function y = f(t) = 4t:

Now consider the function of x for $x \geq 0$ defined by

$$A(x) = \int_0^x 4t \, dt.$$

For any given x, we know that A(x) gives the area of the region bounded by the graph of f(t) from t = 0 to t = x.

1) Find an expression for A(x).

2) Find A'(x).

The Fundamental Theorem of Calculus, Part I:

If f is continuous on [a, b], then the function A defined by

$$A(x) = \int_{a}^{x} f(t) dt \qquad a \le x \le b$$

is continuous on [a,b] and differentiable on (a,b) and

$$A'(x) =$$

NOTE: If f is continuous, $\frac{d}{dx} \int_a^x f(t) dt =$

$$\underline{\mathbf{ex.}} \quad \text{If } g(x) = \int_1^x t \cos(t^2) \, dt, \text{ find } g'(x).$$

$$\underline{\mathbf{ex.}}$$
 Find $h'(x)$ if $h(x) = \int_2^x \frac{t^2 + 1}{t} dt$.

The FTC and the Chain Rule

ex. Find
$$\frac{dF}{dx}$$
 if $F(x) = \int_0^{x^2} t\sqrt{t^3 + 4} dt$.

$$\underline{\mathbf{ex.}}$$
 Find $\frac{d}{dx} \int_{\sqrt{x}}^{\tan x} e^{2t} dt$.

Fundamental Theorem of Calculus, Part II:

If f is continuous on [a, b], then

$$\int_{a}^{b} f(x) \, dx =$$

where F is any antiderivative of f. (That is, F'(x) = 0)

ex. Evaluate $\int_0^{\frac{\pi}{2}} \sin x \, dx$ and sketch the area represented by this definite integral.

 $\underline{\mathbf{ex.}}$ Evaluate $\int_0^{\ln 2} e^{3x} dx$.

<u>ex.</u> 1) Evaluate $\int_{1}^{4} (x - \sqrt{x})^{2} dx$.

2) Evaluate
$$\int_{4}^{4} (x - \sqrt{x})^2 dx$$
.

<u>ex.</u> Find the area bounded by $f(x) = e^x + \frac{2}{x}$ and the x-axis from x = 1 to x = e.

Now consider the area bounded by f(x) and the x-axis from x = 0 to x = e.

ex. Find the area of the region bounded by the x-axis and the graph of $f(x) = \begin{cases} x+1 & x \leq 0 \\ \sec^2 x & x > 0 \end{cases}$ on the interval $\left[-1, \frac{\pi}{4}\right]$.

 $\underline{\mathbf{ex.}}$ For a given value of x, we can use the FTC, part II to find

$$h(x) = \int_{2}^{x} \frac{t^2 + 1}{t} dt.$$

Now find h'(x). Compare this with the result found previously.

To summarize the relationship between the parts of

The Fundamental Theorem of Calculus

If f is continuous on [a, b],

1) If
$$A(x) = \int_a^x f(t) dt$$
, then

$$2) \int_a^b f(x) \, dx =$$

Note the following:

$$\underline{\mathbf{ex.}} \frac{d}{dx} \int_{a}^{x} (t^3 + 2t) dt$$

$$\underline{\mathbf{ex.}} \int_0^x \frac{d}{dt} (\sec t) \, dt$$

Indefinite Integrals & Net Change Theorem

Note the connections between antiderivatives and the definite integral from:

Fundamental Theorem of Calculus, part I

If f is continuous, then
$$\int_a^x f(t) dt$$
 is

Fundamental Theorem of Calculus, part II

$$\int_{a}^{b} f(x) \, dx =$$

where

Indefinite Integrals

Definite Integrals

We rewrite our antiderivative formulas as integrals:

$$1. \int cf(x) \, dx = c \int f(x) \, dx$$

2.
$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

$$3. \int k \, dx =$$

$$4. \int x^n dx =$$

$$5. \int \frac{1}{x} dx =$$

6.
$$\int e^x dx =$$

$$7. \int a^x dx =$$

8.
$$\int \cos x \, dx =$$

9.
$$\int \sin x \, dx =$$

10.
$$\int \sec^2 x \, dx =$$

11.
$$\int \csc^2 x \, dx =$$

12.
$$\int \sec x \tan x \, dx =$$

13.
$$\int \csc x \cot x \, dx =$$

14.
$$\int \frac{1}{\sqrt{1-x^2}} \, dx =$$

15.
$$\int \frac{1}{1+x^2} \, dx =$$

$$\underline{\mathbf{ex.}} \quad \int \left(2^x + \frac{4}{\sqrt{1-x^2}} - e^{2x}\right) \, dx$$

$$\underline{\mathbf{ex.}} \quad \int \frac{\sqrt[4]{x^3} + 1}{x} \, dx$$

$$\underline{\mathbf{ex.}} \quad \int \frac{x^2}{x^2 + 1} \, dx$$

$$\underline{\mathbf{ex.}} \int \tan^2 x \, dx$$

$$\underline{\mathbf{ex.}} \quad \int_0^{\frac{\pi}{4}} \frac{\sin \theta}{\cos^2 \theta} \ d\theta$$

Net Change Theorem

The integral of a rate of change of a function is the **net change** of the function on the interval [a, b]:

$$\int_{a}^{b} F'(x) \, dx =$$

<u>ex.</u> If the volume of water in a lake is increasing at the rate V'(t), then

$$\int_{t_1}^{t_2} V'(t) \, dt =$$

gives

ex. If a population is growing at a rate of $\frac{dn}{dt}$, then

$$\int_{t_1}^{t_2} \frac{dn}{dt} \ dt =$$

gives

<u>ex.</u> Suppose that a population of birds is increasing at the rate of 100 + 20t birds per year. What is the net increase in population between the sixth and eight years?

Suppose a particle is moving along a straight line with position function s(t), velocity v(t), and acceleration a(t). Then

$$\int_{t_1}^{t_2} \!\! v(t) \, dt =$$

$$\int_{t_1}^{t_2} a(t) \, dt =$$

NOTE: total distance traveled =

<u>ex.</u> A particle moves along a line so that its velocity at time t is $v(t) = t^2 - 2t - 8$ m/sec.

1) Find the displacement during the time $2 \le t \le 5$.

2) Find the total distance traveled during the time $2 \le t \le 5$.