L2. Limits, Velocity and Tangent Lines
Average velocity $=$
Velocity has both direction and magnitude. speed $=\mid$ velocity \mid.
ex. Suppose that as an object falls from the top of a cliff, its position in feet above the ground after t seconds is given by the formula $s(t)=160-16 t^{2}$.

1) Find the average velocity of the object on the time interval from $t=1$ to $t=3$.
2) Find the average velocity on the time interval $t=1$ to $t=2$.

Consider the following table for our position function:

Time Interval	Average Velocity
$[1,2]$	$-48 \mathrm{ft} / \mathrm{sec}$
$[1,1.5]$	$-40 \mathrm{ft} / \mathrm{sec}$
$[1,1.1]$	$-33.6 \mathrm{ft} / \mathrm{sec}$
$[1,1.01]$	$-32.16 \mathrm{ft} / \mathrm{sec}$
$[1,1.001]$	$-32.016 \mathrm{ft} / \mathrm{sec}$

Can we find the rate at which the object is falling at exactly one second?

We generalize the above process: for a small number h, find the average velocity of $s(t)=160-16 t^{2}$ from $t=1$ to $t=1+h$ seconds.

Now we can find the instantaneous velocity of the object when $t=1$.

To see this from another point of view, consider the graph of $s(t)=160-16 t^{2}$:

A secant line is a line joining two points on a curve. On our example, consider the slope of the secant line through

1) $[1,3]$
2) $[1,2]$

We observe: Slope of secant line

Notice that the secant lines in our above graph approach a unique line, called the tangent line of the graph at $t=1$.

Slope of the tangent line
ex. Find the slope of the tangent to $y=x^{2}+1$ at $(1,2)$.

Consider points $P=(1,2)$ and $Q=\left(x, x^{2}+1\right), x \neq 1$ slope of secant line through P and Q :

$$
m_{\sec }=
$$

How can we find the slope of the tangent line at $(1,2)$?

If $f(x)=m_{\sec }=\frac{x^{2}-1}{x-1}$, consider the following:

x	$f(x)$
0.5	1.5
0.9	1.9
0.99	1.99
0.999	1.999

x	$f(x)$
1.5	2.5
1.1	2.1
1.01	2.01
1.001	2.001

Note that $f(x)$ as x
so in our example, slope of the tangent line $=m_{t a n}=$
We use the notation: $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$

Introduction to Limits

Def. Let $f(x)$ be a function. We say that $\lim _{x \rightarrow c} f(x)=L$ if we can make the values of $f(x)$ arbitrarily close to L by taking x sufficiently close to c (on either side of c) but not equal to c.

What do we mean by making $f(x)$ arbitrarily close to L ?
Consider our function $f(x)=\frac{x^{2}-1}{x-1}, x \neq 1$:

We write $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=$

To show that $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} x+1=2$, we must show that $|f(x)-2|$ becomes arbitrary small when x is sufficiently close to 1 (but $x \neq 1$):

$$
|f(x)-2|=
$$

We can also see these ideas graphically:
Sketch the graph of $f(x)=\frac{x^{2}-1}{x-1}$.

a) What is the domain of f ?
b) $\lim _{x \rightarrow 1} f(x)=$

Now consider $g(x)= \begin{cases}\frac{x^{2}-1}{x-1} & x \neq 1 \\ 3 & x=1\end{cases}$
Sketch the graph of $g(x)$.

a) What is the domain of g ?
b) $\lim _{x \rightarrow 1} g(x)=$

NOTE: $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} g(x)=$
but $f(1)=\quad$ and $g(1)=$

Recall the definition: For a given function $f(x)$, we say that $\lim _{x \rightarrow c} f(x)=L$ if we can make the values of $f(x)$ as close to L as we want by choosing x sufficiently close to c on either side but not equal to c.
ex. If $f(x)=\left\{\begin{array}{ll}x & \text { if } x \neq 1 \\ 3 & \text { if } x=1\end{array}\right.$, find $\lim _{x \rightarrow 1} f(x)$.

ex. If $g(x)=\left\{\begin{array}{ll}3 & \text { if } x \leq 0 \\ -1 & \text { if } x>0\end{array}\right.$, find $\lim _{x \rightarrow 0} g(x)$.

Def. One-Sided Limits

We say that a function $f(x)$ has limit L as x approaches the number c from the right if we can make every value of $f(x)$ as close to L as we want by choosing x sufficiently close to c but $x>c$.

We write this right-hand limit as $\lim _{x \rightarrow c^{+}} f(x)=L$.

Similarly, the left-hand limit $\lim _{x \rightarrow c^{-}} f(x)=L$ means we can make every value of $f(x)$ as close to L as we want by choosing x sufficiently close to c but $x<c$.

In the example $g(x)= \begin{cases}3 & x \leq 0 \\ -1 & x>0\end{cases}$
$\lim _{x \rightarrow 0^{-}} g(x)=\quad \lim _{x \rightarrow 0^{+}} g(x)=$
NOTE: $\lim _{x \rightarrow c} f(x)=L$ if and only if
ex. From the given graph, find the limits:

$\lim _{x \rightarrow-3} f(x)=$
$\lim _{x \rightarrow-1^{+}} f(x)=$
$\lim _{x \rightarrow-1^{-}} f(x)=$
$\lim _{x \rightarrow-1} f(x)=$
$\lim _{x \rightarrow 2^{-}} f(x)=$
$\lim _{x \rightarrow 2^{+}} f(x)=$
$\lim _{x \rightarrow 2} f(x)=$
$\lim _{x \rightarrow-2} f(x)=$

Infinite Limits

Def. Let f be defined on both sides of c, except possibly at c. $\lim _{x \rightarrow c} f(x)=\infty$ if the values of $f(x)$ can be made (and kept) as large as we want by taking x sufficiently close to c but not equal to c.

Also, $\lim _{x \rightarrow c} f(x)=-\infty$ means the values $f(x)<0$ can be made (and kept) as large as possible in absolute value as we want by taking x sufficiently close but not equal to c.

NOTE: Similar definitions can be given for approaching c from the left or right.

Def. The line $x=c$ is called a of the curve $y=f(x)$ if at least one of the following is true:
ex. Graph the given functions:
$f(x)=\frac{1}{x-1} \quad g(x)=\frac{1}{(x-1)^{2}} \quad h(x)=-\frac{1}{(x-1)^{2}}$

ex. Use the graphs to find the following limits:

1) $\lim _{x \rightarrow 1^{-}} f(x)=$

$$
\lim _{x \rightarrow 1^{+}} f(x)=
$$

$$
\lim _{x \rightarrow 1} f(x)=
$$

2) $\lim _{x \rightarrow 1} g(x)=$
3) $\lim _{x \rightarrow 1} h(x)=$

Note the form of $f(1), g(1)$ and $h(1)$ for the above examples, and their relation to the limit of each function as $x \rightarrow 1$.
ex. Use the following table of values to evaluate

$$
\lim _{x \rightarrow 1^{-}} \frac{x-5}{x-1}
$$

x	$\frac{x-5}{x-1}$
0.9	41
0.99	401
0.999	4,001
0.9999	40,001

ex. Find each vertical asymptote of $f(x)=\frac{x-5}{x-1}$.
ex. Find each vertical asymptote of $f(x)=\frac{x^{2}-1}{x-1}$
ex. Evaluate $\lim _{x \rightarrow 1^{+}} \ln (x-1)$.
Find any vertical asymptotes of $f(x)=\ln (x-1)$.

ex. Find $\lim _{x \rightarrow \pi^{-}} \cot x$.

Find any vertical asymptotes of $g(x)=\cot x$.

