L2. Limits, Velocity and Tangent Lines

Average velocity =

Velocity has both direction and magnitude. speed= |velocity|.

<u>ex.</u> Suppose that as an object falls from the top of a cliff, its position in feet above the ground after t seconds is given by the formula $s(t) = 160 - 16t^2$.

1) Find the average velocity of the object on the time interval from t = 1 to t = 3.

2) Find the average velocity on the time interval t = 1 to t = 2.

Consider the following table for our position function:

Time Interval	Average Velocity
[1, 2]	-48 ft/sec
[1, 1.5]	-40 ft/sec
[1, 1.1]	-33.6 ft/sec
[1, 1.01]	-32.16 ft/sec
[1, 1.001]	-32.016 ft/sec

Can we find the rate at which the object is falling at exactly one second?

We generalize the above process: for a small number h, find the average velocity of $s(t) = 160 - 16t^2$ from t = 1 to t = 1 + h seconds. Now we can find the **instantaneous velocity** of the object when t = 1.

To see this from another point of view, consider the graph of $s(t) = 160 - 16t^2$:

A secant line is a line joining two points on a curve. On our example, consider the slope of the secant line through

1) [1, 3]

2) [1, 2]

We observe: Slope of secant line

Notice that the secant lines in our above graph approach a unique line, called the **tangent line** of the graph at t = 1.

Slope of the tangent line

<u>ex.</u> Find the slope of the tangent to $y = x^2 + 1$ at (1, 2).

Consider points P = (1, 2) and $Q = (x, x^2 + 1), x \neq 1$ slope of secant line through P and Q:

 $m_{sec} =$

How can we find the slope of the tangent line at (1,2)?

If $f(x) = m_{sec} = \frac{x^2 - 1}{x - 1}$, consider the following: $\frac{x + f(x)}{0.5 + 1.5} = \frac{x + f(x)}{1.5 + 2.5}$

0.5		1.5	2.5
0.9	1.9	1.1	2.1
0.99	1.99	1.01	2.01
0.999	1.99 1.999	1.1 1.01 1.001	2.001

Note that f(x) as xso in our example, slope of the tangent line $= m_{tan} =$ We use the notation: $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$

Introduction to Limits

<u>Def.</u> Let f(x) be a function. We say that $\lim_{x\to c} f(x) = L$ if we can make the values of f(x) arbitrarily close to L by taking x sufficiently close to c (on either side of c) but not equal to c.

What do we mean by making f(x) arbitrarily close to L?

Consider our function
$$f(x) = \frac{x^2 - 1}{x - 1}, x \neq 1$$
:

We write
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} =$$

To show that $\lim_{x\to 1} f(x) = \lim_{x\to 1} x + 1 = 2$, we must show that |f(x) - 2| becomes arbitrary small when x is sufficiently close to 1 (but $x \neq 1$):

$$|f(x) - 2| =$$

We can also see these ideas graphically:

Sketch the graph of $f(x) = \frac{x^2 - 1}{x - 1}$.

a) What is the domain of f?

b) $\lim_{x \to 1} f(x) =$

Now consider
$$g(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & x \neq 1\\ 3 & x = 1 \end{cases}$$

Sketch the graph of g(x).

- a) What is the domain of g?
- b) $\lim_{x \to 1} g(x) =$

NOTE: $\lim_{x \to 1} f(x) = \lim_{x \to 1} g(x) =$

but f(1) = and g(1) =

Recall the definition: For a given function f(x), we say that $\lim_{x\to c} f(x) = L$ if we can make the values of f(x) as close to L as we want by choosing x sufficiently close to c on either side but not equal to c.

$$\underline{\mathbf{ex.}} \quad \text{If } f(x) = \begin{cases} x & \text{if } x \neq 1 \\ 3 & \text{if } x = 1 \end{cases}, \text{ find } \lim_{x \to 1} f(x).$$

<u>Def.</u> One-Sided Limits

We say that a function f(x) has limit L as x approaches the number c from the right if we can make every value of f(x) as close to L as we want by choosing x sufficiently close to c but x > c.

We write this **right-hand limit** as $\lim_{x \to c^+} f(x) = L$.

Similarly, the **left-hand limit** $\lim_{x\to c^-} f(x) = L$ means we can make every value of f(x) as close to L as we want by choosing x sufficiently close to c but x < c.

In the example
$$g(x) = \begin{cases} 3 & x \le 0 \\ -1 & x > 0 \end{cases}$$

 $\lim_{x \to 0^-} g(x) = \lim_{x \to 0^+} g(x) =$

NOTE: $\lim_{x \to c} f(x) = L$ if and only if

 $\lim_{x \to -3} \, f(x) =$

 $\lim_{x\to -1^+}\,f(x) =$

 $\lim_{x \to -1^-} \, f(x) =$

 $\lim_{x \to -1} \, f(x) =$

 $\lim_{x\to 2^-}\,f(x)=$

$$\lim_{x \to 2^+} f(x) =$$

 $\lim_{x\to 2}\,f(x) =$

$$\lim_{x \to -2} f(x) =$$

Infinite Limits

<u>**Def.**</u> Let f be defined on both sides of c, except possibly at c. $\lim_{x\to c} f(x) = \infty$ if the values of f(x) can be made (and kept) as large as we want by taking x sufficiently close to cbut not equal to c.

Also, $\lim_{x\to c} f(x) = -\infty$ means the values f(x) < 0 can be made (and kept) as large as possible in absolute value as we want by taking x sufficiently close but not equal to c.

NOTE: Similar definitions can be given for approaching *c* from the left or right.

<u>Def.</u> The line x = c is called a

of the curve y = f(x) if at least one of the following is true:

ex. Graph the given functions:

ex. Use the graphs to find the following limits: 1) $\lim_{x \to 1^{-}} f(x) =$ $\lim_{x \to 1^{+}} f(x) =$ 2) $\lim_{x \to 1} g(x) =$ 3) $\lim_{x \to 1} h(x) =$

Note the form of f(1), g(1) and h(1) for the above examples, and their relation to the limit of each function as $x \to 1$. ex. Use the following table of values to evaluate

		$\lim_{x \to 1^-} \frac{x-5}{x-1}.$
x	$\frac{x-5}{x-1}$	
0.9	41	
0.99	401	
0.999	4,001	
0.9999	40,001	

<u>ex.</u> Find each vertical asymptote of $f(x) = \frac{x-5}{x-1}$.

<u>ex.</u> Find each vertical asymptote of $f(x) = \frac{x^2 - 1}{x - 1}$

<u>ex.</u> Evaluate $\lim_{x \to 1^+} \ln(x-1)$.

Find any vertical asymptotes of $f(x) = \ln(x-1)$.

<u>ex.</u> Find $\lim_{x \to \pi^-} \cot x$.

Find any vertical asymptotes of $g(x) = \cot x$.