L3. Evaluating Limits, Continuity

Basic Limit Laws

Suppose \(\lim_{x \to c} f(x) \) and \(\lim_{x \to c} g(x) \) exist and \(k \) is a constant. We have the following limit laws:

1. \(\lim_{x \to c} [f(x) \pm g(x)] = \)

2. \(\lim_{x \to c} k f(x) = \)

3. \(\lim_{x \to c} f(x) g(x) = \)

4. If \(\lim_{x \to c} g(x) \neq 0 \), \(\lim_{x \to c} \frac{f(x)}{g(x)} = \)

5. If \(p, q \) are integers, with \(q \neq 0 \), then \(\lim_{x \to c} [f(x)]^{p/q} = \)

Assume that \(\lim_{x \to c} f(x) \geq 0 \) if \(q \) is even, and that \(\lim_{x \to c} f(x) \neq 0 \) if \(p/q < 0 \).

In particular, for a positive integer \(n \):

\(\lim_{x \to c} [f(x)]^n = \), \(\lim_{x \to c} n \sqrt[n]{f(x)} = \)
Note the following (Theorem 1, Section 2.2):

6. \(\lim_{x \to c} k = \)

7. \(\lim_{x \to c} x = \)

ex. Evaluate \(\lim_{x \to -1} (2x^2 + 3x - 2) \).

Note that \(\lim_{x \to -1} f(x) = \lim_{x \to -1} (2x^2 + 3x - 2) = f(-1) \). That is, we can find the limit by direct substitution.

Direct Substitution Property

If \(f(x) \) is a polynomial and \(c \) is in the domain of \(f \) then

\[\lim_{x \to c} f(x) = \]
What about a rational function $R(x) = \frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are polynomials? If $q(c) \neq 0$, we can extend the substitution property:

$$\lim_{x \to c} R(x) = \lim_{x \to c} \frac{p(x)}{q(x)} =$$

ex. Evaluate $\lim_{x \to 1} \frac{x^2 - 5}{x + 1}$.

ex. Evaluate $\lim_{x \to -3} \frac{x^2 + 2x - 3}{x + 3}$.
We are using an important result:

If f and g are functions so that $f(x) = g(x)$ for all $x \neq c$, and $\lim_{x \to c} g(x)$ exists, then $\lim_{x \to c} f(x) = \lim_{x \to c} g(x)$.

So if $h(x) = \frac{f(x)}{g(x)}$ and both $f(x)$ and $g(x)$ approach 0 as $x \to c$, the indeterminate form $\frac{0}{0}$, we use algebraic techniques to find a function equivalent to $h(x)$ except at $x = c$.

ex. Evaluate: $\lim_{x \to 3} \frac{x - \sqrt{12 - x}}{x - 3}$
ex. \[\lim_{x \to 4} \frac{\frac{1}{x} - \frac{4}{x^2}}{4 - x} \]

Now let \(f(x) = \begin{cases} \frac{1}{x} - \frac{4}{x^2} & x \neq 4, \\ \frac{x}{4 - x} & x = 4 \end{cases} \)

What is \(\lim_{x \to 4} f(x) \)?
Indeterminate Forms: \(\frac{0}{0}, \frac{\infty}{\infty}, \infty \cdot 0, \infty - \infty, 1^\infty, \infty^0, 0^0 \)

(We will discuss indeterminate powers in Section 4.5.)

ex. Evaluate \(\lim_{x \to 1} \frac{1}{\sqrt{x - 1}} - \frac{2}{x - 1} \)

The following quotients are **not** indeterminate forms:

ex. Evaluate \(\lim_{x \to 0^+} \frac{x + 2}{\ln x} \)

ex. Evaluate \(\lim_{x \to 2^-} \frac{x - 4}{x - 2} \)
Recall One-Sided Limits

Theorem. \(\lim_{x \to c} f(x) = L \) if and only if

\[\text{ex. Given } g(x) = \begin{cases}
-2 & x \leq -2 \\
4 - x^2 & -2 < x < 2 \\
\ln(x - 1) & x > 2
\end{cases}\]

Find the following:

1) \(\lim_{x \to -2} g(x) \)

2) \(\lim_{x \to 2} g(x) \)
3) Sketch the graph of \(g(x) = \begin{cases}
-2 & x \leq -2 \\
4 - x^2 & -2 < x < 2 \\
\ln(x - 1) & x > 2
\end{cases} \)
and compare.
Recall: $\sqrt{x^2} =$

ex. Find the following:

a) $\lim_{x \to 0^+} x \sqrt{1 + \frac{1}{x^2}}$

b) $\lim_{x \to 0^-} x \sqrt{1 + \frac{1}{x^2}}$

c) $\lim_{x \to 0} x \sqrt{1 + \frac{1}{x^2}}$
Def. A function \(f \) is **continuous** at a number \(c \) if

\[
\lim_{{x \to c}} f(x) =
\]

If \(f \) is defined on an open interval including \(x = c \) but is not continuous there, then \(f \) is **discontinuous** at \(c \).

The definition implies three conditions for continuity:

1.

2.

3.

Note that \(f \) is continuous at \(x = c \) if the limit as \(x \to c \) gives the same number as evaluating the function at \(x = c \).
ex. Consider the graph of a function $f(x)$

At which numbers is f discontinuous?

Can we define or redefine $f(x)$ to make it continuous at any of those values?
We classify two types of discontinuities at a point $x = c$:

Removable

Nonremovable

Jump Discontinuity

Infinite Discontinuity
Functions that are continuous

The following familiar functions are continuous for each x in their domain:

Polynomials Rational functions Root functions
Trigonometric and Inverse Trigonometric functions
Exponential functions Logarithmic functions

Theorem. (Basic Laws of Continuity)
If functions f and g are continuous at c and k is a constant, then the following functions are also continuous at $x = c$:

$$f \pm g, \; f \cdot g, \; kf \; \text{and} \; \frac{f}{g} \; \text{if} \; g(c) \neq 0$$

This can be verified by the Basic Limit Laws.

Theorem. (Continuity of Composite Functions)
If g is continuous at $x = c$ and f is continuous at $g(c)$, then the composition $f \circ g$ is continuous at $x = c$.
ex. On what interval(s) is $f(x) = \sqrt{x + 1} + \frac{\ln x}{x - 4}$ continuous?

ex. Evaluate based on continuity of the function:

$$\lim_{x \to 1} 2^{x-2\sqrt{x}}$$

So now we can use direct substitution to find:

ex. $\lim_{x \to \frac{\pi}{2}} \sin(x - \cos x)$
Functions with Discontinuities

ex. Consider \(f(x) = \frac{x - x^2}{x^3 + x^2 - 2x} \). What types of discontinuities does \(f(x) \) have? Could we define \(f(x) \) to make it continuous at any of those discontinuities?
ex. Find any removable or nonremovable discontinuities of

\[f(x) = \begin{cases}
 x - 1 & \text{if } x < 0 \\
 |x| + 1 & \text{if } 0 \leq x < 1 \\
 2\sqrt{x} & \text{if } x > 1
\end{cases} \]
Def. A function f is **continuous from the right** at $x = c$ if

$$f$$ is **continuous from the left** at c if

In our example, is f continuous from the right or left at $x = 0$?

At $x = 1$?

Continuity on Intervals

A function is continuous on an interval I if it is continuous at each x-value in I. If f is defined only on one side of an endpoint of the interval, we consider continuity to be continuity from the left or right.

On an interval for which a function is continuous its graph has no jumps, holes, or gaps.
ex. Find the value of K which will make $f(x)$ continuous at $x = e$.

$$f(x) = \begin{cases}
 \ln(2x - e) & x \leq e \\
 4x - K & x > e
\end{cases}$$
An important property of continuous functions is the Intermediate Value Theorem (IVT):

Suppose f is continuous on $[a, b]$ and M is any number between $f(a)$ and $f(b)$, then

![Graph of a function](image)

Corollary. (Existence of Zeros)

If $f(x)$ is continuous on $[a, b]$ and if $f(a) > 0$ and $f(b) < 0$ (or $f(a) < 0$ and $f(b) > 0$), then $f(x)$ has a zero in (a, b).

ex. Does the IVT imply that $f(x) = \frac{1}{x}$ has a zero on $(-1, 1)$?

ex. Use the IVT to show that the equation $x^3 + 3x = 2$ has a root in the interval $(-1, 1)$.