L5 Definition of the derivative

Tangent Lines and Slope

Def. The slope of the secant line through the point \(P(a, f(a)) \) and a nearby point \(Q(x, f(x)) \):

\[
m = \frac{f(x) - f(a)}{x - a}
\]

provided that the limit exists.

Ex. Find the equation of the tangent line to \(f(x) = x^3 - 1 \) at \(x = 2 \).
Alternate Definition of the Slope of a Tangent Line

Let \(h = x - a \). Then

and \(m = \)

ex. Find the slope of the tangent line to

\[
 f(x) = \frac{x}{x + 1} \at \text{at } x = 2.
\]
NOTE: We can use our formulas to find the slope of the tangent line for $f(x)$ at any point $(a, f(a))$.

ex. Find the slope of the tangent line to $f(x) = \sqrt{9 - 2x}$ at $x = a$.
We can use this formula to find the slope of the tangent line to \(f(x) = \sqrt{9 - 2x} \) at a given value \(x = a \) (if the limit exists):

1) \(x = -8 \)

2) \(x = 0 \)

3) \(x = \frac{9}{2} \)
The derivative as a function

Def. Given \(y = f(x) \),

\[
f'(x) =
\]

The derivative is itself a function of \(f \). Its domain:

Other notations for the derivative:

Process of finding the derivative is called
ex. Find the function $f'(x)$ for $f(x) = \frac{1}{x - 2}$. What is its domain?

Def. A function f is **differentiable** at $x = a$ if $f'(a)$ exists. It is differentiable on an open interval if it is differentiable at each number in the interval.

ex. Find each interval for which $f(x) = \frac{1}{x - 2}$ is differentiable.
ex. Find each x-value at which the tangent line to the graph of $f(x) = \frac{1}{x - 2}$ is perpendicular to the line $y = 4x$.
Recall: the derivative of a function f at $x = a$ is

$$f'(a) =$$

The derivative as a function

Def. Given $y = f(x)$, $f'(x) =

ex. Let $f(x) = \begin{cases} 1 - x & x < 1 \\ x^2 - 1 & x \geq 1 \end{cases}$.

1) Find $f'(1)$ if possible.

2) Find a formula for $f'(x)$, where $f(x) = \begin{cases} 1 - x & x < 1 \\ x^2 - 1 & x \geq 1 \end{cases}$.
3) Sketch the graph of $f(x) = \begin{cases} 1 - x & x < 1 \\ x^2 - 1 & x \geq 1 \end{cases}$.

What do you note about continuity and differentiability of $f(x)$ at $x = 1$?

Theorem. If f is differentiable at $x = a$, then f is continuous at $x = a$.
ex. Find $f'(1)$ if $f(x) = (x - 1)^{1/3}$.

Def. The graph of a function $f(x)$ has a \textbf{vertical tangent line} at $x = a$ if

What about a \textbf{horizontal tangent line}?
When is a function not differentiable at a point?
We know that at \(x = a \), \(f'(a) \) gives the slope of the tangent line to the graph of \(f \) at the point \((a, f(a))\).

ex. Given the graph of \(f(x) \), sketch a possible graph of its derivative.
ex. Find all points P on the parabola $y = x^2$ such that the tangent line at P passes through the point $(0, -4)$.