L5 Definition of the derivative

Tangent Lines and Slope

Def. The slope of the secant line through the point $P(a, f(a))$ and a nearby point $Q(x, f(x))$:

Def. The tangent line to $y=f(x)$ at the point $P(a, f(a))$ is the line through P with slope

$$
m=
$$

provided that the limit exists.
ex. Find the equation of the tangent line to $f(x)=x^{3}-1$ at $x=2$.

Alternate Definition of the Slope of a Tangent Line

Let $h=x-a$. Then
and $m=$
ex. Find the slope of the tangent line to
$f(x)=\frac{x}{x+1}$ at $x=2$.

NOTE: We can use our formulas to find the slope of the tangent line for $f(x)$ at any point $(a, f(a))$.
ex. Find the slope of the tangent line to $f(x)=\sqrt{9-2 x}$ at $x=a$.

We can use this formula to find the slope of the tangent line to $f(x)=\sqrt{9-2 x}$ at a given value $x=a$ (if the limit exists):

1) $x=-8$
2) $x=0$
3) $x=\frac{9}{2}$

The derivative as a function

Def. Given $y=f(x)$,

$$
f^{\prime}(x)=
$$

The derivative is itself a function of f. Its domain:

Other notations for the derivative:

Process of finding the derivative is called
ex. Find the function $f^{\prime}(x)$ for $f(x)=\frac{1}{x-2}$. What is its domain?

Def. A function f is differentiable at $x=a$ if $f^{\prime}(a)$ exists. It is differentiable on an open interval if it is differentiable at each number in the interval.
ex. Find each interval for which $f(x)=\frac{1}{x-2}$ is differentiable.
ex. Find each x-value at which the tangent line to the graph of $f(x)=\frac{1}{x-2}$ is perpendicular to the line $y=4 x$.

Recall: the derivative of a function f at $x=a$ is

$$
f^{\prime}(a)=
$$

The derivative as a function
Def. Given $y=f(x), f^{\prime}(x)=$
ex. Let $f(x)=\left\{\begin{array}{ll}1-x & x<1 \\ x^{2}-1 & x \geq 1\end{array}\right.$.

1) Find $f^{\prime}(1)$ if possible.
2) Find a formula for $f^{\prime}(x)$, where $f(x)=\left\{\begin{array}{ll}1-x & x<1 \\ x^{2}-1 & x \geq 1\end{array}\right.$.
3) Sketch the graph of $f(x)=\left\{\begin{array}{ll}1-x & x<1 \\ x^{2}-1 & x \geq 1\end{array}\right.$.

What do you note about continuity and differentiability of $f(x)$ at $x=1$?

Theorem. If f is differentiable at $x=a$, then f is continuous at $x=a$.
ex. Find $f^{\prime}(1)$ if $f(x)=(x-1)^{1 / 3}$.

Def. The graph of a function $f(x)$ has a vertical tangent line at $x=a$ if

What about a horizontal tangent line?

When is a function not differentiable at a point?

We know that at $x=a, f^{\prime}(a)$ gives the slope of the tangent line to the graph of f at the point $(a, f(a))$.
ex. Given the graph of $f(x)$, sketch a possible graph of its derivative.

ex. Find all points P on the parabola $y=x^{2}$ such that the tangent line at P passes through the point $(0,-4)$.

